max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
tests/importer/votingparser_test.py
raphiz/bsAbstimmungen
0
12783051
#!/usr/bin/env python # coding=utf-8 import json import pytest from bsAbstimmungen.importer.votingimporter import VotingParser from bsAbstimmungen.exceptions import AlreadyImportedException from ..utils import mockdb def test_raise_exception_when_alread_parsed(mockdb): parser = VotingParser(mockdb) parser.parse( 'tests/data/Abst_0205_20130109_111125_0003_0000_sa.pdf' ) with pytest.raises(AlreadyImportedException) as excinfo: parser.parse('tests/data/Abst_0205_20130109_111125_0003_0000_sa.pdf') def test_reuse_existing_councillors(mockdb): parser = VotingParser(mockdb) parser.parse( 'tests/data/Abst_0205_20130109_111125_0003_0000_sa.pdf' ) parser.parse( 'tests/data/Abst_0147_20130605_090518_0001_0000_ab.pdf' ) # Check the rough numbers assert 2 == mockdb['votes'].count() assert 124 == mockdb['councillors'].count() def test_multiline_affairs(mockdb): parser = VotingParser(mockdb) parser.parse('tests/data/Abst_0205_20130109_111125_0003_0000_sa.pdf') vote = mockdb['votes'].find()[0] assert ('Bericht der Umwelt-, Verkehrs- und ' 'Energiekommission zum Ratschlag Nr. 12.0788.01 ' 'Rahmenausgabenbewilligung zur weiteren Umsetzung ' 'von Tempo 30. Projektierung und Umsetzung von ' 'Massnahmen aus dem aktualisierten Tempo 30-Konzept ' 'sowie Bericht zu zehn Anzügen und zu zwei ' 'Petitionen sowie Bericht der Kommissionsminderheit' == vote['affair']) def test_parser_extracts_data(mockdb): parser = VotingParser(mockdb) parser.parse( 'tests/data/Abst_0147_20130605_090518_0001_0000_ab.pdf' ) assert 1 == mockdb['votes'].count() assert 100 == mockdb['councillors'].count() # Load verification details verification = json.load(open( 'tests/data/Abst_0147_20130605_090518_0001_0000_ab.json' )) # Verify the imported vote vote = mockdb['votes'].find_one({'nr': verification['vote']['nr']}) assert verification['vote']['timestamp'] == vote['timestamp'].isoformat() assert verification['vote']['affair'] == vote['affair'] assert verification['vote']['proposal'] == vote['proposal'] assert verification['vote']['question'] == vote['question'] assert verification['vote']['type'] == vote['type'] # Verify all counillors for councillor in verification['votings']: loaded = mockdb['councillors'].find_one({'fullname': councillor['name']}) assert councillor['name'] == loaded['fullname'] assert councillor['fraction'] == loaded['fraction'] assert councillor['voting'] == loaded['votings'][0]['voting']
2.265625
2
desktop/core/ext-py/urllib3-1.25.8/test/appengine/test_urlfetch.py
yetsun/hue
5,079
12783052
<reponame>yetsun/hue """These tests ensure that when running in App Engine standard with the App Engine sandbox enabled that urllib3 appropriately uses the App Engine-patched version of httplib to make requests.""" import httplib import StringIO from mock import patch import pytest from ..test_no_ssl import TestWithoutSSL class MockResponse(object): def __init__(self, content, status_code, content_was_truncated, final_url, headers): self.content = content self.status_code = status_code self.content_was_truncated = content_was_truncated self.final_url = final_url self.header_msg = httplib.HTTPMessage( StringIO.StringIO( "".join(["%s: %s\n" % (k, v) for k, v in headers.iteritems()] + ["\n"]) ) ) self.headers = headers @pytest.mark.usefixtures("sandbox") class TestHTTP(TestWithoutSSL): def test_urlfetch_called_with_http(self): """Check that URLFetch is used to fetch non-https resources.""" resp = MockResponse( "OK", 200, False, "http://www.google.com", {"content-type": "text/plain"} ) fetch_patch = patch("google.appengine.api.urlfetch.fetch", return_value=resp) with fetch_patch as fetch_mock: import urllib3 pool = urllib3.HTTPConnectionPool("www.google.com", "80") r = pool.request("GET", "/") assert r.status == 200, r.data assert fetch_mock.call_count == 1 @pytest.mark.usefixtures("sandbox") class TestHTTPS(object): @pytest.mark.xfail( reason="This is not yet supported by urlfetch, presence of the ssl " "module will bypass urlfetch." ) def test_urlfetch_called_with_https(self): """ Check that URLFetch is used when fetching https resources """ resp = MockResponse( "OK", 200, False, "https://www.google.com", {"content-type": "text/plain"} ) fetch_patch = patch("google.appengine.api.urlfetch.fetch", return_value=resp) with fetch_patch as fetch_mock: import urllib3 pool = urllib3.HTTPSConnectionPool("www.google.com", "443") pool.ConnectionCls = urllib3.connection.UnverifiedHTTPSConnection r = pool.request("GET", "/") assert r.status == 200, r.data assert fetch_mock.call_count == 1
2.109375
2
bin/demo_disease2gene.py
cariaso/metapub
28
12783053
from __future__ import absolute_import, print_function, unicode_literals import sys from tabulate import tabulate from metapub import MedGenFetcher try: term = sys.argv[1] except IndexError: print('Supply a disease/syndrome/condition name in quotation marks as the argument to this script.') sys.exit() #### import logging logging.getLogger("requests").setLevel(logging.WARNING) logging.getLogger("eutils").setLevel(logging.INFO) #### fetch = MedGenFetcher() uids = fetch.uids_by_term(term) print(uids) headers = ['CUI', 'Title', 'Semantic Type', 'MedGenUID', 'OMIM ID', 'Modes of Inheritance', 'Assoc Genes', ] table = [] def _join_or_NA(some_list, select=None, joiner=','): 'returns a joined string or NA if empty' if some_list and select: return joiner.join(item[select] for item in some_list) elif some_list: return joiner.join([item for item in some_list]) else: return 'NA' for this_id in uids: concept = fetch.concept_by_uid(this_id) #print concept.to_dict() assert concept.medgen_uid == this_id if concept.associated_genes: line = [concept.CUI, concept.title, concept.semantic_type, concept.medgen_uid] line.append(_join_or_NA(concept.OMIM)) line.append(_join_or_NA(concept.modes_of_inheritance, 'name')) line.append(_join_or_NA(concept.associated_genes, 'hgnc')) table.append(line) else: continue print(tabulate(table, headers, tablefmt="simple"))
2.28125
2
tests/ut/test_edge_volumes.py
CTERA-Networks/ctera-python-sdk
5
12783054
from unittest import mock from cterasdk import exception from cterasdk.common import Object from cterasdk.edge.enum import VolumeStatus from cterasdk.edge import volumes from tests.ut import base_edge class TestEdgeVolumes(base_edge.BaseEdgeTest): _drive_1 = 'SATA-1' _drive_2 = 'SATA-2' _drive_size = 81920 _mount_task_1 = (1, 'Task 1') _mount_task_2 = (2, 'Task 2') def setUp(self): super().setUp() self._volume_1_name = 'localcache' self._volume_2_name = 'logs' self._volumes = [self._volume_1_name, self._volume_2_name] self._volume_passphrase = 'password' self._mount_id = 'task id' def test_get_all_volumes(self): get_response = 'Success' self._init_filer(get_response=get_response) ret = volumes.Volumes(self._filer).get() self._filer.get.assert_called_once_with('/config/storage/volumes') self.assertEqual(ret, get_response) def test_get_volume(self): get_response = 'Success' self._init_filer(get_response=get_response) ret = volumes.Volumes(self._filer).get(self._volume_1_name) self._filer.get.assert_called_once_with('/config/storage/volumes/' + self._volume_1_name) self.assertEqual(ret, get_response) def test_add_volume_default_args_single_device_success(self): add_response = 'Success' self._init_filer(add_response=add_response) self._filer.get = mock.MagicMock(side_effect=TestEdgeVolumes._mock_no_arrays_single_drive) track_volume_creation_status_mock = self.patch_call("cterasdk.edge.volumes.track") ret = volumes.Volumes(self._filer).add(self._volume_1_name) self._filer.get.assert_has_calls( [ mock.call('/status/storage/arrays'), mock.call('/status/storage/disks') ] ) track_volume_creation_status_mock.assert_called_once_with(self._filer, '/status/storage/volumes/' + self._volume_1_name + '/status', [VolumeStatus.Ok], [VolumeStatus.Formatting], [VolumeStatus.Mounting, VolumeStatus.Checking, VolumeStatus.Repairing], [VolumeStatus.Corrupted, VolumeStatus.Unknown]) self._filer.add.assert_called_once_with('/config/storage/volumes', mock.ANY) expected_param = self._get_add_volume_param(device=TestEdgeVolumes._drive_1, size=TestEdgeVolumes._drive_size) actual_param = self._filer.add.call_args[0][1] self._assert_equal_objects(actual_param, expected_param) self.assertEqual(ret, add_response) def test_add_encrypted_volume_default_args_single_device_success(self): add_response = 'Success' self._init_filer(add_response=add_response) self._filer.get = mock.MagicMock(side_effect=TestEdgeVolumes._mock_no_arrays_single_drive) track_volume_creation_status_mock = self.patch_call("cterasdk.edge.volumes.track") ret = volumes.Volumes(self._filer).add(self._volume_1_name, passphrase=self._volume_passphrase) self._filer.get.assert_has_calls( [ mock.call('/status/storage/arrays'), mock.call('/status/storage/disks') ] ) track_volume_creation_status_mock.assert_called_once_with(self._filer, '/status/storage/volumes/' + self._volume_1_name + '/status', [VolumeStatus.Ok], [VolumeStatus.Formatting], [VolumeStatus.Mounting, VolumeStatus.Checking, VolumeStatus.Repairing], [VolumeStatus.Corrupted, VolumeStatus.Unknown]) self._filer.add.assert_called_once_with('/config/storage/volumes', mock.ANY) expected_param = self._get_add_volume_param(device=TestEdgeVolumes._drive_1, size=TestEdgeVolumes._drive_size, passphrase=self._volume_passphrase) actual_param = self._filer.add.call_args[0][1] self._assert_equal_objects(actual_param, expected_param) self.assertEqual(ret, add_response) def test_add_volume_no_devices(self): self._init_filer() self._filer.get = mock.MagicMock(side_effect=TestEdgeVolumes._mock_no_devices) with self.assertRaises(exception.CTERAException) as error: volumes.Volumes(self._filer).add(self._volume_1_name) self._filer.get.assert_has_calls( [ mock.call('/status/storage/arrays'), mock.call('/status/storage/disks') ] ) self.assertEqual('Could not find any drives or arrays', error.exception.message) def test_add_volume_invalid_device_name(self): self._init_filer() self._filer.get = mock.MagicMock(side_effect=TestEdgeVolumes._mock_no_arrays_multiple_drive) with self.assertRaises(exception.InputError) as error: volumes.Volumes(self._filer).add(self._volume_1_name, device='Invalid device name') self._filer.get.assert_has_calls( [ mock.call('/status/storage/arrays'), mock.call('/status/storage/disks') ] ) self.assertEqual('Invalid device name', error.exception.message) def test_add_volume_must_specify_device_name(self): self._init_filer() self._filer.get = mock.MagicMock(side_effect=TestEdgeVolumes._mock_no_arrays_multiple_drive) with self.assertRaises(exception.CTERAException) as error: volumes.Volumes(self._filer).add(self._volume_1_name) self._filer.get.assert_has_calls( [ mock.call('/status/storage/arrays'), mock.call('/status/storage/disks') ] ) self.assertEqual('You must specify a drive or an array name', error.exception.message) def test_add_volume_with_device_success(self): add_response = 'Success' self._init_filer(add_response=add_response) self._filer.get = mock.MagicMock(side_effect=TestEdgeVolumes._mock_no_arrays_multiple_drive) track_volume_creation_status_mock = self.patch_call("cterasdk.edge.volumes.track") ret = volumes.Volumes(self._filer).add(self._volume_1_name, device=TestEdgeVolumes._drive_1) self._filer.get.assert_has_calls( [ mock.call('/status/storage/arrays'), mock.call('/status/storage/disks') ] ) track_volume_creation_status_mock.assert_called_once_with(self._filer, '/status/storage/volumes/' + self._volume_1_name + '/status', [VolumeStatus.Ok], [VolumeStatus.Formatting], [VolumeStatus.Mounting, VolumeStatus.Checking, VolumeStatus.Repairing], [VolumeStatus.Corrupted, VolumeStatus.Unknown]) self._filer.add.assert_called_once_with('/config/storage/volumes', mock.ANY) expected_param = self._get_add_volume_param(device=TestEdgeVolumes._drive_1, size=TestEdgeVolumes._drive_size) actual_param = self._filer.add.call_args[0][1] self._assert_equal_objects(actual_param, expected_param) self.assertEqual(ret, add_response) def test_add_volume_exceeding_drive_size(self): self._init_filer() self._filer.get = mock.MagicMock(side_effect=TestEdgeVolumes._mock_no_arrays_single_drive) with self.assertRaises(exception.InputError) as error: volumes.Volumes(self._filer).add(self._volume_1_name, size=999999999) self._filer.get.assert_has_calls( [ mock.call('/status/storage/arrays'), mock.call('/status/storage/disks') ] ) self.assertEqual('You cannot exceed the available storage capacity', error.exception.message) def test_delete_volume_success(self): delete_response = 'Success' self._init_filer(delete_response=delete_response) self._filer.tasks.by_name = mock.MagicMock(return_value=[TestEdgeVolumes._get_pending_mount_task(self._mount_id)]) self._filer.tasks.wait = mock.MagicMock() ret = volumes.Volumes(self._filer).delete(self._volume_1_name) self._filer.tasks.by_name.assert_called_once_with(' '.join(['Mounting', self._volume_1_name, 'file system'])) self._filer.tasks.wait.assert_called_once_with(self._mount_id) self._filer.delete.assert_called_once_with('/config/storage/volumes/' + self._volume_1_name) self.assertEqual(ret, delete_response) def test_delete_volume_raise(self): self._init_filer() self._filer.delete = mock.MagicMock(side_effect=exception.CTERAException()) self._filer.tasks.by_name = mock.MagicMock(return_value=[]) with self.assertRaises(exception.CTERAException) as error: volumes.Volumes(self._filer).delete(self._volume_1_name) self._filer.tasks.by_name.assert_called_once_with(' '.join(['Mounting', self._volume_1_name, 'file system'])) self._filer.delete.assert_called_once_with('/config/storage/volumes/' + self._volume_1_name) self.assertEqual('Volume deletion falied', error.exception.message) def test_delete_all_volume_success(self): delete_response = 'Success' self._init_filer(get_response=self._get_volumes_response_param(), delete_response=delete_response) self._filer.tasks.running = mock.MagicMock(return_value=TestEdgeVolumes._get_pending_mount_tasks()) self._filer.tasks.by_name = mock.MagicMock() self._filer.tasks.wait = mock.MagicMock() volumes.Volumes(self._filer).delete_all() self._filer.get.assert_called_once_with('/config/storage/volumes') self._filer.tasks.running.assert_called_once() self._filer.delete.assert_has_calls( [ mock.call('/config/storage/volumes/' + self._volume_1_name), mock.call('/config/storage/volumes/' + self._volume_2_name) ] ) def test_modify_volume_success(self): before_volume_size = 1000 after_volume_size = 9999 put_response = 'Success' self._init_filer(get_response=TestEdgeVolumes._get_volume_response(self._volume_1_name, before_volume_size), put_response=put_response) ret = volumes.Volumes(self._filer).modify(self._volume_1_name, 9999) self._filer.get.assert_called_once_with('/config/storage/volumes/' + self._volume_1_name) self._filer.put.assert_called_once_with('/config/storage/volumes/' + self._volume_1_name, mock.ANY) expected_param = TestEdgeVolumes._get_volume_response(self._volume_1_name, after_volume_size) actual_param = self._filer.put.call_args[0][1] self._assert_equal_objects(actual_param, expected_param) self.assertEqual(ret, put_response) def test_modify_volume_not_found(self): self._init_filer() self._filer.get = mock.MagicMock(side_effect=exception.CTERAException()) with self.assertRaises(exception.CTERAException) as error: volumes.Volumes(self._filer).modify(self._volume_1_name, 9999) self._filer.get.assert_called_once_with('/config/storage/volumes/' + self._volume_1_name) self.assertEqual('Failed to get the volume', error.exception.message) @staticmethod def _get_volume_response(name, size): param = Object() param.name = name param.size = size return param def _get_volumes_response_param(self): storage_volumes = [] for volume_name in self._volumes: param = Object() param.name = volume_name storage_volumes.append(param) return storage_volumes def test_delete_no_volumes_found(self): self._init_filer(get_response=[]) self._filer.tasks.running = mock.MagicMock(return_value=[]) volumes.Volumes(self._filer).delete_all() self._filer.get.assert_called_once_with('/config/storage/volumes') @staticmethod def _get_pending_mount_tasks(): mount_id, task_name = TestEdgeVolumes._mount_task_1 task_1 = TestEdgeVolumes._get_pending_mount_task(mount_id, task_name) mount_id, task_name = TestEdgeVolumes._mount_task_2 task_2 = TestEdgeVolumes._get_pending_mount_task(mount_id, task_name) return [task_1, task_2] @staticmethod def _get_pending_mount_task(mount_id=None, name=None): param = Object() if mount_id: param.id = mount_id if name: param.name = name return param @staticmethod def _get_drive(name, capacity): param = Object() param.name = name param.availableCapacity = capacity return param def _get_add_volume_param(self, device=None, size=None, passphrase=None): param = Object() param.name = self._volume_1_name if device: param.device = device if size: param.size = size param.fileSystemType = 'xfs' if passphrase: param.encrypted = True param.encPassphrase = passphrase return param @staticmethod def _mock_no_devices(path): if path == '/status/storage/arrays': return [] if path == '/status/storage/disks': return [] return None @staticmethod def _mock_no_arrays_single_drive(path): if path == '/status/storage/arrays': return [] if path == '/status/storage/disks': return [TestEdgeVolumes._get_drive(TestEdgeVolumes._drive_1, TestEdgeVolumes._drive_size)] return None @staticmethod def _mock_no_arrays_multiple_drive(path): if path == '/status/storage/arrays': return [] if path == '/status/storage/disks': return [TestEdgeVolumes._get_drive(TestEdgeVolumes._drive_1, TestEdgeVolumes._drive_size), TestEdgeVolumes._get_drive(TestEdgeVolumes._drive_2, TestEdgeVolumes._drive_size)] return None
2.21875
2
simple_model/utils.py
felipegr/simple-model
76
12783055
<reponame>felipegr/simple-model import inspect import re import typing NOT_WORD = re.compile(r'\W') SNAKE_CASE = re.compile('([a-z0-9])([A-Z])') SNAKE_CASE_AUX = re.compile('(.)([A-Z][a-z]+)') _PRIVATE_ATTR_RE = re.compile(r'_[\w\d]+__[\w\d]') def capitalize_first(string: str) -> str: return string[0].upper() + string[1:] if string != '' else string def camel_case(string: str) -> str: string = capitalize_first(string) for separator in ('_', '-', ' '): if separator not in string: continue string = ''.join(capitalize_first(substr) for substr in string.split(separator)) return string def coerce_to_alpha(string: str) -> str: return NOT_WORD.sub('_', string) def snake_case(string: str) -> str: aux = SNAKE_CASE_AUX.sub(r'\1_\2', string) return SNAKE_CASE.sub(r'\1_\2', aux).lower() def is_not_special_object(obj): return not any(( inspect.isclass(obj), inspect.ismethod(obj), inspect.isfunction(obj), inspect.isgeneratorfunction(obj), inspect.isgenerator(obj), inspect.isroutine(obj), isinstance(obj, property), )) def getkey(d: dict, key: typing.Any): return d[key] def remove_private_keys(d: dict) -> dict: return { k: v for k, v in d.items() if not k.startswith('__') } def is_private_attribute(name): return _PRIVATE_ATTR_RE.match(name) is not None
2.796875
3
githeart/settings.py
andressadotpy/template-projeto-selecao
0
12783056
from pathlib import Path import os import django_heroku BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '<KEY>' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] INSTALLED_APPS = [ 'requests', 'starred_repos', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'social_django', ] TAGGIT_CASE_INSENSITIVE = True MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'social_django.middleware.SocialAuthExceptionMiddleware' ] ROOT_URLCONF = 'githeart.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'social_django.context_processors.backends', 'social_django.context_processors.login_redirect' ], }, }, ] WSGI_APPLICATION = 'githeart.wsgi.application' DJANGO_SETTINGS_MODULE = 'githeart.settings' # Database DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'githeart', 'USER': 'postgres', 'PASSWORD': '<PASSWORD>', 'HOST': 'localhost' } } AUTHENTICATION_BACKENDS = ( 'social_core.backends.github.GithubOAuth2', 'django.contrib.auth.backends.ModelBackend', ) AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization LANGUAGE_CODE = 'pt-br' TIME_ZONE = 'America/Sao_Paulo' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'githeart/static') ] from django.contrib.messages import constants as messages MESSAGE_TAGS = { messages.ERROR: 'danger', messages.SUCCESS: 'success' } LOGIN_URL = 'login' LOGOUT_URL = 'logout' LOGIN_REDIRECT_URL = 'home' # GitHub Login SOCIAL_AUTH_GITHUB_KEY = '<KEY>' SOCIAL_AUTH_GITHUB_SECRET = '1917f9ce2cc914a7935e8eca01fb4fa3d3d771e9' STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'githeart/static') ] django_heroku.settings(locals())
1.9375
2
_05_FUNCTIONS_ADVANCED_LAB/_05_min_max_sum.py
Andrey-V-Georgiev/PythonAdvanced
1
12783057
def print_min_max_sum(*args): num_list = list(args[0]) min_num = min(num_list) max_num = max(num_list) sum_num = sum(num_list) print(f'The minimum number is {min_num}') print(f'The maximum number is {max_num}') print(f'The sum number is: {sum_num}') input_string = input() input_numbers = map(int, input_string.split(' ')) print_min_max_sum(input_numbers)
3.90625
4
test/test_acd.py
LCAV/PyLocus
13
12783058
#!/usr/bin/env python # module TEST_ACD import unittest import numpy as np from .test_common import BaseCommon from pylocus.point_set import PointSet from pylocus.algorithms import reconstruct_acd from pylocus.simulation import create_noisy_edm class TestACD(BaseCommon.TestAlgorithms): def setUp(self): BaseCommon.TestAlgorithms.setUp(self) self.create_points() self.n_it = 10 def create_points(self, N=5, d=2): print('TestACD:create_points') self.pts = PointSet(N, d) self.pts.set_points('random') self.pts.init() self.index = 0 def call_method(self, method=''): print('TestACD:call_method') Xhat, costs = reconstruct_acd(self.pts.edm, W=np.ones(self.pts.edm.shape), X0=self.pts.points, print_out=False, sweeps=3) return Xhat def add_noise(self, noise=1e-6): self.pts.edm = create_noisy_edm(self.pts.edm, noise) if __name__ == "__main__": unittest.main()
2.59375
3
components/studio/monitor/urls.py
ScilifelabDataCentre/stackn
0
12783059
<filename>components/studio/monitor/urls.py from django.urls import path from . import views app_name = 'monitor' urlpatterns = [ path('', views.overview, name='overview'), path('<resource_type>/cpuchart', views.cpuchart, name='cpuchart'), path('lab/delete/<uid>', views.delete_lab, name='delete_lab'), path('serve/delete/<model_id>', views.delete_deployment, name='delete_deployment'), ]
1.546875
2
test/test_cli.py
bninja/rump
6
12783060
<filename>test/test_cli.py import json import threading import mock import pytest import requests import time from rump import dumps, cli, Settings @pytest.fixture def config_path(request): return request.config.fixtures_path.join('settings', 'main.conf') @pytest.fixture def requests_path(request): return request.config.fixtures_path.join('requests') @pytest.fixture def parser(config_path): return cli.parser(conf_file=str(config_path)) @pytest.fixture def settings(config_path): return Settings.from_file(str(config_path)) def test_list(capsys, parser): args = parser.parse_args(['list']) cli.setup(args) args.command(args) out, err = capsys.readouterr() assert out == '\n'.join([ 'router1', 'router2', 'router3', '', ]) assert err == '' def test_show(capsys, parser): args = parser.parse_args(['show', 'router1']) cli.setup(args) args.command(args) out, err = capsys.readouterr() assert out == dumps(args.settings.routers[0]) + '\n' assert err == '' def test_check(capsys, parser): args = parser.parse_args(['check', 'router1']) cli.setup(args) rc = args.command(args) assert rc == 0 out, err = capsys.readouterr() assert out == '' assert err == '' def test_edit(tmpdir, parser): path = tmpdir.join('edit1.json') path.write(data=json.dumps({'compile_rules': False}), ensure=True) args = parser.parse_args(['edit', 'router2', str(path)]) cli.setup(args) args.command(args) path = tmpdir.join('edit2.json') path.write(data=json.dumps({'compile_rules': True}), ensure=True) args = parser.parse_args(['edit', 'router2', str(path)]) cli.setup(args) args.command(args) def test_watch(capsys, tmpdir, parser): def _watch(): args = parser.parse_args(['watch', 'router2', '-n', '1', '-t', '10']) cli.setup(args) args.command(args) thd = threading.Thread(target=_watch) thd.start() time.sleep(1.0) path = tmpdir.join('edit1.json') path.write(data=json.dumps({'compile_rules': False}), ensure=True) args = parser.parse_args(['edit', 'router2', str(path)]) cli.setup(args) args.command(args) thd.join() out, _ = capsys.readouterr() assert out == 'router changed - router2\n' def test_eval(capsys, tmpdir, parser, requests_path): requests = tmpdir.join('requests.http') for request_path in requests_path.listdir(): requests.write(request_path.read(), ensure=True) args = parser.parse_args(['eval', '-r', str(requests)]) cli.setup(args) args.command(args) out, _ = capsys.readouterr() assert out == '\n'.join([ 'https://www.google.com', 'https://www.yahoo.com', 'http://dev.google.com', '', ]) def test_serve(parser, settings): def _serve(): args = parser.parse_args(['serve']) cli.setup(args) with mock.patch('rump.cli.server_for') as patched: patched.return_value = server args.command(args) server = cli.server_for(host='localhost', port=0, mode=None) thd = threading.Thread(target=_serve) thd.daemon = True thd.start() time.sleep(1.0) try: root = 'http://{0}:{1}'.format(*server.server_address) for case in [ { 'path': '/1/a', 'headers': {'Host': 'google.example.com'}, 'x-rump-forward': 'https://www.google.com', 'x-rump-redir-proto': 'https', 'x-rump-redir-host': 'www.google.com', }, { 'path': '/2/b', 'headers': {'Host': 'yahoo.example.com'}, 'x-rump-forward': 'https://www.yahoo.com', 'x-rump-redir-proto': 'https', 'x-rump-redir-host': 'www.yahoo.com', }, { 'path': '/3/c', 'headers': {'Host': 'dev.google.com'}, 'x-rump-forward': 'http://dev.google.com', 'x-rump-redir-proto': 'http', 'x-rump-redir-host': 'dev.google.com', }, ]: resp = requests.get(root + case['path'], headers=case['headers']) assert resp.status_code == 200 assert 'x-rump-forward' in resp.headers assert resp.headers['x-rump-forward'] == case['x-rump-forward'] assert 'x-rump-redir-proto' in resp.headers assert resp.headers['x-rump-redir-proto'] == case['x-rump-redir-proto'] assert 'x-rump-redir-host' in resp.headers assert resp.headers['x-rump-redir-host'] == case['x-rump-redir-host'] finally: server.shutdown() thd.join()
2.15625
2
mmtbx/regression/tst_sequence_validation.py
jbeilstenedmands/cctbx_project
0
12783061
<filename>mmtbx/regression/tst_sequence_validation.py<gh_stars>0 from __future__ import division from libtbx import easy_mp from libtbx import easy_pickle from libtbx.utils import Sorry, null_out import os def exercise () : import libtbx.utils if (libtbx.utils.detect_multiprocessing_problem() is not None) : print "multiprocessing not available, skipping this test" return if (os.name == "nt"): print "easy_mp fixed_func not supported under Windows, skipping this test" return from mmtbx.validation.sequence import validation, get_sequence_n_copies, \ get_sequence_n_copies_from_files import iotbx.bioinformatics import iotbx.pdb from iotbx import file_reader import libtbx.load_env # import dependency from libtbx.test_utils import Exception_expected, contains_lines, approx_equal from cStringIO import StringIO pdb_in = iotbx.pdb.input(source_info=None, lines="""\ ATOM 2 CA ARG A 10 -6.299 36.344 7.806 1.00 55.20 C ATOM 25 CA TYR A 11 -3.391 33.962 7.211 1.00 40.56 C ATOM 46 CA ALA A 12 -0.693 34.802 4.693 1.00 67.95 C ATOM 56 CA ALA A 13 0.811 31.422 3.858 1.00 57.97 C ATOM 66 CA GLY A 14 4.466 31.094 2.905 1.00 49.24 C ATOM 73 CA ALA A 15 7.163 28.421 2.671 1.00 54.70 C ATOM 83 CA ILE A 16 6.554 24.685 2.957 1.00 51.79 C ATOM 102 CA LEU A 17 7.691 23.612 6.406 1.00 42.30 C ATOM 121 CA PTY A 18 7.292 19.882 5.861 1.00 36.68 C ATOM 128 CA PHE A 19 5.417 16.968 4.327 1.00 44.99 C ATOM 148 CA GLY A 20 3.466 14.289 6.150 1.00 41.99 C ATOM 155 CA GLY A 21 1.756 11.130 4.965 1.00 35.77 C ATOM 190 CA ALA A 24 1.294 19.658 3.683 1.00 47.02 C ATOM 200 CA VAL A 24A 2.361 22.009 6.464 1.00 37.13 C ATOM 216 CA HIS A 25 2.980 25.633 5.535 1.00 42.52 C ATOM 234 CA LEU A 26 4.518 28.425 7.577 1.00 47.63 C ATOM 253 CA ALA A 27 2.095 31.320 7.634 1.00 38.61 C ATOM 263 CA ARG A 28 1.589 34.719 9.165 1.00 37.04 C END""") seq1 = iotbx.bioinformatics.sequence("MTTPSHLSDRYELGEILGFGGMSEVHLARD".lower()) v = validation( pdb_hierarchy=pdb_in.construct_hierarchy(), sequences=[seq1], log=null_out(), nproc=1) out = StringIO() v.show(out=out) assert contains_lines(out.getvalue(), """\ sequence identity: 76.47% 13 residue(s) missing from PDB chain (9 at start, 1 at end) 2 gap(s) in chain 4 mismatches to sequence residue IDs: 12 13 15 24""") cif_block = v.as_cif_block() assert list(cif_block['_struct_ref.pdbx_seq_one_letter_code']) == [ 'MTTPSHLSDRYELGEILGFGGMSEVHLARD'] assert approx_equal(cif_block['_struct_ref_seq.pdbx_auth_seq_align_beg'], ['10', '14', '16', '19', '24']) assert approx_equal(cif_block['_struct_ref_seq.pdbx_auth_seq_align_end'], ['11', '14', '17', '21', '28']) assert approx_equal(cif_block['_struct_ref_seq.db_align_beg'], ['10', '14', '16', '19', '25']) assert approx_equal(cif_block['_struct_ref_seq.db_align_end'], ['11', '14', '17', '21', '29']) assert cif_block['_struct_ref_seq.pdbx_seq_align_beg_ins_code'][4] == 'A' seq2 = iotbx.bioinformatics.sequence("MTTPSHLSDRYELGEILGFGGMSEVHLA") v = validation( pdb_hierarchy=pdb_in.construct_hierarchy(), sequences=[seq2], log=null_out(), nproc=1) out = StringIO() v.show(out=out) assert contains_lines(out.getvalue(), """\ 1 residues not found in sequence residue IDs: 28""") try : v = validation( pdb_hierarchy=pdb_in.construct_hierarchy(), sequences=[], log=null_out(), nproc=1) except AssertionError : pass else : raise Exception_expected cif_block = v.as_cif_block() assert list(cif_block['_struct_ref.pdbx_seq_one_letter_code']) == [ 'MTTPSHLSDRYELGEILGFGGMSEVHLA-'] assert approx_equal(cif_block['_struct_ref_seq.pdbx_auth_seq_align_end'], ['11', '14', '17', '21', '27']) assert approx_equal(cif_block['_struct_ref_seq.db_align_end'], ['11', '14', '17', '21', '28']) # pdb_in2 = iotbx.pdb.input(source_info=None, lines="""\ ATOM 2 CA ARG A 10 -6.299 36.344 7.806 1.00 55.20 C ATOM 25 CA TYR A 11 -3.391 33.962 7.211 1.00 40.56 C ATOM 46 CA ALA A 12 -0.693 34.802 4.693 1.00 67.95 C ATOM 56 CA ALA A 13 0.811 31.422 3.858 1.00 57.97 C ATOM 66 CA GLY A 14 4.466 31.094 2.905 1.00 49.24 C ATOM 73 CA ALA A 15 7.163 28.421 2.671 1.00 54.70 C ATOM 83 CA ILE A 16 6.554 24.685 2.957 1.00 51.79 C ATOM 102 CA LEU A 17 7.691 23.612 6.406 1.00 42.30 C TER ATOM 1936 P G B 2 -22.947 -23.615 15.323 1.00123.20 P ATOM 1959 P C B 3 -26.398 -26.111 19.062 1.00110.06 P ATOM 1979 P U B 4 -29.512 -30.638 21.164 1.00101.06 P ATOM 1999 P C B 5 -30.524 -36.109 21.527 1.00 92.76 P ATOM 2019 P U B 6 -28.684 -41.458 21.223 1.00 87.42 P ATOM 2062 P G B 8 -18.396 -45.415 21.903 1.00 80.35 P ATOM 2085 P A B 9 -13.852 -43.272 24.156 1.00 77.76 P ATOM 2107 P G B 10 -8.285 -44.242 26.815 1.00 79.86 P END """) seq3 = iotbx.bioinformatics.sequence("AGCUUUGGAG") v = validation( pdb_hierarchy=pdb_in2.construct_hierarchy(), sequences=[seq2,seq3], log=null_out(), nproc=1, extract_coordinates=True) out = StringIO() v.show(out=out) cif_block = v.as_cif_block() assert approx_equal(cif_block['_struct_ref.pdbx_seq_one_letter_code'], ['MTTPSHLSDRYELGEILGFGGMSEVHLA', 'AGCUUUGGAG']) assert approx_equal(cif_block['_struct_ref_seq.pdbx_auth_seq_align_beg'], ['10', '14', '16', '2', '6', '8']) assert approx_equal(cif_block['_struct_ref_seq.pdbx_auth_seq_align_end'], ['11', '14', '17', '4', '6', '10']) assert (len(v.chains[0].get_outliers_table()) == 3) assert (len(v.get_table_data()) == 4) assert approx_equal( v.chains[0].get_mean_coordinate_for_alignment_range(11,11), (-0.693, 34.802, 4.693)) assert approx_equal( v.chains[0].get_mean_coordinate_for_alignment_range(11,14), (2.93675, 31.43475, 3.53175)) assert (v.chains[0].get_highlighted_residues() == [11,12,14]) assert contains_lines(out.getvalue(), """\ 3 mismatches to sequence residue IDs: 12 13 15""") assert contains_lines(out.getvalue(), """\ sequence identity: 87.50% 2 residue(s) missing from PDB chain (1 at start, 0 at end) 1 gap(s) in chain 1 mismatches to sequence residue IDs: 5""") s = easy_pickle.dumps(v) seq4 = iotbx.bioinformatics.sequence("") try : v = validation( pdb_hierarchy=pdb_in2.construct_hierarchy(), sequences=[seq4], log=null_out(), nproc=1, extract_coordinates=True) except AssertionError : pass else : raise Exception_expected # check that nucleic acid chain doesn't get aligned against protein sequence pdb_in = iotbx.pdb.input(source_info=None, lines="""\ ATOM 18932 P B DG D 1 -12.183 60.531 25.090 0.50364.79 P ATOM 18963 P B DG D 2 -9.738 55.258 20.689 0.50278.77 P ATOM 18994 P B DA D 3 -10.119 47.855 19.481 0.50355.17 P ATOM 19025 P B DT D 4 -13.664 42.707 21.119 0.50237.06 P ATOM 19056 P B DG D 5 -19.510 39.821 21.770 0.50255.45 P ATOM 19088 P B DA D 6 -26.096 40.001 21.038 0.50437.49 P ATOM 19120 P B DC D 7 -31.790 41.189 18.413 0.50210.00 P ATOM 19149 P B DG D 8 -34.639 41.306 12.582 0.50313.99 P ATOM 19179 P B DA D 9 -34.987 38.244 6.813 0.50158.92 P ATOM 19210 P B DT D 10 -32.560 35.160 1.082 0.50181.38 P HETATM19241 P BTSP D 11 -27.614 30.137 0.455 0.50508.17 P """) sequences, _ = iotbx.bioinformatics.fasta_sequence_parse.parse( """>4GFH:A|PDBID|CHAIN|SEQUENCE MSTEPVSASDKYQKISQLEHILKRPDTYIGSVETQEQLQWIYDEETDCMIEKNVTIVPGLFKIFDEILVNAADNKVRDPS MKRIDVNIHAEEHTIEVKNDGKGIPIEIHNKENIYIPEMIFGHLLTSSNYDDDEKKVTGGRNGYGAKLCNIFSTEFILET ADLNVGQKYVQKWENNMSICHPPKITSYKKGPSYTKVTFKPDLTRFGMKELDNDILGVMRRRVYDINGSVRDINVYLNGK SLKIRNFKNYVELYLKSLEKKRQLDNGEDGAAKSDIPTILYERINNRWEVAFAVSDISFQQISFVNSIATTMGGTHVNYI TDQIVKKISEILKKKKKKSVKSFQIKNNMFIFINCLIENPAFTSQTKEQLTTRVKDFGSRCEIPLEYINKIMKTDLATRM FEIADANEENALKKSDGTRKSRITNYPKLEDANKAGTKEGYKCTLVLTEGDSALSLAVAGLAVVGRDYYGCYPLRGKMLN VREASADQILKNAEIQAIKKIMGLQHRKKYEDTKSLRYGHLMIMTDQDHDGSHIKGLIINFLESSFPGLLDIQGFLLEFI TPIIKVSITKPTKNTIAFYNMPDYEKWREEESHKFTWKQKYYKGLGTSLAQEVREYFSNLDRHLKIFHSLQGNDKDYIDL AFSKKKADDRKEWLRQYEPGTVLDPTLKEIPISDFINKELILFSLADNIRSIPNVLDGFKPGQRKVLYGCFKKNLKSELK VAQLAPYVSECTAYHHGEQSLAQTIIGLAQNFVGSNNIYLLLPNGAFGTRATGGKDAAAARYIYTELNKLTRKIFHPADD PLYKYIQEDEKTVEPEWYLPILPMILVNGAEGIGTGWSTYIPPFNPLEIIKNIRHLMNDEELEQMHPWFRGWTGTIEEIE PLRYRMYGRIEQIGDNVLEITELPARTWTSTIKEYLLLGLSGNDKIKPWIKDMEEQHDDNIKFIITLSPEEMAKTRKIGF YERFKLISPISLMNMVAFDPHGKIKKYNSVNEILSEFYYVRLEYYQKRKDHMSERLQWEVEKYSFQVKFIKMIIEKELTV TNKPRNAIIQELENLGFPRFNKEGKPYYGSPNDEIAEQINDVKGATSDEEDEESSHEDTENVINGPEELYGTYEYLLGMR IWSLTKERYQKLLKQKQEKETELENLLKLSAKDIWNTDLKAFEVGYQEFLQRDAEAR >4GFH:D|PDBID|CHAIN|SEQUENCE GGATGACGATX """) v = validation( pdb_hierarchy=pdb_in.construct_hierarchy(), sequences=sequences, log=null_out(), nproc=1,) out = StringIO() v.show(out=out) assert v.chains[0].n_missing == 0 assert v.chains[0].n_missing_end == 0 assert v.chains[0].n_missing_start == 0 assert len(v.chains[0].alignment.matches()) == 11 # pdb_in = iotbx.pdb.input(source_info=None, lines="""\ ATOM 2 CA GLY A 1 1.367 0.551 0.300 1.00 7.71 C ATOM 6 CA CYS A 2 2.782 3.785 1.683 1.00 5.18 C ATOM 12 CA CYS A 3 -0.375 5.128 3.282 1.00 5.21 C ATOM 18 CA SER A 4 -0.870 2.048 5.492 1.00 7.19 C ATOM 25 CA LEU A 5 2.786 2.056 6.642 1.00 6.78 C ATOM 33 CA PRO A 6 3.212 4.746 9.312 1.00 7.03 C ATOM 40 CA PRO A 7 6.870 5.690 8.552 1.00 7.97 C ATOM 47 CA CYS A 8 6.021 6.070 4.855 1.00 6.48 C ATOM 53 CA ALA A 9 2.812 8.041 5.452 1.00 7.15 C ATOM 58 CA LEU A 10 4.739 10.382 7.748 1.00 8.36 C ATOM 66 CA SER A 11 7.292 11.200 5.016 1.00 7.00 C ATOM 73 CA ASN A 12 4.649 11.435 2.264 1.00 5.40 C ATOM 81 CA PRO A 13 1.879 13.433 3.968 1.00 5.97 C ATOM 88 CA ASP A 14 0.485 15.371 0.986 1.00 7.70 C ATOM 96 CA TYR A 15 0.565 12.245 -1.180 1.00 6.55 C ATOM 108 CA CYS A 16 -1.466 10.260 1.363 1.00 7.32 C ATOM 113 N NH2 A 17 -2.612 12.308 2.058 1.00 8.11 N """) seq = iotbx.bioinformatics.sequence("GCCSLPPCALSNPDYCX") v = validation( pdb_hierarchy=pdb_in.construct_hierarchy(), sequences=[seq], log=null_out(), nproc=1,) out = StringIO() v.show(out=out) assert v.chains[0].n_missing == 0 assert v.chains[0].n_missing_end == 0 assert v.chains[0].n_missing_start == 0 assert len(v.chains[0].alignment.matches()) == 17 # pdb_in = iotbx.pdb.input(source_info=None, lines="""\ ATOM 2518 CA PRO C 3 23.450 -5.848 45.723 1.00 85.24 C ATOM 2525 CA GLY C 4 20.066 -4.416 44.815 1.00 79.25 C ATOM 2529 CA PHE C 5 19.408 -0.913 46.032 1.00 77.13 C ATOM 2540 CA GLY C 6 17.384 -1.466 49.208 1.00 83.44 C ATOM 2544 CA GLN C 7 17.316 -5.259 49.606 1.00 89.25 C ATOM 2553 CA GLY C 8 19.061 -6.829 52.657 1.00 90.67 C """) sequences, _ = iotbx.bioinformatics.fasta_sequence_parse.parse( """>1JN5:A|PDBID|CHAIN|SEQUENCE MASVDFKTYVDQACRAAEEFVNVYYTTMDKRRRLLSRLYMGTATLVWNGNAVSGQESLSEFFEMLPSSEFQISVVDCQPV HDEATPSQTTVLVVICGSVKFEGNKQRDFNQNFILTAQASPSNTVWKIASDCFRFQDWAS >1JN5:B|PDBID|CHAIN|SEQUENCE APPCKGSYFGTENLKSLVLHFLQQYYAIYDSGDRQGLLDAYHDGACCSLSIPFIPQNPARSSLAEYFKDSRNVKKLKDPT LRFRLLKHTRLNVVAFLNELPKTQHDVNSFVVDISAQTSTLLCFSVNGVFKEVDGKSRDSLRAFTRTFIAVPASNSGLCI VNDELFVRNASSEEIQRAFAMPAPTPSSSPVPTLSPEQQEMLQAFSTQSGMNLEWSQKCLQDNNWDYTRSAQAFTHLKAK GEIPEVAFMK >1JN5:C|PDBID|CHAIN|SEQUENCE GQSPGFGQGGSV """) v = validation( pdb_hierarchy=pdb_in.construct_hierarchy(), sequences=sequences, log=null_out(), nproc=1,) out = StringIO() v.show(out=out) assert v.chains[0].n_missing_start == 3 assert v.chains[0].n_missing_end == 3 assert v.chains[0].identity == 1.0 assert v.chains[0].alignment.match_codes == 'iiimmmmmmiii' # pdb_in = iotbx.pdb.input(source_info=None, lines="""\ ATOM 2 CA ALA A 2 -8.453 57.214 -12.754 1.00 52.95 C ATOM 7 CA LEU A 3 -8.574 59.274 -9.471 1.00 24.33 C ATOM 15 CA ARG A 4 -12.178 60.092 -8.575 1.00 28.40 C ATOM 26 CA GLY A 5 -14.170 61.485 -5.667 1.00 26.54 C ATOM 30 CA THR A 6 -17.784 60.743 -4.783 1.00 31.78 C ATOM 37 CA VAL A 7 -19.080 64.405 -4.464 1.00 21.31 C """) seq = iotbx.bioinformatics.sequence("XALRGTV") v = validation( pdb_hierarchy=pdb_in.construct_hierarchy(), sequences=[seq], log=null_out(), nproc=1,) out = StringIO() v.show(out=out) assert v.chains[0].n_missing_start == 1 assert v.chains[0].n_missing_end == 0 assert v.chains[0].identity == 1.0 assert v.chains[0].alignment.match_codes == 'immmmmm' # pdb_in = iotbx.pdb.input(source_info=None, lines="""\ ATOM 2171 CA ASP I 355 5.591 -11.903 1.133 1.00 41.60 C ATOM 2175 CA PHE I 356 7.082 -8.454 0.828 1.00 39.82 C ATOM 2186 CA GLU I 357 5.814 -6.112 -1.877 1.00 41.12 C ATOM 2195 CA GLU I 358 8.623 -5.111 -4.219 1.00 42.70 C ATOM 2199 CA ILE I 359 10.346 -1.867 -3.363 1.00 43.32 C ATOM 2207 CA PRO I 360 11.658 0.659 -5.880 1.00 44.86 C ATOM 2214 CA GLU I 361 14.921 -0.125 -7.592 1.00 44.32 C ATOM 2219 CA GLU I 362 15.848 3.489 -6.866 1.00 44.27 C HETATM 2224 CA TYS I 363 16.482 2.005 -3.448 1.00 44.52 C """) seq = iotbx.bioinformatics.sequence("NGDFEEIPEEYL") v = validation( pdb_hierarchy=pdb_in.construct_hierarchy(), sequences=[seq], log=null_out(), nproc=1,) out = StringIO() v.show(out=out) assert v.chains[0].n_missing_start == 2 assert v.chains[0].n_missing_end == 1 assert v.chains[0].identity == 1.0 pdb_in = iotbx.pdb.input(source_info=None, lines="""\ ATOM 450 CA ASN A 1 37.242 41.665 44.160 1.00 35.89 C ATOM 458 CA GLY A 2 37.796 38.269 42.523 1.00 30.13 C HETATM 463 CA AMSE A 3 35.878 39.005 39.326 0.54 22.83 C HETATM 464 CA BMSE A 3 35.892 39.018 39.323 0.46 22.96 C ATOM 478 CA ILE A 4 37.580 38.048 36.061 1.00 22.00 C ATOM 486 CA SER A 5 37.593 40.843 33.476 1.00 18.73 C ATOM 819 CA ALA A 8 25.982 34.781 27.220 1.00 18.43 C ATOM 824 CA ALA A 9 23.292 32.475 28.614 1.00 19.60 C HETATM 830 CA BMSE A 10 22.793 30.814 25.223 0.41 22.60 C HETATM 831 CA CMSE A 10 22.801 30.850 25.208 0.59 22.54 C ATOM 845 CA GLU A 11 26.504 30.054 24.966 1.00 25.19 C ATOM 854 CA GLY A 12 25.907 28.394 28.320 1.00 38.88 C """) seq = iotbx.bioinformatics.sequence("NGMISAAAAMEG") v = validation( pdb_hierarchy=pdb_in.construct_hierarchy(), sequences=[seq], log=null_out(), nproc=1,) out = StringIO() v.show(out=out) assert v.chains[0].alignment.a == 'NGMISXXAAMEG' assert v.chains[0].alignment.b == 'NGMISAAAAMEG' pdb_in = iotbx.pdb.input(source_info=None, lines="""\ ATOM 4615 CA ALA C 1 1.000 1.000 1.000 1.00 10.00 ATOM 4622 CA ALA C 2 1.000 1.000 1.000 1.00 10.00 ATOM 4627 CA ALA C 3 1.000 1.000 1.000 1.00 10.00 ATOM 4634 CA ALA C 4 1.000 1.000 1.000 1.00 10.00 ATOM 4646 CA ALA C 5 1.000 1.000 1.000 1.00 10.00 ATOM 4658 CA ALA C 6 1.000 1.000 1.000 1.00 10.00 ATOM 4664 CA ALA C 7 1.000 1.000 1.000 1.00 10.00 ATOM 4669 CA ALA C 8 1.000 1.000 1.000 1.00 10.00 ATOM 4680 CA ARG C 9 1.000 1.000 1.000 1.00 10.00 ATOM 4690 CA GLY C 10 1.000 1.000 1.000 1.00 10.00 ATOM 4698 CA PRO C 11 1.000 1.000 1.000 1.00 10.00 ATOM 4705 CA LYS C 12 1.000 1.000 1.000 1.00 10.00 ATOM 4712 CA TRP C 13 1.000 1.000 1.000 1.00 10.00 ATOM 4726 CA GLU C 14 1.000 1.000 1.000 1.00 10.00 ATOM 4738 CA SER C 15 1.000 1.000 1.000 1.00 10.00 ATOM 4744 CA THR C 16 1.000 1.000 1.000 1.00 10.00 ATOM 4751 CA GLY C 17 1.000 1.000 1.000 1.00 10.00 ATOM 4755 CA TYR C 18 1.000 1.000 1.000 1.00 10.00 ATOM 4767 CA PHE C 19 1.000 1.000 1.000 1.00 10.00 ATOM 4778 CA ALA C 20 1.000 1.000 1.000 1.00 10.00 ATOM 4786 CA ALA C 21 1.000 1.000 1.000 1.00 10.00 ATOM 4798 CA TRP C 22 1.000 1.000 1.000 1.00 10.00 ATOM 4812 CA GLY C 23 1.000 1.000 1.000 1.00 10.00 ATOM 4816 CA GLN C 24 1.000 1.000 1.000 1.00 10.00 ATOM 4822 CA GLY C 25 1.000 1.000 1.000 1.00 10.00 ATOM 4826 CA THR C 26 1.000 1.000 1.000 1.00 10.00 ATOM 4833 CA LEU C 27 1.000 1.000 1.000 1.00 10.00 ATOM 4841 CA VAL C 28 1.000 1.000 1.000 1.00 10.00 ATOM 4848 CA THR C 29 1.000 1.000 1.000 1.00 10.00 ATOM 4855 CA VAL C 30 1.000 1.000 1.000 1.00 10.00 ATOM 4862 CA SER C 31 1.000 1.000 1.000 1.00 10.00 ATOM 4868 CA SER C 32 1.000 1.000 1.000 1.00 10.00 END """) seq = iotbx.bioinformatics.sequence( "AAAAAAAARGKWESPAALLKKAAWCSGTLVTVSSASAPKWKSTSGCYFAAPWNKRALRVTVLQSS") v = validation( pdb_hierarchy=pdb_in.construct_hierarchy(), sequences=[seq], log=null_out(), nproc=1,) out = StringIO() v.show(out=out) # all tests below here have additional dependencies if (not libtbx.env.has_module("ksdssp")) : print "Skipping advanced tests (require ksdssp module)" return pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/1ywf.pdb", test=os.path.isfile) if (pdb_file is not None) : seq = iotbx.bioinformatics.sequence("MGSSHHHHHHSSGLVPRGSHMAVRELPGAWNFRDVADTATALRPGRLFRSSELSRLDDAGRATLRRLGITDVADLRSSREVARRGPGRVPDGIDVHLLPFPDLADDDADDSAPHETAFKRLLTNDGSNGESGESSQSINDAATRYMTDEYRQFPTRNGAQRALHRVVTLLAAGRPVLTHCFAGKDRTGFVVALVLEAVGLDRDVIVADYLRSNDSVPQLRARISEMIQQRFDTELAPEVVTFTKARLSDGVLGVRAEYLAAARQTIDETYGSLGGYLRDAGISQATVNRMRGVLLG") pdb_in = file_reader.any_file(pdb_file, force_type="pdb") hierarchy = pdb_in.file_object.hierarchy v = validation( pdb_hierarchy=hierarchy, sequences=[seq], log=null_out(), nproc=1, include_secondary_structure=True, extract_coordinates=True) out = StringIO() v.show(out=out) aln1, aln2, ss = v.chains[0].get_alignment(include_sec_str=True) assert ("HHH" in ss) and ("LLL" in ss) and ("---" in ss) cif_block = v.as_cif_block() assert cif_block['_struct_ref.pdbx_seq_one_letter_code'] == seq.sequence assert list( cif_block['_struct_ref_seq.pdbx_auth_seq_align_beg']) == ['4', '117'] assert list( cif_block['_struct_ref_seq.pdbx_auth_seq_align_end']) == ['85', '275'] assert list(cif_block['_struct_ref_seq.seq_align_beg']) == ['1', '114'] assert list(cif_block['_struct_ref_seq.seq_align_end']) == ['82', '272'] # determine relative counts of sequences and chains n_seq = get_sequence_n_copies( pdb_hierarchy=hierarchy, sequences=[seq] * 4, copies_from_xtriage=4, out=null_out()) assert (n_seq == 1) hierarchy = hierarchy.deep_copy() chain2 = hierarchy.only_model().chains()[0].detached_copy() hierarchy.only_model().append_chain(chain2) n_seq = get_sequence_n_copies( pdb_hierarchy=hierarchy, sequences=[seq] * 4, copies_from_xtriage=2, out=null_out()) assert (n_seq == 1) n_seq = get_sequence_n_copies( pdb_hierarchy=hierarchy, sequences=[seq], copies_from_xtriage=2, out=null_out()) assert (n_seq == 4) try : n_seq = get_sequence_n_copies( pdb_hierarchy=hierarchy, sequences=[seq] * 3, copies_from_xtriage=2, out=null_out()) except Sorry, s : assert ("round number" in str(s)) else : raise Exception_expected n_seq = get_sequence_n_copies( pdb_hierarchy=hierarchy, sequences=[seq] * 3, copies_from_xtriage=2, force_accept_composition=True, out=null_out()) assert (n_seq == 1) try : n_seq = get_sequence_n_copies( pdb_hierarchy=hierarchy, sequences=[seq] * 4, copies_from_xtriage=1, out=null_out()) except Sorry, s : assert ("less than" in str(s)) else : raise Exception_expected n_seq = get_sequence_n_copies( pdb_hierarchy=hierarchy, sequences=[seq] * 4, copies_from_xtriage=1, assume_xtriage_copies_from_sequence_file=True, out=null_out()) assert (n_seq == 0.5) hierarchy = hierarchy.deep_copy() chain2 = hierarchy.only_model().chains()[0].detached_copy() hierarchy.only_model().append_chain(chain2) try : n_seq = get_sequence_n_copies( pdb_hierarchy=hierarchy, sequences=[seq] * 2, copies_from_xtriage=2, out=null_out()) except Sorry, s : assert ("round number" in str(s)) else : raise Exception_expected n_seq = get_sequence_n_copies( pdb_hierarchy=hierarchy, sequences=[seq], copies_from_xtriage=1, out=null_out()) assert (n_seq == 3) hierarchy = hierarchy.deep_copy() chain2 = hierarchy.only_model().chains()[0].detached_copy() hierarchy.only_model().append_chain(chain2) n_seq = get_sequence_n_copies( pdb_hierarchy=hierarchy, sequences=[seq] * 2, copies_from_xtriage=2, out=null_out()) assert (n_seq == 4) # now with files as input seq_file = "tmp_mmtbx_validation_sequence.fa" open(seq_file, "w").write(">1ywf\n%s" % seq.sequence) n_seq = get_sequence_n_copies_from_files( pdb_file=pdb_file, seq_file=seq_file, copies_from_xtriage=4, out=null_out()) try : assert (n_seq == 4) finally : os.remove(seq_file) if (__name__ == "__main__") : exercise() print "OK"
1.96875
2
solutions/PE700.py
KerimovEmil/ProjectEuler
1
12783062
""" PROBLEM <NAME> was born on 15 April 1707. Consider the sequence 1504170715041707n mod 4503599627370517. An element of this sequence is defined to be an Eulercoin if it is strictly smaller than all previously found Eulercoins. For example, the first term is 1504170715041707 which is the first Eulercoin. The second term is 3008341430083414 which is greater than 1504170715041707 so is not an Eulercoin. However, the third term is 8912517754604 which is small enough to be a new Eulercoin. The sum of the first 2 Eulercoins is therefore 1513083232796311. Find the sum of all Eulercoins. ANSWER: 1517926517777556 Solve time ~0.003 seconds """ import unittest from util.utils import timeit # Explanation from ProjectEuler user RubiksCube: # After brute forcing the first 15 Eulercoins I tried the Euclidean algorithm and found that I got every coin and the # distance between the coins from the step-by-step in the Euclidean algorithm. # # Short example: # Start with 2 steps and use the last right hand side to get the first coin. # 4503599627370517 = 1504170715041707 * 2 + 1495258197287103 # 1504170715041707 = 1495258197287103 * 1 + 8912517754604 # # First coin: 1495258197287103 * 1 + 8912517754604 = 1504170715041707 # # Do two steps again: # 1495258197287103 = 8912517754604 * 167 + 6867732268235 # 8912517754604 = 6867732268235 * 1 + 2044785486369 # # Second coin: 6867732268235 * 1 + 2044785486369 = 8912517754604 # # Do two more steps, note the "2" giving us 2 coins. # 6867732268235 = 2044785486369 * 3 + 733375809128 # 2044785486369 = 733375809128 * 2 + 578033868113 # # Third coin: 733375809128 * 2 + 578033868113 = 2044785486369 # Fourth coin: 733375809128 * 1 + 578033868113 = 1311409677241 # # Repeat until the Euclidean algorithm is finished class Problem700: @timeit def solve(self, a, m): res = 0 while a > 0: res += a a, m = -m % a, a return res class Solution700(unittest.TestCase): def setUp(self): self.problem = Problem700() def test_solution(self): a = 1504170715041707 # 17 × 1249 × 12043 × 5882353 m = 4503599627370517 # prime number self.assertEqual(1517926517777556, self.problem.solve(a, m)) if __name__ == '__main__': unittest.main() # [(euler_coin, n)] # [(1504170715041707, 1), (8912517754604, 3), (2044785486369, 506), (1311409677241, 2527), (578033868113, 4548), # (422691927098, 11117), (267349986083, 17686), (112008045068, 24255), (68674149121, 55079), (25340253174, 85903), # (7346610401, 202630), (4046188430, 724617), (745766459, 1246604), (428410324, 6755007), (111054189, 12263410), # (15806432, 42298633), (15397267, 326125654), (14988102, 609952675), (14578937, 893779696), (14169772, 1177606717), # (13760607, 1461433738), (13351442, 1745260759), (12942277, 2029087780), (12533112, 2312914801), (12123947, 2596741822), # (11714782, 2880568843), (11305617, 3164395864), (10896452, 3448222885), (10487287, 3732049906), (10078122, 4015876927), # (9668957, 4299703948), (9259792, 4583530969), (8850627, 4867357990), (8441462, 5151185011), (8032297, 5435012032), # (7623132, 5718839053), (7213967, 6002666074), (6804802, 6286493095), (6395637, 6570320116), (5986472, 6854147137), # (5577307, 7137974158), (5168142, 7421801179), (4758977, 7705628200), (4349812, 7989455221), (3940647, 8273282242), # (3531482, 8557109263), (3122317, 8840936284), (2713152, 9124763305), (2303987, 9408590326), (1894822, 9692417347), # (1485657, 9976244368), (1076492, 10260071389), (667327, 10543898410), (258162, 10827725431), (107159, 21939277883), # (63315, 54990108218), (19471, 88040938553), (14569, 297173645994), (9667, 506306353435), (4765, 715439060876), # (4628, 1640010829193), (4491, 2564582597510), (4354, 3489154365827), (4217, 4413726134144), (4080, 5338297902461), # (3943, 6262869670778), (3806, 7187441439095), (3669, 8112013207412), (3532, 9036584975729), (3395, 9961156744046), # (3258, 10885728512363), (3121, 11810300280680), (2984, 12734872048997), (2847, 13659443817314), (2710, 14584015585631), # (2573, 15508587353948), (2436, 16433159122265), (2299, 17357730890582), (2162, 18282302658899), (2025, 19206874427216), # (1888, 20131446195533), (1751, 21056017963850), (1614, 21980589732167), (1477, 22905161500484), (1340, 23829733268801), # (1203, 24754305037118), (1066, 25678876805435), (929, 26603448573752), (792, 27528020342069), (655, 28452592110386), # (518, 29377163878703), (381, 30301735647020), (244, 31226307415337), (107, 32150879183654), (77, 65226330135625), # (47, 98301781087596), (17, 131377232039567), (4, 295829915031105), (3, 1347772343115958), (2, 2399714771200811), # (1, 3451657199285664)]
3.53125
4
tests/test_generate_trashs.py
PTank/trashtalk
0
12783063
<reponame>PTank/trashtalk<gh_stars>0 from pathlib import Path from trashtalk import generate_trashs from tests.init_test import generate_trash import pwd def test_add_profil_info(tmpdir): test_file = tmpdir.join('.trashtalk') s = "MEDIA_PATH=/testmediapath\nTRASH_PATH=/testtrashpath , bob" test_file.write(s) f = Path(str(test_file)) generate_trashs.MEDIA_DIR = ['/media'] generate_trashs.TRASHS_PATH = [] generate_trashs.add_profil_info(f.open()) assert generate_trashs.MEDIA_DIR == ['/media', '/testmediapath'] assert generate_trashs.TRASHS_PATH == [('bob', '/testtrashpath')] def test_get_media_trashs(generate_trash, tmpdir, monkeypatch): trash = generate_trash generate_trashs.MEDIA_DIR = [str(tmpdir)] generate_trashs.TRASHS_PATH = [("test", trash.path)] def mockgetpwnam(user): return [1, 2, '0000'] monkeypatch.setattr(pwd, 'getpwnam', mockgetpwnam) trashs, err = generate_trashs.get_media_trashs("remy") assert trashs[0].path == str(tmpdir) + "/media/.Trash-0000" assert trashs[0].name == "media" assert trashs[1].path == trash.path assert trashs[1].name == "test" trashs, err = generate_trashs.get_media_trashs("remy", ['desk']) assert trashs == [] assert bool(err) is True generate_trashs.TRASHS_PATH = [("error", str(tmpdir) + "/fail")] trashs, err = generate_trashs.get_media_trashs("remy", ['error']) assert trashs == [] assert bool(err) is True
2.234375
2
2018/bamboofox/baby-lea/hack.py
ss8651twtw/CTF
12
12783064
#!/usr/bin/env python from pwn import * import base64 r = remote('bamboofox.cs.nctu.edu.tw', 58789) token = 'user=<PASSWORD>00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\xc0user=<PASSWORD>' auth = '<PASSWORD>' r.recvuntil('input your token: ') r.sendline(base64.b64encode(token)) r.recvuntil('input your authentication code: ') r.sendline(auth) r.interactive()
2.171875
2
aggregator/admin.py
EndlessTrax/spondy-news
1
12783065
<filename>aggregator/admin.py<gh_stars>1-10 from django.contrib import admin from .models import Entry def publish_selected(modeladmin, request, queryset): queryset.update(is_published=True) publish_selected.short_description = "Publish the selected posts" @admin.register(Entry) class EntryAdmin(admin.ModelAdmin): list_display = ("pub_date", "title", "category", "is_featured", "is_published") actions = [publish_selected] ordering = ("-pub_date",)
1.945313
2
z2/part3/updated_part2_batch/jm/parser_errors_2/912800483.py
kozakusek/ipp-2020-testy
1
12783066
<reponame>kozakusek/ipp-2020-testy<gh_stars>1-10 from part1 import ( gamma_board, gamma_busy_fields, gamma_delete, gamma_free_fields, gamma_golden_move, gamma_golden_possible, gamma_move, gamma_new, ) """ scenario: test_random_actions uuid: 912800483 """ """ random actions, total chaos """ board = gamma_new(4, 4, 2, 7) assert board is not None assert gamma_move(board, 1, 0, 1) == 1 assert gamma_move(board, 1, 0, 3) == 1 assert gamma_move(board, 2, 0, 3) == 0 assert gamma_free_fields(board, 2) == 14 assert gamma_move(board, 1, 2, 1) == 1 assert gamma_move(board, 2, 1, 1) == 1 assert gamma_golden_possible(board, 2) == 1 assert gamma_move(board, 1, 2, 1) == 0 assert gamma_move(board, 1, 2, 1) == 0 assert gamma_golden_move(board, 1, 1, 1) == 1 assert gamma_move(board, 2, 2, 0) == 1 assert gamma_move(board, 2, 0, 2) == 1 assert gamma_free_fields(board, 2) == 10 assert gamma_move(board, 1, 2, 2) == 1 board654287219 = gamma_board(board) assert board654287219 is not None assert board654287219 == ("1...\n" "2.1.\n" "111.\n" "..2.\n") del board654287219 board654287219 = None assert gamma_move(board, 2, 2, 2) == 0 assert gamma_move(board, 1, 1, 3) == 1 assert gamma_move(board, 1, 1, 3) == 0 assert gamma_move(board, 2, 1, 0) == 1 assert gamma_move(board, 2, 0, 3) == 0 assert gamma_free_fields(board, 2) == 7 assert gamma_move(board, 1, 3, 0) == 1 assert gamma_move(board, 1, 0, 3) == 0 assert gamma_golden_possible(board, 1) == 0 assert gamma_move(board, 2, 3, 3) == 1 assert gamma_move(board, 1, 2, 3) == 1 board867387183 = gamma_board(board) assert board867387183 is not None assert board867387183 == ("1112\n" "2.1.\n" "111.\n" ".221\n") del board867387183 board867387183 = None assert gamma_move(board, 2, 2, 1) == 0 assert gamma_move(board, 1, 0, 1) == 0 assert gamma_move(board, 2, 2, 3) == 0 assert gamma_move(board, 1, 1, 1) == 0 board637069540 = gamma_board(board) assert board637069540 is not None assert board637069540 == ("1112\n" "2.1.\n" "111.\n" ".221\n") del board637069540 board637069540 = None assert gamma_move(board, 2, 3, 2) == 1 assert gamma_busy_fields(board, 2) == 5 assert gamma_move(board, 1, 0, 0) == 1 assert gamma_move(board, 2, 1, 3) == 0 assert gamma_move(board, 1, 2, 1) == 0 assert gamma_move(board, 1, 2, 0) == 0 assert gamma_move(board, 2, 2, 1) == 0 assert gamma_move(board, 2, 1, 3) == 0 assert gamma_move(board, 1, 2, 1) == 0 assert gamma_move(board, 2, 1, 3) == 0 assert gamma_move(board, 2, 0, 1) == 0 assert gamma_move(board, 1, 2, 1) == 0 assert gamma_move(board, 1, 3, 1) == 1 assert gamma_move(board, 2, 2, 1) == 0 assert gamma_move(board, 2, 2, 1) == 0 assert gamma_move(board, 1, 1, 3) == 0 assert gamma_move(board, 1, 2, 1) == 0 assert gamma_move(board, 2, 2, 1) == 0 assert gamma_move(board, 1, 2, 1) == 0 assert gamma_move(board, 1, 3, 2) == 0 assert gamma_move(board, 2, 2, 1) == 0 assert gamma_busy_fields(board, 2) == 5 assert gamma_golden_possible(board, 2) == 1 gamma_delete(board)
2.015625
2
CorbanDallas1982/Home_work_3/Ex-3.py
kolyasalubov/Lv-639.pythonCore
0
12783067
var_1=int(input('Enter first variable:')) var_2=int(input('Enter second variable:')) print(f"First variable {var_1}, second variable {var_2}") var_1,var_2=var_2,var_1 print(f"After change: The first variable is {var_1} and the second variable is {var_2}")
4.03125
4
app_questions/models.py
Audiotuete/backend_kassel_api
0
12783068
<reponame>Audiotuete/backend_kassel_api from django.apps import apps as django_apps from django.db import models from django.contrib.postgres.fields import ArrayField # from django.db.transaction import atomic from ordered_model.models import OrderedModel class Question(OrderedModel): poll = models.ForeignKey('app_polls.Poll', on_delete=models.CASCADE, verbose_name="Poll (not changeable after creation)") question_type = models.CharField(max_length=150, default='') question_text = models.TextField(max_length=250) # question_videolink = models.CharField(max_length=150, null=True, blank=True) question_imagelink = models.CharField(max_length=150, null=True, blank=True) pub_date = models.DateTimeField(auto_now_add=True) __poll_pre_save = None order_class_path = __module__ + '.Question' class Meta: ordering = ('order',) def __str__(self): return self.question_text # When Question doesn't already exist create UserAnswer for every user in the poll def save(self, *args, **kwargs): question_model_name = self.__class__.__name__ models_dict = { 'QuestionOpen': 'UserAnswerOpen', 'QuestionYesOrNo': 'UserAnswerYesOrNo', 'QuestionMultiple': 'UserAnswerMultiple', } # Check if question_model_name is not "Question" to allow ordering inside the Questions Admin # Because ordering inside Question Admin sets question_model_name = "Question". if question_model_name is 'Question': UserAnswerModel = django_apps.get_model('app_user_answers', models_dict['Question' + self.question_type]) else: UserAnswerModel = django_apps.get_model('app_user_answers', models_dict[question_model_name]) UserPoll = django_apps.get_model('app_user_polls', 'UserPoll') if self.pk == None: super(Question, self).save(*args, **kwargs) all_user_polls = UserPoll.objects.filter(poll = self.poll) user_answer_list = [] for user_poll in all_user_polls: user_answer_list.append(UserAnswerModel(user_id = user_poll.user_id, poll_id = user_poll.poll_id, question = self)) UserAnswerModel.objects.bulk_create(user_answer_list) elif not self.poll_changed(self): pass # changing_user_answers = UserAnswerModel.objects.filter(question = self) # @atomic # def saves_user_answers(changing_user_answers): # for user_answer in changing_user_answers: # print('Poll for ' + user_answer.__class__.__name__ + ' changed from ' + user_answer.poll.poll_name + ' to ' + self.poll.poll_name) # user_answer.poll = self.poll # user_answer.save() # saves_user_answers(changing_user_answers) # super(Question, self).save(*args, **kwargs) else: super(Question, self).save(*args, **kwargs) if not(self.question_type): self.question_type = question_model_name[8:] self.save() def poll_changed(instance, *args, **kwargs): pre_save_poll_id = Question.objects.get(pk = instance.pk).poll_id if pre_save_poll_id == instance.poll_id: return True else: return False # To check if the the question moved to an other poll, we need to save the poll value before save inside "init" and compare it with the current poll. # See elif above "self.__poll_pre_save is not self.poll" # def __init__(self, *args, **kwargs): # super(Question, self).__init__(*args, **kwargs) # self.__poll_id_pre_save = self.poll class QuestionYesOrNo(Question): pass class QuestionOpen(Question): pass class QuestionMultiple(Question): options = ArrayField(models.CharField(max_length=150, blank=True), default=list, null=True, size=6)
2.421875
2
tests/q01.py
sophiarora/CS61A-Hog
0
12783069
test = { 'names': [ 'q01', '1', 'q1' ], 'points': 1, 'suites': [ [ { 'locked': True, 'test': """ >>> roll_dice(2, make_test_dice(4, 6, 1)) 0d67364f3a6639e82e67af0673b4cc6e # locked """, 'type': 'doctest' }, { 'locked': True, 'test': """ >>> roll_dice(3, make_test_dice(4, 6, 1)) e2f636ebfe71bb770b320ce6f799139c # locked """, 'type': 'doctest' }, { 'locked': True, 'test': """ >>> roll_dice(3, make_test_dice(1, 2, 3)) e2f636ebfe71bb770b320ce6f799139c # locked """, 'type': 'doctest' }, { 'locked': True, 'test': """ >>> counted_dice = make_test_dice(4, 1, 2, 6) >>> roll_dice(3, counted_dice) e2f636ebfe71bb770b320ce6f799139c # locked >>> roll_dice(1, counted_dice) # Make sure you call dice exactly num_rolls times! 414f04076138a0647c6470ad3afd249d # locked """, 'type': 'doctest' } ] ] }
2.15625
2
hparams.py
twiet/LM-LSTM-CRF
0
12783070
<reponame>twiet/LM-LSTM-CRF class hparams: checkpoint_dir = "./checkpoint/" load_check_point = False rand_embedding = False gpu = 0 batch_size = 10 unk = "unk" char_hidden = 300 word_hidden = 300 drop_out = 0.55 epoch = 200 start_epoch = 0 caseless = True char_dim = 30 word_dim = 100 char_layers = 1 word_layers = 1 lr = 0.015 lr_decay = 0.05 fine_tune = False load_opt = True update = "sgd" momentum = 0.9 clip_grad = 5 small_crf = True mini_count = 5 lambda0 = 1 co_train = True patience = 15 high_way = True highway_layers = 1 eva_matrix = "fa" least_iters = 50 shrink_embedding = True decode_type = "label"
1.40625
1
getlivechatemailstotxt.py
54853315/livechatinc_chats_export
2
12783071
#! /usr/bin/python # -*- coding: utf-8 -*- __author__ = 'konakona' __VERSION__ = "v1.0" import os,sys,os.path,pycurl,cStringIO,json python_version = sys.version_info[0] if(python_version !=2): print("本系统依赖于python2.7,您的系统不兼容, goodbye!") exit() start_date = raw_input("1.请输入开始日期(YYYY-MM-DD):") end_date = raw_input("2.请输入结束日期(YYYY-MM-DD):") start_page = raw_input("3.请输入需要从第几页开始(可以不填):") end_page = raw_input("4.请输入需要结束页(可以不填):") echo_flag = raw_input("5.输入'Y'代表保存文件,输入'N'代表打印结果:") if(echo_flag!='Y' and echo_flag!='N'): print("您的输入有误") exit() if(start_date=="" or end_date == ""): print("请输入开始和结束日期") exit() if (start_date > end_date): print("开始日期不能大于结束日期!") exit() if(type(start_page)!=int): start_page = 2; else: if(start_page > 2): pass else: start_page = 2 print("程序初始化...") content = cStringIO.StringIO() buf = cStringIO.StringIO() file = open('emails.txt','wa') #请修改为你的email和key config = ['input your email','input your key'] def runCurl(start_date,end_date,page = 1): api_url = 'https://api.livechatinc.com/chats?date_from='+start_date+"&date_to="+end_date+"&page="+bytes(page)+"&has_goal=1" c = pycurl.Curl() c.setopt(c.URL, api_url) c.setopt(c.WRITEFUNCTION, buf.write) c.setopt(c.USERPWD, config[0]+":"+config[1]) c.setopt(c.CONNECTTIMEOUT, 0) c.setopt(c.TIMEOUT, 0) # c.setopt(c.PROXY, 'http://www.crazyphper.com') #如果你需要设置代理访问 c.perform() if(c.getinfo(c.RESPONSE_CODE) != 200): print("[Warring] 在请求第"+page+"页时,失败了!") # return c.close() # HTTP response code, e.g. 200. # print('Status: %d' % c.getinfo(c.RESPONSE_CODE)) # Elapsed time for the transfer. # print('Status: %f' % c.getinfo(c.TOTAL_TIME)) def saveContent(email): if(email != ""): content.write(email+"\n") def saveFile(email): if(email != ""): file.write(email+"\n") #-----------------程序正式开始----------------- runCurl(start_date,end_date) json_val = json.loads(buf.getvalue()) buf.seek(0) buf.truncate() if(type(end_page)!=int): totalPage = json_val["pages"] else: if(end_page > 2): if(end_page > json_val["pages"]): totalPage = json_val["pages"] else: totalPage = end_page else: totalPage = json_val["pages"] if(start_page >2): pass else: for kk in json_val["chats"]: if(echo_flag == 'Y'): saveFile(kk["prechat_survey"][1]["value"]) else: saveContent(kk["prechat_survey"][1]["value"]) for page in range(start_page,totalPage): runCurl(start_date,end_date,page) json_val = json.loads(buf.getvalue()) buf.seek(0) buf.truncate() for kk in json_val["chats"]: if(echo_flag == 'Y'): saveFile(kk["prechat_survey"][1]["value"]) else: saveContent(kk["prechat_survey"][1]["value"]) if(echo_flag == 'Y'): file.close() else: print(content.getvalue()) content.close() if(raw_input("程序执行完毕,请按任意键结束...")): exit()
2.890625
3
deepNeuralNetwork.py
fy-meng/lunarlander-saliency
0
12783072
<reponame>fy-meng/lunarlander-saliency<gh_stars>0 """ File name: deepNeuralNetwork.py Deep Neural Network Class implementation with Keras and Tensorflow [1]. Author: <NAME> enail: <EMAIL> License: MIT Date last modified: 03.12.2019 References: [1] https://keras.io Python Version: 3.6 """ # Keras modules from keras.models import Sequential from keras.layers import Dense import keras.optimizers as opt from keras.models import load_model import deepQNetwork # Disable TensorFlow Information printouts import warnings warnings.filterwarnings('ignore') ''' Constants ''' C_VERBOSE_NONE = 0 # Printing is disabled C_VERBOSE_INFO = 1 # Only information printouts (constructor) C_VERBOSE_DEBUG = 2 # Debugging printing level (all printouts) class DeepNeuralNetwork(object): """ Summary: Deep Neural Network Class implementation with Keras and Tensorflow. Private Attributes: __verbose: int Verbose level (0: None, 1: INFO, 2: DEBUG, see CONSTANTS section) __model: Keras model The Deep Neural Network model created using keras. Public Attributes: - Private Methods: __init__(inputs, file_name, outputs, hidden_layers, hidden_layers_size, optimizer_learning_rate, seed, verbose): returns none Class constructor. Creates a Deep Neural Network using Keras (frontend) and TensorFlow (backend). In case file_name is present, then the model is loaded from the given file. Public Methods: train(X instances data, Y instances labels): returns none Trains the Deep NN model. predict(X instances data): returns a numpy array of labels Predicts the label value for the input instances. saveModel(file_name): Saves the model. """ def __init__(self, file_name=None, inputs=None, outputs=None, hidden_layers=None, hidden_layers_size=None, optimizer_learning_rate=0.001, seed=None, verbose=C_VERBOSE_NONE): """ Summary: Class constructor. Creates a Deep Neural Network using Keras (frontend) and TensorFlow (backend). In case file_name is present, then the model is loaded from the given file. Args: file_name: string The model to be loaded. Rest parameters (except verbose) are ignored if the file_name is not None. inputs: int The number of inputs of the Deep Neural Network. outputs: int The number of outputs of the Deep Neural Network. hidden_layers: int The number of hidden layers of the Deep Neural Network. Not including the first and last layer. hidden_layers_size: int The size of each hidden layer of the Neural Network. optimizer_learning_rate: float (Default 0.001) The Adam optimizer learning rate. seed: int Optional Seed to be used with the Keras and Tensor Flow environments, for results reproducability. verbose: int Verbose level (0: None, 1: INFO, 2: DEBUG, see CONSTANTS section) Raises: - Returns: - notes: Considerations for a next version: Pass activation function and optimizer as input parameters to the constructor. """ self.__verbose = verbose # If file_name is present, just loads the model from the file if file_name is not None: if self.__verbose > C_VERBOSE_NONE: print('\nDeep Neural Network object initialization (file_name = ', file_name, ')', sep='') self.__model = load_model(file_name) return None if self.__verbose > C_VERBOSE_NONE: print('\nDeep Neural Network object initialization (inputs = ', inputs, ', outputs = ', outputs, ', hidden_layers = ', hidden_layers, ', hidden_layers_size = ', hidden_layers_size, ', optimizer_learning_rate = ', optimizer_learning_rate, ', seed = ', seed, ')', sep='') # Applies the given seed to the Keras (with Tensor Flow backend) if seed is not None: self.__applySeed(seed) # Create a sequential model self.__model = Sequential() # Create first layer (use 'relu' as activation function, hardcoded) self.__model.add(Dense(units=hidden_layers_size, activation='relu', input_dim=inputs)) # Create hidden layers (use 'relu' as activation function, hardcoded) for i in range(hidden_layers): self.__model.add(Dense(units=hidden_layers_size, activation='relu')) # Create last layer (use 'linear' as activation function, hardcoded) self.__model.add(Dense(units=outputs, activation='linear')) # Compile model, optimizer used is Adam with its defaults values, only learning rate is passed # for experimenting during the model complexity analysis. self.__model.compile(loss='mse', optimizer=opt.Adam(lr=optimizer_learning_rate)) def __applySeed(self, seed): """ Summary: Applies the given seed to the Keras with Tensor Flow backend, environment. Args: seed: int Seed value. Raises: - Returns: - notes: see: https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development """ if self.__verbose > C_VERBOSE_INFO: print('Apply Seed to the \'Keras\' with the \'Tensor Flow\' Backend environment (seed = ', seed, ')', sep='') import tensorflow from keras import backend # Sets random seed for the tensor flow and limits the parallel threds to one. tensorflow.set_random_seed(seed) backend.set_session(tensorflow.Session(graph=tensorflow.get_default_graph(), config=tensorflow.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1))) def train(self, X, Y): """ Summary: Trains the model with the input instance(s). Args: X: numpy array The training instances (data). Y: numpy array The training labels. Raises: - Returns: - notes: - """ if self.__verbose > C_VERBOSE_INFO: print('Deep Neural Network Train (training_instances = ', X.shape[0], ')', sep='') # Train the model using all the default values, presented here for experimental reasons # and future use. Verbose is disabled. self.__model.fit(x=X, y=Y, batch_size=None, epochs=1, verbose=False, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None) def predict(self, X): """ Summary: Predicts the label value for the input instance(s). Args: X: numpy array The instance(s) (data) for which a label prediction is requested. Raises: - Returns: Y: numpy array The prediction(s). notes: - """ if self.__verbose > C_VERBOSE_INFO: print('Deep Neural Network Predict (prediction_instances = ', X.shape, ')', sep='') # If there is only one instance reshape the array so each column holds each one of the feature values # See keras predict function. if len(X.shape) == 1: return self.__model.predict(x=X.reshape(1, X.shape[0]), batch_size=None, verbose=0, steps=None) else: return self.__model.predict(x=X, batch_size=None, verbose=0, steps=None) def get_qvalues(self, X): assert isinstance(self.__model, deepQNetwork.DeepQNetwork) if len(X.shape) == 1: X = X.reshape(1, X.shape[0]) return self.__model.qValues(X) def saveModel(self, file_name): """ Summary: Saves the model. Args: file_name: string The file in which the model should be saved. Raises: - Returns: - notes: - """ if self.__verbose > C_VERBOSE_INFO: print('Deep Neural Network Model Saved (file_name = ', file_name, ')', sep='') self.__model.save(file_name)
3.09375
3
codes/models/archs/arch_gcpnet.py
GuoShi28/GCP-Net
24
12783073
''' network architecture for backbone ''' import functools import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init import models.archs.arch_util as arch_util import numpy as np import math import pdb from torch.nn.modules.utils import _pair from models.archs.dcn.deform_conv import ModulatedDeformConvPack as DCN class SimpleBlock(nn.Module): def __init__(self, depth=3, n_channels=64, input_channels=3, output_channel=64, kernel_size=3): super(SimpleBlock, self).__init__() padding = 1 layers = [] layers.append(nn.Conv2d(in_channels=input_channels, out_channels=n_channels, kernel_size=kernel_size, padding=padding, bias=True)) layers.append(nn.LeakyReLU(negative_slope=0.1, inplace=True)) for _ in range(depth - 2): layers.append(nn.Conv2d(in_channels=n_channels, out_channels=n_channels, kernel_size=kernel_size, padding=padding, bias=False)) layers.append(nn.LeakyReLU(negative_slope=0.1, inplace=True)) layers.append(nn.Conv2d(in_channels=n_channels, out_channels=output_channel, kernel_size=kernel_size, padding=padding, bias=False)) self.simple_block = nn.Sequential(*layers) self._initialize_weights() def forward(self, x): out = self.simple_block(x) return out def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.orthogonal_(m.weight) print('init weight') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) class DualABlock(nn.Module): def __init__(self, res_num=5, n_channels=64, input_channels=3, output_channel=64, kernel_size=3): super(DualABlock, self).__init__() padding = 1 self.res_num = res_num self.square_conv = nn.Conv2d(in_channels=input_channels, out_channels=n_channels, \ kernel_size=(kernel_size, kernel_size), padding=(padding, padding), bias=False) self.relu = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.extract_conv = nn.Conv2d(in_channels=n_channels, out_channels=n_channels, \ kernel_size=kernel_size, padding=padding, bias=True) self.res_block1 = SimpleBlock(depth=2, n_channels=n_channels, input_channels=n_channels, \ output_channel=n_channels, kernel_size=3) # 64, H, W self.res_block2 = SimpleBlock(depth=2, n_channels=n_channels, input_channels=n_channels, \ output_channel=n_channels, kernel_size=3) # 64, H, W self.down = nn.Conv2d(in_channels=n_channels, out_channels=int(n_channels/2), kernel_size=1, stride=1, bias=True) self.up = nn.Conv2d(in_channels=int(n_channels/2), out_channels=n_channels, kernel_size=1, stride=1, bias=True) self.spatial_att = nn.Conv2d(in_channels=n_channels, out_channels=1, kernel_size=7, stride=1, padding=3,bias=True) self._initialize_weights() def forward(self, x): x_temp = self.square_conv(x) x_temp = self.relu(x_temp) x_temp = self.extract_conv(x_temp) x_temp = x + x_temp x_temp2 = self.res_block1(x_temp) x_temp = x_temp + x_temp2 x_temp2 = self.res_block2(x_temp) x_temp = x_temp + x_temp2 # channel attention x_se = F.avg_pool2d(x_temp, kernel_size=(x_temp.size(2), x_temp.size(3))) x_se = self.down(x_se) x_se = self.relu(x_se) x_se = self.up(x_se) x_se = F.sigmoid(x_se) x_se = x_se.repeat(1, 1, x_temp.size(2), x_temp.size(3)) # spatial attention x_sp = F.sigmoid(self.spatial_att(x_temp)) x_temp = x_temp + x_temp * x_se + x_temp * x_sp return x_temp def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.orthogonal_(m.weight) print('init weight') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) class GCABlock(nn.Module): def __init__(self, res_num=5, n_channels=64, input_channels=3, output_channel=64, kernel_size=3): super(GCABlock, self).__init__() padding = 1 self.res_num = res_num self.square_conv = nn.Conv2d(in_channels=input_channels, out_channels=n_channels, \ kernel_size=kernel_size, padding=padding, bias=False) self.relu = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.extract_conv = nn.Conv2d(in_channels=n_channels, out_channels=n_channels, \ kernel_size=kernel_size, padding=padding, bias=True) self.res_block1 = SimpleBlock(depth=2, n_channels=n_channels, input_channels=n_channels, \ output_channel=n_channels, kernel_size=3) # 64, H, W self.res_block2 = SimpleBlock(depth=2, n_channels=n_channels, input_channels=n_channels, \ output_channel=n_channels, kernel_size=3) # 64, H, W self.down = nn.Conv2d(in_channels=n_channels, out_channels=int(n_channels/2), kernel_size=1, stride=1, bias=True) self.up = nn.Conv2d(in_channels=int(n_channels/2), out_channels=n_channels, kernel_size=1, stride=1, bias=True) self.spatial_att = nn.Conv2d(in_channels=n_channels, out_channels=1, kernel_size=7, stride=1, padding=3,bias=True) self._initialize_weights() def forward(self, x, guided_lam, guided_beta): x_temp = self.square_conv(x) x_temp = x_temp.mul(guided_lam) + guided_beta x_temp = self.relu(x_temp) x_temp = self.extract_conv(x_temp) x_temp = x + x_temp x_temp2 = self.res_block1(x_temp) x_temp = x_temp + x_temp2 x_temp2 = self.res_block2(x_temp) x_temp = x_temp + x_temp2 # channel attention x_se = F.avg_pool2d(x_temp, kernel_size=(x_temp.size(2), x_temp.size(3))) x_se = self.down(x_se) x_se = self.relu(x_se) x_se = self.up(x_se) x_se = F.sigmoid(x_se) x_se = x_se.repeat(1, 1, x_temp.size(2), x_temp.size(3)) # spatial attention x_sp = F.sigmoid(self.spatial_att(x_temp)) x_temp = x_temp + x_temp * x_se + x_temp * x_sp return x_temp def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.orthogonal_(m.weight) print('init weight') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) class SimpleLSTM(nn.Module): def __init__(self, input_dim, hidden_dim): super(SimpleLSTM, self).__init__() self.nf = input_dim self.hf = hidden_dim self.conv = nn.Conv2d(self.nf+self.hf, 4*self.hf, 3, 1, 1, bias=True) def forward(self, input_tensor, h_cur, c_cur): if h_cur is None: tensor_size = (input_tensor.size(2),input_tensor.size(3)) h_cur = self._init_hidden(batch_size=input_tensor.size(0),tensor_size=tensor_size) c_cur = self._init_hidden(batch_size=input_tensor.size(0),tensor_size=tensor_size) combined = torch.cat([input_tensor, h_cur], dim=1) # concatenate along channel axis combined_conv = self.conv(combined) cc_i, cc_f, cc_o, cc_g = torch.split(combined_conv, self.hf, dim=1) i = torch.sigmoid(cc_i) f = torch.sigmoid(cc_f) o = torch.sigmoid(cc_o) g = torch.tanh(cc_g) c_next = f * c_cur + i * g h_next = o * torch.tanh(c_next) return h_next, c_next def _init_hidden(self, batch_size, tensor_size): height, width = tensor_size return torch.zeros(batch_size, self.hf, height, width).cuda() class PCD_Align(nn.Module): ''' Alignment module using Pyramid, Cascading and Deformable convolution with 3 pyramid levels. ''' def __init__(self, nf=64, groups=8): super(PCD_Align, self).__init__() # L3: level 3, 1/4 spatial size self.L3_offset_conv1 = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True) # concat for diff self.L3_rnn = SimpleLSTM(nf, int(nf/2)) self.L3_rnn_conv = nn.Conv2d(nf+int(nf/2), nf, 3, 1, 1, bias=True) self.L3_offset_conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.L3_dcnpack = DCN(nf, nf, 3, stride=1, padding=1, dilation=1, deformable_groups=groups, extra_offset_mask=True) # L2: level 2, 1/2 spatial size self.L2_offset_conv1 = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True) # concat for diff self.L2_rnn = SimpleLSTM(nf, int(nf/2)) self.L2_rnn_conv = nn.Conv2d(nf+int(nf/2), nf, 3, 1, 1, bias=True) self.L2_offset_conv2 = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True) # concat for offset self.L2_offset_conv3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.L2_dcnpack = DCN(nf, nf, 3, stride=1, padding=1, dilation=1, deformable_groups=groups, extra_offset_mask=True) self.L2_fea_conv = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True) # concat for fea # L1: level 1, original spatial size self.L1_offset_conv1 = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True) # concat for diff self.L1_rnn = SimpleLSTM(nf, int(nf/2)) self.L1_rnn_conv = nn.Conv2d(nf+int(nf/2), nf, 3, 1, 1, bias=True) self.L1_offset_conv2 = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True) # concat for offset self.L1_offset_conv3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.L1_dcnpack = DCN(nf, nf, 3, stride=1, padding=1, dilation=1, deformable_groups=groups, extra_offset_mask=True) self.L1_fea_conv = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True) # concat for fea # Cascading DCN self.cas_offset_conv1 = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True) # concat for diff self.cas_offset_conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.cas_dcnpack = DCN(nf, nf, 3, stride=1, padding=1, dilation=1, deformable_groups=groups, extra_offset_mask=True) self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) def forward(self, nbr_fea_l, ref_fea_l, guided_nbr_fea_l, guided_ref_fea_l, h_cur, c_cur): '''align other neighboring frames to the reference frame in the feature level nbr_fea_l, ref_fea_l: [L1, L2, L3], each with [B,C,H,W] features ''' h_next = [] c_next = [] # L3 L3_comine = torch.cat((guided_nbr_fea_l[2], guided_ref_fea_l[2]), dim=1) L3_offset = self.lrelu(self.L3_offset_conv1(L3_comine)) L3_offset_temp, c_out = self.L3_rnn(L3_offset, h_cur[0], c_cur[0]) h_next.append(L3_offset_temp) c_next.append(c_out) L3_offset = torch.cat((L3_offset, L3_offset_temp), dim=1) L3_offset = self.lrelu(self.L3_rnn_conv(L3_offset)) L3_offset = self.lrelu(self.L3_offset_conv2(L3_offset)) L3_fea = self.lrelu(self.L3_dcnpack([nbr_fea_l[2], L3_offset])) # L2 L2_comine = torch.cat((guided_nbr_fea_l[1], guided_ref_fea_l[1]), dim=1) L2_offset = self.lrelu(self.L2_offset_conv1(L2_comine)) L2_offset_temp, c_out = self.L2_rnn(L2_offset, h_cur[1], c_cur[1]) h_next.append(L2_offset_temp) c_next.append(c_out) L2_offset = torch.cat((L2_offset, L2_offset_temp), dim=1) L2_offset = self.lrelu(self.L2_rnn_conv(L2_offset)) L3_offset = F.interpolate(L3_offset, scale_factor=2, mode='bilinear', align_corners=False) L2_offset = self.lrelu(self.L2_offset_conv2(torch.cat([L2_offset, L3_offset * 2], dim=1))) L2_offset = self.lrelu(self.L2_offset_conv3(L2_offset)) L2_fea = self.L2_dcnpack([nbr_fea_l[1], L2_offset]) L3_fea = F.interpolate(L3_fea, scale_factor=2, mode='bilinear', align_corners=False) L2_fea = self.lrelu(self.L2_fea_conv(torch.cat([L2_fea, L3_fea], dim=1))) # L1 L1_comine = torch.cat((guided_nbr_fea_l[0], guided_ref_fea_l[0]), dim=1) L1_offset = self.L1_offset_conv1(L1_comine) L1_offset_temp, c_out = self.L1_rnn(L1_offset, h_cur[2], c_cur[2]) h_next.append(L1_offset_temp) c_next.append(c_out) L1_offset = torch.cat((L1_offset, L1_offset_temp), dim=1) L1_offset = self.lrelu(self.L1_rnn_conv(L1_offset)) L2_offset = F.interpolate(L2_offset, scale_factor=2, mode='bilinear', align_corners=False) L1_offset = self.lrelu(self.L1_offset_conv2(torch.cat([L1_offset, L2_offset * 2], dim=1))) L1_offset = self.lrelu(self.L1_offset_conv3(L1_offset)) L1_fea = self.L1_dcnpack([nbr_fea_l[0], L1_offset]) L2_fea = F.interpolate(L2_fea, scale_factor=2, mode='bilinear', align_corners=False) L1_fea = self.L1_fea_conv(torch.cat([L1_fea, L2_fea], dim=1)) # Cascading offset_comine = torch.cat((L1_fea, ref_fea_l[0]), dim=1) offset = self.lrelu(self.cas_offset_conv1(offset_comine)) offset = self.lrelu(self.cas_offset_conv2(offset)) L1_fea = self.lrelu(self.cas_dcnpack([L1_fea, offset])) return L1_fea, h_next, c_next class GCPNet(nn.Module): def __init__(self, nf=64, nframes=5, groups=8, in_channel=1, output_channel=1, center=None): super(GCPNet, self).__init__() self.nf = nf self.center = nframes // 2 if center is None else center self.nframes = nframes ## GCP Branch self.feature_guided1 = SimpleBlock(depth=3, n_channels=nf, input_channels=in_channel*2*2, \ output_channel=nf, kernel_size=3) # 64, H, W self.feature_guided1_lam = nn.Conv2d(in_channels=nf, out_channels=nf, kernel_size=3, stride=1, bias=True, padding=1) self.feature_guided1_beta = nn.Conv2d(in_channels=nf, out_channels=nf, kernel_size=3, stride=1, bias=True, padding=1) self.feature_guided2 = SimpleBlock(depth=3, n_channels=nf, input_channels=nf, \ output_channel=nf, kernel_size=3) # 64, H, W self.feature_guided2_lam = nn.Conv2d(in_channels=nf, out_channels=nf, kernel_size=3, stride=1, bias=True, padding=1) self.feature_guided2_beta = nn.Conv2d(in_channels=nf, out_channels=nf, kernel_size=3, stride=1, bias=True, padding=1) self.feature_guided3 = SimpleBlock(depth=3, n_channels=nf, input_channels=nf, \ output_channel=nf, kernel_size=3) # 64, H, W self.feature_guided3_lam = nn.Conv2d(in_channels=nf, out_channels=nf, kernel_size=3, stride=1, bias=True, padding=1) self.feature_guided3_beta = nn.Conv2d(in_channels=nf, out_channels=nf, kernel_size=3, stride=1, bias=True, padding=1) self.feature_guided4 = SimpleBlock(depth=3, n_channels=nf, input_channels=nf, \ output_channel=nf, kernel_size=3) # 64, H, W self.feature_guided4_lam = nn.Conv2d(in_channels=nf, out_channels=nf, kernel_size=3, stride=1, bias=True, padding=1) self.feature_guided4_beta = nn.Conv2d(in_channels=nf, out_channels=nf, kernel_size=3, stride=1, bias=True, padding=1) self.feature_guided5 = SimpleBlock(depth=3, n_channels=nf, input_channels=nf, \ output_channel=nf, kernel_size=3) # 64, H, W self.feature_guided6 = SimpleBlock(depth=3, n_channels=nf, input_channels=nf, \ output_channel=nf, kernel_size=3) # 64, H, W self.feature_guided6_up = nn.ConvTranspose2d(in_channels=nf, out_channels=nf,\ kernel_size=2, stride=2, padding=0, bias=True) # 64, H*2, W*2 self.feature_guided6_lam = nn.Conv2d(in_channels=nf, out_channels=nf, kernel_size=3, stride=1, bias=True, padding=1) self.feature_guided6_beta = nn.Conv2d(in_channels=nf, out_channels=nf, kernel_size=3, stride=1, bias=True, padding=1) ## IntraF Module self.feature_extract = SimpleBlock(depth=5, n_channels=nf, input_channels=in_channel*4*2, \ output_channel=nf, kernel_size=3) # 64, H, W self.feature_extract_acse1 = GCABlock(res_num=2, n_channels=nf, input_channels=nf, \ output_channel=nf, kernel_size=3) # 64, H, W self.feature_extract_acse2 = GCABlock(res_num=2, n_channels=nf, input_channels=nf, \ output_channel=nf, kernel_size=3) # 64, H, W self.feature_extract_acse3 = GCABlock(res_num=2, n_channels=nf, input_channels=nf, \ output_channel=nf, kernel_size=3) # 64, H*2, W*2 self.feature_extract_acse4 = GCABlock(res_num=2, n_channels=nf, input_channels=nf, \ output_channel=nf, kernel_size=3) # 64, H*2, W*2 ## InterF Module self.fea_L2_conv1 = nn.Conv2d(nf, nf, 3, 2, 1, bias=True) self.fea_L2_conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.fea_L3_conv1 = nn.Conv2d(nf, nf, 3, 2, 1, bias=True) self.fea_L3_conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.pcd_align = PCD_Align(nf=nf, groups=groups) self.merge = nn.Conv2d(nf*nframes, nf, 3, 1, 1, bias=True) self.feature_up = nn.ConvTranspose2d(in_channels=nf, out_channels=nf,\ kernel_size=2, stride=2, padding=0, bias=True) # 64, H*2, W*2 # encoder self.conv_block_s1 = SimpleBlock(depth=2, n_channels=nf, input_channels=nf, \ output_channel=nf, kernel_size=3) # 64, H*2, W*2 self.acse_block_s1 = DualABlock(res_num=2, n_channels=nf, input_channels=nf, \ output_channel=nf, kernel_size=3) # 64, H*2, W*2 self.pool1 = nn.Conv2d(nf, 2*nf, 3, 2, 1, bias=True) # 128 self.conv_block_s2 = SimpleBlock(depth=2, n_channels=2*nf, input_channels=2*nf, \ output_channel=2*nf, kernel_size=3) # 128, H, W self.acse_block_s2 = DualABlock(res_num=2, n_channels=2*nf, input_channels=2*nf, \ output_channel=2*nf, kernel_size=3) # 128, H, W self.pool2 = nn.Conv2d(2*nf, 4*nf, 3, 2, 1, bias=True) # 256 self.conv_block_s3 = SimpleBlock(depth=2, n_channels=4*nf, input_channels=4*nf, \ output_channel=4*nf, kernel_size=3) # 256, H//2, W//2 self.acse_block_s3 = DualABlock(res_num=2, n_channels=4*nf, input_channels=4*nf, \ output_channel=4*nf, kernel_size=3) # 256, H//2, W//2 self.conv_block_s3_2 = SimpleBlock(depth=2, n_channels=4*nf, input_channels=4*nf, \ output_channel=4*nf, kernel_size=3) # 256, H//2, W//2 self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) # decoder self.up1 = nn.ConvTranspose2d(in_channels=4*nf, out_channels=2*nf,\ kernel_size=2, stride=2, padding=0, bias=True) # 128, H, W ### With SkipConnection # cat with conv_block_s4 # 128, H, W self.conv_block_s4 = SimpleBlock(depth=2, n_channels=2*nf, input_channels=4*nf, \ output_channel=2*nf, kernel_size=3) # 128, H, W self.acse_block_s4 = DualABlock(res_num=2, n_channels=2*nf, input_channels=2*nf, \ output_channel=2*nf, kernel_size=3) # 128, H, W self.up2 = nn.ConvTranspose2d(in_channels=2*nf, out_channels=nf,\ kernel_size=2, stride=2, padding=0, bias=True) # 64, H*2, W*2 # cat with conv_block_s3 # 64, H*2, W*2 self.conv_block_s5 = SimpleBlock(depth=3, n_channels=nf, input_channels=2*nf, \ output_channel=output_channel, kernel_size=3) # 64, H*2, W*2 def forward(self, x, nmap): B, N, C, H, W = x.size() # N video frames, C is 4 response to RGGB channel # GCP Branch x_gr = x[:,:,1:3,:,:].clone() x_gr_map = nmap[:,:,1:3,:,:].clone() x_gr = x_gr.view(-1, int(C/2), H, W) x_gr_map = x_gr_map.view(-1, int(C/2), H, W) temp = torch.cat([x_gr, x_gr_map], dim=1) x_gr1 = self.feature_guided1(temp) x_gr1_lam = self.feature_guided1_lam(x_gr1) x_gr1_beta = self.feature_guided1_beta(x_gr1) x_gr2 = self.feature_guided2(x_gr1) x_gr2_lam = self.feature_guided2_lam(x_gr2) x_gr2_beta = self.feature_guided2_beta(x_gr2) x_gr3 = self.feature_guided3(x_gr2) x_gr3_lam = self.feature_guided3_lam(x_gr3) x_gr3_beta = self.feature_guided3_beta(x_gr3) x_gr4 = self.feature_guided4(x_gr3) x_gr4_lam = self.feature_guided4_lam(x_gr4) x_gr4_beta = self.feature_guided4_beta(x_gr4) x_gr5 = self.feature_guided5(x_gr4) x_gr5 = x_gr5.view(B, N, -1, H, W) x_gr6 = self.feature_guided6(x_gr5[:, self.center, :, :, :]) x_gr5 = x_gr5.view(B*N, -1, H, W) x_gr6 = self.feature_guided6_up(x_gr6) x_gr6_lam = self.feature_guided6_lam(x_gr6) x_gr6_beta = self.feature_guided6_beta(x_gr6) # IntraF Module x_temp = x.view(-1, C, H, W) x_nm_temp = nmap.view(-1, C, H, W) temp = torch.cat([x_temp, x_nm_temp], dim=1) x_s1 = self.feature_extract(temp) # B*N, fea_C, H, W x_s1 = self.feature_extract_acse1(x_s1, x_gr1_lam, x_gr1_beta) x_s1 = self.feature_extract_acse2(x_s1, x_gr2_lam, x_gr2_beta) x_s1 = self.feature_extract_acse3(x_s1, x_gr3_lam, x_gr3_beta) # B*N, fea_C, H, W x_s1 = self.feature_extract_acse4(x_s1, x_gr4_lam, x_gr4_beta) # B*N, fea_C, H, W # InterF Module x_s1 = self.align_feature(x_s1, x_gr5, B, N, self.nf, H, W) # [B*N, fea, H, W] -> [B, N, fea, H, W] x_s1 = self.merge(x_s1.view(-1, self.nf*N, H, W)) # Merge Module: encoder -- decoder x_s1 = self.feature_up(x_s1) # B, fea_C, H*2, W*2 x_s1 = x_s1.mul(x_gr6_lam) + x_gr6_beta ### x_s1 = self.conv_block_s1(x_s1) # 64, H*2, W*2 x_s1 = self.acse_block_s1(x_s1) ### L1_temp = x_s1.clone() ### x_s2 = self.pool1(x_s1) # 128, H, W x_s2 = self.conv_block_s2(x_s2) # 128, H, W x_s2 = self.acse_block_s2(x_s2) # 128, H, W ### L2_temp = x_s2.clone() ### x_s3 = self.pool2(x_s2) # 256, H//2, W//2 x_s3 = self.conv_block_s3(x_s3) # 256, H//2, W//2 x_s3 = self.acse_block_s3(x_s3) # 256, H//2, W//2 x_s3 = self.conv_block_s3_2(x_s3) # 256, H//2, W//2 # decoder out = self.up1(x_s3) # 128, H, W out = torch.cat((out, L2_temp), 1) # 256, H, W out = self.conv_block_s4(out) # 128, H, W out = self.acse_block_s4(out) # 128, H, W out = self.up2(out) # 64, H*2, W*2 out = torch.cat((out, L1_temp), 1) # 128, H*2, W*2 out = self.conv_block_s5(out) # out_ch, H, W return out def align_feature(self, feature, guided_feature, B, N, C, H, W): feature_temp = torch.cat([feature, guided_feature], dim=0) # L2 L2_fea = self.lrelu(self.fea_L2_conv1(feature_temp)) # H//2, W//2 L2_fea = self.lrelu(self.fea_L2_conv2(L2_fea)) # L3 L3_fea = self.lrelu(self.fea_L3_conv1(L2_fea)) # H//4, W//4 L3_fea = self.lrelu(self.fea_L3_conv2(L3_fea)) L1_fea = feature_temp.view(2*B, N, -1, H, W) L2_fea = L2_fea.view(2*B, N, -1, H // 2, W // 2) L3_fea = L3_fea.view(2*B, N, -1, H // 4, W // 4) #### align using DConv # ref feature list ref_fea_l = [ L1_fea[0:B, self.center, :, :, :].clone(), L2_fea[0:B, self.center, :, :, :].clone(), L3_fea[0:B, self.center, :, :, :].clone() ] ref_fea_l_g = [ L1_fea[B:, self.center, :, :, :].clone(), L2_fea[B:, self.center, :, :, :].clone(), L3_fea[B:, self.center, :, :, :].clone() ] aligned_fea = [] h_cur = [None, None, None] c_cur = [None, None, None] for i in range(N): nbr_fea_l = [ L1_fea[0:B, i, :, :, :].clone(), L2_fea[0:B, i, :, :, :].clone(), L3_fea[0:B, i, :, :, :].clone() ] nbr_fea_l_g = [ L1_fea[B:, i, :, :, :].clone(), L2_fea[B:, i, :, :, :].clone(), L3_fea[B:, i, :, :, :].clone() ] a_fea, h_cur, c_cur = self.pcd_align(nbr_fea_l, ref_fea_l, nbr_fea_l_g, ref_fea_l_g, h_cur, c_cur) aligned_fea.append(a_fea) aligned_fea = torch.stack(aligned_fea, dim=1) # [B, N, C, H, W] return aligned_fea
2.546875
3
crims2s/training/infer.py
crim-ca/crims2s
7
12783074
import hydra import logging import os import torch import tqdm import xarray as xr from ..dataset import S2SDataset, TransformedDataset from ..transform import ExampleToPytorch, CompositeTransform from ..util import ECMWF_FORECASTS, collate_with_xarray from .lightning import S2STercilesModule from .util import find_checkpoint_file _logger = logging.getLogger(__name__) def terciles_pytorch_to_xarray( t2m, tp, example_forecast, dims=["category", "lead_time", "latitude", "longitude"] ): t2m_array = xr.DataArray(data=t2m.detach().numpy(), dims=dims, name="t2m") tp_array = xr.DataArray(data=tp.detach().numpy(), dims=dims, name="tp") dataset = xr.Dataset(data_vars={"t2m": t2m_array, "tp": tp_array,}) dataset = dataset.assign_coords( { "forecast_year": example_forecast.forecast_year.data, "forecast_monthday": example_forecast.forecast_monthday.data, "lead_time": example_forecast.lead_time.data, "valid_time": example_forecast.valid_time.data, "forecast_time": example_forecast.forecast_time.data, "latitude": example_forecast.latitude.data, "longitude": example_forecast.longitude.data, "category": ["below normal", "near normal", "above normal"], } ).expand_dims(["forecast_year", "forecast_monthday"]) return dataset def concat_predictions(predictions): yearly_predictions = {} for p in predictions: year = int(p.forecast_year.data) yearly_list = yearly_predictions.get(year, []) yearly_list.append(p) yearly_predictions[year] = yearly_list nested_datasets = [yearly_predictions[k] for k in sorted(yearly_predictions.keys())] yearly_datasets = [] for l in nested_datasets: l = sorted(l, key=lambda x: str(x.forecast_monthday[0])) d = xr.concat(l, dim="forecast_monthday") yearly_datasets.append(d) return xr.concat(yearly_datasets, dim="forecast_year") def fix_dims_for_output(forecast_dataset): """Manipulate the dimensions of the dataset of a single forecast so that we can concatenate them easily.""" return ( forecast_dataset.stack( {"forecast_label": ["forecast_year", "forecast_monthday"]} ) .expand_dims("forecast_time") .drop("forecast_label") .squeeze("forecast_label") ) def example_to_cuda(example): new_example = {} for k in example: if k not in ["monthday", "month", "year"]: new_example[k] = example[k].cuda() else: new_example[k] = example[k] return new_example @hydra.main(config_path="conf", config_name="infer") def cli(cfg): transform = hydra.utils.instantiate(cfg.experiment.transform) # Find where we convert to pytorch. For inference we delay the conversion to pytorch # because we want to use the xarray data as a template to generate the output file. for i, t in enumerate(transform.transforms): if isinstance(t, ExampleToPytorch): pytorch_transform_idx = i last_transform = CompositeTransform(transform.transforms[pytorch_transform_idx:]) transform.transforms = transform.transforms[:pytorch_transform_idx] years = list(range(cfg.begin, cfg.end)) if cfg.experiment.dataset.index is not None: month, day = ECMWF_FORECASTS[cfg.experiment.dataset.index] label = f"{month:02}{day:02}.nc" _logger.info("Targetting monthday %s", label) name_filter = lambda x: x.endswith(label) else: name_filter = None dataset = TransformedDataset( S2SDataset( hydra.utils.to_absolute_path(cfg.test_dataset_dir), years=years, name_filter=name_filter, include_features=cfg.experiment.dataset.load_features, ), transform, ) dataloader = torch.utils.data.DataLoader( dataset, batch_size=1, batch_sampler=None, collate_fn=collate_with_xarray, num_workers=int(cfg.num_workers), shuffle=False, ) checkpoint_path = find_checkpoint_file( hydra.utils.to_absolute_path(cfg.checkpoint_dir) ) _logger.info(f"Will run on checkpoint {checkpoint_path}") model = hydra.utils.instantiate(cfg.experiment.model) optimizer = hydra.utils.call(cfg.experiment.optimizer, model) lightning_module = S2STercilesModule.load_from_checkpoint( checkpoint_path, model=model, optimizer=optimizer ) lightning_module.eval() lightning_module.freeze() lightning_module.cuda() datasets_of_examples = [] for example in tqdm.tqdm(dataloader): example_forecast = example["terciles"] pytorch_example = last_transform(example) pytorch_example = example_to_cuda(pytorch_example) t2m_terciles, tp_terciles, *_ = lightning_module(pytorch_example) dataset = terciles_pytorch_to_xarray( t2m_terciles.cpu(), tp_terciles.cpu(), example_forecast, dims=["batch", "category", "lead_time", "latitude", "longitude"], ) datasets_of_examples.append(fix_dims_for_output(dataset)) sorted_datasets = sorted( datasets_of_examples, key=lambda x: str(x.forecast_time.data[0]) ) ml_prediction = ( xr.concat(sorted_datasets, dim="forecast_time") .drop("valid_time") .squeeze("batch") ) _logger.info(f"Outputting forecasts to {os.getcwd() + '/' + cfg.output_file}.") ml_prediction.to_netcdf(cfg.output_file) if __name__ == "__main__": cli()
2.28125
2
cli/files.py
bcarld/vision-tools
0
12783075
<reponame>bcarld/vision-tools #!/usr/bin/env python # IBM_PROLOG_BEGIN_TAG # # Copyright 2019,2020 IBM International Business Machines Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # # IBM_PROLOG_END_TAG import sys import json import paiv import paiv_cli_utils from paiv_cli_utils import reportSuccess, reportApiError, translate_flags # All of the PAIV CLI requires python 3.6 due to format string # Make the check in a common location if sys.hexversion < 0x03060000: sys.exit("Python 3.6 or newer is required to run this program.") server = None # Common flag and description strings for usage statements ds_file_flags = "(--dsid=<dataset-id>) (--fileid=<file-id>)" ds_file_description = """ --dsid Required parameter identifying the dataset to which the file belongs --fileid Required parameter identifying the targeted file""" #--- Upload Operation --------------------------------------------- upload_usage = """ Usage: files upload --dsid=<dataset_id> <file_paths>... Where: --dsid Required parameter that identifies the dataset into which the file(s) are to be loaded <file_paths> Space separated list of file paths to upload Uploads one or more files to a dataset. Note that at this time, directories of files are not supported.""" def upload(params): """Handles the 'upload' operation for loading files into a dataset. The "<file_paths>" from 'params' is passed to the library. """ dsid = params.get("--dsid", "missing_id") rsp = server.files.upload(dsid, params["<file_paths>"]) if rsp is None: try: results = server.json()["resultList"] total = len(results) success = sum([1 for x in results if x["result"] == "success"]) fail = sum([1 for x in results if x["result"] == "fail"]) except: total = "?" success = "?" fail = "?" reportApiError(server, f"Failure uploading files to dataset {dsid}; total={total}, successes={success}, fails={fail}") else: try: results = server.json()["resultList"] total = len(results) except: total = "?" reportSuccess(server, f"Successfully uploaded {total} files to dataset {dsid}") #--- Change/Update Operation -------------------------------------- change_usage = f""" Usage: files change {ds_file_flags} [--catid=<category_id>] Where: {ds_file_description} --catid Optional parameter to change the category with which the file is associated. The category must already exist. An empty string ("") for category id will disassociate the file from its current category Modifies metadata for a file. Currently the only modification available through this operation is the category association.""" def update(params): """Handles the 'change' operation for modifying a file. Expected flags in 'params' are translated to Json Field names to identify modifications to be made""" dsid = params.get("--dsid", "missing_id") fileid = params.get("--fileid", "missing_id") expectedArgs = {'--catid': 'target_category_id'} kwargs = translate_flags(expectedArgs, params) kwargs["action"] = "change_category" rsp = server.files.action(dsid, fileid, **kwargs) if rsp is None: reportApiError(server, f"Failure attempting to change file id '{fileid}' in dataset '{dsid}'") else: reportSuccess(server, f"Changed file id '{fileid}' in dataset '{dsid}'") #--- Delete Operation --------------------------------------------- delete_usage = f""" Usage: files delete {ds_file_flags} Where: {ds_file_description} Deletes the indicated file. At this time, only 1 file can be deleted at a time. """ def delete(params): """Deletes one file identified by the --dsid and --fileid parameters. Future work should allow a list of files.""" dsid = params.get("--dsid", "missing_id") fileid = params.get("--fileid", "missing_id") rsp = server.files.delete(dsid, fileid) if rsp is None: reportApiError(server, f"Failure attempting to delete file id '{fileid}' in dataset '{dsid}'") else: reportSuccess(server, f"Deleted file id '{fileid}' in dataset '{dsid}'") #--- List/Report Operation ---------------------------------------- list_usage = f""" Usage: files list --dsid=<dataset_id> [--catid=<category_id>] [--parentid=<parent_id>] [--sort=<string>] [--summary] {paiv_cli_utils.limit_skip_flags} Where: --dsid Required parameter that identifies the dataset to which the files belong. --catid Optional parameter to filter results to files belonging to the indicated category. Only 1 category can be specified --parentid Optional parameter to filter results to files with the indicated parent. Only 1 parent can be specified. --sort Comma separated string of field names on which to sort. Add " DESC" after a field name to change to a descending sort. If adding " DESC", the field list must be enclosed in quotes. --summary Flag requesting only summary output for each dataset returned Generates a JSON list of files matching the input criteria.""" def report(params): """Handles the 'list' operation. 'params' flags are translated into query-parameter variable names.""" summaryFields = None if params["--summary"]: summaryFields = ["_id", "original_file_name", "file_type"] dsid = params.get("--dsid", "missing_id") expectedArgs = {'--catid': 'category_id', '--parentid': 'parent_id', '--sort': 'sortby', '--limit': 'limit', '--skip': 'skip'} kwargs = translate_flags(expectedArgs, params) rsp = server.files.report(dsid, **kwargs) if rsp is None: reportApiError(server, "Failure attempting to list files") else: reportSuccess(server, None, summaryFields=summaryFields) #--- Show Operation ----------------------------------------------- show_usage = f""" Usage: files show --dsid=<dataset_id> --fileid=<file_id> Where: {ds_file_description} Shows detail metadata information for the indicated file.""" def show(params): """Handles the 'show' operation to show details of a single file""" dsid = params.get("--dsid", "missing_id") fileid = params.get("--fileid", "missing_id") rsp = server.files.show(dsid, fileid) if rsp is None: reportApiError(server, f"Failure attempting to get file id '{fileid}' in dataset id '{dsid}'") else: reportSuccess(server) # --- Download Operation ------------------------------------------- download_usage = f""" Usage: files download --dsid=<dataset_id> --fileid=<file_id> [--thumbnail] Where: {ds_file_description} --thumbnail Optional parameter to download the thumbnail instead of the file. Downloads the image associated with the indicated file.""" def download(params): """Handles the 'download' operation to show details of a single file""" dsid = params.get("--dsid", "missing_id") fileid = params.get("--fileid", "missing_id") print("'download' operation not yet implemented", file=sys.stderr) return -1 #--- savelabels Operation ----------------------------------------- savelabels_usage = f""" Usage: files savelabels --dsid=<dataset_id> --fileid=<file_id> (--label_file=<json_file> | <json_string>) Where: {ds_file_description} --label_File Optional parameter identifying the file that contains the Json label information. Only one of '--label_file' or '<json_string>' must be supplied. <json_string> Optional string containing the json for the label. Only one of '--label_file' or '<json_string>' must be supplied. Saves a group of labels belonging to the indicated file. This command replaces all labels currently associated with the file with those labels provided. For adding a single label, see the 'object-labels' command.""" def savelabels(params): """Handles the 'savelabels' operation""" dsid = params.get("--dsid", "missing_id") fileid = params.get("--fileid", "missing_id") file_name = params.get("--label_file") if file_name is not None: try: with open(file_name) as json_file: data = json.load(json_file) except Exception as e: print(f"ERROR: failed to read json data from file '{file_name}'; {e}", file=sys.stderr) return -1 else: try: data = json.loads(params.get("<json_string>", "")) except Exception as e: print(f"ERROR: Failed to convert label input to json; {e}", file=sys.stderr) return -1 rsp = server.object_labels.create(dsid, fileid, data) if rsp is None: reportApiError(server, f"Failed to save labels for file {fileid} in dataset {dsid}") else: reportSuccess(server, f"Successfully created labels for file {fileid} in dataset {dsid}.") # --- getlabels Operation ------------------------------------------- getlabels_usage = f""" Usage: files getlabels --dsid=<dataset_id> --fileid=<file_id> Where: {ds_file_description} Gets labels for the given file in "old style" format.""" def getlabels(params): """Handles the 'getlabels' operation""" dsid = params.get("--dsid", "missing_id") fileid = params.get("--fileid", "missing_id") rsp = server.object_labels.getlabels(dsid, fileid) if rsp is None: reportApiError(server, f"Failed to get labels for dataset {dsid} and file {fileid}") else: reportSuccess(server, None) cmd_usage = f""" Usage: files {paiv_cli_utils.common_cmd_flags} <operation> [<args>...] Where: {paiv_cli_utils.common_cmd_flag_descriptions} <operation> is required and must be one of: upload -- upload file(s) to a dataset list -- report a list of files change -- change certain metadata attributes of a file delete -- delete one or more files show -- show a metadata for a specific file download -- download a file savelabels -- save object labels to a file getlabels -- get object labels associated with a file Use 'files <operation> --help' for more information on a specific command.""" # Usage statement map -- indexed by CLI operation name usage_stmt = { "usage": cmd_usage, "upload": upload_usage, "list": list_usage, "change": change_usage, "delete": delete_usage, "show": show_usage, "download": download_usage, "getlabels": getlabels_usage, "savelabels": savelabels_usage } # Operation map to map CLI operation name to function implementing that operation operation_map = { "upload": upload, "list": report, "change": update, "delete": delete, "show": show, "download": download, "getlabels": getlabels, "savelabels": savelabels } def main(params, cmd_flags=None): global server args = paiv_cli_utils.get_valid_input(usage_stmt, operation_map, argv=params,cmd_flags=cmd_flags) if args is not None: server = paiv.connect_to_server(paiv_cli_utils.host_name, paiv_cli_utils.token) args.operation(args.op_params) if __name__ == "__main__": main(None)
1.625
2
main.py
liatrio/bitbucket-elasticsearch-connector
0
12783076
<filename>main.py #!/usr/bin/env python # -*- coding: utf-8 -*- from index import index_repos import logging import os import time import requests import json import getpass import sys, signal import atexit try: from argparse import ArgumentParser except ImportError: logging.error("argparse is required to run this script") exit(1) try: from elasticsearch import Elasticsearch except ImportError: logging.error("Elasticsearch is required to run this script") exit(1) try: from requests_oauthlib import OAuth1 except ImportError: logging.error("requests-oauthlib is required to run this script") exit(1) lastrun = None def check_es_configs(config): if 'host' not in config.keys(): raise KeyError("Elasticsearch host is missing in elasticsearch.conf") exit(1) if 'repo_index' not in config.keys(): raise KeyError("Elasticsearch repo_index is missing in elasticsearch.conf") exit(1) if 'file_index' not in config.keys(): raise KeyError("Elasticsearch file_index is missing in elasticsearch.conf") exit(1) if 'commit_index' not in config.keys(): raise KeyError("Elasticsearch commit_index is missing in elasticsearch.conf") exit(1) def check_bitbucket_configs(config): if 'token' not in config.keys(): raise KeyError("Bitbucket token is missing in bitbucket.conf") exit(1) if 'api_endpoint' not in config.keys(): raise KeyError("Bitbucket api_endpoint is missing in bitbucket.conf") exit(1) def last_run(): ''' reads from .bitbucketHistory when bitbucket content was last indexed ''' if os.path.isfile(".bitbucketHistory"): sincestr = open(".bitbucketHistory").read() since = time.strptime(sincestr, '%Y-%m-%dT%H:%M:%S') else: since = 0 return since def write_history(lastrun): ''' writes the timestamp when bitbucket content was last indexed or updated uses a file named '.bitbucketHistory' to save the timestamp for next run ''' if lastrun: history_file = open(".bitbucketHistory", 'w') history_file.write(lastrun) history_file.close() def init_elasticsearch(): config = {} execfile("elasticsearch.conf", config) check_es_configs(config) try: es_conn = Elasticsearch(config['host'], max_retries=8) except: logging.error("elasticsearch is not running") exit(1) return es_conn def main(): logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') bitbucket_config = {} execfile("bitbucket.conf", bitbucket_config) check_bitbucket_configs(bitbucket_config) headers = {"Authorization":"Bearer "+bitbucket_config['token']} ## Bitbucket connection: s = requests.Session() s.headers = headers ## elasticsearch connection: es_conn = init_elasticsearch() argparser = ArgumentParser(description=__doc__) argparser.add_argument('index', default='index', help='index, update or pindex') args = argparser.parse_args() if args.index == "index": lastrun = time.strftime('%Y-%m-%dT%H:%M:%S', time.gmtime()) index_repos(s, es_conn) write_history(lastrun) else: raise ValueError("Unknown mode. Please use one of the following:\n index") atexit.register(write_history, lastrun) if __name__ == '__main__': try: main() except KeyboardInterrupt: #lastrun = time.strftime('%Y-%m-%dT%H:%M:%S', time.gmtime()) print lastrun write_history(lastrun) sys.exit()
2.640625
3
pymailer/__init__.py
complexsum/pymailer
1
12783077
from .__about__ import __version__ from .utils.message import build_message from .core.email_service import EmailService
0.921875
1
genesys/genesys/simulation/sysarray_models.py
VeriGOOD-ML/public
6
12783078
# This file contains the functions for the data access and cycle count models for the Layers executed on the Systolic Array import logging import math import numpy as np from data_objects import HardwareObject, SAResult_Inflayer, SIMDResult_Inflayer from layer_object import LayerObject def conv_access_model(Hardware_param, LayerObj, SysResult_inflayer): # data access model for convolution layer #unpacking the parameters. Doing this unpacking at the beginning of each function # Although repetition of code, doing this since some parameters such bit-width fusion etc may come from a different object # In future to address such changes, only this unpacking part will need to be modified and the main body of the function will be untouched bw_filter = LayerObj.bw_filter; bw_ifmap = LayerObj.bw_ifmap; bw_ofmap = LayerObj.bw_ofmap bw_psum = LayerObj.bw_psum; bw_bias = LayerObj.bw_bias OW = LayerObj.OW OH = LayerObj.OH OC = LayerObj.OC KW = LayerObj.KW KH = LayerObj.KH IC = LayerObj.IC IW = LayerObj.IW IH = LayerObj.IH Batch = LayerObj.Batch DTile_ow = LayerObj.DTile_ow DTile_oh = LayerObj.DTile_oh DTile_oc = LayerObj.DTile_oc DTile_kw = LayerObj.DTile_kw DTile_kh = LayerObj.DTile_kh DTile_ic = LayerObj.DTile_ic DTile_iw = LayerObj.DTile_iw DTile_ih = LayerObj.DTile_ih DTile_batch = LayerObj.DTile_batch Loop_order = LayerObj.Loop_order fusion_status = LayerObj.fusion_status #print(Size_IBUF) #print(Loop_order) #print(Pad) # Determining which dataflow out of the three dataflow class form the input loop order WS_key = ['ow', 'oh', 'n'] OS_key = ['kw', 'kh', 'ic'] IS_key = ['oc'] for key in WS_key: if Loop_order[0] == key: dataflow = "weight_stationary" break for key in OS_key: if Loop_order[0] == key: dataflow = "output_stationary" break for key in IS_key: if Loop_order[0] == key: dataflow = "input_stationary" break #print(dataflow) ######### Model for DRAM accesses if (fusion_status == "NoFusion"): if dataflow == "weight_stationary": #imap access ifmap_access_DRAM = (DTile_iw * DTile_ih * DTile_ic * DTile_batch) * (OW/DTile_ow) * (OH/DTile_oh) * (Batch/DTile_batch) \ * (IC/DTile_ic) * (KW/DTile_kw) * (KH/DTile_kh) * math.ceil((OC/DTile_oc)) * bw_ifmap # in bit #######filter access #common multiplier regardless of the variant of WS dataflow filter_access_common = (DTile_kw * DTile_kh * DTile_ic * DTile_oc) * (IC/DTile_ic) * (KW/DTile_kw) * (KH/DTile_kh) * (OC/DTile_oc) ow_multiplier = OW/DTile_ow oh_multiplier = OH/DTile_oh n_multiplier = Batch/DTile_batch WS_Dict = {'ow': ow_multiplier, 'oh': oh_multiplier, 'n': n_multiplier} #print("WS_Dict:", WS_Dict) # First determining how many keys from the innermost loop matched in the given loop order loopids = {'first': "match", 'second': "nomatch", 'third': "nomatch"} #the first loop id will always be one of the keys since this is under WS category, hence first one is matched by default. #beginning with no match for the second and third ids and will change them to match depending on the cases #print("BEFORE:", loopids) for key in WS_key: if Loop_order[1] == key: loopids['second'] = "match" if loopids['second'] == "nomatch": WScase = "oneKey" #case determined, only one key match, case 1, no further calculation needed else: for key in WS_key: if Loop_order[2] == key: loopids['third'] = "match" if loopids['third'] == "nomatch": WScase = "twoKey" #case determined, two keys matched, case 2, no further calculation needed else: WScase = "threeKey" #case determined, all three keys matched, case 3 #print("AFTER:", loopids) #print("WS Case:", WScase) #Depending on the WScase, now determining filter multiplier based on how many innermost loops matches the WS_keys if WScase == "threeKey": filter_multiplier = 1 # all three key matched, so optimal WS, filter multiplier is 1 elif WScase == "twoKey": for key in WS_key: if key != Loop_order[0] and key != Loop_order[1]: # tow key matched and one key does not match mulkey = key #print("mulkey:", mulkey) filter_multiplier = WS_Dict[mulkey] elif WScase == "oneKey": mulkey1 = "empty" mulkey2 = "empty" for key in WS_key: if key != Loop_order[0]: # only one key matched, hence two unmatched key to identify if mulkey1 == "empty" and mulkey2 == "empty": mulkey1 = key # one unmatched key is placed in mulkey 1 else: mulkey2 = key # another unmatched key is placed in mulkey 2 print("mulkey1:", mulkey1) print("mulkey2:", mulkey2) filter_multiplier = WS_Dict[mulkey1] * WS_Dict[mulkey2] #print("filter_multiplier:", filter_multiplier) filter_access_DRAM = filter_access_common * filter_multiplier * bw_filter # in bit #psum access ofpsm_access_DRAM = (DTile_ow * DTile_oh * DTile_oc * DTile_batch) * (OW/DTile_ow) * (OH/DTile_oh) * (Batch/DTile_batch) * (OC/DTile_oc) \ * (2 * math.ceil(IC/DTile_ic) * math.ceil(KW/DTile_kw) * math.ceil(KH/DTile_kh) - 1) psum_access_DRAM = (ofpsm_access_DRAM - (OW * OH * OC * Batch)) * bw_psum #in bit #ofmap access ofmap_access_DRAM = OW * OH * OC * Batch * bw_ofmap # in bit #bias access bias_access_DRAM = DTile_oc * (OC/DTile_oc) * bw_bias #print("ifmap_access_DRAM:", ifmap_access_DRAM) #print("filter_access_DRAM:", filter_access_DRAM) #print("ofpsm_access_DRAM:", ofpsm_access_DRAM) #print("psum_access_DRAM:", psum_access_DRAM) #print("ofmap_access_DRAM:", ofmap_access_DRAM) #print("bias_access_DRAM:", bias_access_DRAM) elif dataflow == "output_stationary": print("will do") elif dataflow == "input_stationary": print("will do") else: print("Invalid dataflow") else: print("model for fusion do not exist yet") ##### Model for SRAM accesses (Original SRAM access do not depend on fusion) SRAM_stationary_flag = "NoStationary" # current genesys systolic PE hardware does not support any stationary logic for SRAM accesses if SRAM_stationary_flag == "NoStationary": conv_SRAM_access_NoStationary(Hardware_param, LayerObj, SysResult_inflayer) else: print("will write generic code for SRAM stationary logic based on dataflow") SysResult_inflayer.DRAM_access['filter'] = filter_access_DRAM SysResult_inflayer.DRAM_access['ifmap'] = ifmap_access_DRAM SysResult_inflayer.DRAM_access['ofmap'] = ofmap_access_DRAM SysResult_inflayer.DRAM_access['psum'] = psum_access_DRAM SysResult_inflayer.DRAM_access['bias'] = bias_access_DRAM def conv_SRAM_access_NoStationary(Hardware_param, LayerObj, SysResult_inflayer): # Current genesys PE hardware does not support any stationary logic for SRAM accesses # Hence SRAM access pattern does not depend on loop order or dataflow and this function gives the SRAM access pattern for this scenario # unpacking the parameters bw_filter = LayerObj.bw_filter; bw_ifmap = LayerObj.bw_ifmap; bw_ofmap = LayerObj.bw_ofmap bw_psum = LayerObj.bw_psum; bw_bias = LayerObj.bw_bias OW = LayerObj.OW OH = LayerObj.OH OC = LayerObj.OC KW = LayerObj.KW KH = LayerObj.KH IC = LayerObj.IC IW = LayerObj.IW IH = LayerObj.IH Batch = LayerObj.Batch DTile_ow = LayerObj.DTile_ow DTile_oh = LayerObj.DTile_oh DTile_oc = LayerObj.DTile_oc DTile_kw = LayerObj.DTile_kw DTile_kh = LayerObj.DTile_kh DTile_ic = LayerObj.DTile_ic DTile_iw = LayerObj.DTile_iw DTile_ih = LayerObj.DTile_ih DTile_batch = LayerObj.DTile_batch Stile_ow = LayerObj.Stile_ow Stile_oh = LayerObj.Stile_oh Stile_oc = LayerObj.Stile_oc Stile_kw = LayerObj.Stile_kw Stile_kh = LayerObj.Stile_kh Stile_ic = LayerObj.Stile_ic Stile_iw = LayerObj.Stile_iw Stile_ih = LayerObj.Stile_ih Stile_batch = LayerObj.Stile_batch #ifmap access ifmap_DRAM_loop_mul = (OW/DTile_ow) * (OH/DTile_oh) * (Batch/DTile_batch) * (IC/DTile_ic) * (KW/DTile_kw) * (KH/DTile_kh) * math.ceil((OC/DTile_oc)) ifmap_access_SRAM = (Stile_iw * Stile_ih * Stile_ic * Stile_batch) * (DTile_ow/Stile_ow) * (DTile_oh/Stile_oh) * (DTile_batch/Stile_batch) \ * (DTile_ic/Stile_ic) * (DTile_kw/Stile_kw) * (DTile_kh/Stile_kh) * math.ceil((DTile_oc/Stile_oc)) * ifmap_DRAM_loop_mul * bw_ifmap # in bit # filter access filter_DRAM_loop_mul = math.ceil((OW/DTile_ow)) * math.ceil((OH/DTile_oh)) * math.ceil((Batch/DTile_batch)) \ * (IC/DTile_ic) * (KW/DTile_kw) * (KH/DTile_kh) * (OC/DTile_oc) filter_access_SRAM = (Stile_kw * Stile_kh * Stile_ic * Stile_oc) * (DTile_ic/Stile_ic) * (DTile_kw/Stile_kw) * (DTile_kh/Stile_kh) * (DTile_oc/Stile_oc) \ * math.ceil((DTile_ow/Stile_ow)) * math.ceil((DTile_oh/Stile_oh)) * math.ceil((DTile_batch/Stile_batch)) \ * filter_DRAM_loop_mul * bw_filter # in bit # psum access pDRAM_loop_mula = math.ceil(IC/DTile_ic) * math.ceil(KW/DTile_kw) * math.ceil(KH/DTile_kh) pDRAM_loop_mulb = (OW/DTile_ow) * (OH/DTile_oh) * (Batch/DTile_batch) * (OC/DTile_oc) psum_access_SRAM = (Stile_ow * Stile_oh * Stile_oc * Stile_batch) * (DTile_ow/Stile_ow) * (DTile_oh/Stile_oh) * (DTile_batch/Stile_batch) * (DTile_oc/Stile_oc) \ * (2 * math.ceil(DTile_ic/Stile_ic) * math.ceil(DTile_kw/Stile_kw) * math.ceil(DTile_kh/Stile_kh) * pDRAM_loop_mula - 1) \ * pDRAM_loop_mulb * bw_psum # in bit # bias access, for each ofmap location, bias term need to be added once, bias_DRAM_loop_mul = (OW/DTile_ow) * (OH/DTile_oh) * (Batch/DTile_batch) * (OC/DTile_oc) bias_access_SRAM = (Stile_oc) * DTile_ow * DTile_oh * DTile_batch * (DTile_oc/Stile_oc) * bias_DRAM_loop_mul * bw_bias # in bit #print("ifmap_access_SRAM:", ifmap_access_SRAM) #print("filter_access_SRAM:", filter_access_SRAM) #print("psum_access_SRAM:", psum_access_SRAM) #print("bias_access_SRAM:", bias_access_SRAM) SysResult_inflayer.SRAM_access['filter'] = filter_access_SRAM SysResult_inflayer.SRAM_access['ifmap'] = ifmap_access_SRAM SysResult_inflayer.SRAM_access['psum'] = psum_access_SRAM SysResult_inflayer.SRAM_access['bias'] = bias_access_SRAM def conv_cycle_model(Hardware_param, LayerObj, SysResult_inflayer): #compute cycle and DRAM stall cycle count model for the convolution layer # unpacking the parameters SysArray_row = Hardware_param.SysArray_row; SysArray_col = Hardware_param.SysArray_col OW = LayerObj.OW OH = LayerObj.OH OC = LayerObj.OC KW = LayerObj.KW KH = LayerObj.KH IC = LayerObj.IC IW = LayerObj.IW IH = LayerObj.IH Batch = LayerObj.Batch DTile_ow = LayerObj.DTile_ow DTile_oh = LayerObj.DTile_oh DTile_oc = LayerObj.DTile_oc DTile_kw = LayerObj.DTile_kw DTile_kh = LayerObj.DTile_kh DTile_ic = LayerObj.DTile_ic DTile_iw = LayerObj.DTile_iw DTile_ih = LayerObj.DTile_ih DTile_batch = LayerObj.DTile_batch Stile_ow = LayerObj.Stile_ow Stile_oh = LayerObj.Stile_oh Stile_oc = LayerObj.Stile_oc Stile_kw = LayerObj.Stile_kw Stile_kh = LayerObj.Stile_kh Stile_ic = LayerObj.Stile_ic Stile_iw = LayerObj.Stile_iw Stile_ih = LayerObj.Stile_ih Stile_batch = LayerObj.Stile_batch fusion_status = LayerObj.fusion_status ### determining the on-chip compute cycles, compute cycles do not depend on loop order, or fusion cycle_oneTile = (DTile_ow/Stile_ow) * (DTile_oh/Stile_oh) * (DTile_kw/Stile_kw) * (DTile_kh/Stile_kh) * (DTile_batch/Stile_batch) \ * math.ceil(DTile_ic/Stile_ic) * math.ceil(DTile_oc/Stile_oc) #print(cycle_oneTile) #pipeline overhead for each DRAM tile pipe_overhead_tile = (SysArray_row - 1) + (SysArray_col - 1) #using PE row and col #for now omitting the use of any ceil since DRAM tile size will be integer multiple of loops Number_of_Tile = (OW/DTile_ow) * (OH/DTile_oh) * (Batch/DTile_batch) * (IC/DTile_ic) * (KW/DTile_kw) * (KH/DTile_kh) * (OC/DTile_oc) compute_cycles = math.ceil((cycle_oneTile + pipe_overhead_tile) * Number_of_Tile) # giving the outer ceil to avoid fraction cycle numbers #print("compute_cycles:", compute_cycles) SysResult_inflayer.cycles['compute'] = compute_cycles #of cycles to compute one tile including the pipeline setup operhead, need this variable to compute DRAM stall cycles ComputeTile_cycles = cycle_oneTile + pipe_overhead_tile ######## model for the DRAM stall cycles, depends on loop order, fusion etc if (fusion_status == "NoFusion"): #Model for the version where there is no fusion DRAM_stall_cycles = conv_stall_model_nofu(Hardware_param, LayerObj, ComputeTile_cycles, SysResult_inflayer) else: print("model for fusion do not exist yet") SysResult_inflayer.cycles['total'] = compute_cycles + DRAM_stall_cycles ####### Counting number of MAC operations: writing in a generic way for future extension (ceiling affects cycle count and #of MAC differently) PE_tile_mac = (Stile_ow * Stile_oh * Stile_oc * Stile_batch) * (Stile_ic * Stile_kw * Stile_kh) SRAM_tile_mac = PE_tile_mac * (DTile_ow/Stile_ow) * (DTile_oh/Stile_oh) * (DTile_kw/Stile_kw) * (DTile_kh/Stile_kh) * (DTile_batch/Stile_batch) \ * (DTile_ic/Stile_ic) * (DTile_oc/Stile_oc) Nos_of_mac = SRAM_tile_mac * (OW/DTile_ow) * (OH/DTile_oh) * (Batch/DTile_batch) * (IC/DTile_ic) * (KW/DTile_kw) * (KH/DTile_kh) * (OC/DTile_oc) print("Nos of MAC:", Nos_of_mac) SysResult_inflayer.arithmetic['mac'] = Nos_of_mac def conv_stall_model_nofu(Hardware_param, LayerObj, ComputeTile_cycles, SysResult_inflayer): #DRAM stall cycle count model for the convolution layer when there is no fusion bw_filter = LayerObj.bw_filter; bw_ifmap = LayerObj.bw_ifmap; bw_ofmap = LayerObj.bw_ofmap bw_psum = LayerObj.bw_psum; bw_bias = LayerObj.bw_bias SysArray_row = Hardware_param.SysArray_row; SysArray_col = Hardware_param.SysArray_col RBW_DRAM_to_WBUF = Hardware_param.RBW_DRAM_to_WBUF # in bit/cycle, bias is also loaded through the same AXI interface RBW_DRAM_to_IBUF = Hardware_param.RBW_DRAM_to_IBUF RBW_DRAM_to_OBUF = Hardware_param.RBW_DRAM_to_OBUF WBW_OBUF_to_DRAM = Hardware_param.WBW_OBUF_to_DRAM OW = LayerObj.OW OH = LayerObj.OH OC = LayerObj.OC KW = LayerObj.KW KH = LayerObj.KH IC = LayerObj.IC IW = LayerObj.IW IH = LayerObj.IH Batch = LayerObj.Batch DTile_ow = LayerObj.DTile_ow DTile_oh = LayerObj.DTile_oh DTile_oc = LayerObj.DTile_oc DTile_kw = LayerObj.DTile_kw DTile_kh = LayerObj.DTile_kh DTile_ic = LayerObj.DTile_ic DTile_iw = LayerObj.DTile_iw DTile_ih = LayerObj.DTile_ih DTile_batch = LayerObj.DTile_batch Loop_order = LayerObj.Loop_order # Determining which dataflow out of the three dataflow class form the input loop order WS_key = ['ow', 'oh', 'n'] OS_key = ['kw', 'kh', 'ic'] IS_key = ['oc'] for key in WS_key: if Loop_order[0] == key: dataflow = "weight_stationary" break for key in OS_key: if Loop_order[0] == key: dataflow = "output_stationary" break for key in IS_key: if Loop_order[0] == key: dataflow = "input_stationary" break #print("Dataflow:", dataflow) if dataflow == "weight_stationary": # The current DRAM stall model is valid for any WS loop order with oc at the outermost loop (DUE TO SOME CORNER SITUATIONs, EXTENSION IS POSSIBLE) Loop_order1 = ['ow', 'oh', 'kw', 'kh', 'ic', 'n', 'oc'] # current GeneSys Loop order Loop_order2 = ['ow', 'oh', 'n', 'kw', 'kh', 'ic', 'oc'] # an optimal WS loop order, there are equivalent varients of these loop order, WILL ADD LATER IN CODE if (Loop_order == Loop_order1 and (OW/DTile_ow * OH/DTile_oh) > 2) or (Loop_order == Loop_order2 and (OW/DTile_ow * OH/DTile_oh * Batch/DTile_batch) > 2): # The tiling condition ensures that the numbers of WS tiles is at least 3 to be able to normally execute the 3 stage double-buffered DRAM pipeline No_Warning = "True" else: print("WARNING: Number of WS tile is less than 3") print("Nos of WS tile:", (OW/DTile_ow * OH/DTile_oh * Batch/DTile_batch)) print("Nos of DRAM WS + OS tiles:", (OW/DTile_ow) * (OH/DTile_oh) * (Batch/DTile_batch) * (IC/DTile_ic) * (KW/DTile_kw) * (KH/DTile_kh)) print("Nos of total DRAM tiles:", (OW/DTile_ow) * (OH/DTile_oh) * (Batch/DTile_batch) * (IC/DTile_ic) * (KW/DTile_kw) * (KH/DTile_kh) * (OC/DTile_oc)) #print("OH:", OH, "OW:", OW, "DTile_oh:", DTile_oh, "DTile_ow:", DTile_ow) if (Loop_order == Loop_order1) or (Loop_order == Loop_order2): if Loop_order == Loop_order1: filter_multiplier = Batch/DTile_batch elif Loop_order == Loop_order2: filter_multiplier = 1 #print(filter_multiplier) #of tiles where weights are being loaded (regardless of bias) NT_weight = (KW/DTile_kw) * (KH/DTile_kh) * (IC/DTile_ic) * (OC/DTile_oc) * filter_multiplier #of tiles where (weight + bias) are being loaded. (bias is loaded with the oc loop) NT_wgt_bias = OC/DTile_oc #of tiles where only weights are being loaded NT_wgt_only = NT_weight - NT_wgt_bias #of tiles where psum is written to the DRAM NT_ps_wrt = (OW/DTile_ow) * (OH/DTile_oh) * (Batch/DTile_batch) * (IC/DTile_ic) * (KW/DTile_kw) * (KH/DTile_kh) * (OC/DTile_oc) #of tiles where psum write only happens NT_ps_wrtonly = (OW/DTile_ow) * (OH/DTile_oh) * (Batch/DTile_batch) * (OC/DTile_oc) #of tiles where both psum read and write occur NT_ps_rdwrt = NT_ps_wrt - NT_ps_wrtonly #print("NT_weight:", NT_weight, ";", "NT_wgt_bias:", NT_wgt_bias, ";", "NT_wgt_only:", NT_wgt_only) #print("NT_ps_wrt:", NT_ps_wrt, ";", "NT_ps_wrtonly:", NT_ps_wrtonly, ";", "NT_ps_rdwrt:", NT_ps_rdwrt) ## Performing CASE counts #CASE-5: #of tiles where weight+bias is being loaded (exclude the first tile) NT_case5 = NT_wgt_bias - 1 #CASE-4: #of tiles where only weight is being loaded NT_case4 = NT_wgt_only #CASE-1: #of tiles where ifmap read and psum write happens (exclude the last 2 tiles) NT_case1 = (NT_ps_wrtonly - 2) - NT_case5 #CASE-2: #of tiles where ifmap read and psum read+write happens NT_case2 = NT_ps_rdwrt - NT_case4 #print("NT_case1:", NT_case1, "NT_case2:", NT_case2, "NT_case4:", NT_case4, "NT_case5:", NT_case5) ## place condition to address the situation when tiles from ic, kw, kh, oc, n loops are equal to their original dimensions if (NT_case2 + NT_case4 == 0): NT_case2 = 0 NT_case4 = 0 print("NT_case1:", NT_case1, "NT_case2:", NT_case2, "NT_case4:", NT_case4, "NT_case5:", NT_case5) #The following two tiles are placing as seperate cases for future exception code when WS tiles can be < 3. There it is possible for these cases to be zero NT_case7 = 1 # The second tile NT_case8 = 1 # The second last tile #of cycles required to load/store each tile of each kind of data WgtTile_load_cycles = math.ceil((DTile_kw * DTile_kh * DTile_ic * DTile_oc * bw_filter) / RBW_DRAM_to_WBUF) BiasTile_load_cycles = math.ceil((DTile_oc * bw_bias) / RBW_DRAM_to_WBUF) ifmapTile_load_cycles = math.ceil((DTile_iw * DTile_ih * DTile_ic * DTile_batch * bw_ifmap) / RBW_DRAM_to_IBUF) psumTile_load_cycles = math.ceil((DTile_ow * DTile_oh * DTile_oc * DTile_batch * bw_psum) / RBW_DRAM_to_OBUF) psumTile_store_cycles = math.ceil((DTile_ow * DTile_oh * DTile_oc * DTile_batch * bw_psum) / WBW_OBUF_to_DRAM) #do not need to use 8-bit ofmap, not for the no-fusion version as well. Since SIMD operations are 32 bit and there is always at least a ReLU layer after each #Conv layer, the output of conv will go to SIMD and the quantization of 32 to 8 bit happens at SIMD. Hence the ofmap from a conv will be 32 bit #print("computeTile_cycles:", ComputeTile_cycles) #print("WgtTile_load_cycles:", WgtTile_load_cycles) #print("BiasTile_load_cycles:", BiasTile_load_cycles) #print("ifmapTile_load_cycles:", ifmapTile_load_cycles) #print("psumTile_load_cycles:", psumTile_load_cycles) #print("psumTile_store_cycles:", psumTile_store_cycles) # Determining the #of stall cycles for each case #Case1 L11 = ifmapTile_load_cycles - ComputeTile_cycles L12 = psumTile_store_cycles - ComputeTile_cycles stall_case1 = max(0, L11, L12) * NT_case1 #Case2 L21 = ifmapTile_load_cycles - ComputeTile_cycles L22 = (psumTile_load_cycles + psumTile_store_cycles - ComputeTile_cycles) #one AXI for both read and write of psum. stall_case2 = max(0, L21, L22) * NT_case2 #Case4 L41 = ifmapTile_load_cycles - ComputeTile_cycles L42 = WgtTile_load_cycles - ComputeTile_cycles L43 = (psumTile_load_cycles + psumTile_store_cycles - ComputeTile_cycles) #one AXI for both read and write of psum. stall_case4 = max(0, L41, L42, L43) * NT_case4 #Case5 L51 = ifmapTile_load_cycles - ComputeTile_cycles L52 = psumTile_store_cycles - ComputeTile_cycles L53 = (WgtTile_load_cycles + BiasTile_load_cycles) - ComputeTile_cycles stall_case5 = max(0, L51, L52, L53) * NT_case5 print("stall_case1:", stall_case1, "; stall_case2:", stall_case2, "; stall_case4:", stall_case4, "; stall_case5:", stall_case5) #First tile Lf1 = ifmapTile_load_cycles Lf2 = WgtTile_load_cycles + BiasTile_load_cycles stall_first = max(Lf1, Lf2) #Last tile stall_last = psumTile_store_cycles #Case7 L71 = ifmapTile_load_cycles - ComputeTile_cycles stall_case7 = max(0, L71) * NT_case7 #Case8 L81 = psumTile_store_cycles - ComputeTile_cycles stall_case8 = max(0, L81) print("stall_first:", stall_first, "; stall_last:", stall_last, "; stall_case7:", stall_case7, "; stall_case8:", stall_case8) #of total DRAM stall cycles DRAM_stall_cycles = stall_case1 + stall_case2 + stall_case4 + stall_case5 + stall_case7 + stall_case8 + stall_first + stall_last #print("DRAM_stall_cycles:", DRAM_stall_cycles) SysResult_inflayer.cycles['DRAM_Stall'] = DRAM_stall_cycles else: print("WS DRAM stall model do not exist for the input loop order") elif dataflow == "output_stationary": print("DARM stall model do not exist yet") elif dataflow == "input_stationary": print("DRAM stall model do not exist yet") else: print("Invalid dataflow") return DRAM_stall_cycles def gemm_access_model(Hardware_param, LayerObj, SysResult_inflayer): # data access model for fully connected layer (i.e., gemm) #unpacking the parameters. Doing this unpacking at the beginning of each function bw_filter = LayerObj.bw_filter; bw_ifmap = LayerObj.bw_ifmap; bw_ofmap = LayerObj.bw_ofmap bw_psum = LayerObj.bw_psum; bw_bias = LayerObj.bw_bias OC = LayerObj.OC IC = LayerObj.IC Batch = LayerObj.Batch DTile_oc = LayerObj.DTile_oc DTile_ic = LayerObj.DTile_ic DTile_batch = LayerObj.DTile_batch Loop_order = LayerObj.Loop_order fusion_status = LayerObj.fusion_status # Current implementation is for one loop order only, this is sort of the most optimal loop order for gemm analytically. # So probably no need to implement the support for any loop order for gemm if Batch > 1 and Loop_order == ['n', 'ic', 'oc']: # weight stationary category LayerObj.Loop_order = ['ow', 'oh', 'n', 'kw', 'kh', 'ic', 'oc'] # converting FC loop order to convolution loop order conv_access_model(Hardware_param, LayerObj, SysResult_inflayer) LayerObj.Loop_order = Loop_order # doing this to retain the original Loop order in LayerObj so that it can be used in later function calls elif Batch == 1 and Loop_order == ['n', 'ic', 'oc']: #output stationary category ###### Model for DRAM access cost if (fusion_status == "NoFusion"): # ifmap access if math.ceil(IC/DTile_ic) == 1: ifmap_oc_multiplier = 1 # the loop becomes input stationary wrt DRAM access else: ifmap_oc_multiplier = OC/DTile_oc #print(ifmap_oc_multiplier) ifmap_access_DRAM = (DTile_ic) * (IC/DTile_ic) * (OC/DTile_oc) * bw_ifmap # filter access filter_access_DRAM = (DTile_ic * DTile_oc) * (IC/DTile_ic) * (OC/DTile_oc) * bw_filter # in bit # ofmap access, no pusm DRAM access since output stationary ofmap_access_DRAM = (DTile_oc) * (OC/DTile_oc) * bw_ofmap # bias access bias_access_DRAM = (DTile_oc) * (OC/DTile_oc) * bw_bias else: print("model for fusion do not exist yet") ##### Model for SRAM accesses (Original SRAM access do not depend on fusion) SRAM_stationary_flag = "NoStationary" # current genesys systolic PE hardware does not support any stationary logic for SRAM accesses if SRAM_stationary_flag == "NoStationary": conv_SRAM_access_NoStationary(Hardware_param, LayerObj, SysResult_inflayer) else: print("will write generic code for SRAM stationary logic based on dataflow") SysResult_inflayer.DRAM_access['filter'] = filter_access_DRAM SysResult_inflayer.DRAM_access['ifmap'] = ifmap_access_DRAM SysResult_inflayer.DRAM_access['ofmap'] = ofmap_access_DRAM #SysResult_inflayer.DRAM_access['psum'] = psum_access_DRAM SysResult_inflayer.DRAM_access['bias'] = bias_access_DRAM else: print("The input loop order is not optimal and not supported") def gemm_cycle_model(Hardware_param, LayerObj, SysResult_inflayer): #compute cycle and DRAM stall cycle count model for the fully connecetd layer # unpacking the parameters SysArray_row = Hardware_param.SysArray_row; SysArray_col = Hardware_param.SysArray_col OW = LayerObj.OW OH = LayerObj.OH OC = LayerObj.OC KW = LayerObj.KW KH = LayerObj.KH IC = LayerObj.IC IW = LayerObj.IW IH = LayerObj.IH Batch = LayerObj.Batch DTile_ow = LayerObj.DTile_ow DTile_oh = LayerObj.DTile_oh DTile_oc = LayerObj.DTile_oc DTile_kw = LayerObj.DTile_kw DTile_kh = LayerObj.DTile_kh DTile_ic = LayerObj.DTile_ic DTile_iw = LayerObj.DTile_iw DTile_ih = LayerObj.DTile_ih DTile_batch = LayerObj.DTile_batch Stile_ow = LayerObj.Stile_ow Stile_oh = LayerObj.Stile_oh Stile_oc = LayerObj.Stile_oc Stile_kw = LayerObj.Stile_kw Stile_kh = LayerObj.Stile_kh Stile_ic = LayerObj.Stile_ic Stile_iw = LayerObj.Stile_iw Stile_ih = LayerObj.Stile_ih Stile_batch = LayerObj.Stile_batch Loop_order = LayerObj.Loop_order fusion_status = LayerObj.fusion_status # Current implementation is for one loop order only, this is sort of the most optimal loop order for gemm analytically. # So no need to implement the support for any loop order for gemm if Batch > 1 and Loop_order == ['n', 'ic', 'oc']: # weight stationary category LayerObj.Loop_order = ['ow', 'oh', 'n', 'kw', 'kh', 'ic', 'oc'] # converting FC loop order to convolution loop order conv_cycle_model(Hardware_param, LayerObj, SysResult_inflayer) LayerObj.Loop_order = Loop_order # doing this to retain the original Loop order in LayerObj so that it can be used in later function calls if needed elif Batch == 1 and Loop_order == ['n', 'ic', 'oc']: ### determining computing cycles, using the convolution equations cause that works #determining the on-chip compute cycles, compute cycles do not depend on loop order, or fusion cycle_oneTile = (DTile_ow/Stile_ow) * (DTile_oh/Stile_oh) * (DTile_kw/Stile_kw) * (DTile_kh/Stile_kh) * (DTile_batch/Stile_batch) \ * math.ceil(DTile_ic/Stile_ic) * math.ceil(DTile_oc/Stile_oc) #print("cycle_oneTile:", cycle_oneTile) #pipeline overhead for each DRAM tile pipe_overhead_tile = (SysArray_row - 1) + (SysArray_col - 1) #using PE row and col, #for now omitting the use of any ceil since DRAM tile size will be integer multiple of loops, Number_of_Tile = (OW/DTile_ow) * (OH/DTile_oh) * (Batch/DTile_batch) * (IC/DTile_ic) * (KW/DTile_kw) * (KH/DTile_kh) * (OC/DTile_oc) compute_cycles = math.ceil((cycle_oneTile + pipe_overhead_tile) * Number_of_Tile) # giving the outer ceil to avoid fraction cycle numbers #print("compute_cycles:", compute_cycles) SysResult_inflayer.cycles['compute'] = compute_cycles #of cycles to compute one tile including the pipeline setup operhead, need this variable to compute DRAM stall cycles ComputeTile_cycles = cycle_oneTile + pipe_overhead_tile ######## model for the DRAM stall cycles, depends on loop order, fusion etc if (fusion_status == "NoFusion"): #Model for the version where there is no fusion DRAM_stall_cycles = gemmb1_stall_model_nofu(Hardware_param, LayerObj, ComputeTile_cycles, SysResult_inflayer) # stall model for batch = 1, output stationary else: print("model for fusion do not exist yet") SysResult_inflayer.cycles['total'] = compute_cycles + DRAM_stall_cycles ####### Counting number of MAC operations: using the convolution equations cause that works (ceiling affects cycle count and #of MAC differently) PE_tile_mac = (Stile_ow * Stile_oh * Stile_oc * Stile_batch) * (Stile_ic * Stile_kw * Stile_kh) SRAM_tile_mac = PE_tile_mac * (DTile_ow/Stile_ow) * (DTile_oh/Stile_oh) * (DTile_kw/Stile_kw) * (DTile_kh/Stile_kh) * (DTile_batch/Stile_batch) \ * (DTile_ic/Stile_ic) * (DTile_oc/Stile_oc) Nos_of_mac = SRAM_tile_mac * (OW/DTile_ow) * (OH/DTile_oh) * (Batch/DTile_batch) * (IC/DTile_ic) * (KW/DTile_kw) * (KH/DTile_kh) * (OC/DTile_oc) print("Nos of MAC:", Nos_of_mac) SysResult_inflayer.arithmetic['mac'] = Nos_of_mac else: print("The input loop order is not optimal and not supported") def gemmb1_stall_model_nofu(Hardware_param, LayerObj, ComputeTile_cycles, SysResult_inflayer): #DRAM stall cycle count model for the gemm layer when there is no fusion, batch size = 1, output stationary bw_filter = LayerObj.bw_filter; bw_ifmap = LayerObj.bw_ifmap; bw_ofmap = LayerObj.bw_ofmap bw_psum = LayerObj.bw_psum; bw_bias = LayerObj.bw_bias RBW_DRAM_to_WBUF = Hardware_param.RBW_DRAM_to_WBUF # in bit/cycle, bias is also loaded through the same AXI interface RBW_DRAM_to_IBUF = Hardware_param.RBW_DRAM_to_IBUF RBW_DRAM_to_OBUF = Hardware_param.RBW_DRAM_to_OBUF WBW_OBUF_to_DRAM = Hardware_param.WBW_OBUF_to_DRAM OC = LayerObj.OC IC = LayerObj.IC Batch = LayerObj.Batch DTile_oc = LayerObj.DTile_oc DTile_ic = LayerObj.DTile_ic DTile_batch = LayerObj.DTile_batch #of cycles required to load/store each tile of each kind of data WgtTile_load_cycles = math.ceil((DTile_ic * DTile_oc * bw_filter) / RBW_DRAM_to_WBUF) BiasTile_load_cycles = math.ceil((DTile_oc * bw_bias) / RBW_DRAM_to_WBUF) ifmapTile_load_cycles = math.ceil((DTile_ic * bw_ifmap) / RBW_DRAM_to_IBUF) ofmapTile_store_cycles = math.ceil((DTile_oc * bw_ofmap) / WBW_OBUF_to_DRAM) #do not need to use 8-bit ofmap, not for the no-fusion version as well. Since SIMD operations are 32 bit and there is always at least a ReLU layer after each #Conv layer, the output of conv will go to SIMD and the quantization of 32 to 8 bit happens at SIMD. Hence the ofmap from a conv will be 32 bit #print("ComputeTile_cycles:", ComputeTile_cycles) #print("WgtTile_load_cycles:", WgtTile_load_cycles) if math.ceil(IC/DTile_ic) == 1: dataflow = "input_stationary" else: dataflow = "output_stationary" if dataflow == "input_stationary": ## Performing CASE counts, there is only one case #Case 1: #of tiles where weight+bias is loaded, and ofmap write occurs, except the first two and last two tiles NT_case1 = (OC/DTile_oc) - 2 # Using this condition to seperately address the situation when OC/DTile_oc is also 1 and NT_case1 becomes negative NT_case1_flag = "None" if NT_case1 < 0: NT_case1 = 0 NT_case1_flag = "Negative" #print("NT_case1:", NT_case1) # Determining the #of stall cycles for each case #Case1 L11 = (WgtTile_load_cycles + BiasTile_load_cycles) - ComputeTile_cycles L12 = ofmapTile_store_cycles - ComputeTile_cycles stall_case1 = max(0, L11, L12) * NT_case1 #First tile Lf1 = ifmapTile_load_cycles Lf2 = WgtTile_load_cycles + BiasTile_load_cycles stall_first = max(Lf1, Lf2) #Second tile L2nd = (WgtTile_load_cycles + BiasTile_load_cycles) - ComputeTile_cycles stall_second = max(0, L2nd) #Second last tile L2ndlst = ofmapTile_store_cycles - ComputeTile_cycles stall_secondlast = max(0, L2ndlst) #Last tile stall_last = ofmapTile_store_cycles #print("stall_case1:", stall_case1, "; stall_first:", stall_first, "; stall_second:", stall_second, "; stall_secondlast:", stall_secondlast,\ # "; stall_last:", stall_last) #of total DRAM stall cycles if NT_case1_flag == "Negative": DRAM_stall_cycles = stall_first + stall_last else: DRAM_stall_cycles = stall_case1 + stall_first + stall_second + stall_secondlast + stall_last elif dataflow == "output_stationary": #of tiles where weights are being loaded (regardless of bias) NT_weight = (IC/DTile_ic) * (OC/DTile_oc) #of tiles where (weight + bias) are being loaded. (bias is loaded with the oc loop) NT_wgt_bias = OC/DTile_oc #of tiles where only weights are being loaded NT_wgt_only = NT_weight - NT_wgt_bias #of tiles where ofmap is written to the DRAM NT_ofmap_wrt = (OC/DTile_oc) #print("NT_weight:", NT_weight, ";", "NT_wgt_bias:", NT_wgt_bias, ";", "NT_wgt_only:", NT_wgt_only, "; NT_ofmap_wrt:", NT_ofmap_wrt) ## Performing CASE counts #CASE-1: #of tiles where weight+bias is being loaded (exclude the first tile) NT_case1 = NT_wgt_bias - 1 #CASE-4: #of tiles where ofmap write occurs (excluding the last tile, ofmap write does not happen at the second last tile) NT_case4 = NT_ofmap_wrt - 1 #CASE-3: #of tiles where weightonly read and ifmap read happens (excluding the second tile) NT_case3 = (NT_wgt_only - 1) - NT_case4 #print("NT_case1:", NT_case1, "NT_case3:", NT_case3, "NT_case4:", NT_case4) # Determining the #of stall cycles for each case #Case1 L11 = (WgtTile_load_cycles + BiasTile_load_cycles) - ComputeTile_cycles L12 = ifmapTile_load_cycles - ComputeTile_cycles stall_case1 = max(0, L11, L12) * NT_case1 #Case3 L31 = WgtTile_load_cycles - ComputeTile_cycles L32 = ifmapTile_load_cycles - ComputeTile_cycles stall_case3 = max(0, L31, L32) * NT_case3 #Case4 L41 = WgtTile_load_cycles - ComputeTile_cycles L42 = ifmapTile_load_cycles - ComputeTile_cycles L43 = ofmapTile_store_cycles - ComputeTile_cycles stall_case4 = max(0, L41, L42, L43) * NT_case4 #print("stall_case1:", stall_case1, "; stall_case3:", stall_case3, "; stall_case4:", stall_case4) #First tile Lf1 = ifmapTile_load_cycles Lf2 = WgtTile_load_cycles + BiasTile_load_cycles stall_first = max(Lf1, Lf2) #Second tile L2nd1 = WgtTile_load_cycles - ComputeTile_cycles L2nd2 = ifmapTile_load_cycles - ComputeTile_cycles stall_second = max(0, L2nd1, L2nd2) #Second last tile, there is no data read/write for the second last tile, only compute stall_secondlast = 0 #Last tile stall_last = ofmapTile_store_cycles #print("stall_first:", stall_first, "; stall_second:", stall_second, "; stall_secondlast:", stall_secondlast, "; stall_last:", stall_last) #of total DRAM stall cycles DRAM_stall_cycles = stall_case1 + stall_case3 + stall_case4 + stall_first + stall_second + stall_secondlast + stall_last #print("DRAM_stall_cycles:", DRAM_stall_cycles) SysResult_inflayer.cycles['DRAM_Stall'] = DRAM_stall_cycles return DRAM_stall_cycles
2.515625
3
RecoEcal/EgammaClusterProducers/python/egammaRechitFilter_cfi.py
ckamtsikis/cmssw
852
12783079
<filename>RecoEcal/EgammaClusterProducers/python/egammaRechitFilter_cfi.py import FWCore.ParameterSet.Config as cms # # module for filtering of rechits. user provides noise threshold in GeV units # Author: <NAME>, University of Rome & INFN # rechitFilter = cms.EDProducer("RecHitFilter", noiseEnergyThreshold = cms.double(0.08), noiseChi2Threshold = cms.double(40), hitCollection = cms.InputTag('EcalRecHit','EcalRecHitsEB'), reducedHitCollection = cms.string('FilteredEcalRecHitCollection') )
1.515625
2
freedom/reco/i3freedom.py
JanWeldert/freeDOM
0
12783080
<filename>freedom/reco/i3freedom.py """Provides I3Module(s) for FreeDOM reco""" from freedom.reco.crs_reco import ( timed_fit, zero_track_fit, DEFAULT_SEARCH_LIMITS, DEFAULT_INIT_RANGE, ) from freedom.reco import transforms from freedom.utils import i3frame_dataloader from freedom.llh_service.llh_client import LLHClient import numpy as np DEFAULT_N_LIVE_POINTS = 97 DEFAULT_BATCH_SIZE = 12 DEFAULT_MAX_ITER = 10000 DEFAULT_SPHERICAL_INDICES = [[4, 5]] TRACK_M_PER_GEV = 15 / 3.3 """Borrowed from Retro's muon_hypo.py""" class I3FreeDOMClient: """FreeDOM client IceTray module. Connects to LLHServices started elsewhere""" def __init__(self, ctrl_addrs, conf_timeout, rng=None): """initialize FreeDOM client, connect to LLH service(s)""" if isinstance(ctrl_addrs, str): ctrl_addrs = [ctrl_addrs] self._llh_clients = [LLHClient(addr, conf_timeout) for addr in ctrl_addrs] if rng is None: self._rng = np.random.default_rng(None) else: self._rng = rng def __call__( self, frame, geo, reco_pulse_series_names, ug_geo=None, mdom_directions=None, suffix="", init_range=DEFAULT_INIT_RANGE, search_limits=DEFAULT_SEARCH_LIMITS, n_live_points=DEFAULT_N_LIVE_POINTS, do_postfit=True, store_all=False, truth_seed=False, batch_size=DEFAULT_BATCH_SIZE, par_transforms=None, do_track_dllh=False, **crs_fit_kwargs, ): """reconstruct an event stored in an i3frame""" event = i3frame_dataloader.load_event( frame, geo, reco_pulse_series_names, ug_geo, mdom_directions ) fit_kwargs = dict( event=event, clients=self._llh_clients, rng=self._rng, init_range=init_range, search_limits=search_limits, n_live_points=n_live_points, do_postfit=do_postfit, store_all=store_all, truth_seed=truth_seed, param_transforms=par_transforms, batch_size=batch_size, spherical_indices=DEFAULT_SPHERICAL_INDICES, max_iter=DEFAULT_MAX_ITER, **crs_fit_kwargs, ) full_res = timed_fit(**fit_kwargs) if event["params"] is not None: full_res["truth_LLH"] = 0 for i, client in enumerate(self._llh_clients): full_res["truth_LLH"] += client.eval_llh( event["hit_data"][i], event["evt_data"][i], event["params"] ) prefix = f"FreeDOM_{suffix}_" store_fit_result( frame, prefix, full_res, par_transforms, store_i3_particles=True ) if do_track_dllh: # do not conduct postfit for zero_track fits fit_kwargs["do_postfit"] = False no_track_res, E_only_res = zero_track_fit(full_res, **fit_kwargs) store_dllh(frame, prefix, full_res, no_track_res, E_only_res) store_fit_result(frame, prefix + "no_track_", no_track_res, par_transforms) store_fit_result(frame, prefix + "E_only_", E_only_res, par_transforms) def store_fit_result( frame, prefix, fit_res, par_transforms=None, store_i3_particles=False, ): """store reco output in an i3frame""" from icecube.dataclasses import I3VectorString, I3VectorDouble, I3Double from icecube.icetray import I3Int, I3Bool fixed_params = fit_res.get("fixed_params", None) par_names = transforms.free_par_names(par_transforms, fixed_params) frame[f"{prefix}par_names"] = to_i3_vec(par_names, I3VectorString) frame[f"{prefix}best_fit"] = to_i3_vec(fit_res["x"], I3VectorDouble) frame[f"{prefix}success"] = I3Bool(fit_res["success"]) for double_p, double_frame_name in [("fun", "best_LLH"), ("delta", "delta_T")]: frame[f"{prefix}{double_frame_name}"] = I3Double(float(fit_res[double_p])) try: frame[f"{prefix}truth_LLH"] = I3Double(float(fit_res["truth_LLH"])) except KeyError: pass for int_p, int_frame_name in [ ("n_calls", "n_llh_calls"), ("nit", "n_crs_iters"), ("stopping_flag", "stopping_flag"), ]: frame[f"{prefix}{int_frame_name}"] = I3Int(fit_res[int_p]) postfit_res = fit_res.get("postfit", {}) for key, val in postfit_res.items(): if key == "envs": for i, env_ps in enumerate(zip(*val)): frame[f"{prefix}env_p{i}"] = to_i3_vec(env_ps, I3VectorDouble) else: frame[f"{prefix}{key}"] = to_i3_vec(val, I3VectorDouble) if store_i3_particles: trans = par_transforms["trans"] if par_transforms is not None else None best_fit_pars = transforms.apply_transform(trans, fit_res["x"], fixed_params) reco_pars = { name: val for name, val in zip(i3frame_dataloader.DEFAULT_LABELS, best_fit_pars) } reco_pars["success"] = fit_res["success"] for particle_type in ("neutrino", "cascade", "track"): frame[f"{prefix}{particle_type}"] = build_i3_particle( reco_pars, particle_type ) def store_dllh(frame, prefix, full_res, no_track_res, E_only_res): """store no-track delta LLH info in an i3frame""" from icecube.dataclasses import I3Double frame[f"{prefix}notrack_dllh"] = I3Double( float(no_track_res["fun"] - full_res["fun"]) ) frame[f"{prefix}notrack_E_only_dllh"] = I3Double( float(E_only_res["fun"] - full_res["fun"]) ) def to_i3_vec(array, i3_vec_type): """convert a list/array to an I3Vec""" i3_vec = i3_vec_type() i3_vec.extend(array) return i3_vec _energy_getters = dict( cascade=lambda pars: pars["cascade_energy"], track=lambda pars: pars["track_energy"], neutrino=lambda pars: pars["track_energy"] + pars["cascade_energy"], ) def build_i3_particle(reco_pars, particle_type): """build an I3Particle from reco parameters""" from icecube.dataclasses import I3Particle, I3Constants, I3Position, I3Direction from icecube.icetray import I3Units shape_map = dict( cascade=I3Particle.ParticleShape.Cascade, track=I3Particle.ParticleShape.ContainedTrack, neutrino=I3Particle.ParticleShape.Primary, ) particle = I3Particle() if reco_pars["success"]: particle.fit_status = I3Particle.FitStatus.OK else: particle.fit_status = I3Particle.GeneralFailure particle.dir = I3Direction(reco_pars["zenith"], reco_pars["azimuth"]) particle.energy = _energy_getters[particle_type](reco_pars) * I3Units.GeV particle.pdg_encoding = I3Particle.ParticleType.unknown particle.pos = I3Position(*(reco_pars[d] * I3Units.m for d in ("x", "y", "z"))) particle.shape = shape_map[particle_type] particle.time = reco_pars["time"] * I3Units.ns particle.speed = I3Constants.c if particle_type == "track": particle.length = particle.energy * TRACK_M_PER_GEV * I3Units.m else: particle.length = np.nan return particle
1.9375
2
tools/launch_tensorboard.py
isn-dev/imagenet18
716
12783081
<filename>tools/launch_tensorboard.py #!/usr/bin/env python # Usage: # ./launch_tensorboard.py # # This will launch r5.large machine on AWS with tensoboard, and print URL # in the console import ncluster ncluster.use_aws() task = ncluster.make_task('tensorboard', instance_type='r5.large', image_name='Deep Learning AMI (Ubuntu) Version 13.0') task.run('source activate tensorflow_p36') task.run(f'tensorboard --logdir={task.logdir}/..', non_blocking=True) print(f"Tensorboard at http://{task.public_ip}:6006")
2.21875
2
labs/mapit.py
chris-skud/madison-transit-api
0
12783082
<reponame>chris-skud/madison-transit-api<filename>labs/mapit.py import os import wsgiref.handlers import logging from operator import itemgetter from google.appengine.api import memcache from google.appengine.ext import webapp from google.appengine.ext import db from google.appengine.ext.db import GeoPt from google.appengine.ext.webapp import template from google.appengine.api.labs.taskqueue import Task from google.appengine.runtime import apiproxy_errors from data_model import PhoneLog from data_model import StopLocation from data_model import RouteListing class MapHandler(webapp.RequestHandler): def get(self): # review the results for popular stops reqs = getRequestedStops(); stops_stats = [] keyLookup = [] totalReqs = 0 for key,value in reqs.items(): stops_stats.append({'stopID':key, 'count':value, }) totalReqs += value keyLookup.append(key+':loc') # do we have the stop locations? stopLocations = memcache.get_multi(keyLookup) #reqs.keys()) if stopLocations is None or len(stopLocations) == 0: logging.error("unable to find stop locations!?") # create an event to go get this data task = Task(url='/labs/maptask', params={'clean':'1',}) task.add('crawler') msg = "no data" else: logging.debug('yes... found cached copies of the stop locations!') msg = "your data" locations = [] median = 2.5 logging.debug('found a total of %s requests with a median %s' % (str(totalReqs),str(median))) for key,value in stopLocations.items(): if value is None: continue; stopID = key.split(':')[0] # normalized value = count/median * %Total + (count-median)+ base weight = (float(reqs[stopID]) / median) + float(reqs[stopID]) - median + 75.0 logging.debug('%s / %s weight is %s' % (stopID,reqs[stopID],str(weight))) locations.append({'stopID':stopID, 'location':value, 'count':reqs[stopID], 'weight':weight, }) template_values = {'stops':stops_stats, 'locations':locations, 'message':msg, } # create a page that provides a form for sending an SMS message path = os.path.join(os.path.dirname(__file__), 'mapit.html') self.response.out.write(template.render(path,template_values)) ## end MapHandler() class DisplayStops(webapp.RequestHandler): def get(self): reqs = getRequestedStops(); stops_stats = [] for key,value in reqs.items(): # try to figure out if we have a stoplocation for each id stop = db.GqlQuery("SELECT * FROM StopLocation where stopID = :1", key).get() if stop is None: stops_stats.append({'stopID':key, 'count':value, }) template_values = {'stops':stops_stats, } # create a page that provides a form for sending an SMS message path = os.path.join(os.path.dirname(__file__), 'stops.html') self.response.out.write(template.render(path,template_values)) ## end DisplayStops class FixStopForm(webapp.RequestHandler): def get(self): template_values = {'stopID':self.request.get('stopID')} # create a page that provides a form for sending an SMS message path = os.path.join(os.path.dirname(__file__), 'fixstop.html') self.response.out.write(template.render(path,template_values)) ## end FixStop class FixStop(webapp.RequestHandler): def post(self): stopID = self.request.get('stopID') lat = self.request.get('lat') lon = self.request.get('lon') stop = StopLocation() stop.stopID = stopID stop.routeID = '00' stop.intersection = self.request.get('intersection').upper() stop.location = GeoPt(lat,lon) stop.update_location() stop.direction = '00' logging.debug('created new stoplocation for %s' % stopID) stop.put() routeQ = db.GqlQuery("SELECT * FROM RouteListing WHERE stopID = :1", stopID) routes = routeQ.fetch(100) if len(routes) > 0: for r in routes: logging.debug('updating route %s with new location' % r.route) r.stopLocation = stop r.put() self.redirect('http://smsmybus.com/labs/displaystops') ## end FixStop class CollectorHandler(webapp.RequestHandler): def post(self): self.get() def get(self): # do some analysis on the request history... reqs = getRequestedStops() # find that lat/longs for all the stops validStops = reqs.keys() stopLocs = memcache.get_multi(validStops) if self.request.get('clean') or stopLocs is None: memcache.delete_multi(validStops) logging.debug("logging stop locations!") locations = dict() cursor = None # Start a query for all stop locations q = StopLocation.all() while q is not None: # If the app stored a cursor during a previous request, use it. if cursor: q.with_cursor(cursor) # Perform the query to get results. locationQuery = q.fetch(1000) cursor = q.cursor() if len(locationQuery) > 0: logging.debug('just read in another chunk of stop locations...') for l in locationQuery: location = l.location stopKey = l.stopID + ':loc' if l.stopID in validStops and stopKey not in stopLocs: logging.debug('adding location %s for stopID %s' % (location,l.stopID)) stopLocs[stopKey] = location else: logging.debug('No more stop locations left in the query!') break memcache.set_multi(stopLocs) return ## end CollectorHandler # @todo memcache this list # @todo create a task that periodically refreshes this list def getRequestedStops(): # do some analysis on the request history... reqs = dict() cursor = None # Start a query for all Person entities. q = PhoneLog.all() while q is not None: # If the app stored a cursor during a previous request, use it. if cursor: q.with_cursor(cursor) logQuery = q.fetch(1000) cursor = q.cursor() if len(logQuery) > 0: # run through all of the results and add up the number of # requests for each stopID # for e in logQuery: # add up all of the unique stop IDs requestString = e.body.split() if len(requestString) >= 2: stopID = requestString[1] elif len(requestString) > 0: stopID = requestString[0] if len(requestString) > 0 and stopID.isdigit() and len(stopID) == 4: if stopID in reqs: reqs[stopID] += 1 else: #logging.debug('new stop found... %s' % stopID) reqs[stopID] = 1 else: logging.debug('nothing left!') break return reqs ## end class SpawnCollector(webapp.RequestHandler): def post(self): self.get() def get(self): # create an event to go get this data task = Task(url='/labs/maptask', params={'clean':'1',}) task.add('crawler') def main(): logging.getLogger().setLevel(logging.DEBUG) application = webapp.WSGIApplication([('/labs/map', MapHandler), ('/labs/maptask', CollectorHandler), ('/labs/spawncollector', SpawnCollector), ('/labs/displaystops', DisplayStops), ('/labs/fixstop', FixStop), ('/labs/fixstopform', FixStopForm), ], debug=True) wsgiref.handlers.CGIHandler().run(application) if __name__ == '__main__': main()
2.046875
2
spiel/footer.py
JoshKarpel/spiel
3
12783083
from dataclasses import dataclass from pendulum import now from rich.console import ConsoleRenderable from rich.style import Style from rich.table import Column, Table from rich.text import Text from spiel.modes import Mode from spiel.rps import RPSCounter from spiel.state import State from spiel.utils import drop_nones, filter_join @dataclass class Footer: state: State rps_counter: RPSCounter @property def longest_slide_number_length(self) -> int: num_slides = len(self.state.deck) return len(str(num_slides)) def __rich__(self) -> ConsoleRenderable: grid = Table.grid( *drop_nones( Column( style=Style(dim=True), justify="left", ), Column( style=Style(bold=True), justify="center", ), Column( style=Style(dim=True), justify="right", ) if self.state.options.profiling else None, Column( style=Style(dim=True), justify="right", ), Column( style=Style(dim=True), justify="right", ), ), expand=True, padding=1, ) grid.add_row( *drop_nones( Text( filter_join( " | ", [ self.state.deck.name, self.state.current_slide.title if self.state.mode is Mode.SLIDE else None, ], ) ), self.state.message, Text( f"Render Time: {self.rps_counter.last_elapsed_render_time() * 1e3:>3.3f} ms | {self.rps_counter.renders_per_second():.2f} RPS" ) if self.state.options.profiling else None, now().format(self.state.options.footer_time_format), Text( f"[{self.state.current_slide_idx + 1:>0{self.longest_slide_number_length}d} / {len(self.state.deck)}]" ) if self.state.mode is not Mode.HELP else Text(Mode.HELP.value, style=Style(italic=True)), ) ) return grid
2.265625
2
tests/MacPortsRequirementTest.py
yzgyyang/dependency_management
4
12783084
<filename>tests/MacPortsRequirementTest.py import unittest import unittest.mock import sarge from dependency_management.requirements.MacPortsRequirement import ( MacPortsRequirement) class MacPortsRequirementTestCase(unittest.TestCase): def test__str__(self): self.assertEqual(str(MacPortsRequirement('figlet')), 'figlet') def test_installed_requirement(self): with unittest.mock.patch('dependency_management.requirements.' + 'MacPortsRequirement.run') as mock: patched = unittest.mock.Mock(spec=sarge.Pipeline) patched.returncode = 0 mock.return_value = patched self.assertTrue(MacPortsRequirement( 'some_good_package').is_installed()) def test_not_installed_requirement(self): with unittest.mock.patch('dependency_management.requirements.' + 'MacPortsRequirement.run') as mock: patched = unittest.mock.Mock(spec=sarge.Pipeline) patched.returncode = 1 mock.return_value = patched self.assertFalse(MacPortsRequirement( 'some_bad_package').is_installed())
2.84375
3
setup.py
alliander-opensource/report_Tprognoses_quality
1
12783085
<reponame>alliander-opensource/report_Tprognoses_quality import setuptools import os from setuptools import setup pkg_dir = os.path.dirname(os.path.realpath(__file__)) # package description with open(os.path.join(pkg_dir, "README.md")) as f: long_description = f.read() with open(os.path.join(pkg_dir, "requirements.txt")) as f: required = f.read().splitlines() with open(os.path.join(pkg_dir, "PACKAGENAME")) as f: pkg_name = f.read().strip().strip("\n") with open(os.path.join(pkg_dir, "VERSION")) as f: version = f.read().strip().strip("\n") if "BETA" in os.environ: version += f"b-{version}" print(f"Make beta version number: {version}") setup( name=pkg_name, version=version, author="<NAME>", author_email="<EMAIL>", description="prognoses monitoring package", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/bramtennet/prognoses_monitoring_reports_code", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "Operating System :: OS Independent", ], )
1.8125
2
alembic/versions/3e59d406d707_update_waze_api_fields.py
shaysw/anyway
69
12783086
<reponame>shaysw/anyway """update waze api fields Revision ID: 3e59d406d707 Revises: <PASSWORD> Create Date: 2020-10-19 16:28:02.553501 """ # revision identifiers, used by Alembic. revision = '3e59d406d707' down_revision = '<PASSWORD>' branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql import geoalchemy2 def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('waze_traffic_jams', sa.Column('id', sa.BigInteger(), nullable=False), sa.Column('level', sa.Integer(), nullable=True), sa.Column('line', sa.Text(), nullable=True), sa.Column('speed_kmh', sa.Integer(), nullable=True), sa.Column('turn_type', sa.Integer(), nullable=True), sa.Column('length', sa.Float(), nullable=True), sa.Column('type', sa.Text(), nullable=True), sa.Column('uuid', sa.Text(), nullable=True), sa.Column('speed', sa.Integer(), nullable=True), sa.Column('segments', sa.Text(), nullable=True), sa.Column('road_type', sa.Integer(), nullable=True), sa.Column('delay', sa.Integer(), nullable=True), sa.Column('street', sa.Text(), nullable=True), sa.Column('city', sa.Text(), nullable=True), sa.Column('end_node', sa.Text(), nullable=True), sa.Column('blocking_alert_uuid', sa.Text(), nullable=True), sa.Column('start_node', sa.Text(), nullable=True), sa.Column('created_at', sa.DateTime(), nullable=True), sa.Column('geom', geoalchemy2.types.Geometry(geometry_type='LINESTRING', from_text='ST_GeomFromEWKT', name='geometry'), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_waze_traffic_jams_created_at'), 'waze_traffic_jams', ['created_at'], unique=False) op.create_index(op.f('ix_waze_traffic_jams_uuid'), 'waze_traffic_jams', ['uuid'], unique=True) # drop old table op.drop_index('idx_waze_trafic_jams_geom', table_name='waze_trafic_jams') op.drop_index('ix_waze_trafic_jams_created_at', table_name='waze_trafic_jams') op.drop_index('ix_waze_trafic_jams_uuid', table_name='waze_trafic_jams') op.drop_table('waze_trafic_jams') op.add_column('waze_alerts', sa.Column('jam_uuid', sa.Text(), nullable=True)) op.add_column('waze_alerts', sa.Column('longitude', sa.Float(), nullable=True)) op.add_column('waze_alerts', sa.Column('report_by_municipality_user', sa.Boolean(), nullable=True)) op.add_column('waze_alerts', sa.Column('report_description', sa.Text(), nullable=True)) op.drop_column('waze_alerts', 'lontitude') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('waze_alerts', sa.Column('lontitude', postgresql.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=True)) op.drop_column('waze_alerts', 'report_description') op.drop_column('waze_alerts', 'report_by_municipality_user') op.drop_column('waze_alerts', 'longitude') op.drop_column('waze_alerts', 'jam_uuid') op.create_table('waze_trafic_jams', sa.Column('id', sa.BIGINT(), autoincrement=True, nullable=False), sa.Column('level', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('line', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('speed_kmh', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('turn_type', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('length', postgresql.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=True), sa.Column('type', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('uuid', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('speed', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('segments', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('road_type', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('delay', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('street', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('city', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('end_node', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('blocking_alert_uuid', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('start_node', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('created_at', postgresql.TIMESTAMP(), autoincrement=False, nullable=True), sa.Column('geom', geoalchemy2.types.Geometry(geometry_type='LINESTRING', from_text='ST_GeomFromEWKT', name='geometry'), autoincrement=False, nullable=True), sa.PrimaryKeyConstraint('id', name='waze_trafic_jams_pkey') ) op.create_index('ix_waze_trafic_jams_uuid', 'waze_trafic_jams', ['uuid'], unique=True) op.create_index('ix_waze_trafic_jams_created_at', 'waze_trafic_jams', ['created_at'], unique=False) op.create_index('idx_waze_trafic_jams_geom', 'waze_trafic_jams', ['geom'], unique=False) op.drop_index(op.f('ix_waze_traffic_jams_uuid'), table_name='waze_traffic_jams') op.drop_index(op.f('ix_waze_traffic_jams_created_at'), table_name='waze_traffic_jams') op.drop_table('waze_traffic_jams') # ### end Alembic commands ###
1.578125
2
core-python/Core_Python/multithreading/RLockDemo.py
theumang100/tutorials-1
9
12783087
<gh_stars>1-10 import threading ''' This program can't give an output because by using lock we can acquire lock then we have to release lock otherwise no other thread can able to acquire lock''' '''lock = threading.Lock() i = 0 lock.acquire() i += 1 lock.acquire() i +=2 lock.release() print(i)''' ''' We can solve this issue by using RLock''' lock = threading.RLock() i = 0 lock.acquire() i += 1 lock.acquire() i +=2 lock.release() print(i) ''' For theoretical reference (RLock vs. Lock) : https://www.geeksforgeeks.org/python-difference-between-lock-and-rlock-objects/ '''
3.671875
4
smartystreets_python_sdk/response.py
jasonrfarkas/smartystreets-python-sdk
19
12783088
class Response: def __init__(self, payload, status_code, error=None): self.payload = payload self.status_code = status_code self.error = error
2.359375
2
xastropy/spec/continuum.py
nhmc/xastropy
0
12783089
<reponame>nhmc/xastropy<gh_stars>0 """ #;+ #; NAME: #; continuum #; Version 1.0 #; #; PURPOSE: #; Module for continuum code #; 20-Aug-2015 by JXP #;- #;------------------------------------------------------------------------------ """ from __future__ import print_function, absolute_import, division, unicode_literals import numpy as np import os, imp import astropy as apy from astropy import units as u from astropy import constants as const from astropy.io import fits, ascii from linetools.spectra.xspectrum1d import XSpectrum1D from xastropy.xutils import xdebug as xdb xa_path = imp.find_module('xastropy')[1] def init_conti_dict(Norm=0., tilt=0., piv_wv=0., igm='None'): '''Initialize a continuum conti_dict Parameters: ---------- Norm: float, optional Normaliztion tilt: float, optional Power-law tilt to continuum piv_wv: float, optional Pivot wave for tilt. Best kept *without* units igm: str, optional Adopt average IGM model? ['None'] Returns: --------- conti_dict: dict Useful for simple modeling. Keep as a dict for JSON writing ''' conti_dict = dict(Norm=Norm, tilt=tilt, piv_wv=piv_wv, igm=igm) # return conti_dict def get_telfer_spec(zqso=0., igm=False): '''Generate a Telfer QSO composite spectrum Paraemters: ---------- zqso: float, optional Redshift of the QSO igm: bool, optional Include IGM opacity? [False] Returns: -------- telfer_spec: XSpectrum1D Spectrum ''' # Read telfer = ascii.read( xa_path+'/data/quasar/telfer_hst_comp01_rq.ascii', comment='#') scale = telfer['flux'][(telfer['wrest'] == 1450.)] telfer_spec = XSpectrum1D.from_tuple((telfer['wrest']*(1+zqso), telfer['flux']/scale[0])) # Observer frame # IGM? if igm is True: '''The following is quite experimental. Use at your own risk. ''' import multiprocessing from xastropy.igm.fN import model as xifm from xastropy.igm import tau_eff as xit fN_model = xifm.default_model() # Expanding range of zmnx (risky) fN_model.zmnx = (0.,5.) # Parallel igm_wv = np.where(telfer['wrest']<1220.)[0] adict = [] for wrest in telfer_spec.dispersion[igm_wv].value: tdict = dict(ilambda=wrest, zem=zqso, fN_model=fN_model) adict.append(tdict) # Run #xdb.set_trace() pool = multiprocessing.Pool(4) # initialize thread pool N threads ateff = pool.map(xit.map_etl, adict) # Apply telfer_spec.flux[igm_wv] *= np.exp(-1.*np.array(ateff)) # Return return telfer_spec ## ################################# ## ################################# ## TESTING ## ################################# if __name__ == '__main__': flg_tst = 0 flg_tst += 2**0 # Simple Telfer #if (flg_fig % 2**4) >= 2**3:
1.960938
2
0x04-python-more_data_structures/6-print_sorted_dictionary.py
malu17/alx-higher_level_programming
0
12783090
#!/usr/bin/python3 def print_sorted_dictionary(a_dictionary): for i, j in sorted(a_dictionary.items()): print("{}: {}".format(i, j))
4.0625
4
crawlerflow/contrib/extensions/timeseries.py
EXTREMOPHILARUM/crawlerflow
15
12783091
<filename>crawlerflow/contrib/extensions/timeseries.py from scrapy.extensions.logstats import LogStats from datetime import datetime import os import yaml class CrawlerFlowTimeSeriesStats(LogStats): def log(self, spider): item_scraped_count = self.stats.get_value('item_scraped_count', 0) requests_count = self.stats.get_value('downloader/request_count', 0) response_received_count = self.stats.get_value('response_received_count', 0) datum = { "item_scraped_count": item_scraped_count, "response_received_count": response_received_count, "requests_count": requests_count, "time": str(datetime.now()) } path = os.getcwd() log_director = '{}/.logs'.format(path) if not os.path.exists(log_director): os.makedirs(log_director) timeseries_log_file = '{}/timeseries-log.txt'.format(log_director) with open(timeseries_log_file, 'a') as fh: line = ",".join([str(v) for k, v in datum.items()]) fh.write("{}\n".format(line))
2.859375
3
mathematics/probability/bday-gift.py
PingHuskar/hackerrank
41
12783092
# Mathematics > Probability > B'day Gift # Whats the price Isaac has to pay for HackerPhone # # https://www.hackerrank.com/challenges/bday-gift/problem # https://www.hackerrank.com/contests/nov13/challenges/bday-gift # # chaque boule a une probabilité 0.5 d'être ramassée n = int(input()) e = sum(int(input()) for _ in range(n)) print(e / 2)
3.25
3
projects/mmdet3d_plugin/models/utils/dgcnn_attn.py
XiangTodayEatsWhat/detr3d
237
12783093
<reponame>XiangTodayEatsWhat/detr3d<filename>projects/mmdet3d_plugin/models/utils/dgcnn_attn.py import math import torch import torch.nn as nn from mmcv.cnn.bricks.registry import ATTENTION from mmcv.runner.base_module import BaseModule @ATTENTION.register_module() class DGCNNAttn(BaseModule): """A warpper for DGCNN-type self-attention. Args: embed_dims (int): The embedding dimension. num_heads (int): Parallel attention heads. Same as `nn.MultiheadAttention`. dropout (float):w A Dropout layer on attn_output_weights. Default: 0.. init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. Default: None. """ def __init__(self, embed_dims, num_heads, dropout=0., init_cfg=None, **kwargs): super(DGCNNAttn, self).__init__(init_cfg) self.embed_dims = embed_dims self.num_heads = num_heads self.dropout = dropout self.conv1 = nn.Sequential(nn.Conv2d(self.embed_dims*2, self.embed_dims, kernel_size=1, bias=False), nn.BatchNorm2d(self.embed_dims), nn.ReLU(inplace=True)) self.conv2 = nn.Sequential(nn.Conv2d(self.embed_dims*2, self.embed_dims, kernel_size=1, bias=False), nn.BatchNorm2d(self.embed_dims), nn.ReLU(inplace=True)) self.K = kwargs['K'] self.dropout = nn.Dropout(dropout) def forward(self, query, key=None, value=None, residual=None, query_pos=None, key_pos=None, attn_mask=None, key_padding_mask=None, **kwargs): """Forward function for `DGCNN`. **kwargs allow passing a more general data flow when combining with other operations in `DGCNN`. Args: query (Tensor): The input query with shape [num_queries, bs, embed_dims]. Same in `nn.MultiheadAttention.forward`. residual (Tensor): This tensor, with the same shape as x, will be used for the residual link. If None, `x` will be used. Defaults to None. query_pos (Tensor): The positional encoding for query, with the same shape as `x`. If not None, it will be added to `x` before forward function. Defaults to None. Returns: Tensor: forwarded results with shape [num_queries, bs, embed_dims]. """ if residual is None: residual = query if query_pos is not None: query = query + query_pos query = query.permute(1, 0, 2) # [bs, num_queries, embed_dims] edge_feats = self.edge_feats(query, K=self.K) edge_feats1 = self.conv1(edge_feats) edge_feats1 = edge_feats1.max(dim=-1)[0] out = edge_feats1 edge_feats1 = self.edge_feats(edge_feats1.permute(0, 2, 1)) edge_feats2 = self.conv2(edge_feats1) edge_feats2 = edge_feats2.max(dim=-1)[0] out = out + edge_feats2 out = out.permute(2, 0, 1) return residual + self.dropout(out) def edge_feats(self, query, K=16): # (B, N, N) affinity = torch.cdist(query, query) # (B, N, K) _, topk = torch.topk(affinity, k=K, dim=2) B, N, C = query.size() idx_base = torch.arange(0, B, device=query.device).view(-1, 1, 1) * N idx = topk + idx_base idx = idx.view(-1) query = query.reshape(B*N, C) query_neighbor = query[idx, :].view(B, N, K, C) query = query.reshape(B, N, 1, C).repeat(1, 1, K, 1) out = torch.cat((query_neighbor, query), dim=-1).permute(0, 3, 1, 2).contiguous() return out
2.21875
2
main.py
INTJT/conway
0
12783094
if __name__ == "__main__": from core.editor import Editor from widgets.editor_window import EditorWindow from PyQt5 import QtWidgets editor = Editor() application = QtWidgets.QApplication([]) window = EditorWindow() window.show() application.exec()
1.929688
2
load/benchmark_database.py
cirrostratus1/benchmark-database
0
12783095
<reponame>cirrostratus1/benchmark-database<gh_stars>0 # Copyright (c) 2019 fortiss GmbH # # This software is released under the MIT License. # https://opensource.org/licenses/MIT import os import pandas as pd import logging import shutil logging.getLogger().setLevel(logging.INFO) import pickle import zipfile from modules.runtime.scenario.scenario_generation.scenario_generation import ScenarioGeneration from modules.runtime.commons.parameters import ParameterServer from serialization.scenario_set_serializer import ScenarioSetSerializer FILE_EXTENSION_SCENARIO_SET = "bark_scenarios" # The DatabaseSerializer recursively serializes all scenario param files sets # within a folder and releases the whole database as zip file to github class BenchmarkDatabase: def __init__(self, database_root=None, dataframe=None): if database_root and not isinstance(dataframe, pd.DataFrame): self._init_from_database_root(database_root) elif isinstance(dataframe, pd.DataFrame) and database_root: self._init_from_dataframe(dataframe, database_root) else: raise ValueError("Invalid argument combination \ for initialization of database") def _init_from_database_root(self, database_root): self.database_root = database_root if not os.path.exists(database_root): logging.error("Given database root does not exist") return if database_root.endswith("zip"): logging.info("extracting zipped-database {} to temporary directory /tmp/database".format(database_root)) shutil.rmtree("/tmp/database") os.makedirs("/tmp/database") with zipfile.ZipFile(database_root, 'r') as zip_obj: zip_obj.extractall('/tmp/database') self.database_root = '/tmp/database' # parse recursively all info dictionaries in database into pandas table self.dataframe = pd.DataFrame() for root, dirs, files in os.walk(self.database_root): for file in files: if ScenarioSetSerializer.scenario_set_info_fileprefix() in file: logging.info("Found info dict {}".format(file)) with open(os.path.join(root,file), "rb") as f: info_dict = pickle.load(f) self.dataframe = self.dataframe.append(info_dict, ignore_index=True) logging.info("The following scenario sets are available") logging.info("\n"+self.dataframe.to_string()) def _init_from_dataframe(self, dataframe, database_root): self.database_root = database_root self.dataframe = dataframe def get_num_scenario_sets(self): return len(self.dataframe.index) def get_scenario_generator(self, scenario_set_id): serialized_file_name = self.dataframe.iloc[scenario_set_id]["Serialized"] if os.path.exists(serialized_file_name): serialized_file_path = serialized_file_name else: serialized_file_path = os.path.join(self.database_root, serialized_file_name) if os.path.exists(self.database_root): # move into database root that map files can be found os.chdir(self.database_root) param_file_name = self.dataframe.iloc[scenario_set_id]["Params"] if not param_file_name: logging.warning("No param file found for scenario set {}. Using defaults...".format( self.dataframe.iloc[scenario_set_id]["SetName"])) params = ParameterServer() else: params=ParameterServer(filename=param_file_name) scenario_generation = ScenarioGeneration(params=params) scenario_generation.load_scenario_list(filename=serialized_file_name) scenario_set_name = self.dataframe.iloc[scenario_set_id]["SetName"] return scenario_generation, scenario_set_name def __iter__(self): self.current_iter_idx=0 # An iterator interface to loop over all contained scenario sets return self def __next__(self): if self.current_iter_idx < self.get_num_scenario_sets(): scenario_generator = self.get_scenario_generator(self.current_iter_idx) self.current_iter_idx += 1 return scenario_generator else: raise StopIteration def apply_filter(self, pattern, **kwargs): dataframe = self.dataframe[self.dataframe['SetName'].str.contains(pat=pattern, **kwargs)] return BenchmarkDatabase(database_root=self.database_root, dataframe=dataframe)
2
2
meiduo_mell/meiduo_mell/apps/oauth/models.py
fader-zm/kong
0
12783096
from django.db import models from meiduo_mell.utils.models import BaseModel from users.models import User # Create your models here. class OauthQQUser(BaseModel): """ QQ登录用户数据 """ # ForeignKey: 设置外键 # on_delete: 指明主表删除数据时,对于外键引用表数据如何处理 # CASCADE 级联,删除主表数据时连通一起删除外键表中数据 user = models.ForeignKey(User, on_delete=models.CASCADE, verbose_name='用户') # db_index: 若值为True, 则在表中会为此字段创建索引,默认值是False # 对于频繁查询的字段, 创建索引能够提升查询效率 openid = models.CharField(max_length=64, verbose_name='openid', db_index=True) class Meta: db_table = 'tb_oauth_qq' # 指明数据库表名 verbose_name = '用户登录数据' # 显示admin站点中的名称 verbose_name_plural = verbose_name # 显示的复数名称
2.359375
2
0015 Painting Houses.py
ansabgillani/binarysearchcomproblems
1
12783097
<gh_stars>1-10 class Solution: def solve(self, matrix): if not matrix or not matrix[0]: return 0 min1,min2 = 0,0 min_i = -1 for row in matrix: new_min1,new_min2 = inf,inf new_min_i = -1 for i,cost in enumerate(row): new_cost = cost + (min2 if i == min_i else min1) if new_cost < new_min1: new_min2 = new_min1 new_min1 = new_cost new_min_i = i elif new_cost < new_min2: new_min2 = new_cost min1,min2,min_i = new_min1,new_min2,new_min_i return min1
3.03125
3
icv/data/labelme.py
dmxj/icv
5
12783098
# -*- coding: UTF-8 -*- from .dataset import IcvDataSet from ..utils import is_seq, is_dir from ..image import imwrite from ..data.core.bbox import BBox from ..data.core.polys import Polygon from ..data.core.sample import Sample, Anno from ..data.core.meta import AnnoMeta,SampleMeta from ..vis.color import VIS_COLOR import random import os import json import shutil from tqdm import tqdm class LabelMe(IcvDataSet): def __init__(self, image_anno_path_list, split="trainval", keep_no_anno_image=True, categories=None, one_index=False): assert is_seq(image_anno_path_list) image_anno_path_list = list(image_anno_path_list) image_path_list, anno_path_list = list(zip(*image_anno_path_list)) self.split = split self.keep_no_anno_image = keep_no_anno_image self.one_index = one_index self.ids = [os.path.basename(_).rsplit(".", 1)[0] for _ in image_path_list] self.id2imgpath = {id: image_path_list[ix] for ix, id in enumerate(self.ids)} self.id2annopath = {id: anno_path_list[ix] for ix, id in enumerate(self.ids)} self.sample_db = {} self.color_map = {} self.get_samples() self.categories = categories if categories is not None else self.parse_categories() super(LabelMe, self).__init__(self.ids, self.categories, self.keep_no_anno_image, one_index) print("there have %d samples in LabelMe dataset" % len(self.ids)) print("there have %d categories in LabelMe dataset" % len(self.categories)) def save(self, output_dir, reset_dir=False, split=None): anno_path, image_path = LabelMe.reset_dir(output_dir, reset=reset_dir) for id in self.ids: self._write(self.get_sample(id), anno_path, image_path) @staticmethod def reset_dir(dist_dir, reset=False): if not reset: assert is_dir(dist_dir) if reset and os.path.exists(dist_dir): shutil.rmtree(dist_dir) anno_path = os.path.join(dist_dir, "annotations") image_path = os.path.join(dist_dir, "images") for _path in [anno_path, image_path]: if reset or not is_dir(_path): os.makedirs(_path) return anno_path, image_path def _get_bbox_from_points(self, points): """ 根据polygon顶点获取bbox :param points: :return: """ x_list = [p[0] for p in points] y_list = [p[1] for p in points] xmin = min(x_list) ymin = min(y_list) xmax = max(x_list) ymax = max(y_list) return xmin, ymin, xmax, ymax def get_sample(self, id): """ get sample :param id: image name :return: """ if id in self.sample_db: return self.sample_db[id] anno_file = self.id2annopath[id] anno_data = json.load(open(anno_file, "r")) img_file = self.id2imgpath[id] annos = [] if "shapes" in anno_data: shapes = anno_data["shapes"] for shape in shapes: if "shape_type" not in shape or "points" not in shape or "label" not in shape: continue points = shape["points"] xmin, ymin, xmax, ymax = self._get_bbox_from_points(points) label = shape["label"] if label not in self.color_map: self.color_map[label] = random.choice(VIS_COLOR) anno = Anno( bbox=BBox(xmin=xmin, ymin=ymin, xmax=xmax, ymax=ymax, label=label), label=label, color=self.color_map[label], polys=Polygon.init_from(points, label=label) if shape["shape_type"] == "polygon" else None, meta=AnnoMeta() ) annos.append(anno) sample = Sample( name=id, image=img_file, annos=annos, meta=SampleMeta() ) self.sample_db[id] = sample return sample def _write(self, anno_sample, anno_path, img_path): assert isinstance(anno_sample, Sample) if is_dir(anno_path): anno_path = os.path.join(anno_path, "%s.json" % anno_sample.name) if is_dir(img_path): img_path = os.path.join(img_path, "%s.jpg" % anno_sample.name) imwrite(anno_sample.image, img_path) anno_json = { "shapes": [], "imagePath": img_path, "imageHeight": anno_sample.height, "imageWidth": anno_sample.width } for anno in anno_sample.annos: shape = { "label": anno.label, "shape_type": "polygon" if anno.seg_mode else "rectangle" } if anno.seg_mode_polys: shape["points"] = anno.polys.exterior.tolist() elif anno.seg_mode_mask: shape["points"] = anno.mask.to_ploygons().exterior.tolist() else: shape["points"] = [[anno.bbox.xmin, anno.bbox.ymin], [anno.bbox.xmax, anno.bbox.ymax]] anno_json["shapes"].append(shape) json.dump(anno_json, open(anno_path, "w")) def vis(self, id=None, with_bbox=True, with_seg=True, is_show=False, save_dir=None, reset_dir=False): if save_dir is not None: if not os.path.exists(save_dir): os.makedirs(save_dir) elif reset_dir: shutil.rmtree(save_dir) os.makedirs(save_dir) if id is not None: sample = self.get_sample(id) save_path = None if save_dir is None else os.path.join(save_dir, "%s.jpg" % sample.name) return sample.vis(with_bbox=with_bbox, with_seg=with_seg, is_show=is_show, save_path=save_path) image_vis = [] for id in tqdm(self.ids): sample = self.get_sample(id) save_path = None if save_dir is None else os.path.join(save_dir, "%s.jpg" % sample.name) image = sample.vis(with_bbox=with_bbox, with_seg=with_seg, is_show=False, save_path=save_path) image_vis.append(image) return image_vis
2.140625
2
debug/plot_learning_curves.py
DavidSabbagh/meeg_power_regression
1
12783099
import os.path as op import numpy as np import matplotlib.pyplot as plt import seaborn as sns import config as cfg sns.set_style('darkgrid') sns.set_context('notebook') sns.despine(trim=True) plt.close('all') fig, ax = plt.subplots(1, 1, figsize=(8, 6)) scores = np.load(op.join(cfg.path_outputs, 'all_scores_learning_curves.npy')).item() train_sizes = scores['train_sizes'] train_scores = scores['train_scores'] test_scores = scores['test_scores'] train_mean = - np.mean(train_scores, axis=1) train_std = - np.std(train_scores, axis=1) test_mean = - np.mean(test_scores, axis=1) test_std = - np.std(test_scores, axis=1) ax.plot(train_sizes, train_mean, 'b--', lw=2, label="Training score") ax.fill_between(train_sizes, train_mean - train_std, train_mean + train_std, alpha=0.1) ax.plot(train_sizes, test_mean, 'b-', label="CV score") ax.fill_between(train_sizes, test_mean - test_std, test_mean + test_std, alpha=0.1, color="b") # ax.set_xticks(train_sizes) ax.set_xlabel("Number of training examples") ax.set_ylabel("MAE", rotation=0) # ax.set_title('Learning Curve (SpatialFilter + Riemann)') ax.legend() plt.tight_layout() plt.savefig(op.join(cfg.path_outputs, 'plot_MAE_learning_curves.png'), dpi=300)
2.234375
2
bottleneck_transformer_pytorch/mish_activ.py
mydre/MultiLayerGRU
0
12783100
import pdb import torch from torch import nn import torch.nn.functional as F class Mish(nn.Module): def __init__(self): super().__init__() print('Mish activation loaded....') def forward(self, x): x = x * (torch.tanh(F.softplus(x))) return x
2.734375
3
api/api.py
deborae/faq-chatbot
0
12783101
<gh_stars>0 from flask import Flask from atlassian import Confluence import os CONFLUENCE_URL = os.getenv('CONFLUENCE_URL') USER_EMAIL = os.getenv('USER_EMAIL') USER_TOKEN = os.getenv('USER_TOKEN') import re import random import string import json import nltk from langdetect import detect from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity import numpy as np import warnings warnings.filterwarnings('ignore') noSimilarityResponse = 'I apologize, I did not understand :( Please try to rephrase your message.' #Download the punkt package nltk.download('punkt', quiet=True) nltk.download('stopwords', quiet=True) # Confluence connection try: confluenceUrl = CONFLUENCE_URL email = USER_EMAIL apiToken = USER_TOKEN confluence = Confluence( url=confluenceUrl, username=email, password=<PASSWORD>, cloud=True) except Exception as e: print (e) #Clean up user input def tokenize_user_message(user_input): words_list = user_input.lower().split() # remove non alphabetic values words_list = [word for word in words_list if word.isalpha()] if(len(words_list)): if detect(user_input) is 'de': stop_words = set(nltk.corpus.stopwords.words('german')) else: stop_words = set(nltk.corpus.stopwords.words('english')) words_list = [w for w in words_list if not w in stop_words] words = ' '.join(words_list) return words #Get the intents with open("intents.json") as file: data = json.load(file) #A function to return a random greeting response to a users greeting def greeting_response(user_input): text_list = user_input.lower().split() #Bots greeting response bot_greetings = ['howdy', 'hi', 'hey', 'hello', 'ola'] #Users greeting user_greetings = ['mekie', 'hey', 'hello', 'hi', 'greetings'] for word in text_list: if word in user_greetings: return random.choice(bot_greetings) # query confluence def query_confluence(user_input): try: cql= 'text ~ "' + user_input + '" and type = page' # html removal regex = re.compile('<.*?>') articles_list = [] response = confluence.cql(cql, start=0, limit=None, expand=None, include_archived_spaces=None, excerpt=None) for result in response["results"]: pageUrl = confluenceUrl + 'wiki' + result["url"] pageId = result['content']['id'] page = confluence.get_page_by_id(pageId, expand="body.storage", status=None, version=None) pageContent = page['body']['storage']['value'] cleanPageContent = re.sub(regex, '', pageContent) articles_list.append(cleanPageContent) return articles_list except Exception as e: print (e) #Sorts the indexes to go from highest to lowest similarity score def index_sort(list_var): length = len(list_var) list_index = list(range(0, length)) x = list_var for i in range(length): for j in range(length): if x[list_index[i]] > x[list_index[j]]: #Swap temp_var = list_index[i] list_index[i] = list_index[j] list_index[i] = temp_var return list_index #Query the bot def ask_the_bot(user_input): confluenceResponse = query_confluence(user_input) confluenceResponse.append(user_input) bot_response = '' countMatrix = CountVectorizer().fit_transform(confluenceResponse) similarity_scores = cosine_similarity(countMatrix[-1], countMatrix) similarity_scores_list = similarity_scores.flatten() index = index_sort(similarity_scores_list) index= index[1:] response_flag = 0 j = 0 for i in range(len(index)): if similarity_scores_list[index[i]] > 0.0: bot_response = bot_response+''+confluenceResponse[index[i]] response_flag = 1 j = j+1 if j > 2: break if response_flag == 0: bot_response = bot_response+' '+ noSimilarityResponse return bot_response # API app = Flask(__name__) @app.route('/send-message/<userMessage>', methods = ['POST']) def chat(userMessage): robot_greeting = greeting_response(userMessage) if robot_greeting: response = robot_greeting else: tokenized_user_message = tokenize_user_message(userMessage) if tokenized_user_message: response = ask_the_bot(tokenized_user_message) else: response = noSimilarityResponse return { "messages": [response] }
3.078125
3
models/backbones.py
smallflyingpig/seeking-the-shape-of-sound
12
12783102
<reponame>smallflyingpig/seeking-the-shape-of-sound import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import os.path as osp from models.base_model import BaseModel from models.nn.ir_se_model import IR_50 from models.nn.res_se_34l_model import ResNetSE34 from models.nn.module import NormalizeConv, MultiLayerPerceptron, Conv1dModule, LinearModule class SEResNet50IR(BaseModel): def __init__(self, args): super(SEResNet50IR, self).__init__(args) output_channel = self.args.output_channel self.model = IR_50([112, 112], pretrained='pretrained_models/backbone_ir50_ms1m_epoch120.pth') self.fc = nn.Sequential( nn.BatchNorm1d(512), nn.ReLU(inplace=True), nn.Linear(512, output_channel, bias=False), nn.Dropout(0.5) ) self.cls = Classifier(output_channel, self.args.num_classes, self.args.vote) def forward(self, x, y=None): x = self.model(x) x = self.fc(x) return x class ThinResNet34(BaseModel): def __init__(self, args): super(ThinResNet34, self).__init__(args) output_channel = self.args.output_channel self.model = ResNetSE34(pretrained='pretrained_models/baseline_lite_ap.model') self.fc = nn.Sequential( nn.BatchNorm1d(512), nn.ReLU(inplace=True), nn.Linear(512, output_channel, bias=False), nn.Dropout(0.5) ) def forward(self, x): x = self.model(x) x = self.fc(x) return x class Classifier(nn.Module): def __init__(self, nin, nout, vote=False): super(Classifier, self).__init__() self.weight = nn.Parameter(torch.FloatTensor(nout, nin)) nn.init.xavier_uniform_(self.weight) def dist(self, a, b): dist = (a * b).sum(-1) return dist def arc_margin(self, x, y, margin): dist = self.dist(self.weight.unsqueeze(0), x.unsqueeze(1)) # N x M one_hot = torch.zeros(dist.size()).to(x.device) one_hot.scatter_(1, y.view(-1, 1).long(), 1) if margin is None: logit = (one_hot * (dist)) + ((1.0 - one_hot) * dist) else: logit = (one_hot * (dist - margin.unsqueeze(1))) + ((1.0 - one_hot) * dist) return logit def cross_logit(self, x, v): dist = self.dist(F.normalize(x).unsqueeze(0), v.unsqueeze(1)) one_hot = torch.zeros(dist.size()).to(x.device) one_hot.scatter_(1, torch.arange(len(x)).view(-1, 1).long().to(x.device), 1) pos = (one_hot * dist).sum(-1, keepdim=True) logit = (1.0 - one_hot) * (dist - pos) loss = torch.log(1 + torch.exp(logit).sum(-1) + 3.4) return loss def forward(self, x, y, margin=None): logit = self.arc_margin(x, y, margin) return logit
2.171875
2
starthinker_ui/website/management/commands/log.py
dvandra/starthinker
1
12783103
########################################################################### # # Copyright 2019 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ########################################################################### from django.core.management.base import BaseCommand, CommandError from django.template.loader import render_to_string from starthinker_worker.log import log_get class Command(BaseCommand): help = 'Render Log HTML' def add_arguments(self, parser): parser.add_argument( '--recipe', action='store', dest='recipe', required=True, help='Recipe to pull log for.', ) def handle(self, *args, **kwargs): log = log_get(kwargs['recipe']) print render_to_string('log.html', { 'log':log })
2.046875
2
src/main/resources/tf_graphs/lenet_tf.py
farizrahman4u/dl4j-test-resources
0
12783104
""" Convolutional Neural Network. Build and train a convolutional neural network with TensorFlow. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/) This example is using TensorFlow layers API, see 'convolutional_network_raw' example for a raw implementation with variables. Author: <NAME> Project: https://github.com/aymericdamien/TensorFlow-Examples/ """ from __future__ import division, print_function, absolute_import from tensorflow.python.tools import freeze_graph import numpy as np # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=False) import tensorflow as tf # Training Parameters learning_rate = 0.001 num_steps = 2000 batch_size = 128 # Network Parameters num_input = 784 # MNIST data input (img shape: 28*28) num_classes = 10 # MNIST total classes (0-9 digits) dropout = 0.75 # Dropout, probability to keep units # Create the neural network def conv_net(x_dict, n_classes, dropout, reuse, is_training): # Define a scope for reusing the variables # TF Estimator input is a dict, in case of multiple inputs x = x_dict['images'] # MNIST data input is a 1-D vector of 784 features (28*28 pixels) # Reshape to match picture format [Height x Width x Channel] # Tensor input become 4-D: [Batch Size, Height, Width, Channel] x = tf.reshape(x, shape=[-1, 28, 28, 1]) # Convolution Layer with 32 filters and a kernel size of 5 conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu) # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 conv1 = tf.layers.max_pooling2d(conv1, 2, 2) # Convolution Layer with 64 filters and a kernel size of 3 conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu) # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 conv2 = tf.layers.max_pooling2d(conv2, 2, 2) # Flatten the data to a 1-D vector for the fully connected layer fc1 = tf.contrib.layers.flatten(conv2) # Fully connected layer (in tf contrib folder for now) fc1 = tf.layers.dense(fc1, 1024) # Apply Dropout (if is_training is False, dropout is not applied) fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training) # Output layer, class prediction out = tf.layers.dense(fc1, n_classes) return out from tensorflow.python.estimator.export import export with tf.Session() as sess: # Build the Estimator feature_spec = {'images': tf.constant(mnist.train.images)} serving_input_fn = export.build_raw_serving_input_receiver_fn(feature_spec) # Train the Model # Evaluate the Model # Define the input function for evaluating input_fn = tf.estimator.inputs.numpy_input_fn( x={'images': mnist.test.images}, y=mnist.test.labels, batch_size=batch_size, shuffle=False) # Define a scope for reusing the variables # TF Estimator input is a dict, in case of multiple inputs x = mnist.test.images is_training = False n_classes = 10 # MNIST data input is a 1-D vector of 784 features (28*28 pixels) # Reshape to match picture format [Height x Width x Channel] # Tensor input become 4-D: [Batch Size, Height, Width, Channel] x = tf.reshape(x, shape=[-1, 28, 28, 1]) # Convolution Layer with 32 filters and a kernel size of 5 conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu) # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 conv1 = tf.layers.max_pooling2d(conv1, 2, 2) # Convolution Layer with 64 filters and a kernel size of 3 conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu) # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 conv2 = tf.layers.max_pooling2d(conv2, 2, 2) # Flatten the data to a 1-D vector for the fully connected layer fc1 = tf.contrib.layers.flatten(conv2) # Fully connected layer (in tf contrib folder for now) fc1 = tf.layers.dense(fc1, 1024) # Apply Dropout (if is_training is False, dropout is not applied) fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training) # Use the Estimator 'evaluate' method # Output layer, class prediction out = tf.layers.dense(fc1, n_classes,name='output') sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(tf.global_variables()) tf.train.write_graph(sess.graph_def, 'lenet_dir', 'lenet.pbtxt',as_text=True) saver.save(sess, 'lenet_dir/test3.ckpt',write_meta_graph=False)
4.375
4
usermanager/users/urls.py
yasminhillis/user-manager
1
12783105
from rest_framework import routers from .api import UserViewSet router = routers.DefaultRouter() router.register('users', UserViewSet, 'users') urlpatterns = router.urls
1.617188
2
blocklenium/main.py
jpunkt/blocklenium
0
12783106
<gh_stars>0 import logging import sys import click from blocklenium import settings from blocklenium.blocklenium import Blocklenium logger = logging.getLogger('blocklenium.main') if __name__ == '__main__': print('Please use the click entry-point.') pass @click.command() @click.option('--plc_id', default=settings.PLC_ID, show_default=True, help='ADS Id of PLC') @click.option('--plc_flag', 'plc_start_flag', default=settings.PLC_START_FLAG, show_default=True, help='PLC variable name of flag to start browser (BOOL)') @click.option('--plc_errorflag', 'plc_error_flag', default=settings.PLC_ERROR_FLAG, show_default=True, help='PLC variable name of flag set TRUE if an error occurs.' ) @click.option('--plc_errormsg', 'plc_error_msg', default=settings.PLC_ERROR_MSG, show_default=True, help='PLC variable name to hold error messages') @click.option('--webdriver', 'chromedriver_path', default=settings.CHROMEDRIVER_PATH, show_default=True, type=click.Path(exists=True, file_okay=True, dir_okay=False), help='Path to selenium webdriver for chrome') @click.option('--insecure-con', 'browser_insecure_certs', is_flag=True, help='Suppress warning for insecure site certificates') @click.option('--login-required', 'desk_login_required', is_flag=True, help='''Target URL requires a login. Requires the login credentials to be set to the appropriate variables in the PLC (see below for default values)''') @click.option('--plc-desk-user', 'plc_desk_user', show_default=True, default=settings.PLC_DESK_USER, help='''Change the PLC variable which stores the username for the target URL''') @click.option('--plc-desk-password', '<PASSWORD>', show_default=True, default=settings.PLC_DESK_PW, help='''Change the PLC variable which stores the password for the target URL''') @click.option('-b', '--bookmarklet', 'bookmarklet_path', required=True, type=click.Path(exists=True, file_okay=True, dir_okay=False), help='Path to bookmarklet javascript code') @click.option('-u', '--url', 'desk_url', required=True, help='URL to run bookmarklet on') def main(plc_id, plc_start_flag, plc_error_flag, plc_error_msg, chromedriver_path, browser_insecure_certs, desk_login_required, plc_desk_user, plc_desk_pw, bookmarklet_path, desk_url): logging.basicConfig(level=logging.INFO, stream=sys.stdout) logger.info('Initializing blocklenium...') # Build config dictionary from passed arguments config = {key.upper(): value for key, value in locals().items()} if logger.level == logging.DEBUG: for k in config.keys(): logger.debug('config[{0}]={1}'.format(k, config[k])) blknm = Blocklenium(config) blknm.start()
2.6875
3
aggregator/static_importer.py
olivmaurel/termsearch
0
12783107
<gh_stars>0 import csv import os import logging import sys import django LOCAL_DIR = os.path.dirname(os.path.dirname(__file__)) sys.path.append(os.path.abspath(os.path.dirname('../'))) sys.path.append(os.path.abspath(os.path.dirname('.'))) django.setup() from aggregator.models import Language # Get an instance of a logger logger = logging.getLogger(__name__) def import_languages_from_csv(path): logger.info("Importing languages...") with open(path) as f: reader = csv.reader(f) next(reader) # skip headers for row in reader: _, created = Language.objects.get_or_create( name = row[0], code2d = row[1], code3d = row[2],) logger.info("{} found. Created {}".format(row[0], created)) logger.info("Imported {} successfully".format(path)) def export_csv_to_json(csvpath, jsonpath): logger.info("Converting {} to JSON...".format(csvpath)) with open(csvpath, 'r') as f: csvfile = csv.reader(f) jsonfile = open(jsonpath, 'w') # fieldnames = csvfile # todo finish this pass def order_csv_alphabetically(file): pass if __name__ == "__main__": language_csv_path = os.path.join(LOCAL_DIR, 'static/aggregator/csv/language.csv') language_json_path = os.path.join(LOCAL_DIR, 'aggregator/fixtures/language.json') import_languages_from_csv(language_csv_path) export_csv_to_json(language_csv_path, language_json_path)
2.3125
2
config/__init__.py
kunal-sanghvi/flask-app
0
12783108
from .settings import * from .constants import *
1.179688
1
tests/data/token_indexers/elmo_indexer_test.py
unendin/allennlp
1
12783109
# pylint: disable=no-self-use from allennlp.common.testing import AllenNlpTestCase from allennlp.data import Token, Vocabulary from allennlp.data.token_indexers import ELMoTokenCharactersIndexer class TestELMoTokenCharactersIndexer(AllenNlpTestCase): def test_bos_to_char_ids(self): indexer = ELMoTokenCharactersIndexer() indices = indexer.token_to_indices(Token('<S>'), Vocabulary()) expected_indices = [259, 257, 260, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261] assert indices == expected_indices def test_eos_to_char_ids(self): indexer = ELMoTokenCharactersIndexer() indices = indexer.token_to_indices(Token('</S>'), Vocabulary()) expected_indices = [259, 258, 260, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261] assert indices == expected_indices def test_unicode_to_char_ids(self): indexer = ELMoTokenCharactersIndexer() indices = indexer.token_to_indices(Token(chr(256) + 't'), Vocabulary()) expected_indices = [259, 197, 129, 117, 260, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261] assert indices == expected_indices def test_elmo_as_array_produces_token_sequence(self): # pylint: disable=invalid-name indexer = ELMoTokenCharactersIndexer() indices = [ indexer.token_to_indices(Token(token), Vocabulary()) for token in ['Second', '.'] ] padded_tokens = indexer.pad_token_sequence(indices, desired_num_tokens=3, padding_lengths={}) expected_padded_tokens = [[259, 84, 102, 100, 112, 111, 101, 260, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261], [259, 47, 260, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] assert padded_tokens == expected_padded_tokens
2.1875
2
membership/management/commands/csvtestdata.py
guaq/sikteeri
0
12783110
# encoding: UTF-8 """ Generates test data for CSV import. """ from __future__ import print_function from __future__ import with_statement # http://www.python.org/dev/peps/pep-3101/ # unicode.format() # http://www.python.org/dev/peps/pep-3105/ # print function import codecs from uuid import uuid4 from datetime import datetime, timedelta from sys import stdout from django.conf import settings from django.core.management.base import BaseCommand, CommandError from membership.models import * header_row = u'''Kirjauspäivä;Arvopäivä;Määrä EUROA;Tapahtumalajikoodi;Selitys;Saaja/Maksaja;Saajan tilinumero;Viite;Viesti;Arkistotunnus;''' row = u'''{0[date]};{0[date]};{0[sum]};106;TILISIIRTO;{0[payer]};{0[account]};{0[reference]};{0[message]};{0[id]};''' def dict_for_cycle(cycle): payment_date = cycle.last_bill().due_date - timedelta(days=1) if payment_date > datetime.now(): payment_date = datetime.now() return { 'date': payment_date.strftime('%d.%m.%Y'), 'sum': cycle.sum, 'payer': cycle.membership.name(), 'account': settings.IBAN_ACCOUNT_NUMBER, 'reference': cycle.reference_number, 'message': "Maksu", 'id': str(uuid4()) } def print_csv(stream=stdout, count=10): print(header_row, file=stream) short_sum = False high_sum = False wrong_reference = False for cycle in BillingCycle.objects.filter(is_paid=False): if count == 0: break d = dict_for_cycle(cycle) if short_sum is False: d['sum'] -= 5 short_sum = True elif high_sum is False: d['sum'] += 5 high_sum = True elif wrong_reference is False: d['reference'] = d['reference'][2:] wrong_reference = True print(row.format(d), file=stream) count -= 1 paid_cycle = BillingCycle.objects.filter(is_paid=True)[0] print(row.format(dict_for_cycle(paid_cycle)), file=stream) class Command(BaseCommand): args = '<file_to_write_to>' help = 'Generate payments CSV to be used for testing out payment import' \ + ' form' def handle(self, *args, **options): if len(args) > 0: with codecs.open(args[0], 'w', encoding='iso-8859-1') as f: if len(args) > 1: print_csv(stream=f, count=int(args[1])) else: print_csv(stream=f) else: print_csv() '''Kirjauspäivä;Arvopäivä;Määrä EUROA;Tapahtumalajikoodi;Selitys;Saaja/Maksaja;Saajan tilinumero;Viite;Viesti;Arkistotunnus; 21.05.2008;21.05.2008;-66,50;106;TILISIIRTO;MATTI MEIKÄLÄINEN;211135-00302106;;VUOSIKOKOUKSEN JA YLLÄPITOMATKAN MATKAKORVAUKSET. HALKO 3/2008. ;20080521593497O10031; 03.08.2008;03.08.2008;-33,00;106;TILISIIRTO;MATTI MEIKÄLÄINEN;211135-00302106;;POSTIKULUKORVAUS LASKUTETTU POSTIKULUSTA. HYVÄKSYTTYHALKOSSA 07/2008 24.7.2008. ;20080803593497AK0018; 27.01.2009;27.01.2009;30,00;588;VIITESIIRTO;MEIKÄLÄINEN MATTI JOHANNES;;00000000000007009017; ;200901252588NGNO0290; 21.01.2010;21.01.2010;-1063,35;106;TILISIIRTO;MATTI MEIKÄLÄINEN;211135-00302106;;HALKO 3/2010 KEVÄTKICKOFF TARVIKKEITA. KUPLAMUOVIA XOBIIN ;20100121593497690187; 21.01.2010;21.01.2010;-73,10;106;TILISIIRTO;MATTI MEIKÄLÄINEN;211135-00302106;;HALKO 3/2010 SIKTEERIVIIKONLOPUN MATKOJA. ;201001215934979N0174; 25.01.2010;25.01.2010;30,00;588;VIITESIIRTO;MEIKÄLÄINEN MATTI JOHANNES;;00000000000001110012;SEPA-MAKSU SAAJA/MOTTAG./BEN: Kapsi Internet-kKULUKOODI: SLEV ALKUP.MÄÄRÄ EUR 30.00+ EUR 30.00+;201001255UTZ00002150; 21.04.2010;21.04.2010;20,00;588;VIITESIIRTO;MEIKÄLÄINEN MATTI JOHANNES;;00000000000000032094; ;201004202588NGN52047; '''
2.078125
2
dupdeletergui.py
ocdocdocd/DupDeleter
0
12783111
from gi.repository import Gtk, GdkPixbuf, GLib, Pango import dhash import os import collections import threading import Queue class mainWindow(Gtk.Window): def __init__(self): Gtk.Window.__init__(self, title="DupDeleter") self.set_border_width(10) self.grid = Gtk.Grid() self.grid.set_column_homogeneous(True) self.grid.set_row_homogeneous(True) self.add(self.grid) # set up the model # columns = [imgName, imgLocation, # of Dups] self.dupe_store = Gtk.TreeStore(bool, str, str, int) self.current_filter_ext = None self.ext_filter = self.dupe_store.filter_new() self.ext_filter.set_visible_func(self.ext_filter_func) # Create model's view self.treeview = Gtk.TreeView.new_with_model(self.ext_filter) check_renderer = Gtk.CellRendererToggle() check_renderer.set_activatable(True) check_renderer.set_active(False) check_renderer.connect("toggled", self.on_toggled) column = Gtk.TreeViewColumn("", check_renderer, active=0) self.treeview.append_column(column) for i, column_title in enumerate(["Name", "Location", "# of Dups"]): renderer = Gtk.CellRendererText() column = Gtk.TreeViewColumn(column_title, renderer, text=i+1) column.set_sort_column_id(i) column.set_fixed_width(200) column.set_resizable(True) self.treeview.append_column(column) self.treeview.connect("cursor-changed", self.on_row_changed) self.scrollable_treelist = Gtk.ScrolledWindow() self.scrollable_treelist.set_vexpand(True) # Create buttons for filtering results by image extension self.extensions = ("jpg", "gif", "png", "tiff", "All") self.buttons = list() for ext in self.extensions: button = Gtk.Button(ext) self.buttons.append(button) button.connect("clicked", self.on_selection_button_clicked) self.create_toolbar() # Create labels for showing scan progress self.scan_status_label = Gtk.Label("No Scan in Progress") self.scan_status_label.set_halign(3) # 3 = CENTER self.file_scan_label = Gtk.Label(None) self.file_scan_label.set_ellipsize(Pango.EllipsizeMode.START) self.file_scan_label.set_width_chars(30) self.file_scan_label.set_halign(3) # 3 = CENTER # Make a frame to hold image previews self.img_frame = Gtk.Frame(label="Selected Image") self.img_frame.set_label_align(0.5, 0.5) self.img_frame.set_shadow_type(Gtk.ShadowType.ETCHED_OUT) self.img_frame.set_size_request(200, 200) # Assemble the GUI self.grid.attach(self.scrollable_treelist, 0, 1, 8, 10) self.grid.attach_next_to(self.img_frame, self.scrollable_treelist, Gtk.PositionType.RIGHT, 5, 6) self.grid.attach_next_to(self.buttons[0], self.scrollable_treelist, Gtk.PositionType.BOTTOM, 1, 1) for i, button in enumerate(self.buttons[1:]): self.grid.attach_next_to(button, self.buttons[i], Gtk.PositionType.RIGHT, 1, 1) self.scrollable_treelist.add(self.treeview) self.grid.attach_next_to(self.scan_status_label, self.buttons[3], Gtk.PositionType.BOTTOM, 6, 1) self.grid.attach_next_to(self.file_scan_label, self.scan_status_label, Gtk.PositionType.BOTTOM, 6, 1) self.grid.set_column_spacing(10) self.grid.set_row_spacing(5) self.queue = Queue.Queue() # Queue for holding fetched images self.delete_list = list() # List for holding to-be-deleted items self.show_all() def getDups(self, path, queue): '''Collects all image duplicates starting from PATH. Fills a queue with lists of lists containing image names and locations.''' images = collections.defaultdict(list) image_exts = ('.jpg', '.png', '.gif', '.tiff') GLib.idle_add(self.scan_status_label.set_text, "Scanning...") for root, dirs, files in os.walk(path): for name in files: GLib.idle_add(self.file_scan_label.set_text, root) if name[-4:] in image_exts: img_loc = os.path.join(root, name) img_hash = dhash.hash(img_loc) if img_hash != -1: # Have to add False at beginning because of # togglebutton status. images[img_hash].append([False, name, root]) GLib.idle_add(self.scan_status_label.set_text, "Done") for group in images: if len(images[group]) > 1: queue.put(images[group]) GLib.idle_add(self.generateModelData) def generateModelData(self): '''Fills treeModel rows with found duplicates''' while not self.queue.empty(): image_set = self.queue.get() parent = '' no_of_dups = len(image_set) for img in image_set: img.append(no_of_dups) if not parent: parent = self.dupe_store.append(None, img) else: self.dupe_store.append(parent, img) def on_button_clicked_open(self, widget): '''Brings up the file browser window. Returns the path of the root folder.''' dialog = Gtk.FileChooserDialog("Select the root folder", self, Gtk.FileChooserAction.SELECT_FOLDER, (Gtk.STOCK_CANCEL, Gtk.ResponseType.CANCEL, "Select", Gtk.ResponseType.OK)) dialog.set_default_size(800, 400) response = dialog.run() if response == Gtk.ResponseType.OK: root = dialog.get_uri()[8:] # have to remove file:/// thread = threading.Thread(target=self.getDups, args=(root, self.queue)) thread.daemon = True thread.start() GLib.timeout_add(200, self.generateModelData) dialog.destroy() elif response == Gtk.ResponseType.CANCEL: dialog.destroy() def ext_filter_func(self, model, iter, data): '''Tests if the image extension in the row is the one in the filter''' if self.current_filter_ext is None or self.current_filter_ext == "All": return True else: return model[iter][0][-3:] == self.current_filter_ext def create_toolbar(self): toolbar = Gtk.Toolbar() self.grid.attach(toolbar, 0, 0, 8, 1) button_open = Gtk.ToolButton.new_from_stock(Gtk.STOCK_OPEN) button_open.set_tooltip_text("Scan Directory") toolbar.insert(button_open, 0) button_delete = Gtk.ToolButton.new_from_stock(Gtk.STOCK_DELETE) button_delete.set_tooltip_text("Delete Selected Images") toolbar.insert(button_delete, 1) button_auto_prune = Gtk.ToolButton.new_from_stock(Gtk.STOCK_NO) button_auto_prune.set_tooltip_text("Auto-Prune") toolbar.insert(button_auto_prune, 2) button_exit = Gtk.ToolButton.new_from_stock(Gtk.STOCK_QUIT) button_exit.set_tooltip_text("Exit") toolbar.insert(button_exit, 3) button_open.connect("clicked", self.on_button_clicked_open) button_auto_prune.connect("clicked", self.on_button_clicked_auto_prune) button_delete.connect("clicked", self.on_button_clicked_delete) button_exit.connect("clicked", self.on_button_clicked_exit) def on_selection_button_clicked(self, widget): '''Called on any selection button click''' self.current_filter_ext = widget.get_label() self.ext_filter.refilter() def on_button_clicked_auto_prune(self, widget): ''' Automatically deletes all files except for parents ''' dialog = Gtk.MessageDialog(self, 0, Gtk.MessageType.WARNING, Gtk.ButtonsType.OK_CANCEL, "Delete all selected images?") response = dialog.run() if response == Gtk.ResponseType.OK: rootiter = self.dupe_store.get_iter_first() self.prune_helper(rootiter, False) dialog.destroy() elif response == Gtk.ResponseType.CANCEL: dialog.destroy() def prune_helper(self, treeiter, toDelete): ''' Deletes all files except for parents toDelete indicates whether or not treeiter should be deleted. It should be set to False on call unless you want to delete everything. ''' deleted = 0 isValid = True while (treeiter is not None) and isValid: if self.dupe_store.iter_has_child(treeiter): childiter = self.dupe_store.iter_children(treeiter) deleted += self.prune_helper(childiter, True) self.dupe_store[treeiter][3] = self.dupe_store.iter_n_children(treeiter) if toDelete: path = os.path.join(self.dupe_store[treeiter][2], self.dupe_store[treeiter][1]) os.remove(path) isValid = self.dupe_store.remove(treeiter) deleted += 1 # If treestore.remove() is successful iter is automatically # updated to the next iter, so we just need to check to # make sure that isn't the case before using iter_next() else: treeiter = self.dupe_store.iter_next(treeiter) return deleted def on_button_clicked_delete(self, widget): '''Deletes all selected files''' dialog = Gtk.MessageDialog(self, 0, Gtk.MessageType.WARNING, Gtk.ButtonsType.OK_CANCEL, "Delete all selected images?") response = dialog.run() if response == Gtk.ResponseType.OK: rootiter = self.dupe_store.get_iter_first() self.delete_helper(rootiter) dialog.destroy() elif response == Gtk. ResponseType.CANCEL: dialog.destroy() def delete_helper(self, treeiter): ''' Recursively searches through all rows searching for files to delete. ''' deleted = 0 isValid = True while (treeiter is not None) and isValid: if self.dupe_store.iter_has_child(treeiter): childiter = self.dupe_store.iter_children(treeiter) deleted += self.delete_helper(childiter) if self.dupe_store[treeiter][0]: path = os.path.join(self.dupe_store[treeiter][2], self.dupe_store[treeiter][1]) if self.dupe_store.iter_has_child(treeiter): child = self.dupe_store.iter_children(treeiter) isValid = self.childToParent(treeiter, child) else: isValid = self.dupe_store.remove(treeiter) os.remove(path) deleted += 1 self.dupe_store[treeiter][3] = self.dupe_store.iter_n_children(treeiter) else: treeiter = self.dupe_store.iter_next(treeiter) return deleted def on_button_clicked_exit(self, widget): '''Exits the program''' dialog = Gtk.MessageDialog(self, 0, Gtk.MessageType.WARNING, Gtk.ButtonsType.OK_CANCEL, "Are you sure you want to exit?") response = dialog.run() if response == Gtk.ResponseType.OK: Gtk.main_quit() elif response == Gtk.ResponseType.CANCEL: dialog.destroy() def childToParent(self, parent_iter, child_iter): ''' Replaces parent_iter with child_iter, effectively moving child to parent's position. Returns the next iter after parent, or invalidates it if there isn't one. ''' for col in xrange(self.dupe_store.get_n_columns()): childval = self.dupe_store.get_value(child_iter, col) self.dupe_store.set_value(parent_iter, col, childval) self.dupe_store.remove(child_iter) return self.dupe_store.iter_next(parent_iter) def on_row_changed(self, widget): (model, pathlist) = widget.get_selection().get_selected_rows() tree_iter = model.get_iter(pathlist[0]) img_name = model.get_value(tree_iter, 1) img_root = model.get_value(tree_iter, 2) img_loc = os.path.join(img_root, img_name) child = self.img_frame.get_child() if child: self.img_frame.remove(child) alloc = self.img_frame.get_allocation() pixbuf = GdkPixbuf.Pixbuf.new_from_file_at_scale(img_loc, alloc.width - 20, alloc.height - 20, True) image = Gtk.Image.new_from_pixbuf(pixbuf) image.show() self.img_frame.add(image) def on_toggled(self, widget, path): ''' Adds or removes the row's treeiter to a list that designates it for removal. ''' self.dupe_store[path][0] = not self.dupe_store[path][0] win = mainWindow() win.connect("delete-event", Gtk.main_quit) win.show_all() Gtk.main()
2.453125
2
tests/util/sqlalchemy_util_test.py
candango/firenado
13
12783112
<reponame>candango/firenado<filename>tests/util/sqlalchemy_util_test.py #!/usr/bin/env python # # Copyright 2015-2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from firenado.util.sqlalchemy_util import Base, base_to_dict from sqlalchemy import Column, String from sqlalchemy.types import Integer, DateTime from sqlalchemy.sql import text import unittest class TestBase(Base): __tablename__ = "test" id = Column("id", Integer, primary_key=True) username = Column("username", String(150), nullable=False) first_name = Column("first_name", String(150), nullable=False) last_name = Column("last_name", String(150), nullable=False) password = Column("password", String(150), nullable=False) email = Column("email", String(150), nullable=False) created = Column("created", DateTime, nullable=False, server_default=text("now()")) modified = Column("modified", DateTime, nullable=False, server_default=text("now()")) class BaseToDictTestCase(unittest.TestCase): def setUp(self): self.test_object = TestBase() self.test_object.id = 1 self.test_object.username = "anusername" self.test_object.password = "<PASSWORD>" self.test_object.first_name = "Test" self.test_object.last_name = "Object" self.test_object.email = "<EMAIL>" def test_base_to_dict(self): dict_from_base = base_to_dict(self.test_object) self.assertEqual(dict_from_base['id'], self.test_object.id) self.assertEqual(dict_from_base['username'], self.test_object.username) self.assertEqual(dict_from_base['password'], self.test_object.password) self.assertEqual(dict_from_base['first_name'], self.test_object.first_name) self.assertEqual(dict_from_base['last_name'], self.test_object.last_name) self.assertEqual(dict_from_base['email'], self.test_object.email) self.assertEqual(dict_from_base['created'], self.test_object.created) self.assertEqual(dict_from_base['modified'], self.test_object.modified) def test_base_to_dict(self): dict_from_base = base_to_dict(self.test_object, ["id", "username", "first_name"]) self.assertEqual(dict_from_base['id'], self.test_object.id) self.assertEqual(dict_from_base['username'], self.test_object.username) self.assertEqual(dict_from_base['first_name'], self.test_object.first_name) self.assertTrue("password" not in dict_from_base) self.assertTrue("last_name" not in dict_from_base) self.assertTrue("email" not in dict_from_base) self.assertTrue("created" not in dict_from_base) self.assertTrue("modified" not in dict_from_base)
2.46875
2
application/handlers/api/apikmldownloader.py
opengovt/openroads-geostore
1
12783113
import json from application.handlers.base import BaseHandler class APIKMLDownloader(BaseHandler): def get(self): if self.request.get('project_code'): project_code = self.request.get('project_code') self.response.headers['Content-Type'] = 'application/json' self.response.write(json.dumps({'project_code': project_code}))
2.40625
2
compare.py
MichaelRiabzev/directoriesCompare
0
12783114
<filename>compare.py import hashlib import os import datetime import sys def md5(fname): hash_md5 = hashlib.md5() with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() def compareTables(A,B): onlyInA = [] onlyInB = [] correlation = [] for k in A.keys(): if k in B: correlation += [(A[k],B[k])] del B[k] else: onlyInA += [A[k]] for k in B.keys(): onlyInB += [B[k]] return (onlyInA, onlyInB, correlation) def addDirToTable(path, table): for root, subdirs, files in os.walk(path): for f in files: fullPath = os.path.join(root,f) md5Val = md5(fullPath) table[md5Val] = fullPath srcPaths = [sys.argv[1]] srcTable = {} dstPaths = [sys.argv[2]] dstTable = {} for p in srcPaths: print "collecting from " + p + " ; " + str(datetime.datetime.now()) sys.stdout.flush() addDirToTable(p, srcTable) for p in dstPaths: print "collecting from " + p + " ; " + str(datetime.datetime.now()) sys.stdout.flush() addDirToTable(p, dstTable) print "Comparing collections " + str(datetime.datetime.now()) sys.stdout.flush() onlyInA , onlyInB, correlation = compareTables(srcTable, dstTable) print "Files only in both sets:" sys.stdout.flush() for f in correlation: print f print "Files only in " + str(srcPaths) + " :" sys.stdout.flush() for f in onlyInA: print f print "Files only in " + str(dstPaths) + " :" sys.stdout.flush() for f in onlyInB: print f
2.609375
3
GameOfThrones/__init__.py
dhillonr/db
0
12783115
#!/usr/bin/env python # encoding: utf-8 # The MIT License (MIT) # Copyright (c) 2017 CNRS # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # AUTHORS # <NAME> - http://herve.niderb.fr from ._version import get_versions __version__ = get_versions()['version'] del get_versions from pyannote.database import Database from pyannote.database.protocol import SpeakerDiarizationProtocol from pyannote.parser import MDTMParser import os.path as op from pyannote.core import Segment, Annotation class GameOfThronesSpeakerDiarizationProtocol(SpeakerDiarizationProtocol): """Base speaker diarization protocol for GameOfThrones database This class should be inherited from, not used directly. Parameters ---------- preprocessors : dict or (key, preprocessor) iterable When provided, each protocol item (dictionary) are preprocessed, such that item[key] = preprocessor(**item). In case 'preprocessor' is not callable, it should be a string containing placeholder for item keys (e.g. {'wav': '/path/to/{uri}.wav'}) """ def __init__(self, preprocessors={}, **kwargs): super(GameOfThronesSpeakerDiarizationProtocol, self).__init__( preprocessors=preprocessors, **kwargs) self.mdtm_parser_ = MDTMParser() @staticmethod def get_audio_path(uri): return op.join( op.dirname(op.realpath(__file__)), 'data', 'audio', '{uri}.txt'.format(uri=uri)) def load_speaker(self, uri): speaker = Annotation(uri=uri) path = self.get_audio_path(uri) with open(path, 'r') as fp: for line in fp: start, duration, name, _, _ = line.strip().split() start = float(start) end = start + float(duration) speaker[Segment(start, end)] = name return speaker.smooth() def _subset(self, protocol, subset): data_dir = op.join(op.dirname(op.realpath(__file__)), 'data') # load annotations path = op.join( data_dir, '{protocol}.{subset}.lst'.format(subset=subset, protocol=protocol)) with open(path, 'r') as fp: for line in fp: uri = line.strip() annotation = self.load_speaker(uri) item = { 'database': 'GameOfThrones', 'uri': uri, 'annotation': annotation} yield item class Season1(GameOfThronesSpeakerDiarizationProtocol): """Season 1 * Training set: episode #1, #2, #3, #4, #5 * Development set: episode #6 * Test set: episode #7, #8, #9, #10 """ def trn_iter(self): return self._subset('Season1', 'trn') def dev_iter(self): return self._subset('Season1', 'dev') def tst_iter(self): return self._subset('Season1', 'tst') class Season1Test(GameOfThronesSpeakerDiarizationProtocol): """Season 1 * Training set: -- not available -- * Development set: -- not available -- * Test set: episode #1, #2, #3, #4, #5, #6, #7, #8, #9, #10 """ def tst_iter(self): return self._subset('Season1Test', 'tst') class GameOfThrones(Database): """GameOfThrones corpus Parameters ---------- preprocessors : dict or (key, preprocessor) iterable When provided, each protocol item (dictionary) are preprocessed, such that item[key] = preprocessor(**item). In case 'preprocessor' is not callable, it should be a string containing placeholder for item keys (e.g. {'wav': '/path/to/{uri}.wav'}) Reference --------- Citation -------- Website ------- """ def __init__(self, preprocessors={}, **kwargs): super(GameOfThrones, self).__init__(preprocessors=preprocessors, **kwargs) self.register_protocol( 'SpeakerDiarization', 'Season1', Season1) self.register_protocol( 'SpeakerDiarization', 'Season1Test', Season1Test)
1.515625
2
envelope/constants.py
affan2/django-envelope
0
12783116
<reponame>affan2/django-envelope from django.utils.translation import ugettext_lazy as _ STATE_TYPES = ( (-1, _('Deleted')), (1, _('Replied')), (2, _('Pending')), ) COMPANY_CONTACT_CHOICES = ( ("", u''), ("First choice", _('First choice')), ("Second choice", _('Second choice')), ("Third choice", _('Third choice')), ) PRODUCT_CONTACT_CHOICES = ( ("", u''), ("First choice", _('First choice')), ("Second choice", _('Second choice')), ("Third choice", _('Third choice')), ) SOLUTIONS_CONTACT_CHOICES = ( ("", u''), ("First choice", _('First choice')), ("Second choice", _('Second choice')), ("Third choice", _('Third choice')), )
1.84375
2
spellchecker/Spellcheck.py
sa91/Ideas
0
12783117
<gh_stars>0 from Preprocess import pre_process from Getembedding import embed from Predictor import predictor """ Input of this file can be changed to stream word or anything that can be used to check spelling For now: It takes a word, preprocess it get embedding of the word send it to predictor Ideas: Take a stream around the word, preprocess each word. get embedding each word send the stream encoding to predictor """ word = input("Input the spelling: ") word = pre_process(word) k = input("Number of suggestion: ") embedding = embed(word) print("Suggestions: ", predictor(embedding, int(k)))
3.578125
4
tests/bioc/test_json_encoder.py
datummd/bioc
10
12783118
<filename>tests/bioc/test_json_encoder.py import io import tempfile from pathlib import Path import pytest from bioc import BioCFileType from bioc.biocjson.encoder import toJSON import bioc from bioc.biocjson import BioCJsonIterWriter from tests.utils import assert_everything file = Path(__file__).parent / 'everything.json' def test_dump(): with open(file, encoding='utf8') as fp: collection = bioc.load(fp, BioCFileType.BIOC_JSON) tmp = tempfile.mktemp() with open(tmp, 'w', encoding='utf8') as fp: bioc.dump(collection, fp, BioCFileType.BIOC_JSON) with open(tmp, encoding='utf8') as fp: collection = bioc.load(fp, BioCFileType.BIOC_JSON) assert_everything(collection) def test_dumps(): with open(file, encoding='utf8') as fp: collection = bioc.load(fp, BioCFileType.BIOC_JSON) s = bioc.dumps(collection, BioCFileType.BIOC_JSON) collection = bioc.loads(s, BioCFileType.BIOC_JSON) assert_everything(collection) def test_level(): with pytest.raises(ValueError): BioCJsonIterWriter(io.StringIO(), level=-1) with open(file, encoding='utf8') as fp: collection = bioc.load(fp, BioCFileType.BIOC_JSON) with pytest.raises(ValueError): writer = BioCJsonIterWriter(io.StringIO(), level=bioc.SENTENCE) writer.write(collection.documents[0]) with pytest.raises(ValueError): writer = BioCJsonIterWriter(io.StringIO(), level=bioc.PASSAGE) writer.write(collection.documents[0]) with pytest.raises(ValueError): writer = BioCJsonIterWriter(io.StringIO(), level=bioc.DOCUMENT) writer.write(collection.documents[0].passages[0]) def test_toJSON(): with open(file, encoding='utf8') as fp: collection = bioc.load(fp, BioCFileType.BIOC_JSON) obj = toJSON(collection) assert obj['documents'][0]['id'] == '1' with pytest.raises(TypeError): toJSON({})
2.28125
2
toolkit/autodiff/scalar/FloatScalar.py
joseph-ai/aitoolkit
0
12783119
import toolkit.autodiff.math.scalar as am import toolkit.autodiff.math as m from ..math import IdentityOp from ..CalcFlow import CalcFlow class FloatScalar(CalcFlow): def __init__(self, value): super().__init__(value) def _calc_unary(self, func): calc_val = FloatScalar(func.calculate()) super(FloatScalar, self).__calc_unary__(calc_val, func) return calc_val def _calc_binary(self, other, func): calc_val = FloatScalar(func.calculate()) super(FloatScalar, self).__calc_binary__(calc_val, other, func) return calc_val @classmethod def create(cls, value): v = FloatScalar(value) math_func = IdentityOp(v) calc_val = v._calc_unary(math_func) calc_val.identity = math_func return calc_val def __mul__(self, other): if not CalcFlow.is_calc_flow(other): raise ValueError("Not CalcFlow") math_func = m.MultiplyOp(self, other) return self._calc_binary(other, math_func) def __add__(self, other): if not CalcFlow.is_calc_flow(other): raise ValueError("Not CalcFlow") math_func = m.AdditionOp(self, other) return self._calc_binary(other, math_func) def __sub__(self, other): if not CalcFlow.is_calc_flow(other): raise ValueError("Not CalcFlow") math_func = m.SubtractionOp(self, other) return self._calc_binary(other, math_func) def __pow__(self, other): if not CalcFlow.is_calc_flow(other): raise ValueError("Not CalcFlow") math_func = m.ExponentOp(self, other) return self._calc_binary(other, math_func) def __div__(self, other): if not CalcFlow.is_calc_flow(other): raise ValueError("Not CalcFlow") math_func = m.DivideOp(self, other) return self._calc_binary(other, math_func) def sin(self): math_func = am.SinOp(self) return self._calc_unary(math_func) def exp(self): math_func = am.ExpOp(self) return self._calc_unary(math_func) def ln(self): math_func = am.LnOp(self) return self._calc_unary(math_func) def __truediv__(self, other): return self.__div__(other) def __str__(self): return "[%s] %s" % (self.__id__, self.value)
2.9375
3
scraping.py
NaulaN/EDT
0
12783120
from selenium import webdriver from selenium.webdriver.common.by import By from datetime import datetime class Scraping(object): driver = webdriver.Chrome() hours: str edt = {} def __init__(self, username, password): # Ouvre la page dans Chrome self.driver.delete_all_cookies() self.driver.get('https://ent.iut.univ-paris8.fr/edt/presentations.php') # Se connecter self.driver.find_element(By.ID, "username").send_keys(username) self.driver.find_element(By.ID, "password").send_keys(password) self.driver.find_element(By.NAME, "submit").click() self.getEDT() def getWhatDayWeek(self) -> int: """ Récupère de 0..7, le jours de la semaine. """ return datetime.today().weekday() def writeCours(self, element, elementHeure): """ Écrit l'heure en index et crée une liste contenant les infos concernant le cours """ hoursIndex = elementHeure.find_element(By.CLASS_NAME,"fright").text.split("h") hoursIndex = float(f"{hoursIndex[0]}.{hoursIndex[1]}") if len(hoursIndex) == 2 else int(hoursIndex[0]) self.edt[hoursIndex] = [] for n,el in enumerate(element.text.split("\n")): self.edt[hoursIndex].append(el) def getEDT(self, todayDate=int(datetime.today().weekday())): """ Update l'emploie du temps """ # Click sur l'emploie du temps qui correspond au jour de la semaine for element in self.driver.find_elements(By.CLASS_NAME, f"jours.jour{todayDate+1}.plageDIVn"): if len(element.text) > 0: allElementsCanFind = self.driver.find_elements(By.CLASS_NAME,"ligne.petit") + self.driver.find_elements(By.CLASS_NAME,"lignegrey") + self.driver.find_elements(By.CLASS_NAME,"plage.petit") # ((todayDate if todayDate not in [5,6] else 0)*20)+6.6667 => only use for B group print(element.get_attribute("style")) print(element.text) if element.text.count("Amphi") >= 1 or element.text.count("Amphi2") >= 1: for elementHeure in allElementsCanFind: if abs(int(elementHeure.get_attribute("style").split(";")[0].replace("top: ", "").replace("px", ""))-int(element.get_attribute("style").split(';')[0].replace("top: ", "").replace("px", ""))) in [30, 10]: print(elementHeure.text) self.writeCours(element, elementHeure) break else: for style in element.get_attribute("style").split(";"): print(style) print(style.count(f" margin-left: {((todayDate+1 if todayDate not in [5,6] else 0)*10)+3.3333}")) if style.count(f" margin-left: {((todayDate+1 if todayDate not in [5,6] else 0)*10)+3.3333}") >= 1: for elementHeure in allElementsCanFind: print(abs(int(elementHeure.get_attribute("style").split(";")[0].replace("top: ","").replace("px","")) - int(element.get_attribute("style").split(';')[0].replace("top: ","").replace("px","")))) if abs(int(elementHeure.get_attribute("style").split(";")[0].replace("top: ","").replace("px","")) - int(element.get_attribute("style").split(';')[0].replace("top: ","").replace("px",""))) in [30,10]: print(elementHeure.text) self.writeCours(element, elementHeure) break print(self.edt)
3.484375
3
qsar/tests.py
kingrichard2005/qsarweb-public
0
12783121
from django.test import TestCase # Create your tests here. class IndexViewsTestCase(TestCase): def test_index(self): resp = self.client.get('/qsar/') self.assertEqual(resp.status_code, 200)
2.109375
2
dev/park_python/camera/capture.py
remij1/Park_Detection
0
12783122
<filename>dev/park_python/camera/capture.py ################################################################## # MESURE DU TAUX D'OCCUPATION DE PARKINGS A L'AIDE # # DE CAMERAS VIDEOS # # -------------------------------------------------------------- # # <NAME> - TB 2018 - HEIG-VD # # <EMAIL> # # https://github.com/remij1/TB_2018 # # July 2018 # # -------------------------------------------------------------- # # Helpers and classes to connect to a camera and retreive # # images. # ################################################################## import requests from requests.auth import HTTPBasicAuth from io import BytesIO from apscheduler.schedulers.background import BlockingScheduler, BackgroundScheduler import logging from datetime import datetime, time class CameraClient: """ Can be used to interact with the camera over the network. This has been especially designed to work with the Wanscam HW0029 camera. Requirement: apscheduler """ SNAP_ENDPOINT = "/web/tmpfs/snap.jpg" WEB_PORT = 80 def __init__(self, host, username="admin", password="<PASSWORD>"): """ Creates a CameraClient which could be used to capture frame from the camera Arguments: host {str} -- The ip or hostname of the camera Keyword Arguments: username {str} -- The username to use to connect (default: {"admin"}) password {str} -- The password to use to connect (default: {"<PASSWORD>"}) """ self.host = host self.username = username self.password = password # Creating a basic authentification from the arguments self.auth = HTTPBasicAuth(self.username, self.password) # Defining the http request url which can be used to request an image to the camera self.url = f"http://{self.host}:{self.WEB_PORT}{self.SNAP_ENDPOINT}" def capture_raw(self): """ Could be used to get a single image from the camera. It is described by bytes. A skimage/opencv image (a simple [x, y, 3] numpy array) can be easily created with io.imread(camera.capture_raw()). Returns: BytesIO -- the byte stream describing the image Raises: RequestException -- if the connection was not succesfully completed, for ex. if the host can not be reached. BadCredentialsError -- if the credentials cannot be used to connect to the camera BadResponseFormat -- if womething went wrong with the camera response """ # requesting the camera response = requests.get(self.url, auth=self.auth) # handling bad responses if response.status_code == 401: # bad credentials raise self.BadCredentialsError() elif not str(response.status_code).startswith("2"): # bad response code raise self.BadResponseFormat() # returning the image as a byte stream content = response.content response.close() return BytesIO(content) # ------- ERRORS ------- # class Error(Exception): pass class BadCredentialsError(Error): def __init__(self): super().__init__("The credentials cannot be used to connect to the camera") class BadResponseFormat(Error): def __init__(self): super().__init__("Something went wrong with the camera response") class CameraAgent: """ Used to request the camera for a shot periodically. It handles connection loss. """ def __init__(self, camera_client, handle_image_callback, hours = 0, minutes = 0, seconds = 0, running_time=None, blocking=True): """ Creates an image agent. It request for an image to the camera_client provided as an argument once every timelaps, which is defined by the hours, minutes and seconds parameters. For the agent to start, use camera_agent.start(). For every image that has been received, the 'handle_image_callback(image_bytes_stream)' is called. The image_bytes_stream can be easily converted to an skimage/opencv images with image = io.imread(image_bytes_stream). A running time (ie. when the images have to be fetched) can be passed as a parameter. If None, it is always running Arguments: camera_client {CameraClient} -- The camera from which we want to retreive images handle_image_callback {Function} -- A function that has the following signature: func(image_bytes_stream) Keyword Arguments: hours {int} -- Hours between each request (default: {0}) minutes {int} -- Minutes between each request (default: {0}) seconds {int} -- Seconds between each request (default: {0}) running_time {(time, time)} -- The start and stop hours of the agent. (default: {None}) """ self.camera_client = camera_client self.handle_image_callback = handle_image_callback # saving the base interval self.interval = (hours, minutes, seconds) self.running_time = running_time # Creating a scheduler. It will ask for an image to the camera every timelaps provided as arguments if blocking: self.scheduler = BlockingScheduler() else: self.scheduler = BackgroundScheduler() self.job = self.scheduler.add_job(self._request_image, 'interval', hours = hours, minutes = minutes, seconds = seconds, id="cam_capture") # This is set to True when a connection error occured. self.connection_error = False # logging self.logger = logging.getLogger("capture_module") self.logger.setLevel(logging.INFO) def _request_image(self): """ Used locally to request for an image to the camera. This is executed once every timelaps """ # Checking if we are currently running if not self._is_running(): self.logger.info("Currently not running - not fetching an image") return # capturing the image try: image = self.camera_client.capture_raw() if self.connection_error == True: # There is no more error now, we can use the main interval self.logger.warning("The camera has been reconnected after a loss of connection !") self.connection_error = False self.job.reschedule(trigger='interval', hours = self.interval[0], minutes = self.interval[1], seconds = self.interval[2]) self.logger.info("Image fetched") self.handle_image_callback(image) except requests.RequestException : # Here, the camera could not be found # Retrying once every minute if self.connection_error == False: # New error, logging it self.logger.error("Connection to camera lost, retrying in 1 minute") self.connection_error = True self.job.reschedule(trigger='interval', minutes = 1) else: # This error is not new, logging it as an info self.logger.info("Camera still not connected, retrying in 1 minute") except (CameraClient.BadCredentialsError, CameraClient.BadResponseFormat, Exception): self.logger.exception("An error has occured while retreiving the image") # Doing nothing, retrying the next time def _is_running(self): if self.running_time == None: return True cur_t = datetime.now().time() start_t = self.running_time[0] stop_t = self.running_time[1] if start_t <= stop_t: # classic range of time return start_t <= cur_t <= stop_t else: # the range covers the 00:00 hour return start_t <= cur_t or cur_t <= stop_t def start(self): """ Starting capturing image from the camera """ # we firstly get one image immediately self._request_image() # then, we start the scheduler self.scheduler.start() def get_logger(self): """ Returns the logger of this agent. Can be usefull to monitorate Returns: Logger -- The current logger """ return self.logger
2.375
2
docker-jans-configurator/scripts/bootstrap.py
duttarnab/jans
0
12783123
<gh_stars>0 import json import logging.config import os import random import socket import time from functools import partial from uuid import uuid4 import click from jans.pycloudlib import get_manager from jans.pycloudlib import wait_for from jans.pycloudlib.utils import get_random_chars from jans.pycloudlib.utils import get_sys_random_chars from jans.pycloudlib.utils import encode_text from jans.pycloudlib.utils import exec_cmd from jans.pycloudlib.utils import generate_base64_contents from jans.pycloudlib.utils import safe_render from jans.pycloudlib.utils import ldap_encode from jans.pycloudlib.utils import get_server_certificate from jans.pycloudlib.utils import generate_ssl_certkey from jans.pycloudlib.utils import generate_ssl_ca_certkey from jans.pycloudlib.utils import generate_signed_ssl_certkey from jans.pycloudlib.utils import as_boolean from jans.pycloudlib.utils import generate_keystore from parameter import params_from_file from settings import LOGGING_CONFIG DEFAULT_SIG_KEYS = "RS256 RS384 RS512 ES256 ES384 ES512 PS256 PS384 PS512" DEFAULT_ENC_KEYS = "RSA1_5 RSA-OAEP" DEFAULT_CONFIG_FILE = "/app/db/config.json" DEFAULT_SECRET_FILE = "/app/db/secret.json" DEFAULT_GENERATE_FILE = "/app/db/generate.json" logging.config.dictConfig(LOGGING_CONFIG) logger = logging.getLogger("configurator") manager = get_manager() def encode_template(fn, ctx, base_dir="/app/templates"): path = os.path.join(base_dir, fn) # ctx is nested which has `config` and `secret` keys data = {} for _, v in ctx.items(): data.update(v) with open(path) as f: return generate_base64_contents(safe_render(f.read(), data)) def generate_openid_keys(passwd, jks_path, jwks_path, dn, exp=365, sig_keys=DEFAULT_SIG_KEYS, enc_keys=DEFAULT_ENC_KEYS): cmd = " ".join([ "java", "-Dlog4j.defaultInitOverride=true", "-cp /app/javalibs/*", "io.jans.as.client.util.KeyGenerator", "-enc_keys", enc_keys, "-sig_keys", sig_keys, "-dnname", "{!r}".format(dn), "-expiration", "{}".format(exp), "-keystore", jks_path, "-keypasswd", <PASSWORD>, ]) out, err, retcode = exec_cmd(cmd) if retcode == 0: with open(jwks_path, "w") as f: f.write(out.decode()) return out, err, retcode def generate_openid_keys_hourly(passwd, jks_path, jwks_path, dn, exp=48, sig_keys=DEFAULT_SIG_KEYS, enc_keys=DEFAULT_ENC_KEYS): cmd = " ".join([ "java", "-Dlog4j.defaultInitOverride=true", "-cp /app/javalibs/*", "io.jans.as.client.util.KeyGenerator", "-enc_keys", enc_keys, "-sig_keys", sig_keys, "-dnname", "{!r}".format(dn), "-expiration_hours", "{}".format(exp), "-keystore", jks_path, "-keypasswd", <PASSWORD>, ]) out, err, retcode = exec_cmd(cmd) if retcode == 0: with open(jwks_path, "w") as f: f.write(out.decode()) return out, err, retcode def export_openid_keys(keystore, keypasswd, alias, export_file): cmd = " ".join([ "java", "-Dlog4j.defaultInitOverride=true", "-cp /app/javalibs/*", "io.jans.as.client.util.KeyExporter", "-keystore {}".format(keystore), "-keypasswd {}".format(keypasswd), "-alias {}".format(alias), "-exportfile {}".format(export_file), ]) return exec_cmd(cmd) def generate_pkcs12(suffix, passwd, hostname): # Convert key to pkcs12 cmd = " ".join([ "openssl", "pkcs12", "-export", "-inkey /etc/certs/{}.key".format(suffix), "-in /etc/certs/{}.crt".format(suffix), "-out /etc/certs/{}.pkcs12".format(suffix), "-name {}".format(hostname), "-passout pass:{}".format(passwd), ]) _, err, retcode = exec_cmd(cmd) assert retcode == 0, "Failed to generate PKCS12 file; reason={}".format(err) class CtxManager: def __init__(self, manager): self.manager = manager self.ctx = {"config": {}, "secret": {}} self._remote_config_ctx = None self._remote_secret_ctx = None @property def remote_config_ctx(self): if not self._remote_config_ctx: self._remote_config_ctx = self.manager.config.get_all() return self._remote_config_ctx @property def remote_secret_ctx(self): if not self._remote_secret_ctx: self._remote_secret_ctx = self.manager.secret.get_all() return self._remote_secret_ctx def set_config(self, key, value, reuse_if_exists=True): if reuse_if_exists and key in self.remote_config_ctx: logger.info(f"re-using config {key}") self.ctx["config"][key] = self.remote_config_ctx[key] return self.ctx["config"][key] logger.info(f"adding config {key}") if callable(value): value = value() self.ctx["config"][key] = value return self.ctx["config"][key] def set_secret(self, key, value, reuse_if_exists=True): if reuse_if_exists and key in self.remote_secret_ctx: logger.info(f"re-using secret {key}") self.ctx["secret"][key] = self.remote_secret_ctx[key] return self.ctx["secret"][key] logger.info(f"adding secret {key}") if callable(value): value = value() self.ctx["secret"][key] = value return value def get_config(self, key, default=None): return self.ctx["config"].get(key) or default def get_secret(self, key, default=None): return self.ctx["secret"].get(key) or default class CtxGenerator: def __init__(self, manager, params): self.params = params self.manager = manager self.ctx_manager = CtxManager(self.manager) @property def ctx(self): return self.ctx_manager.ctx def set_config(self, key, value, reuse_if_exists=True): return self.ctx_manager.set_config(key, value, reuse_if_exists) def set_secret(self, key, value, reuse_if_exists=True): return self.ctx_manager.set_secret(key, value, reuse_if_exists) def get_config(self, key, default=None): return self.ctx_manager.get_config(key, default) def get_secret(self, key, default=None): return self.ctx_manager.get_secret(key, default) def base_ctx(self): self.set_secret("encoded_salt", partial(get_random_chars, 24)) self.set_config("orgName", self.params["org_name"]) self.set_config("country_code", self.params["country_code"]) self.set_config("state", self.params["state"]) self.set_config("city", self.params["city"]) self.set_config("hostname", self.params["hostname"]) self.set_config("admin_email", self.params["email"]) # self.set_config("jetty_base", "/opt/jans/jetty") self.set_config("admin_inum", lambda: f"{uuid4()}") self.set_secret("encoded_admin_password", partial(ldap_encode, self.params["admin_pw"])) opt_scopes = self.params["optional_scopes"] self.set_config("optional_scopes", list(set(opt_scopes)), False) def ldap_ctx(self): encoded_salt = self.get_secret("encoded_salt") # self.set_secret("encoded_ldap_pw", ldap_encode(self.params["admin_pw"])) self.set_secret( "encoded_ox_ldap_pw", partial(encode_text, self.params["ldap_pw"], encoded_salt), ) self.set_config("ldap_init_host", "localhost") self.set_config("ldap_init_port", 1636) self.set_config("ldap_port", 1389) self.set_config("ldaps_port", 1636) self.set_config("ldap_binddn", "cn=directory manager") self.set_config("ldap_site_binddn", "cn=directory manager") ldap_truststore_pass = self.set_secret("ldap_truststore_pass", get_random_chars) self.set_config("ldapTrustStoreFn", "/etc/certs/opendj.pkcs12") hostname = self.get_config("hostname") generate_ssl_certkey( "opendj", self.get_config("admin_email"), hostname, self.get_config("orgName"), self.get_config("country_code"), self.get_config("state"), self.get_config("city"), extra_dns=["ldap"], ) with open("/etc/certs/opendj.pem", "w") as fw: with open("/etc/certs/opendj.crt") as fr: ldap_ssl_cert = fr.read() self.set_secret( "ldap_ssl_cert", partial(encode_text, ldap_ssl_cert, encoded_salt), ) with open("/etc/certs/opendj.key") as fr: ldap_ssl_key = fr.read() self.set_secret( "ldap_ssl_key", partial(encode_text, ldap_ssl_key, encoded_salt), ) ldap_ssl_cacert = "".join([ldap_ssl_cert, ldap_ssl_key]) fw.write(ldap_ssl_cacert) self.set_secret( "ldap_ssl_cacert", partial(encode_text, ldap_ssl_cacert, encoded_salt), ) generate_pkcs12("opendj", ldap_truststore_pass, hostname) with open(self.get_config("ldapTrustStoreFn"), "rb") as fr: self.set_secret( "ldap_pkcs12_base64", partial(encode_text, fr.read(), encoded_salt), ) self.set_secret( "encoded_ldapTrustStorePass", partial(encode_text, ldap_truststore_pass, encoded_salt), ) def redis_ctx(self): # TODO: move this to persistence-loader self.set_secret("redis_pw", self.params.get("redis_pw", "")) def auth_ctx(self): encoded_salt = self.get_secret("encoded_salt") self.set_config("default_openid_jks_dn_name", "CN=Janssen Auth CA Certificates") self.set_secret("pairwiseCalculationKey", partial(get_sys_random_chars, random.randint(20, 30))) self.set_secret("pairwiseCalculationSalt", partial(get_sys_random_chars, random.randint(20, 30))) auth_openid_jks_fn = self.set_config("auth_openid_jks_fn", "/etc/certs/auth-keys.jks") self.set_secret("auth_openid_jks_pass", get_random_chars) auth_openid_jwks_fn = self.set_config("auth_openid_jwks_fn", "/etc/certs/auth-keys.json") self.set_config("auth_legacyIdTokenClaims", "false") self.set_config("auth_openidScopeBackwardCompatibility", "false") # get user-input signing keys allowed_sig_keys = DEFAULT_SIG_KEYS.split() sig_keys = [] for k in self.params.get("auth_sig_keys", "").split(): k = k.strip() if k not in allowed_sig_keys: continue sig_keys.append(k) # if empty, fallback to default sig_keys = sig_keys or allowed_sig_keys sig_keys = " ".join(sig_keys) self.set_config("auth_sig_keys", sig_keys) # get user-input encryption keys allowed_enc_keys = DEFAULT_ENC_KEYS.split() enc_keys = [] for k in self.params.get("auth_enc_keys", "").split(): k = k.strip() if k not in allowed_enc_keys: continue enc_keys.append(k) # if empty, fallback to default enc_keys = enc_keys or allowed_enc_keys enc_keys = " ".join(enc_keys) self.set_config("auth_enc_keys", enc_keys) # default exp = 2 hours + token lifetime (in hour) exp = int(2 + (3600 / 3600)) _, err, retcode = generate_openid_keys_hourly( self.get_secret("auth_openid_jks_pass"), self.get_config("auth_openid_jks_fn"), auth_openid_jwks_fn, self.get_config("default_openid_jks_dn_name"), exp=exp, sig_keys=sig_keys, enc_keys=enc_keys, ) if retcode != 0: logger.error(f"Unable to generate auth keys; reason={err}") raise click.Abort() basedir, fn = os.path.split(auth_openid_jwks_fn) self.set_secret( "auth_openid_key_base64", partial(encode_template, fn, self.ctx, basedir), ) # auth keys self.set_config("auth_key_rotated_at", lambda: int(time.time())) with open(auth_openid_jks_fn, "rb") as fr: self.set_secret( "auth_jks_base64", partial(encode_text, fr.read(), encoded_salt), ) def config_api_ctx(self): self.set_config("jca_client_id", lambda: f"1801.{uuid4()}") jca_client_pw = self.set_secret("jca_client_pw", get_random_chars) self.set_secret( "jca_client_encoded_pw", partial(encode_text, jca_client_pw, self.get_secret("encoded_salt")) ) def passport_rs_ctx(self): encoded_salt = self.get_secret("encoded_salt") self.set_config("passport_rs_client_id", lambda: f"1501.{uuid4()}") passport_rs_client_jks_fn = self.set_config("passport_rs_client_jks_fn", "/etc/certs/passport-rs.jks") passport_rs_client_jwks_fn = self.set_config("passport_rs_client_jwks_fn", "/etc/certs/passport-rs-keys.json") passport_rs_client_jks_pass = self.set_secret("passport_rs_client_jks_pass", get_random_chars) self.set_secret( "passport_rs_client_jks_pass_encoded", partial(encode_text, passport_rs_client_jks_pass, encoded_salt), ) out, err, retcode = generate_openid_keys( passport_rs_client_jks_pass, passport_rs_client_jks_fn, passport_rs_client_jwks_fn, self.get_config("default_openid_jks_dn_name"), ) if retcode != 0: logger.error(f"Unable to generate Passport RS keys; reason={err}") raise click.Abort() passport_rs_client_cert_alg = self.set_config("passport_rs_client_cert_alg", "RS512") cert_alias = "" for key in json.loads(out)["keys"]: if key["alg"] == passport_rs_client_cert_alg: cert_alias = key["kid"] break self.set_config("passport_rs_client_cert_alias", cert_alias) basedir, fn = os.path.split(passport_rs_client_jwks_fn) self.set_secret( "passport_rs_client_base64_jwks", partial(encode_template, fn, self.ctx, basedir), ) with open(passport_rs_client_jks_fn, "rb") as fr: self.set_secret( "passport_rs_jks_base64", partial(encode_text, fr.read(), encoded_salt), ) self.set_config("passport_resource_id", lambda: f"1504.{uuid4()}") def passport_rp_ctx(self): encoded_salt = self.get_secret("encoded_salt") self.set_config("passport_rp_client_id", lambda: f"1502.{uuid4()}") self.set_config("passport_rp_ii_client_id", lambda: f"1503.{uuid4()}") passport_rp_client_jks_pass = self.set_secret("passport_rp_client_jks_pass", get_random_chars) passport_rp_client_jks_fn = self.set_config("passport_rp_client_jks_fn", "/etc/certs/passport-rp.jks") passport_rp_client_jwks_fn = self.set_config("passport_rp_client_jwks_fn", "/etc/certs/passport-rp-keys.json") passport_rp_client_cert_fn = self.set_config("passport_rp_client_cert_fn", "/etc/certs/passport-rp.pem") passport_rp_client_cert_alg = self.set_config("passport_rp_client_cert_alg", "RS512") out, err, code = generate_openid_keys( passport_rp_client_jks_pass, passport_rp_client_jks_fn, passport_rp_client_jwks_fn, self.get_config("default_openid_jks_dn_name"), ) if code != 0: logger.error(f"Unable to generate Passport RP keys; reason={err}") raise click.Abort() cert_alias = "" for key in json.loads(out)["keys"]: if key["alg"] == passport_rp_client_cert_alg: cert_alias = key["kid"] break self.set_config("passport_rp_client_cert_alias", cert_alias) _, err, retcode = export_openid_keys( passport_rp_client_jks_fn, passport_rp_client_jks_pass, cert_alias, passport_rp_client_cert_fn, ) if retcode != 0: logger.error(f"Unable to generate Passport RP client cert; reason={err}") raise click.Abort() basedir, fn = os.path.split(passport_rp_client_jwks_fn) self.set_secret("passport_rp_client_base64_jwks", partial(encode_template, fn, self.ctx, basedir)) with open(passport_rp_client_jks_fn, "rb") as fr: self.set_secret( "passport_rp_jks_base64", partial(encode_text, fr.read(), encoded_salt), ) with open(passport_rp_client_cert_fn) as fr: self.set_secret( "passport_rp_client_cert_base64", partial(encode_text, fr.read(), encoded_salt), ) def passport_sp_ctx(self): encoded_salt = self.get_secret("encoded_salt") # passportSpKeyPass = self.set_secret("passportSpKeyPass", get_random_chars()) # noqa: N806 _ = self.set_secret("passportSpKeyPass", get_random_chars) # noqa: N806 self.set_config("passportSpTLSCACert", '/etc/certs/passport-sp.pem') passportSpTLSCert = self.set_config("passportSpTLSCert", '/etc/certs/passport-sp.crt') # noqa: N806 passportSpTLSKey = self.set_config("passportSpTLSKey", '/etc/certs/passport-sp.key') # noqa: N806 self.set_secret("passportSpJksPass", get_random_chars) self.set_config("passportSpJksFn", '/etc/certs/passport-sp.jks') generate_ssl_certkey( "passport-sp", self.get_config("admin_email"), self.get_config("hostname"), self.get_config("orgName"), self.get_config("country_code"), self.get_config("state"), self.get_config("city"), ) with open(passportSpTLSCert) as f: self.set_secret( "passport_sp_cert_base64", partial(encode_text, f.read(), encoded_salt), ) with open(passportSpTLSKey) as f: self.set_secret( "passport_sp_key_base64", partial(encode_text, f.read(), encoded_salt), ) def web_ctx(self): ssl_cert = "/etc/certs/web_https.crt" ssl_key = "/etc/certs/web_https.key" ssl_csr = "/etc/certs/web_https.csr" ssl_ca_cert = "/etc/certs/ca.crt" ssl_ca_key = "/etc/certs/ca.key" # get cert and key (if available) with priorities below: # # 1. from mounted files # 2. from fronted (key file is an empty file) # 3. self-generate files logger.info(f"Resolving {ssl_cert} and {ssl_key}") # check from mounted files if not (os.path.isfile(ssl_cert) and os.path.isfile(ssl_key)): # no mounted files, hence download from frontend ingress_addr = "" if "CN_INGRESS_ADDRESS" in os.environ: ingress_addr = os.environ.get("CN_INGRESS_ADDRESS") ingress_servername = os.environ.get("CN_INGRESS_SERVERNAME") or ingress_addr if ingress_addr and ingress_servername: logger.warning( f"Unable to find mounted {ssl_cert} and {ssl_key}; " f"trying to download from {ingress_addr}:443 (servername {ingress_servername})" # noqa: C812 ) try: # cert will be downloaded into `ssl_cert` path get_server_certificate(ingress_addr, 443, ssl_cert, ingress_servername) # since cert is downloaded, key must mounted # or generate empty file if not os.path.isfile(ssl_key): with open(ssl_key, "w") as f: f.write("") except (socket.gaierror, socket.timeout, OSError) as exc: # address not resolved or timed out logger.warning(f"Unable to download cert; reason={exc}") # no mounted nor downloaded files, hence we need to create self-generated files if not (os.path.isfile(ssl_cert) and os.path.isfile(ssl_key)): hostname = self.get_config("hostname") email = self.get_config("admin_email") org_name = self.get_config("orgName") country_code = self.get_config("country_code") state = self.get_config("state") city = self.get_config("city") logger.info(f"Creating self-generated {ssl_ca_cert} and {ssl_ca_key}") ca_cert, ca_key = generate_ssl_ca_certkey( "ca", email, "Janssen CA", org_name, country_code, state, city, ) logger.info(f"Creating self-generated {ssl_csr}, {ssl_cert}, and {ssl_key}") generate_signed_ssl_certkey( "web_https", ca_key, ca_cert, email, hostname, org_name, country_code, state, city, ) try: with open(ssl_ca_cert) as f: self.set_secret("ssl_ca_cert", f.read) except FileNotFoundError: self.set_secret("ssl_ca_cert", "") try: with open(ssl_ca_key) as f: self.set_secret("ssl_ca_key", f.read) except FileNotFoundError: self.set_secret("ssl_ca_key", "") try: with open(ssl_csr) as f: self.set_secret("ssl_csr", f.read) except FileNotFoundError: self.set_secret("ssl_csr", "") with open(ssl_cert) as f: self.set_secret("ssl_cert", f.read) with open(ssl_key) as f: self.set_secret("ssl_key", f.read) def oxshibboleth_ctx(self): encoded_salt = self.get_secret("encoded_salt") hostname = self.get_config("hostname") admin_email = self.get_config("admin_email") orgName = self.get_config("orgName") # noqa: N806 country_code = self.get_config("country_code") state = self.get_config("state") city = self.get_config("city") self.set_config("idp_client_id", lambda: f"1101.{uuid4()}") self.set_secret( "idpClient_encoded_pw", partial(encode_text, get_random_chars(), encoded_salt), ) shibJksFn = self.set_config("shibJksFn", "/etc/certs/shibIDP.jks") # noqa: N806 shibJksPass = self.set_secret("shibJksPass", get_random_chars) # noqa: N806 self.set_secret( "encoded_shib_jks_pw", partial(encode_text, shibJksPass, encoded_salt), ) generate_ssl_certkey( "shibIDP", admin_email, hostname, orgName, country_code, state, city, ) generate_keystore("shibIDP", hostname, shibJksPass) with open("/etc/certs/shibIDP.crt") as f: self.set_secret( "shibIDP_cert", partial(encode_text, f.read(), encoded_salt), ) with open("/etc/certs/shibIDP.key") as f: self.set_secret( "shibIDP_key", partial(encode_text, f.read(), encoded_salt), ) with open(shibJksFn, "rb") as f: self.set_secret( "shibIDP_jks_base64", partial(encode_text, f.read(), encoded_salt), ) self.set_config("shibboleth_version", "v3") self.set_config("idp3Folder", "/opt/shibboleth-idp") idp3_signing_cert = "/etc/certs/idp-signing.crt" idp3_signing_key = "/etc/certs/idp-signing.key" generate_ssl_certkey( "idp-signing", admin_email, hostname, orgName, country_code, state, city, ) with open(idp3_signing_cert) as f: self.set_secret("idp3SigningCertificateText", f.read) with open(idp3_signing_key) as f: self.set_secret("idp3SigningKeyText", f.read) idp3_encryption_cert = "/etc/certs/idp-encryption.crt" idp3_encryption_key = "/etc/certs/idp-encryption.key" generate_ssl_certkey( "idp-encryption", admin_email, hostname, orgName, country_code, state, city, ) with open(idp3_encryption_cert) as f: self.set_secret("idp3EncryptionCertificateText", f.read) with open(idp3_encryption_key) as f: self.set_secret("idp3EncryptionKeyText", f.read) _, err, code = gen_idp3_key(shibJksPass) if code != 0: logger.warninging(f"Unable to generate Shibboleth sealer; reason={err}") raise click.Abort() with open("/etc/certs/sealer.jks", "rb") as f: self.set_secret( "sealer_jks_base64", partial(encode_text, f.read(), encoded_salt), ) with open("/etc/certs/sealer.kver") as f: self.set_secret( "sealer_kver_base64", partial(encode_text, f.read(), encoded_salt), ) def radius_ctx(self): encoded_salt = self.get_secret("encoded_salt") self.set_config("jans_radius_client_id", f'1701.{uuid4()}') self.set_secret( "jans_ro_encoded_pw", partial(encode_text, get_random_chars(), encoded_salt), ) radius_jwt_pass = self.set_secret( "radius_jwt_pass", partial(encode_text, get_random_chars(), encoded_salt), ) out, err, code = generate_openid_keys( radius_jwt_pass, "/etc/certs/jans-radius.jks", "/etc/certs/jans-radius.keys", self.get_config("default_openid_jks_dn_name"), ) if code != 0: logger.error(f"Unable to generate Radius keys; reason={err}") raise click.Abort() for key in json.loads(out)["keys"]: if key["alg"] == "RS512": self.set_config("radius_jwt_keyId", key["kid"]) break with open("/etc/certs/jans-radius.jks", "rb") as fr: self.set_secret( "radius_jks_base64", partial(encode_text, fr.read(), encoded_salt), ) basedir, fn = os.path.split("/etc/certs/jans-radius.keys") self.set_secret( "jans_ro_client_base64_jwks", partial(encode_template, fn, self.ctx, basedir), ) def scim_ctx(self): self.set_config("scim_client_id", lambda: f"1201.{uuid4()}") scim_client_pw = self.set_secret("scim_client_pw", get_random_chars) self.set_secret( "scim_client_encoded_pw", partial(encode_text, scim_client_pw, self.get_secret("encoded_salt")) ) def couchbase_ctx(self): # TODO: move this to persistence-loader? self.set_config("couchbaseTrustStoreFn", "/etc/certs/couchbase.pkcs12") self.set_secret("couchbase_shib_user_password", get_random_chars) self.set_secret("couchbase_password", self.params["couchbase_pw"]) self.set_secret("couchbase_superuser_password", self.params["couchbase_superuser_pw"]) def jackrabbit_ctx(self): # self.set_secret("jca_pw", get_random_chars()) # self.set_secret("jca_pw", "admin") pass def fido2_ctx(self): # TODO: hardcoded in persistence-loader? self.set_config("fido2ConfigFolder", "/etc/jans/conf/fido2") def sql_ctx(self): self.set_secret("sql_password", self.params["sql_pw"]) def casa_ctx(self): self.set_config("casa_client_id", lambda: f"1902.{uuid4()}") casa_client_pw = self.set_secret("casa_client_pw", get_random_chars) self.set_secret( "casa_client_encoded_pw", partial(encode_text, casa_client_pw, self.get_secret("encoded_salt")) ) def generate(self): opt_scopes = self.params["optional_scopes"] self.base_ctx() self.auth_ctx() self.config_api_ctx() self.web_ctx() if "ldap" in opt_scopes: self.ldap_ctx() if "redis" in opt_scopes: self.redis_ctx() # self.passport_rs_ctx() # self.passport_rp_ctx() # self.passport_sp_ctx() # self.oxshibboleth_ctx() # self.radius_ctx() if "scim" in opt_scopes: self.scim_ctx() if "couchbase" in opt_scopes: self.couchbase_ctx() # self.jackrabbit_ctx() if "fido2" in opt_scopes: self.fido2_ctx() if "sql" in opt_scopes: self.sql_ctx() if "casa" in opt_scopes: self.casa_ctx() # populated config return self.ctx def gen_idp3_key(storepass): cmd = " ".join([ "java", "-classpath '/app/javalibs/*'", "net.shibboleth.utilities.java.support.security.BasicKeystoreKeyStrategyTool", "--storefile /etc/certs/sealer.jks", "--versionfile /etc/certs/sealer.kver", "--alias secret", "--storepass {}".format(storepass), ]) return exec_cmd(cmd) def _save_generated_ctx(manager, data, type_): if type_ == "config": backend = manager.config else: backend = manager.secret logger.info("Saving {} to backend".format(type_)) backend.set_all(data) def _load_from_file(manager, filepath, type_): ctx_manager = CtxManager(manager) if type_ == "config": setter = ctx_manager.set_config backend = manager.config else: setter = ctx_manager.set_secret backend = manager.secret logger.info(f"Loading {type_} from {filepath}") with open(filepath, "r") as f: data = json.loads(f.read()) ctx = data.get(f"_{type_}") if not ctx: logger.warning(f"Missing '_{type_}' key") return # tolerancy before checking existing key time.sleep(5) data = {k: setter(k, v) for k, v in ctx.items()} backend.set_all(data) def _dump_to_file(manager, filepath, type_): if type_ == "config": backend = manager.config else: backend = manager.secret logger.info("Saving {} to {}".format(type_, filepath)) data = {"_{}".format(type_): backend.get_all()} data = json.dumps(data, sort_keys=True, indent=4) with open(filepath, "w") as f: f.write(data) # ============ # CLI commands # ============ @click.group() def cli(): pass @cli.command() @click.option( "--generate-file", type=click.Path(exists=False), help="Absolute path to file containing parameters for generating config and secret", default=DEFAULT_GENERATE_FILE, show_default=True, ) @click.option( "--config-file", type=click.Path(exists=False), help="Absolute path to file contains config", default=DEFAULT_CONFIG_FILE, show_default=True, ) @click.option( "--secret-file", type=click.Path(exists=False), help="Absolute path to file contains secret", default=DEFAULT_SECRET_FILE, show_default=True, ) def load(generate_file, config_file, secret_file): """Loads config and secret from JSON files (generate if not exist). """ deps = ["config_conn", "secret_conn"] wait_for(manager, deps=deps) # check whether config and secret in backend have been initialized should_skip = as_boolean(os.environ.get("CN_CONFIGURATION_SKIP_INITIALIZED", False)) if should_skip and manager.config.get("hostname") and manager.secret.get("ssl_cert"): # config and secret may have been initialized logger.info("Config and secret have been initialized") return # there's no config and secret in backend, check whether to load from files if os.path.isfile(config_file) and os.path.isfile(secret_file): # load from existing files logger.info(f"Re-using config and secret from {config_file} and {secret_file}") _load_from_file(manager, config_file, "config") _load_from_file(manager, secret_file, "secret") return # no existing files, hence generate new config and secret from parameters logger.info(f"Loading parameters from {generate_file}") params, err, code = params_from_file(generate_file) if code != 0: logger.error(f"Unable to load parameters; reason={err}") raise click.Abort() logger.info("Generating new config and secret") ctx_generator = CtxGenerator(manager, params) ctx = ctx_generator.generate() # save config to its backend and file _save_generated_ctx(manager, ctx["config"], "config") _dump_to_file(manager, config_file, "config") # save secret to its backend and file _save_generated_ctx(manager, ctx["secret"], "secret") _dump_to_file(manager, secret_file, "secret") @cli.command() @click.option( "--config-file", type=click.Path(exists=False), help="Absolute path to file to save config", default=DEFAULT_CONFIG_FILE, show_default=True, ) @click.option( "--secret-file", type=click.Path(exists=False), help="Absolute path to file to save secret", default=DEFAULT_SECRET_FILE, show_default=True, ) def dump(config_file, secret_file): """Dumps config and secret into JSON files. """ deps = ["config_conn", "secret_conn"] wait_for(manager, deps=deps) _dump_to_file(manager, config_file, "config") _dump_to_file(manager, secret_file, "secret") if __name__ == "__main__": cli(prog_name="configurator")
1.820313
2
src/util/config/view.py
Mathtin/mc-discord-bot
0
12783124
<reponame>Mathtin/mc-discord-bot #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ MIT License Copyright (c) 2021-present Daniel [Mathtin] Shiko <<EMAIL>> Project: Minecraft Discord Bot Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __author__ = "Mathtin" import typing from ..exceptions import InvalidConfigException from typing import Any, Callable, Dict, Type, get_type_hints class ConfigView(object): # Class fields _type_constructor_map: Dict[Type[Any], Callable[[Any, str], Any]] = { int: lambda v, p: int(v), float: lambda v, p: float(v), bool: lambda v, p: bool(v), str: lambda v, p: str(v), list: lambda v, p: list(v), dict: lambda v, p: dict(v), } _field_constructor_map: Dict[str, Callable[[Any, str], Any]] = None # Instance fields _path_prefix: str def __init__(self, values: typing.Optional[Dict[str, Any]] = None, path_prefix: str = '') -> None: if values is None: values = {} self._path_prefix = path_prefix # Build {_field_constructor_map} for each class implementation if self._field_constructor_map is None: types = get_type_hints(self.__class__) self.__class__._field_constructor_map = { field: self.get_type_constructor(type_) for field, type_ in types.items() if not field.startswith('_') } # Construct each field value provided by {values} for key, value in values.items(): if key not in self._field_constructor_map: raise InvalidConfigException(f"Invalid key: {key}", self.path(key)) if value is not None: constructor = self._field_constructor_map[key] field_value = constructor(value, self.path(key)) setattr(self, key, field_value) def get_type_constructor(self, type_: Type[Any]) -> Callable[[Any, str], Any]: if type_ not in self._type_constructor_map: self._type_constructor_map[type_] = self._resolve_constructor(type_) return self._type_constructor_map[type_] def _resolve_constructor(self, type_: Type[Any]) -> Callable[[Any, str], Any]: # Primitive types already exist, only ConfigView and complex List/Dict type-hints are supported if isinstance(type_, typing._GenericAlias): # Resolve complex List type-hint if type_._name == 'List': sub_constructor = self.get_type_constructor(type_.__args__[0]) return lambda l, p: [sub_constructor(e, f'{p}[{i}]') for i, e in enumerate(l)] # Resolve complex Dict type-hint elif type_._name == 'Dict': # Check key type if type_.__args__[0] is not str: raise TypeError(f"Unsupported dict key type hint: {type_.__args__[0]}") sub_constructor = self.get_type_constructor(type_.__args__[1]) return lambda d, p: {k: sub_constructor(v, f'{p}.{k}') for k, v in d.items()} # Other type-hints are not supported raise TypeError(f"Unsupported type hint: {type_}") # ConfigView are constructor-ready if issubclass(type_, ConfigView): return type_ raise TypeError(f"Unsupported type: {type_}") def path(self, sub_path: str) -> str: return f'{self._path_prefix}.{sub_path}' if self._path_prefix else sub_path def get(self, path: str) -> Any: if path == '.': return self parts = path.split('.') node = self for part in parts: if not hasattr(node, part): raise KeyError(f"Invalid path: {path}") node = getattr(node, part) return node def to_dict(self) -> dict: res = {} for field in self._field_constructor_map: value = getattr(self, field) res[field] = self.deconstruct_obj(value) return res @staticmethod def deconstruct_obj(o: Any) -> Any: if isinstance(o, ConfigView): return o.to_dict() elif isinstance(o, list): return [ConfigView.deconstruct_obj(v) for v in o] elif isinstance(o, dict): return {k: ConfigView.deconstruct_obj(v) for k, v in o.items()} return o def __iter__(self): for field in self._field_constructor_map: yield field, getattr(self, field)
2.3125
2
Lib/test/test_async.py
pyparallel/pyparallel
652
12783125
import os import sys import atexit import unittest import tempfile import async import _async import socket from socket import ( AF_INET, SOCK_STREAM, ) def tcpsock(): return socket.socket(AF_INET, SOCK_STREAM) CHARGEN = [ r""" !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefg""", r"""!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh""", r""""#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi""", r"""#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghij""", r"""$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijk""", ] QOTD = 'An apple a day keeps the doctor away.\r\n' ECHO_HOST = ('echo.snakebite.net', 7) QOTD_HOST = ('qotd.snakebite.net', 17) DISCARD_HOST = ('discard.snakebite.net', 9) DAYTIME_HOST = ('daytime.snakebite.net', 13) CHARGEN_HOST = ('chargen.snakebite.net', 19) SERVICES_IP = socket.getaddrinfo(*ECHO_HOST)[0][4][0] ECHO_IP = (SERVICES_IP, 7) DISCARD_IP = (SERVICES_IP, 9) DAYTIME_IP = (SERVICES_IP, 13) CHARGEN_IP = (SERVICES_IP, 19) NO_CB = None NO_EB = None HOST = '1192.168.3.11' ADDR = (HOST, 0) TEMPDIR = None def rmtempdir(): if TEMPDIR: TEMPDIR.cleanup() def tempfile(): if not TEMPDIR: TEMPDIR = tempfile.TemporaryDirectory() assert os.path.isdir(TEMPDIR) atexit.register(rmtempdir) assert os.path.isdir(TEMPDIR) f = tempfile.NamedTemporaryFile(dir=TEMPDIR, delete=False) assert os.path.isfile(f) return f def tempfilename(): f = tempfile() f.close() return f.name class TestBasic(unittest.TestCase): def test_calling_run_with_no_events_fails(self): self.assertRaises(AsyncRunCalledWithoutEventsError, _async.run_once) class TestSubmitWork(unittest.TestCase): def test_submit_simple_work(self): def f(i): return i * 2 def cb(r): _async.call_from_main_thread( self.assertEqual, (r, 4), ) _async.submit_work(f, 2, None, cb, None) _async.run() def test_value_error_in_callback(self): def f(): return laksjdflaskjdflsakjdfsalkjdf _async.submit_work(f, None, None, None, None) self.assertRaises(NameError, _async.run) def test_value_error_in_callback_then_run(self): def f(): return laksjdflaskjdflsakjdfsalkjdf _async.submit_work(f, None, None, None, None) self.assertRaises(NameError, _async.run) _async.run() def test_multiple_value_errors_in_callback_then_run(self): def f(): return laksjdflaskjdflsakjdfsalkjdf _async.submit_work(f, None, None, None, None) _async.submit_work(f, None, None, None, None) self.assertRaises(NameError, _async.run) self.assertRaises(NameError, _async.run) _async.run() def test_call_from_main_thread(self): d = {} def f(i): _async.call_from_main_thread_and_wait( d.__setitem__, ('foo', i*2), ) return _async.call_from_main_thread_and_wait( d.__getitem__, 'foo' ) def cb(r): _async.call_from_main_thread( self.assertEqual, (r, 4), ) _async.submit_work(f, 2, None, cb, None) _async.run() def test_call_from_main_thread_decorator(self): @async.call_from_main_thread def f(): self.assertFalse(_async.is_parallel_thread) _async.submit_work(f, None, None, None, None) _async.run() def test_submit_simple_work_errback_invoked(self): def f(): return laksjdflaskjdflsakjdfsalkjdf def test_e(et, ev, eb): try: f() except NameError as e2: self.assertEqual(et, e2.__class__) self.assertEqual(ev, e2.args[0]) self.assertEqual(eb.__class__, e2.__traceback__.__class__) else: self.assertEqual(0, 1) def cb(r): _async.call_from_main_thread(self.assertEqual, (0, 1)) def eb(e): _async.call_from_main_thread_and_wait(test_e, e) _async.submit_work(f, None, None, cb, eb) _async.run() class TestSubmitFileIO(unittest.TestCase): def test_write(self): n = tempfilename() f = open(n, 'w') _async.submit_io(f.write, b'foo', None, None, None) _async.run() f.close() with open(n, 'w') as f: self.assertEqual(f.read(), b'foo') def test_read(self): @async.call_from_main_thread def cb(d): self.assertEqual(d, b'foo') n = tempfilename() with open(n, 'w') as f: f.write(b'foo') f = open(n, 'r') _async.submit_io(f.read, None, None, cb, None) _async.run() class TestConnectSocketIO(unittest.TestCase): def test_backlog(self): sock = tcpsock() port = sock.bind(ADDR) sock.listen(100) self.assertEqual(sock.backlog, 100) sock.close() def test_connect(self): @async.call_from_main_thread def cb(): self.assertEqual(1, 1) sock = tcpsock() _async.connect(sock, DISCARD_IP, 1, None, cb, NO_EB) _async.run() def test_connect_with_data(self): @async.call_from_main_thread def cb(sock): self.assertEqual(1, 1) sock = tcpsock() _async.connect(sock, DISCARD_IP, 1, b'buf', cb, NO_EB) _async.run() def test_connect_with_data(self): @async.call_from_main_thread def cb(sock): self.assertEqual(1, 1) sock = tcpsock() _async.connect(sock, DISCARD_IP, 1, b'buf', cb, NO_EB) _async.run() def test_connect_then_recv(self): @async.call_from_main_thread def _check(data): self.assertEqual(data, QOTD) def read_cb(sock, data): _check(data) def connect_cb(sock): _async.recv(sock, read_cb, NO_EB) sock = tcpsock() _async.connect(sock, QOTD_IP, 1, None, connect_cb, NO_EB) _async.run() def test_connect_with_data_then_recv(self): @async.call_from_main_thread def _check(data): self.assertEqual(data, b'hello') def read_cb(sock, data): _check(data) def connect_cb(sock): _async.recv(sock, read_cb, NO_EB) sock = tcpsock() _async.connect(sock, ECHO_IP, 1, b'hello', connect_cb, NO_EB) _async.run() def test_connect_then_send_then_recv(self): @async.call_from_main_thread def _check(data): self.assertEqual(data, b'hello') def read_cb(sock, data): _check(data) def connect_cb(sock): _async.recv(sock, read_cb, NO_EB) _async.send(sock, b'hello', NO_CB, NO_EB) sock = tcpsock() _async.connect(sock, ECHO_IP, 1, None, connect_cb, NO_EB) _async.run() def test_recv_before_connect_with_data_then_recv(self): @async.call_from_main_thread def _check(data): self.assertEqual(data, b'hello') def read_cb(sock, data): _check(data) sock = tcpsock() _async.recv(sock, read_cb, NO_EB) _async.connect(sock, ECHO_IP, 1, b'hello', NO_CB, NO_EB) _async.run() def test_recv_before_connect_then_send_then_recv(self): @async.call_from_main_thread def _check(data): self.assertEqual(data, b'hello') def read_cb(sock, data): _check(data) def connect_cb(sock): _async.send(sock, b'hello', NO_CB, NO_EB) sock = tcpsock() _async.recv(sock, read_cb, NO_EB) _async.connect(sock, ECHO_IP, 1, None, connect_cb, NO_EB) _async.run() class TestAcceptSocketIO(unittest.TestCase): def test_accept(self): @async.call_from_main_thread def new_connection(sock, data): self.assertEqual(data, b'hello') sock = tcpsock() port = sock.bind(ADDR) addr = sock.getsockname() sock.listen(1) _async.accept(sock, new_connection, NO_EB) client = tcpsock() _async.connect(client, addr, 1, b'hello', NO_CB, NO_EB) _async.run() sock.close() def test_accept_backlog2(self): counter = 0 @async.call_from_main_thread def new_connection(sock, data): self.assertEqual(data, b'hello') counter += 1 sock = tcpsock() port = sock.bind(ADDR) addr = sock.getsockname() sock.listen(2) _async.accept(sock, new_connection, NO_EB) client = tcpsock() _async.connect(client, addr, 2, b'hello', NO_CB, NO_EB) _async.run() self.assertEqual(counter, 2) if __name__ == '__main__': unittest.main() # vim:set ts=8 sw=4 sts=4 tw=78 et:
2.484375
2
relezoo/cli/cli.py
Ohtar10/rele-zoo
0
12783126
<gh_stars>0 import logging import click from relezoo.__version__ import __version__ from relezoo.algorithms import reinforce from relezoo.utils.console import start_python_console def docstring_parameter(*sub): """Decorate the main click command to format the docstring.""" def dec(obj): obj.__doc__ = obj.__doc__.format(*sub) return obj return dec @click.group() @click.option("--debug/--no-debug", default=False, help="Enable debug output.") @click.option("-wd", "--work-dir", default=".", help="Working directory to drop output.") @click.pass_context @docstring_parameter(__version__) def relezoo(ctx, debug, work_dir): """ReleZoo {0}""" logging.basicConfig(format="%(levelname)s - %(asctime)s: %(message)s ", level=logging.INFO if not debug else logging.DEBUG) ctx.ensure_object(dict) ctx.obj['WORK_DIR'] = work_dir @relezoo.command() @click.pass_context def shell(ctx): """Run interactive shell with preloaded module resources.""" start_python_console(banner='ReleZoo shell') relezoo.add_command(reinforce.command)
2.140625
2
decode/struct_SHELL_LINK_HEADER.py
SkyLined/headsup
1
12783127
# Copyright 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import C; LINK_CLSID = '{00021401-0000-0000-C000-000000000046}'; VALID_SHOW_COMMAND_VALUES = { 1: 'SW_SHOWNORMAL', 3: 'SW_SHOWMAXIMIZED', 7: 'SW_SHOWMINNOACTIVE', }; VALID_HOTKEY_LOWBYTE_VALUES = { 0x90: 'NumLock', 0x91: 'ScrollLock', }; for i in range(0x30, 0x3A): VALID_HOTKEY_LOWBYTE_VALUES[i] = chr(i); # 0 - 9 for i in range(0x41, 0x5B): VALID_HOTKEY_LOWBYTE_VALUES[i] = chr(i); # A - Z for i in range(1, 25): VALID_HOTKEY_LOWBYTE_VALUES[i + 0x6F] = 'F%d' % i; # F1 - F24 (!) # bitflags_LinkFlags def bitflags_LinkFlags(stream, offset, max_size, parent, name): result = C.BITFIELD(stream, offset, max_size, parent, name, \ ('Reserved', 5), ('KeepLocalIDListForUNCTarget', 1), ('PreferEnvironmentPath', 1), ('UnaliasOnSave', 1), ('AllowLinkToLink', 1), ('DisableKnownFolderAlias', 1), ('DisableKnownFolderTracking', 1), ('DisableLinkPathTracking', 1), ('EnableTargetMetadata', 1), ('ForceNoLinkTrack', 1), ('RunWithShimLayer', 1), ('Unused2', 1), ('NoPidlAlis', 1), ('HasExpIcon', 1), ('RunAsUser', 1), ('HasDarwinID', 1), ('Unused1', 1), ('RunInSeperateProcess', 1), ('HasExpString', 1), ('ForceNoLinkInfo', 1), ('IsUnicode', 1), ('HasIconLocation', 1), ('HasArguments', 1), ('HasWorkingDir', 1), ('HasRelativePath', 1), ('HasName', 1), ('HasLinkInfo', 1), ('HasLinkTargetIDList', 1) ); result.dump_simplified = True; if result._Unused1.value != 0: result._Unused1.warnings.append('Expected value to be 0'); if result._Unused2.value != 0: result._Unused2.warnings.append('Expected value to be 0'); if result._Reserved.value != 0: result._Reserved.warnings.append('Expected value to be 0'); return result; # bitflags_FileAttributes def bitflags_FileAttributes(stream, offset, max_size, parent, name): result = C.BITFIELD(stream, offset, max_size, parent, name, \ ('Unused', 17), ('FILE_ATTRIBUTE_ENCRYPTED', 1), ('FILE_ATTRIBUTE_NOT_CONTENT_INDEXED', 1), ('FILE_ATTRIBUTE_OFFLINE', 1), ('FILE_ATTRIBUTE_COMPRESSED', 1), ('FILE_ATTRIBUTE_REPARSE_POINT', 1), ('FILE_ATTRIBUTE_SPARSE_FILE', 1), ('FILE_ATTRIBUTE_TEMPORARY', 1), ('FILE_ATTRIBUTE_NORMAL', 1), ('Reserved2', 1), ('FILE_ATTRIBUTE_ARCHIVE', 1), ('FILE_ATTRIBUTE_DIRECTORY', 1), ('Reserved1', 1), ('FILE_ATTRIBUTE_SYSTEM', 1), ('FILE_ATTRIBUTE_HIDDEN', 1), ('FILE_ATTRIBUTE_READONLY', 1) ); result.dump_simplified = True; if result._Reserved1.value != 0: result._Reserved1.warnings.append('Expected value to be 0'); if result._Reserved2.value != 0: result._Reserved2.warnings.append('Expected value to be 0'); return result; # struct_HotKeyFlags def struct_HotKeyFlags(stream, offset, max_size, parent, name): result = C.STRUCT(stream, offset, max_size, parent, name, \ 'HotKeyFlags', \ ('LowByte', C.BYTE), ('HighByte', {C.BITFIELD: ( ('Reserved', 5), ('HOTKEYF_ALT', 1), ('HOTKEYF_CONTROL', 1), ('HOTKEYF_SHIFT', 1), )}) ); if results._LowByte.value in VALID_HOTKEY_LOWBYTE_VALUES: result._LowByte.notes.append( \ VALID_HOTKEY_LOWBYTE_VALUES[result._LowByte.value]); else: result._LowByte.warnings.append('Unrecognized value'); if results._HighByte._Reserved.value > 0: results._HighByte._Reserved.warnings.append('Expected value to be 0'); return result; # http://download.microsoft.com/download/B/0/B/B0B199DB-41E6-400F-90CD-C350D0C14A53/%5BMS-SHLLINK%5D.pdf def struct_SHELL_LINK_HEADER(stream, offset, max_size, parent, name): import C; from struct_GUID import struct_GUID; result = C.STRUCT(stream, offset, max_size, parent, name, \ 'LNK_HEADER', \ ('HeaderSize', C.DWORD), ('LinkCLSID', struct_GUID), ('LinkFlags', bitflags_LinkFlags), ('FileAttributes', bitflags_FileAttributes), ('CreationTime', C.QWORD), ('AccessTime', C.QWORD), ('WriteTime', C.QWORD), ('FileSize', C.UINT), ('IconIndex', C.INT), ('ShowCommand', C.UINT), ('HotKey', C.WORD), ('Reserved1', C.WORD), ('Reserved2', C.DWORD), ('Reserved3', C.DWORD) ); if result._HeaderSize.value != 0x4C: result._HeaderSize.warnings.append( 'expected value to be 0x4C'); if result._LinkCLSID.string_value != LINK_CLSID: result._LinkCLSID.warnings.append('expected value to be "%s"' % LINK_CLSID); if result._ShowCommand.value in VALID_SHOW_COMMAND_VALUES: result._ShowCommand.notes.append( \ VALID_SHOW_COMMAND_VALUES[result._ShowCommand.value]); else: valid_values = VALID_SHOW_COMMAND_VALUES.keys() valid_values = '%s or %s' % \ (', '.join(valid_values[:-1]), valid_values[-1]); result._ShowCommand.warnings.append( \ 'Expected value to be %s' % valid_values); if result._Reserved1.value != 0: result._Reserved1.warnings.append('Expected value to be 0'); if result._Reserved2.value != 0: result._Reserved2.warnings.append('Expected value to be 0'); return result;
1.796875
2
python/Exercicios/ex094.py
Robert-Marchinhaki/primeiros-passos-Python
0
12783128
<filename>python/Exercicios/ex094.py grupo_pessoas = [] pessoas = {} med_idade_grupo = 0 mulheres = [] p_acima_media = [] while True: nome = str(input('Nome: ')) idade = int(input('Idade: ')) sexo = str(input('Sexo [F/M/O]: ')).upper().strip() while sexo not in 'FMO': print('Erro! Use somente [F/M/O].') sexo = str(input('Sexo [F/M/O]: ')).upper().strip() if sexo in 'F': mulheres.append(nome) pessoas['nome'] = nome pessoas['idade'] = idade pessoas['sexo'] = sexo grupo_pessoas.append(pessoas.copy()) med_idade_grupo += idade parada = str(input('Quer continuar? [S/N]: ')).upper().strip() print('-=' * 20) while parada not in 'SN': print('Erro! Use somento [S/N].') parada = str(input('Quer continuar? [S/N]: ')).upper().strip() print('-=' * 20) if parada in 'N': break med_idade_grupo /= len(grupo_pessoas) for c in range(0, len(grupo_pessoas)): if grupo_pessoas[c]['idade'] > med_idade_grupo: p_acima_media.append(grupo_pessoas[c]['nome']) print('-=' * 20) print(grupo_pessoas) print(f'Ao todo {len(grupo_pessoas)} pessoas foram cadastradas') print(f'As mulheres cadastradas foram: {mulheres}') print(f'A média de idade do grupo é {med_idade_grupo}') print(f'As pessoas que tem idade acima da média são: {p_acima_media}') print(pessoas)
3.5625
4
calendar_service.py
jantheprogrammer/event-email-service
0
12783129
<reponame>jantheprogrammer/event-email-service from datetime import datetime import pickle import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request # If modifying these scopes, delete the file token.pickle. SCOPES = ['https://www.googleapis.com/auth/calendar.readonly'] def get_events(): """Shows basic usage of the Google Calendar API. Prints the start and name of the next 10 events on the user's calendar. """ creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists('token.pickle'): with open('token.pickle', 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'credentials.json', SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open('token.pickle', 'wb') as token: pickle.dump(creds, token) service = build('calendar', 'v3', credentials=creds) now = datetime.utcnow().isoformat() + 'Z' # 'Z' indicates UTC time now_in_ms = datetime.now().timestamp() * 1000 # add to_date, one month from now one_day_in_ms = 86400000 month_in_ms = 30 * one_day_in_ms to_date = str(datetime.fromtimestamp((now_in_ms + month_in_ms) / 1000).isoformat()) + 'Z' # call the Calendar API events_result = service.events().list(calendarId='primary', timeMin=now, timeMax=to_date, maxResults=100, singleEvents=True, orderBy='startTime').execute() events = events_result.get('items', []) return format_events(events) def format_events(events): formatted_events = [] for event in events: start = event['start'].get('dateTime', event['start'].get('date')) formatted_events.append({'description': event['summary'], 'date': start[5:].replace('-', '.') + '.', 'summary': event['description']}) return formatted_events
2.90625
3
rompy/__init__.py
pbranson/rompy
1
12783130
<reponame>pbranson/rompy #----------------------------------------------------------------------------- # Copyright (c) 2020 - 2021, CSIRO # # All rights reserved. # # The full license is in the LICENSE file, distributed with this software. #----------------------------------------------------------------------------- import logging import warnings logger = logging.getLogger('rompy') import os import intake here = os.path.abspath(os.path.dirname(__file__)) cat = intake.open_catalog(os.path.join(here, 'catalogs', 'master.yaml')) from ._version import get_versions __version__ = get_versions()['version'] del get_versions
1.5625
2
functions/id_check.py
joao-lanzarini/sales-analytics-python
0
12783131
<gh_stars>0 import csv def check(file='inventory', action=''): while True: line = 0 check = False i = input(f'Product ID to {action} [0 to exit]: ') if i != '0': with open (f'./{file}.csv') as file: reader = csv.reader(file) lines = list(reader) for row in lines: if row[0] == str(i): check = True break else: line+=1 if not check: print('ID NOT FOUND!') elif check: break else: line=0 break return line
3.203125
3
nicos/devices/datasinks/text.py
jkrueger1/nicos
0
12783132
<gh_stars>0 # -*- coding: utf-8 -*- # ***************************************************************************** # NICOS, the Networked Instrument Control System of the MLZ # Copyright (c) 2009-2022 by the NICOS contributors (see AUTHORS) # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # <NAME> <<EMAIL>> # # ***************************************************************************** from gzip import GzipFile as StdGzipFile import numpy from nicos.core.data.sink import GzipFile from nicos.devices.datasinks.image import ImageFileReader, ImageSink, \ MultipleFileSinkHandler from nicos.utils import File class NPImageSinkHandler(MultipleFileSinkHandler): """Numpy text format filesaver using `numpy.savetxt`""" filetype = "txt" def writeData(self, fp, image): numpy.savetxt(fp, numpy.asarray(image), fmt="%u") class NPFileSink(ImageSink): handlerclass = NPImageSinkHandler class NPImageFileReader(ImageFileReader): filetypes = [("txt", "Numpy Text Format (*.txt)")] @classmethod def fromfile(cls, filename): """Reads numpy array from .txt file.""" return numpy.loadtxt(File(filename, 'r')) class NPGZImageSinkHandler(NPImageSinkHandler): """Compressed Numpy text format filesaver using `numpy.savetxt`""" filetype = "npgz" fileclass = GzipFile def writeData(self, fp, image): numpy.savetxt(fp, numpy.asarray(image), fmt="%u") class NPGZFileSink(ImageSink): handlerclass = NPGZImageSinkHandler class NPGZImageFileReader(ImageFileReader): filetypes = [("npgz", "Compressed Numpy Text Format (*.gz)")] @classmethod def fromfile(cls, filename): """Reads numpy array from .gz file.""" return numpy.loadtxt(StdGzipFile(filename, 'r'))
1.898438
2
tests/core/config/models/bdk_server_config_test.py
symphony-elias/symphony-bdk-python
17
12783133
<reponame>symphony-elias/symphony-bdk-python<filename>tests/core/config/models/bdk_server_config_test.py<gh_stars>10-100 from symphony.bdk.core.config.model.bdk_server_config import BdkServerConfig, BdkProxyConfig def test_get_base_path(): config = BdkServerConfig(scheme="https", host="dev.symphony.com", port=123, context="context") assert config.get_base_path() == "https://dev.symphony.com:123/context" def test_wrong_input_types(): config = BdkServerConfig(scheme=2, host=2, port="port", context=2) assert config.get_formatted_context() == "" assert config.get_base_path() == "2://2:port" def test_get_port_as_string(): config = BdkServerConfig(port=None) assert config.get_port_as_string() == f":{config.DEFAULT_HTTPS_PORT}" config = BdkServerConfig(port=2) assert config.get_port_as_string() == ":2" config.port = "884" assert config.get_port_as_string() == ":884" config.port = None assert config.get_port_as_string() == "" def test_proxy_config_no_credentials(): proxy = BdkProxyConfig("proxy.symphony.com", 1234) assert proxy.get_url() == "http://proxy.symphony.com:1234" assert not proxy.are_credentials_defined() def test_proxy_config_with_credentials(): proxy = BdkProxyConfig("proxy.symphony.com", 1234, "user", "password") assert proxy.get_url() == "http://proxy.symphony.com:1234" assert proxy.are_credentials_defined() assert proxy.get_credentials() == "user:password"
1.96875
2
maintenance/tests_old/test_ale_consistency.py
sfpd/rlreloaded
0
12783134
import alepy import numpy as np import os.path as osp from control3 import CTRL_ROOT # import cv2 world = alepy.AtariWorld(osp.join(CTRL_ROOT,"domain_data/atari_roms/space_invaders.bin")) for j in xrange(5): x0 = world.GetInitialState(np.random.randint(0,50)) u0 = np.array([0],'uint8') y,r,o,d = world.Step(x0,u0) for i in xrange(3): y1,r1,o1,d1 = world.Step(x0,u0) assert (y==y1).all() and (r==r1) and (np.array(o)==np.array(o1)).all() nsteps = np.random.randint(10) x = x0 for t in xrange(nsteps): u = np.array([np.random.randint(0,10)],dtype='uint8') x,_,_,_ = world.Step(x,u)
2.375
2
src/models/XGboost/Model_Training_XGboost-MLflow.py
shunbolt/BDA-Project-Tran-Torrado-EFREI
0
12783135
import pandas as pd import argparse import mlflow from sklearn.utils import resample from sklearn.model_selection import train_test_split import xgboost as xgb from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from urllib.parse import urlparse if __name__ == "__main__": df_train = pd.read_csv('../../../data/processed/processed_application_train.csv') df_test = pd.read_csv('../../../data/processed/processed_application_test.csv') # get argument for the model def parse_args(): parser = argparse.ArgumentParser(description="XGBoost example") parser.add_argument( "--learning-rate", type=float, default=0.3, help="learning rate to update step size at each boosting step (default: 0.3)", ) parser.add_argument( "--n-estimators", type=int, default=10, help="Number of boosting rounds. (default: 10)", ) return parser.parse_args() args = parse_args() # Separate majority and minority classes df_majority = df_train[df_train["TARGET"] == 0] df_minority = df_train[df_train["TARGET"] == 1] # Downsample majority class df_majority_downsampled = resample(df_majority, replace=False, # sample without replacement n_samples=50000, # to match minority class random_state=123) # reproducible results # Combine minority class with downsampled majority class df_downsampled = pd.concat([df_majority_downsampled, df_minority]) X = df_downsampled.drop(columns="TARGET") y = df_downsampled['TARGET'] # Split the data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) #Run mlflow with mlflow.start_run(): xgb_model = xgb.XGBClassifier(n_estimators=args.n_estimators,learning_rate=args.learning_rate,random_state=42) xgb_model.fit(X_train, y_train) xgb_pred = xgb_model.predict(X_test) print("This is the accuracy score for XGBClassifier : ") acc = accuracy_score(y_test, xgb_pred) print(acc) print("This is the confusion matrix score for XGBClassifier : ") cm = confusion_matrix(y_test, xgb_pred) print(confusion_matrix(y_test, xgb_pred)) #log metric confusion metrix t_n, f_p, f_n, t_p = cm.ravel() mlflow.log_metric("true_negative", t_n) mlflow.log_metric("false_positive", f_p) mlflow.log_metric("false_negative", f_n) mlflow.log_metric("true_positive", t_p) mlflow.log_metrics({"accuracy": acc}) mlflow.log_param("learning_rate",args.learning_rate) mlflow.log_param("estimators",args.n_estimators) tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme # Model registry does not work with file store if tracking_url_type_store != "file": # Register the model mlflow.sklearn.log_model(xgb_model, "model", registered_model_name="XGboost") else: mlflow.sklearn.log_model(xgb_model, "model")
3.078125
3
examples/02_advanced_examples/plot_custom_arguments.py
jhosoume/pymfe
86
12783136
""" Customizing measures arguments ============================== In this example we will show you how to custorize the measures. """ # Load a dataset from sklearn.datasets import load_iris from pymfe.mfe import MFE data = load_iris() y = data.target X = data.data ############################################################################### # Custom Arguments # ---------------- # # It is possible to pass custom arguments to every meta-feature using PyMFE # extract method kwargs. The keywords must be the target meta-feature name, and # the value must be a dictionary in the format {argument: value}, i.e., each # key in the dictionary is a target argument with its respective value. In the # example below, the extraction of metafeatures ``min`` and ``max`` happens as # usual, but the meta-features ``sd``, ``nr_norm`` and ``nr_cor_attr`` will # receive user custom argument values, which will interfere in each metafeature # result. # Extract measures with custom user arguments mfe = MFE(features=["sd", "nr_norm", "nr_cor_attr", "min", "max"]) mfe.fit(X, y) ft = mfe.extract( sd={"ddof": 0}, nr_norm={"method": "all", "failure": "hard", "threshold": 0.025}, nr_cor_attr={"threshold": 0.6}, ) print("\n".join("{:50} {:30}".format(x, y) for x, y in zip(ft[0], ft[1])))
3.125
3
pingsweep.py
strohmy86/Scripts
1
12783137
#!/usr/bin/env python3 # MIT License # Copyright (c) 2020 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import argparse import ipaddress from subprocess import DEVNULL, Popen class Color: PURPLE = "\033[95m" CYAN = "\033[96m" DARKCYAN = "\033[36m" BLUE = "\033[94m" GREEN = "\033[92m" YELLOW = "\033[93m" RED = "\033[91m" BOLD = "\033[1m" UNDERLINE = "\033[4m" END = "\033[0m" def cred(): print( Color.DARKCYAN + "\n" + "*********************************\n" + "* Pingsweep script *\n" + "* *\n" + "* Written and maintained by: *\n" + "* <NAME> *\n" + "* <EMAIL> *\n" + "* https://github.com/strohmy86 *\n" + "* *\n" + "*********************************\n" + "\n" + Color.END ) def main(net_addr, file): net = net_addr.replace(".", "_") net = net.replace("/", "-") # Create the network ip_net = ipaddress.ip_network(net_addr) # Get all hosts on that network all_hosts = list(ip_net.hosts()) p = {} # ip -> process for n in range(len(all_hosts)): # start ping process ip = str(all_hosts[n]) p[ip] = Popen( ["ping", "-n", "-c", "1", "-w", "2", ip], stdout=DEVNULL, stderr=DEVNULL, ) t = [] # List for active IP addresses if file is True: f = open("/home/lstrohm/ActiveIps-" + net + ".txt", "w") f.close() while p: for ip, proc in p.items(): if proc.poll() is not None: # ping finished del p[ip] # remove from the process list if proc.returncode == 0 and file is False: print("%s active" % ip) t.append(ip) elif proc.returncode == 0 and file is True: f = open("/home/lstrohm/ActiveIps-" + net + ".txt", "a") f.write("%s\n" % ip) # else: # print('%s error' % ip) break # Count total number of active IP addresses if file is True: fr = open("/home/lstrohm/ActiveIps-" + net + ".txt", "r") total = len(fr.readlines()) fr.close() fw = open("/home/lstrohm/ActiveIps-" + net + ".txt", "a") fw.write("Total Active Devices: %s" % total) fw.close() print( Color.CYAN + "Saved list to ~/ActiveIps-" + net + ".txt" + Color.END ) elif file is False: print(Color.YELLOW + "Total Active Devices: %s" % len(t) + Color.END) # Starts the script. parser = argparse.ArgumentParser(description="Script ping sweep a subnet") parser.add_argument( "-f", "--file", default=False, action="store_const", const=True, help="Write results to a text file.", ) parser.add_argument( "net", metavar="Network Subnet", default="", type=str, help="network address in CIDR format (ex.192.168.1.0/24)", ) args = parser.parse_args() net_addr = args.net file = args.file cred() main(net_addr, file)
1.992188
2
Zip_Codes/Zipcodebase/unit_tests.py
Jay4C/API
1
12783138
import unittest import requests endpoint = "https://app.zipcodebase.com/api/v1" apikey = "" # https://app.zipcodebase.com/documentation class UnitTestsZipcodebaseWithTorNetwork(unittest.TestCase): def test_Authentification_Remaining_Credits(self): print("test_Authentification_Remaining_Credits") headers = { 'apikey': apikey } url = endpoint + "/status" r = requests.get(url, headers=headers) print(r.text) def test_Postal_code_to_location_information(self): print("test_Postal_code_to_location_information") headers = { 'apikey': apikey } params = ( ("codes", "10005,51503"), ) url = endpoint + "/search" r = requests.get(url, headers=headers, params=params) print(r.text) def test_Distance_calculation_between_postal_codes(self): print("test_Distance_calculation_between_postal_codes") headers = { 'apikey': apikey } params = ( ("code", "10005"), ("compare", "10006,10007"), ("country", "us"), ) url = endpoint + "/distance" r = requests.get(url, headers=headers, params=params) print(r.text) def test_Postal_codes_within_a_radius(self): print("test_Postal_codes_within_a_radius") headers = { 'apikey': apikey } params = ( ("code", "10005"), ("radius", "100"), ("country", "us"), ) url = endpoint + "/radius" r = requests.get(url, headers=headers, params=params) print(r.text) def test_Postal_codes_within_a_certain_distance(self): print("test_Postal_codes_within_a_certain_distance") headers = { 'apikey': apikey } params = ( ("codes", "10005,10006,10009,90001"), ("distance", "100"), ("country", "us"), ) url = endpoint + "/match" r = requests.get(url, headers=headers, params=params) print(r.text) def test_Postal_codes_by_city(self): print("test_Postal_codes_by_city") headers = { 'apikey': apikey } params = ( ("city", "Amsterdam"), ("state_name", "Noord-Holland"), ("country", "nl"), ) url = endpoint + "/code/city" r = requests.get(url, headers=headers, params=params) print(r.text) def test_Postal_codes_by_state(self): print("test_Postal_codes_by_state") headers = { 'apikey': apikey } params = ( ("state_name", "Noord-Holland"), ("country", "nl"), ) url = endpoint + "/code/state" r = requests.get(url, headers=headers, params=params) print(r.text) def test_Provinces_states_of_a_country(self): print("test_Provinces_states_of_a_country") headers = { 'apikey': apikey } params = ( ("country", "de"), ) url = endpoint + "/country/province" r = requests.get(url, headers=headers, params=params) print(r.text) if __name__ == '__main__': unittest.main()
3.03125
3
cameraServer.py
thedropbears/vision-2019
0
12783139
#!/usr/bin/env python3 import json import sys import numpy as np import cv2 import math import time from collections import namedtuple from cscore import CameraServer from networktables import NetworkTables # Magic Numbers lowerGreen = (50, 120, 130) # Our Robot's Camera higherGreen = (100, 220, 220) minContourArea = 10 angleOffset = 10 rightAngleSize = -14 leftAngleSize = -75.5 screenX = 320 screenY = 240 screenSize = (screenX, screenY) distance_away = 110 realTapeDistance = 0.2 # metres between closest tape points focal_length = 325 # Initialisation configFile = "/boot/frc.json" CameraConfig = namedtuple("CameraConfig", ["name", "path", "config"]) def readCameraConfig(config): """Read single camera configuration.""" return CameraConfig(config["name"], config["path"], config) def readConfig(): """Read configuration file.""" # parse file with open(configFile) as f: j = json.load(f) # cameras cameras = j["cameras"] cameras = [readCameraConfig(camera) for camera in cameras] return cameras # Our code begins here def startCamera(config): """Start running the camera.""" cs = CameraServer.getInstance() camera = cs.startAutomaticCapture(name=config.name, path=config.path) camera.setConfigJson(json.dumps(config.config)) return cs, camera # Process Functions def getDistance(boxes): if boxes is None: return math.nan, math.nan Lpoint = max(boxes[0], key=lambda x: x[0]) Rpoint = min(boxes[1], key=lambda x: x[0]) width = abs(Lpoint[0] - Rpoint[0]) mid = (Rpoint[0] + Lpoint[0]) / 2 distance_from_center = mid - screenX / 2 offset = getOffset(width, distance_from_center) if width > 0: dist = (realTapeDistance * focal_length) / width return dist, offset else: return math.nan, offset def getOffset(width, x): # if width = 20cm then what is x in cm offset = x / (width / (realTapeDistance)) return -offset def createAnnotatedDisplay( frame: np.array, pairs: list, closestToMiddle: tuple, circle: tuple ) -> np.array: frame = cv2.line(frame, (160, 0), (160, 240), (255, 0, 0), thickness=1) for pair in pairs: if (pair[0][1][0] == closestToMiddle[0][0]).all(): colour = (0, 255, 0) #Green frame = cv2.circle( frame, (int(circle[0][0]), int(circle[0][1])), int(circle[1]), colour ) else: colour = (0, 0, 255) #Red for tape in pair: frame = cv2.drawContours( frame, [np.int0(tape[1])], 0, colour, thickness=2 ) return frame def getRetroPos(frame: np.array, annotated: bool, hsv: np.array, mask: np.array) -> (np.array, float, float): """Function for finding retro-reflective tape""" hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV, dst=hsv) # Convert to HSV to make the mask easier mask = cv2.inRange(hsv, lowerGreen, higherGreen, dst=mask) # Create a mask of everything in between the greens _, contours, _ = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # Find the contours if len(contours) <= 1: # Get contours with area above magic number 10 and append its smallest rectangle return frame, math.nan, math.nan rects = [] for cnt in contours: if cv2.contourArea(cnt) > minContourArea: rects.append(cv2.minAreaRect(cnt)) boxed_and_angles = [] for rect in rects: if math.isclose(rect[2], leftAngleSize, abs_tol=angleOffset): boxed_and_angles.append([False, np.array(cv2.boxPoints(rect)), cv2.contourArea(cv2.boxPoints(rect))]) elif math.isclose(rect[2], rightAngleSize, abs_tol=angleOffset): boxed_and_angles.append([True, np.array(cv2.boxPoints(rect)), cv2.contourArea(cv2.boxPoints(rect))]) pairs = [] leftRect = None for rect in sorted( boxed_and_angles, key=lambda x: max(x[1][:, 0]) if x[0] else min(x[1][:, 0]) ): # Get rectangle pairs if not rect[0]: leftRect = rect elif leftRect and math.isclose(leftRect[2], rect[2], abs_tol=0.3*leftRect[2]): pairs.append((leftRect, rect)) leftRect = None if len(pairs) < 1: return frame, math.nan, math.nan closestToMiddle = list(min( pairs, key=lambda x: abs(np.mean([x[0][1][:,0] + x[1][1][:,0]]) - screenSize[0]) )) closestToMiddle = [closestToMiddle[0][1], closestToMiddle[1][1]] (x, y), radius = cv2.minEnclosingCircle(np.array(closestToMiddle).reshape(-1, 2)) if annotated: frame = createAnnotatedDisplay(frame, pairs, closestToMiddle, ((x, y), radius)) dist, offset = getDistance(closestToMiddle) return ( frame, dist, offset, ) if __name__ == "__main__": if len(sys.argv) >= 2: configFile = sys.argv[1] # read configuration cameraConfigs = readConfig() # start NetworkTables NetworkTables.initialize(server="10.47.74.2") NetworkTables.setUpdateRate(1) nt = NetworkTables.getTable("/vision") ping = nt.getEntry("ping") raspi_pong = nt.getEntry("raspi_pong") rio_pong = nt.getEntry("rio_pong") entry_game_piece = nt.getEntry("game_piece") entry_dist = nt.getEntry("fiducial_x") entry_offset = nt.getEntry("fiducial_y") entry_fiducial_time = nt.getEntry("fiducial_time") entry_camera = nt.getEntry("using_cargo_camera") # start cameras cameras = [] for cameraConfig in cameraConfigs: cameras.append(startCamera(cameraConfig)) cargo_rocket_sink = cameras[0][0].getVideo(camera=cameras[0][1]) hatch_sink = cameras[1][0].getVideo(camera=cameras[1][1]) source = cameras[0][0].putVideo("Driver_Stream", screenX, screenY) frame = np.zeros(shape=(screenSize[1], screenSize[0], 3), dtype=np.uint8) image = np.zeros(shape=(screenSize[1], screenSize[0], 3), dtype=np.uint8) hsv = np.zeros(shape=(screenSize[1], screenSize[0], 3), dtype=np.uint8) mask = np.zeros(shape=(screenSize[1], screenSize[0]), dtype=np.uint8) img = np.zeros(shape=(screenSize[1], screenSize[0], 3), dtype=np.uint8) old_ping_time = 0 while True: ping_time = ping.getNumber(0) if abs(ping_time - old_ping_time) > 0.00000001: raspi_pong.setNumber(time.monotonic()) rio_pong.setNumber(ping_time) old_ping_time = ping_time game_piece = entry_game_piece.getBoolean(0) fiducial_time = time.monotonic() sink = hatch_sink if game_piece == 0 else cargo_rocket_sink entry_camera.setBoolean(False if not game_piece else True) frame_time, frame = sink.grabFrameNoTimeout(image=frame) if frame_time == 0: print(sink.getError(), file=sys.stderr) source.notifyError(sink.getError()) outtake = False percent = math.nan else: image, dist, offset = getRetroPos(frame, True, hsv, mask) source.putFrame(image) if not math.isnan(dist): if game_piece == 1: dist *= -1 offset *= -1 entry_dist.setNumber(dist) entry_offset.setNumber(offset) entry_fiducial_time.setNumber(fiducial_time) NetworkTables.flush()
2.3125
2
kite-python/kite_common/kite/ioutils/stream.py
kiteco/kiteco-public
17
12783140
<reponame>kiteco/kiteco-public import json def loadjson(f, bufsize=1000000, **kwargs): """ Load a sequence of json objects from a stream """ decoder = json.JSONDecoder(**kwargs) last_error = None cur = "" while True: buf = f.read(bufsize) if buf: cur += buf.decode() cur = cur.lstrip() # in rare cases, there are spaces in front causing problems decoding elif last_error is not None: raise last_error else: return while cur: # Consume an object if possible try: last_error = None obj, consumed = decoder.raw_decode(cur) cur = cur[consumed:] except ValueError as ex: last_error = ex break # consume whitespace, if any offset = 0 while offset < len(cur) and cur[offset].isspace(): offset += 1 cur = cur[offset:] # yield the object that was consumed yield obj
2.921875
3
vheLC/determinePrior/determinePrior.py
orelgueta/blazar-variability-study
1
12783141
#!/usr/bin/python import os.path import os import glob import subprocess import numpy as np import numpy.lib.recfunctions as rfn from astropy.io import fits from astropy.stats import bayesian_blocks import argparse from collections import defaultdict def checkDatFile(datFileName): if not os.path.isfile(datFileName): print(datFileName + ' is not a file!\n') return False return True def extractErrors(errorStr): errors = errorStr.replace('(', '').replace(')', '').split(' - ') return float(errors[0]), float(errors[1]) def calibrate_ncp_prior(flux=None, fluxerr=None, time=None, timebin=None, p_0=[0.05], n_sims=1000, min_prior=0.2, max_prior=4, n_steps=20, outPrefix=None): # path='./gammas/', exp='VERITAS', source=''): # Calibration of ncp_prior: # input: # flux, fluxerr, time, timebin : Lightcurve in format numpy.ndarray or pandas.Series # p_0 : FPR input array # n_sims : float # min_prior : float/int # max_prior : float/int # n_stepts : number of steps in [min_prior, max_prior] sourceNow = outPrefix.split('/')[0] falsecount = np.zeros(n_steps) ncp_priors = np.linspace(min_prior, max_prior, n_steps) result = {} best = {} # distance between points not relevant but should be ordered x = np.arange(len(flux)) average = np.average(flux, weights=fluxerr) # simulating lightcurves for n_sims times and applying algorithem # in n_steps steps between min_prior and max_prior. Afterwards # false positive rate is calculated if a block was detected. for k in range(n_sims): if k % 10 == 0: print(sourceNow, 'current simulation: {}'.format(k)) # simulate the flux values datapoints = np.random.normal(average, fluxerr, len(fluxerr)) # aply bayesian block and count fpr for l, ncp_prior in enumerate(ncp_priors): gamma = 10**(-ncp_prior) bb = bayesian_blocks(x, datapoints, fluxerr, fitness='measures', gamma=gamma) if len(bb) > 2: falsecount[l] += 1 fp_rate = falsecount/n_sims # Final result of FPR in dependency of ncp_prior result = np.core.records.fromarrays([ncp_priors, fp_rate], names='ncp, fp') # Calculation of best results for the values in p_0 for p0 in p_0: best[str(p0)] = result[(np.abs(result.fp - p0)).argmin()] # Saving result and best to txt file with open(outPrefix + '_result.txt', 'wb') as fOut: np.savetxt(fOut, result) # with open(outPrefix + '_results_best.txt', 'wb') as fOut: # np.savetxt(fOut, [best]) return(result, best) def readSwiftLC(swiftFileName, rebin, veritasObs): swiftFile = open(swiftFileName, 'r') date, dateErrUp, dateErrDn = list(), list(), list() rate, rateErrUp, rateErrDn = list(), list(), list() mode = list() for line in swiftFile: if '!' in line: if 'WT data' in line: modeNow = 'WT' continue if 'PC data' in line: modeNow = 'PC' continue if 'Upper limit' in line: break if '!' not in line and len(line) > 1 and 'NO' not in line and 'READ' not in line: date.append(float(line.split()[0].strip())) dateErrUp.append(abs(float(line.split()[1].strip()))) dateErrDn.append(abs(float(line.split()[2].strip()))) rate.append(float(line.split()[3].strip())) rateErrUp.append(abs(float(line.split()[4].strip()))) rateErrDn.append(abs(float(line.split()[5].strip()))) mode.append(modeNow) swiftData = np.c_[date, dateErrDn, dateErrUp, rate, rateErrDn, rateErrUp, mode] headersType = {'names': ('Date', 'Date error down', 'Date error up', 'Rate', 'Rate error down', 'Rate error up', 'mode'), 'formats': ('f8', 'f8', 'f8', 'f8', 'f8', 'f8', 'U40')} swiftData = np.core.records.fromarrays(swiftData.transpose(), dtype=headersType) if rebin == 'monthly' or rebin == 'weekly' or rebin == 'yearly': if rebin == 'yearly': # Take only contemporaneous observations swiftMask = list() for swiftObsNow in swiftData['Date']: keepSwift = False for veritasObsNow in veritasObs: if abs(swiftObsNow - veritasObsNow) < 1: keepSwift = True swiftMask.append(keepSwift) swiftData = swiftData[swiftMask] nDays = 28 if rebin == 'yearly': nDays = 365 if rebin == 'weekly': nDays = 7 mjd_min = 53423 # This is exactly 147 weeks before the start day of Fermi mjd_max = 58465 # This is ~today nBins = int((mjd_max - mjd_min)/nDays) timeBins = np.linspace(mjd_min, mjd_max, nBins, False) date, dateErrDn, dateErrUp = list(), list(), list() rate, rateErrDn, rateErrUp = list(), list(), list() mode = list() for i_bin, edgeDn in enumerate(timeBins): edgeUp = 1e6 if i_bin < len(timeBins) - 1: edgeUp = timeBins[i_bin+1] # TODO - should we divide into the different modes? tempSwiftData = swiftData[(edgeDn <= swiftData['Date']) & (swiftData['Date'] < edgeUp)] if len(tempSwiftData) > 0: date.append(np.average(tempSwiftData['Date'])) dateErrDn.append(date[-1] - np.min(tempSwiftData['Date'])) dateErrUp.append(np.max(tempSwiftData['Date'] - date[-1])) totalError = tempSwiftData['Rate error down'] + tempSwiftData['Rate error up'] rate.append(np.average(tempSwiftData['Rate'], weights=1./totalError)) rateErrDn.append(np.sqrt(np.sum(np.power(tempSwiftData['Rate error down'], 2)))) rateErrUp.append(np.sqrt(np.sum(np.power(tempSwiftData['Rate error up'], 2)))) mode.append('Combined') swiftData = np.c_[date, dateErrDn, dateErrUp, rate, rateErrDn, rateErrUp, mode] swiftData = np.core.records.fromarrays(swiftData.transpose(), dtype=headersType) return swiftData def rebinFermi(fermiLC, veritasObs): # First convert to numpy array to make it easier fermiLC = np.c_[fermiLC['tmax_mjd'], fermiLC['tmin_mjd'], fermiLC['flux'], fermiLC['flux_err']] headersType = {'names': ('tmax_mjd', 'tmin_mjd', 'flux', 'flux_err'), 'formats': ('f8', 'f8', 'f8', 'f8')} fermiLC = np.core.records.fromarrays(fermiLC.transpose(), dtype=headersType) # Take only contemporaneous observations (in this case, within a month) # fermiBlocks = bayesian_blocks(fermiLC['tmax_mjd'], fermiLC['flux'], fermiLC['flux_err'] fermiMask = list() for fermiDataPoint in fermiLC['tmax_mjd']: keepFermi = False for veritasObsNow in veritasObs: if abs(fermiDataPoint - veritasObsNow) < 28: keepFermi = True fermiMask.append(keepFermi) fermiLC = fermiLC[fermiMask] nDays = 365 mjd_min = 53423 # This is exactly 147 weeks before the start day of Fermi mjd_max = 58465 # This is ~today nBins = int((mjd_max - mjd_min)/nDays) timeBins = np.linspace(mjd_min, mjd_max, nBins, False) rebinnedFermi = defaultdict(list) for i_bin, edgeDn in enumerate(timeBins): edgeUp = 1e6 if i_bin < len(timeBins) - 1: edgeUp = timeBins[i_bin+1] tempFermiData = fermiLC[(edgeDn <= fermiLC['tmax_mjd']) & (fermiLC['tmax_mjd'] < edgeUp)] if len(tempFermiData) > 0: rebinnedFermi['tmax_mjd'].append(np.average(tempFermiData['tmax_mjd'])) rebinnedFermi['tmin_mjd'].append(np.average(tempFermiData['tmin_mjd'])) rebinnedFermi['flux'].append(np.average(tempFermiData['flux'], weights=1./tempFermiData['flux_err'])) rebinnedFermi['flux_err'].append(np.sqrt(np.sum(np.power(tempFermiData['flux_err'], 2)))) fermiLC = np.c_[rebinnedFermi['tmax_mjd'], rebinnedFermi['tmin_mjd'], rebinnedFermi['flux'], rebinnedFermi['flux_err']] fermiLC = np.core.records.fromarrays(fermiLC.transpose(), dtype=headersType) return fermiLC def readCorrTable(corrTableFile): headersType = {'names': ('Left edges', 'Right edges', 'Correction factor', 'CorrFactorError', 'CorrFactorErrorCons'), 'formats': ('f8', 'f8', 'f8', 'f8', 'f8')} return np.loadtxt(corrTableFile, dtype=headersType) def correctFluxesFromCrabLC(origLC, corrTable): corrLC = np.copy(origLC) for i_point, dateNow in enumerate(corrLC['DateMJD']): corrBin = np.argmax(dateNow < corrTable['Right edges']) if corrTable['Correction factor'][corrBin] != 1: corrLC['Flux'][i_point] = (corrLC['Flux'][i_point] / corrTable['Correction factor'][corrBin]) corrLC['Flux Error'][i_point] = np.sqrt(np.power(corrLC['Flux Error'][i_point], 2) + np.power(corrTable['CorrFactorError'][corrBin] * corrLC['Flux'][i_point], 2)) return corrLC def correctFluxes(origLC, corrTable): corrLC = correctFluxesFromCrabLC(origLC, corrTable) # We increased the threshold, so no need to add a systematic uncertainty anymore return corrLC def determinePriors(veritasDatFileName, fermiFile, swiftFullFileName, corrTable, veritasObsFile, sourceNow, binning): for fileNow in [veritasDatFileName, fermiFile, swiftFullFileName]: if not checkDatFile(fileNow): return veritasDatFile = open(veritasDatFileName, 'r') headersType = {'names': ('DateMJD', 'Date Error', 'Flux', 'Flux Error'), 'formats': ('f8', 'f8', 'f8', 'f8')} veritasData = np.loadtxt(veritasDatFile, dtype=headersType) veritasFluxes = veritasData[veritasData['Flux Error'] > 0] veritasFluxes = correctFluxes(veritasFluxes, corrTable) nsims = 15000 n_steps = 40 experiment = 'veritas' outPrefix = '{}/{}_{}_{}'.format(sourceNow, experiment, binning, str(nsims)) result, best = calibrate_ncp_prior(flux=veritasFluxes['Flux'], fluxerr=veritasFluxes['Flux Error'], time=veritasFluxes['DateMJD'], timebin=veritasFluxes['Date Error'], p_0=[0.01, 0.05], n_sims=nsims, min_prior=0.2, max_prior=4, n_steps=n_steps, outPrefix=outPrefix) gamma = 10**(- best[str(0.01)].ncp) print(sourceNow, 'VERITAS', 'gamma - ', gamma) if binning == 'yearly' or binning == 'monthly': fermiDatFile = open(fermiFile, 'rb') fermiLC = np.load(fermiDatFile, encoding='latin1').flat[0] if binning == 'yearly': headersType = {'names': ('run', 'date', 'flux', 'fluxError', 'significance', 'ze'), 'formats': ('f8', 'f8', 'f8', 'f8', 'f8', 'f8')} veritasObs = np.loadtxt(veritasObsFile, dtype=headersType) fermiLC = rebinFermi(fermiLC, veritasObs['date']) experiment = 'fermi' outPrefix = '{}/{}_{}_{}'.format(sourceNow, experiment, binning, str(nsims)) result, best = calibrate_ncp_prior(flux=fermiLC['flux'], fluxerr=fermiLC['flux_err'], time=fermiLC['tmax_mjd'], timebin=fermiLC['tmax_mjd'] - fermiLC['tmin_mjd'], p_0=[0.01, 0.05], n_sims=nsims, min_prior=0.2, max_prior=4, n_steps=n_steps, outPrefix=outPrefix) gamma = 10**(- best[str(0.01)].ncp) print(sourceNow, 'Fermi', 'gamma - ', gamma) swiftBinnings = [binning] if binning == 'yearly': # run also the daily for Swift in this case swiftBinnings = ['daily', 'yearly'] for swiftBinNow in swiftBinnings: if swiftBinNow == 'yearly': veritasObsDates = veritasObs['date'] else: veritasObsDates = list() swiftData = readSwiftLC(swiftFile, swiftBinNow, veritasObsDates) experiment = 'swift' outPrefix = '{}/{}_{}_{}'.format(sourceNow, experiment, swiftBinNow, str(nsims)) swiftRateErrorAverage = (swiftData['Rate error down'] + swiftData['Rate error up'])/2. result, best = calibrate_ncp_prior(flux=swiftData['Rate'], fluxerr=swiftRateErrorAverage, time=swiftData['Date'], timebin=(swiftData['Date error down'] + swiftData['Date error up']), p_0=[0.01, 0.05], n_sims=nsims, min_prior=0.2, max_prior=4, n_steps=n_steps, outPrefix=outPrefix) gamma = 10**(- best[str(0.01)].ncp) print(sourceNow, 'Swift', swiftBinNow, 'gamma - ', gamma) return if __name__ == '__main__': np.random.seed(1234) parser = argparse.ArgumentParser(description=('Calculate optimal ' 'priors for Bayesian blocks.')) parser.add_argument('source') parser.add_argument('binning') args = parser.parse_args() sources = {'1ES0033': '1ES 0033+595', '1ES0502': '1ES 0502+675', '1ES1011': '1ES 1011+496', '1ES1218': '1ES 1218+304', '1ES0229': '1ES 0229+200', 'RGBJ0710': 'RGB J0710+591', 'PG1553': 'PG 1553+113', 'PKS1424': 'PKS 1424+240' } if args.source not in sources: print('Source', args.source, 'not known') hdulist = fits.open(('/afs/ifh.de/group/cta/scratch/ogueta/sw/anaconda/envs/fermi/' 'lib/python2.7/site-packages/fermipy/data/catalogs/gll_psc_8year_v5.fit')) sourceCatalog = hdulist[1].data workDir = os.getcwd() + '/' fermiPrefix = '/lustre/fs19/group/cta/users/ogueta/fermi/variabilityStudy/' veritasPrefix = '/afs/ifh.de/group/cta/scratch/ogueta/vts/variabilityStudy/makeLC/' swiftPrefix = '/afs/ifh.de/group/cta/scratch/ogueta/vts/variabilityStudy/swift/onlineTool/' corrTableFile = ('/afs/ifh.de/group/cta/scratch/ogueta/vts/variabilityStudy/' 'crabStability/plotLC/correctionFactors.txt') veritasObsPrefix = '/afs/ifh.de/group/cta/scratch/ogueta/vts/variabilityStudy/spectra/' for i_src, sourceTeV in enumerate(sourceCatalog['ASSOC_TEV']): if sources[args.source] in sourceTeV: fermiLC = sourceCatalog['Source_Name'][i_src].replace(' ', '_').lower() fermiLC += '_lightcurve.npy' fermiBinning = args.binning if fermiBinning != 'monthly': fermiBinning = 'monthly' fermiFile = os.path.join(fermiPrefix, '{}LightCurves'.format(fermiBinning), args.source, args.source, fermiLC) veritasDirectory = os.path.join(veritasPrefix, args.source) veritasLC = glob.glob(os.path.join(veritasDirectory, '{}*fullEnergyRange*.txt'.format(args.binning)))[0] veritasFile = os.path.join(veritasDirectory, veritasLC) corrTable = readCorrTable(corrTableFile) veritasObsFile = os.path.join(os.path.join(veritasObsPrefix, args.source), 'fluxPerRun.txt') swiftFile = os.path.join(swiftPrefix, args.source, 'dailyBins', '{}_lightcurve.qdp'.format(args.source)) try: subprocess.check_call(['mkdir', '-p', args.source]) except subprocess.CalledProcessError as e: print('Could not create output directory') sys.exit(1) determinePriors(veritasFile, fermiFile, swiftFile, corrTable, veritasObsFile, args.source, args.binning)
2.0625
2
app/src/yolov3/models/layers/upsample_layer.py
customr/detection_demo
58
12783142
import tensorflow as tf def upsample_layer(name, inputs): """ Takes the outputs of the previous convolutional layer and upsamples them by a factor of two using the 'nearest neighbor' method. Parameters ---------- name : string The name of the tensor to be used in TensorBoard. inputs : tensor The output of the previous convolutional layer. This tensor will have the shape of: [batch_size, h, w, c] Returns ------- inputs : tensor A tensor of shape: [batch_size, 2 * h, 2 * w, c] """ with tf.variable_scope(name): inputs = tf.image.resize_nearest_neighbor(inputs, (inputs.shape[1]*2, inputs.shape[2]*2)) return inputs
3.65625
4
oldqa/qa/src/core_tests/Core_Tests.py
KDahlgren/pyLDFI
6
12783143
#!/usr/bin/env python ''' Core_Tests.py Defines unit tests for core. ''' ############# # IMPORTS # ############# # standard python packages import inspect, os, sqlite3, sys, unittest from StringIO import StringIO # ------------------------------------------------------ # # import sibling packages HERE!!! sys.path.append( os.path.abspath( __file__ + "/../../../../src" ) ) from dedt import dedt, dedalusParser, clockRelation, dedalusRewriter from utils import tools # ------------------------------------------------------ # testPath = os.path.abspath(__file__+"/../../../../qa") ################ # CORE TESTS # ################ class Core_Tests( unittest.TestCase ) : ########################## # INSTANTIATE LDFICORE # ########################## # ############# # ATTRIBS # ############# def test_LDFICoreAttribs_dedt( self ) : return None ######################### # THREAD OF EXECUTION # ######################### # use this main if running this script exclusively. if __name__ == "__main__" : unittest.main( verbosity=2 ) ######### # EOF # #########
2.203125
2
Coursera/Google_IT_Automation_with_Python/01_Crash_Course_on_Python/Week_3/wk3_mod1_ex3.py
ssolomon2020/Self_Study_Python_Training
0
12783144
<gh_stars>0 # Specialization: Google IT Automation with Python # Course 01: Crash Course with Python # Week 3 Module Part 1 Exercise 03 # Student: <NAME> # Learning Platform: Coursera.org # The following code causes an infinite loop. Can you figure out what’s missing and how to fix it? # def print_range(start, end): # # Loop through the numbers from start to end # n = start # while n <= end: # print(n) # # print_range(1, 5) # Should print 1 2 3 4 5 (each number on its own line) def print_range(start, end): # Loop through the numbers from start to end n = start while n <= end: print(n) n += 1 #! <-- Counter was initialized but it did not increment beforehand. print_range(1, 5) # Should print 1 2 3 4 5 (each number on its own line)
4.1875
4
setup.py
diamond-org/puppet-diamond
0
12783145
<reponame>diamond-org/puppet-diamond<gh_stars>0 # -*- coding: utf-8 -*- # Puppet-Diamond (c) <NAME> import os import re import codecs from setuptools import setup from setuptools import find_packages def read(*rnames): return codecs.open(os.path.join(os.path.dirname(__file__), *rnames), 'r', 'utf-8').read() def grep(attrname): pattern = r"{0}\W*=\W*'([^']+)'".format(attrname) strval, = re.findall(pattern, read('puppet_diamond/__meta__.py')) return strval setup( version=grep('__version__'), name='Puppet-Diamond', description="Puppet-Diamond can manage an IT Enterprise consisting of many Linux servers.", scripts=[ "bin/pup", "bin/generate_sshd_keys.sh", "bin/get_submodules.sh", ], long_description=read('Readme.rst'), classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Information Technology", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: POSIX", "Operating System :: MacOS :: MacOS X", "Programming Language :: Python :: 2.7", "Topic :: System :: Clustering", "Topic :: System :: Systems Administration", ], packages=find_packages(), include_package_data=True, keywords='', author=grep('__author__'), author_email=grep('__email__'), url=grep('__url__'), install_requires=read('requirements.txt'), license='MIT', zip_safe=False, )
1.890625
2
pipedrive/abstract.py
bindlock/pipedrivepy
0
12783146
from .chain import Chain class AbstractClient: ENDPOINT = 'https://{domain}.pipedrive.com/api/{version}/{path}' def __init__(self, domain: str, token: str, version: str = 'v1'): self.domain = domain self.token = token self.version = version def __getattr__(self, name: str) -> Chain: return Chain(self).__getattr__(name) def get_endpoint_url(self, path: str) -> str: return self.ENDPOINT.format(domain=self.domain, version=self.version, path=path)
2.765625
3
yt-pi.py
R2Boyo25/yt-pi
6
12783147
from flask import Flask, abort, render_template, redirect, url_for, request, session, send_from_directory, flash, jsonify from markupsafe import escape import random, os, database, json, requests from werkzeug.utils import secure_filename # create the application object app = Flask(__name__) app.config['DataFolder'] = "/".join(os.path.abspath(__file__).split("/")[:-1]) + "/" + "data" app.secret_key = os.urandom(24) def programExists(name): """Check whether `name` is on PATH and marked as executable.""" # from whichcraft import which from shutil import which return which(name) is not None def eflash(error, back, title="Error!", backt=None, extra=None): extra = extra if extra else "" backt = backt if backt else "" return render_template("error.html", e=error, url=back, error=title, urlt=backt, extra=extra) def CoSo(version): version = str(version) return render_template("comingSoon.html", ver=version, background=database.Database("config.json").get('background')) @app.route("/", methods=['GET']) def homePage(): try: popup = request.args['popup'] except Exception as e: popup = None return render_template('homePage.html', version=database.Database("config.json").get("version"), popup = popup, background=database.Database("config.json").get('background')) @app.route('/data/<path:filename>/') def returnData(filename): return send_from_directory(app.config['DataFolder'], filename) @app.route('/videos/') def videosList(): links=['<!--This Page Was Auto Generated-->\n<div align=\"center\">\n<br>\n<a href=/ ><img src=/data/home.png height=17px /></a> <input type="text" id="mySearch" onkeyup="myFunction()" placeholder="Search.." title="Type in a category">\n<br><br><ul id="myMenu">'] f = [] for (dirpath, dirnames, filenames) in os.walk(database.Database("config.json").get("videofolder")): f.extend(dirnames) break for thing in f: links.append("\n <li><a align='center' href='{}'><img src='{}' height=12% width=15% /><br><b>{}</b></a><br></li>".format('/videos/'+thing.replace("'", "%27"), '/videos/'+thing.replace("'", "%27")+'/thumb',thing)) links.append('</ul></div>') return render_template('videos.html', links=''.join(links), background=database.Database("config.json").get('background')) @app.route('/videos/<video>') def videoPage(video): for root, dirs, files in os.walk(database.Database("config.json").get("videofolder") + '/' + video): for file in files: if file.endswith('.description'): with open(database.Database("config.json").get("videofolder") + '/' + video + '/' + file, 'r') as de: desc = de.read() try: desc except: desc='' break for root, dirs, files in os.walk(database.Database("config.json").get("videofolder") + '/' + video): for file in files: if file.endswith('.mp4') or file.endswith('.webm'): return render_template("video.html", path='/vidfile/' + video.replace("'", "%27") + "/" + file, description=desc.replace("\n", "\n<br>"), title=video, background=database.Database("config.json").get('background')) break @app.route('/videos/<video>/thumb') def videoPageThumb(video): for root, dirs, files in os.walk(database.Database("config.json").get("videofolder") + '/' + video): print(files) for file in files: if file.endswith('.png') or file.endswith('.jpg') or file.endswith('.webp') or file.endswith('.jpeg'): return send_from_directory(database.Database("config.json").get("videofolder") + "/" + video + "/", file) break return send_from_directory("data", "eye.png") @app.route("/vidfile/<folder>/<file>") def videourlpagething(folder, file): return send_from_directory(database.Database("config.json").get("videofolder") + "/" + folder + "/", file) @app.route('/credits/') def creditsPage(): return render_template('credits.html', background=database.Database("config.json").get('background')) @app.route('/add/') def addVideoPage(): return render_template('addVideo.html', background=database.Database("config.json").get('background')) @app.route('/add/yt/', methods=['GET', 'POST']) def downloadYtVideo(): if not programExists("youtube-dl"): return eflash('youtube-dl is not installed or is not on your PATH.', request.url) if request.method == 'POST': url = request.form['url'] if url != '': os.system("python3 -m youtube_dl -f best -o \"" + database.Database("config.json").get("videofolder") + "/%(title)s/%(title)s.%(ext)s\"" + " --write-thumbnail --write-description " + url) return redirect('/') else: return render_template('download.html', error='You must specify a URL!', background=database.Database("config.json").get('background')) else: return render_template("download.html", background=database.Database("config.json").get('background')) @app.route('/add/mp4/', methods=['GET', 'POST']) def downloadYtMP4(): if not programExists("youtube-dl"): return eflash('youtube-dl is not installed or is not on your PATH.', request.url) if request.method == 'POST': url = request.form['url'] if url != '': if os.path.exists("download.mp4"): os.rm("download.mp4") os.system("python3 -m youtube_dl -f best -o " + "download0.mp4 " + url) return send_from_directory(".", "download0.mp4", as_attachment=True) else: return render_template('download.html', error='You must specify a URL!', background=database.Database("config.json").get('background')) else: return render_template("download.html", background=database.Database("config.json").get('background')) @app.route('/add/upload/', methods=['GET', 'POST']) def uploadLocalVideo(): if request.method == 'POST': if 'file' not in request.files: return eflash('No selected file', request.url) file = request.files['file'] if file.filename == '': return eflash('No selected file', request.url) elif request.form['title'] == '': return eflash('Title is required', request.url) else: filename = secure_filename(file.filename) os.mkdir(database.Database("config.json").get("videofolder") + "/" + request.form['title']) file.save(os.path.join(database.Database("config.json").get("videofolder") + "/"+request.form['title'], filename)) with open(database.Database("config.json").get("videofolder") + "/"+request.form['title'] + '/' + request.form['title'] + ".description", 'w') as file1: file1.write(request.form['nm']) return redirect('/videos/{}'.format(request.form['title'])) return "Nothing happened???" else: return render_template("upload.html", background=database.Database("config.json").get('background')) @app.route('/settings/', methods=['GET', 'POST']) def settingsPage(): if request.method == 'POST': config = database.Database("config.json") for field in request.form: config.set(field, request.form[field]) return redirect("/?popup=Settings%20Successfully%20Saved") else: config = database.Database("config.json") return render_template("settings.html", config=config, background=database.Database("config.json").get('background')) @app.errorhandler(404) def page_not_found(e): return eflash(e, url_for("homePage"), "404: Not Found", "Go Home", "Feature you want added? Submit a request at <a href=https://github.com/r2boyo25/yt-pi/issues/new/choose>my GitHub page. </a>") #return render_template('404.html', error=e) @app.errorhandler(400) def bad_requesthandler(e): return eflash(e, url_for("homePage"), "404: Not Found", "Go Home", "Submit a bug report at <a href=https://github.com/r2boyo25/yt-pi/issues/new/choose>my GitHub page. </a>") #return render_template('400.html', error=e) if __name__ == "__main__": currentConfig = json.loads(requests.get("https://raw.githubusercontent.com/R2Boyo25/yt-pi/master/config.json").text) if float(currentConfig["version"]) > float(database.Database("config.json").get('version')): if not ("/" + ( '/'.join(os.path.abspath(database.Database("config.json").get("videofolder")).split("/")) ) in os.path.abspath("yt-pi.py")): os.chdir("./..") os.system("rm -rf yt-pi") os.system("git clone https://github.com/r2boyo25/yt-pi") os.chdir("yt-pi") app.run(debug=True, host='0.0.0.0', port=database.Database("config.json").get("port"))
2.125
2
src/apps/backup/management/commands/run_backup.py
tuxis/BuckuPy
0
12783148
<filename>src/apps/backup/management/commands/run_backup.py<gh_stars>0 from django.core.management.base import BaseCommand class Command(BaseCommand): def handle(self, *args, **options): from apps.backup.functions import backup_process bk_obj = backup_process() bk_obj.run_backup()
1.617188
2
individual.py
gabrielbiasi/evolutionary-rubiks-cube
1
12783149
# -*- coding: utf-8 -*- """ Universidade Federal de Minas Gerais Departamento de Ciência da Computação Programa de Pós-Graduação em Ciência da Computação Computação Natural Trabalho Prático 1 Feito por <NAME>, 2016672212. """ #--------------------------------------------------------------# #------------------------ CONSTANTES --------------------------# #--------------------------------------------------------------# # G0, G1.1, G1.2, G2.1, G2.2, G3 PHASE_START = [0, 1, 1, 2, 2, 4] PHASE_END = [7, 13, 13, 15, 15, 17] MOVES_SET = [ #-#-#-#- ['L', 'R', 'F', 'B', 'U', 'D' ], # G0 # ['L2', 'R2', 'F', 'B', 'U', 'D' ], # G1.1 # ['L2', 'R2', 'F', 'B', 'U', 'D' ], # G1.2 # ['L2', 'R2', 'F2', 'B2', 'U', 'D' ], # G2.1 # ['L2', 'R2', 'F2', 'B2', 'U', 'D' ], # G2.2 # ['F2', 'R2', 'F2', 'B2', 'U2', 'D2'] # G3 # ] #-#-#-#- OP = {'O':'R','R':'O','W':'Y','Y':'W','G':'B','B':'G'} INVERSE = {'F': 'Fi','L': 'Li','R': 'Ri','B': 'Bi', 'U': 'Ui','D': 'Di','Fi': 'F','Li': 'L','Ri': 'R', 'Bi': 'B','Ui': 'U','Di': 'D','F2': 'F2','L2': 'L2', 'R2': 'R2','B2': 'B2','U2': 'U2','D2': 'D2'} SIMPLE_180 = {'F F2': 'Fi','L L2': 'Li','R R2': 'Ri', 'B B2': 'Bi','U U2': 'Ui','D D2': 'Di','F2 F': 'Fi', 'L2 L': 'Li','R2 R': 'Ri','B2 B': 'Bi','U2 U': 'Ui', 'D2 D': 'Di','Fi F2': 'F','Li L2': 'L','Ri R2': 'R', 'Bi B2': 'B','Ui U2': 'U','Di D2': 'D','F2 Fi': 'F', 'L2 Li': 'L','R2 Ri': 'R','B2 Bi': 'B','U2 Ui': 'U', 'D2 Di': 'D'} #--------------------------------------------------------------# import copy, random from cube import Cube class Color(): ''' Importante! Esta classe se comporta como um 'Enum' à fim de facilitar a troca de cores de referência caso o arquivo de entrada esteja invertido de alguma forma. ''' TOP = 'Y' BOTTOM = 'W' FRONT = 'O' BACK = 'R' LEFT = 'G' RIGHT = 'B' class Individual(object): def __init__(self, ind): ''' Construtor do Indivíduo Se o parâmetro passado for um indivíduo, é feita então uma cópia. ''' if isinstance(ind, Individual): self.cube = copy.deepcopy(ind.cube) self.genes = list(ind.genes) self.fitness = ind.fitness self.phase = ind.phase self.size = ind.size else: self.cube = copy.deepcopy(ind) self.genes = list() self.fitness = -1 self.phase = 0 self.size = 0 def __repr__(self): return self.__str__() def __str__(self): ''' Representação gráfica do indivíduo. ''' self.cube.colored_printf() return "{}[PH{}][L{}][F{}]".format(self.phase, self.genes, self.size, self.fitness) def apply(self, new_moves): ''' Este método aplica os novos movimentos gerados pela mutação para o cubo que pertence à este indivíduo. ''' for gene in new_moves: mode = 0 # Movimento horário if len(gene) == 2: mode = 1 if gene[1] == 'i' else 2 # Movimento anti-horário ou 180 if gene[0] == 'F': self.cube.move_f(mode) elif gene[0] == 'R': self.cube.move_r(mode) elif gene[0] == 'U': self.cube.move_u(mode) elif gene[0] == 'B': self.cube.move_b(mode) elif gene[0] == 'L': self.cube.move_l(mode) elif gene[0] == 'D': self.cube.move_d(mode) def mutation(self, phase): ''' Este método cria uma nova jogada à ser aplicada no cubo mágico, de acordo com a fase atual do algoritmo, temos movimentos específicos e quantidade limitada, pelas listas PHASE_START, PHASE_END e MOVES_SET. Após a criação a os movimentos são "limpos" e acrescentados ao indivíduo. ''' # Atualiza a fase e reseta o fitness self.phase = phase self.fitness = -1 # Geração aleatória de uma jogada new_genes = list() new_size = random.randint(PHASE_START[self.phase], PHASE_END[self.phase]) for i in range(new_size): new_genes.append(random.choice(MOVES_SET[self.phase])) # A jogada é aplicada ao cubo self.apply(new_genes) # Limpeza de movimentos self.genes += new_genes self.size += new_size self.clean() def clean(self): ''' Este método recebe os novos movimentos obtidos pela mutação e realiza uma limpeza em busca de movimentos complementares ou movimentos que não geram efeito final no cubo. ''' i = 0 removed = 0 new_list = list(self.genes) while i < self.size - removed - 1: x = new_list[i] y = new_list[i+1] #-#-# Genes inversos seguidos são removidos #-#-# if x == INVERSE[y]: del new_list[i] del new_list[i] removed += 2 if i > 0: i -= 1 #-#-# Genes iguais seguidos são convertidos para um gene 180 #-#-# elif x == y: del new_list[i] new_list[i] = str(new_list[i][0]+'2') removed += 1 if i > 0: i -= 1 #-# Simplificação de um 90 e 180 para um 90 invertido #-# elif str(x+' '+y) in SIMPLE_180: del new_list[i] new_list[i] = SIMPLE_180[str(x+' '+y)] removed += 1 if i > 0: i -= 1 else: i += 1 #-#-# self.genes = new_list self.size -= removed def get_fitness(self, phase): ''' Cálculo da fitness Recebe por parâmetro a fase atual do algoritmo para realizar o cálculo corretamente. ''' from main import CONST_PHASES self.phase = phase c = self.size if self.fitness == -1: result = 0 if self.phase == 0: ''' Cálculo da fitness G0 -> G1 Os meios precisam ser orientados da maneira correta, ou seja, é possível colocá-los em seus lugares sem uso dos movimentos L e R. ''' w = 0 #-#-# Mapeamento de todos os meios do cubo #-#-# # Deu trabalho :( edge_pieces = [ (self.cube.matrix[0][1][0], self.cube.matrix[1][1][2]), # O->G (self.cube.matrix[0][1][2], self.cube.matrix[2][1][0]), # O->B (self.cube.matrix[0][0][1], self.cube.matrix[4][2][1]), # O->Y (self.cube.matrix[0][2][1], self.cube.matrix[5][0][1]), # O->W (self.cube.matrix[3][1][0], self.cube.matrix[2][1][2]), # R->B (self.cube.matrix[3][1][2], self.cube.matrix[1][1][0]), # R->G (self.cube.matrix[3][0][1], self.cube.matrix[4][0][1]), # R->Y (self.cube.matrix[3][2][1], self.cube.matrix[5][2][1]), # R->W (self.cube.matrix[1][0][1], self.cube.matrix[4][1][0]), # G->Y (self.cube.matrix[1][2][1], self.cube.matrix[5][1][0]), # G->W (self.cube.matrix[2][0][1], self.cube.matrix[4][1][2]), # B->Y (self.cube.matrix[2][2][1], self.cube.matrix[5][1][2]) # B->W ] # A cada meio não-orientado, 1 ponto de punição. for piece in edge_pieces: if piece[0] in [Color.TOP, Color.BOTTOM]: w += 1 elif piece[0] in [Color.LEFT, Color.RIGHT] and \ piece[1] in [Color.FRONT, Color.BACK]: w += 1 # Parâmetros de multiplicação # Aumenta ou diminui a pressão seletiva da fase. result = (CONST_PHASES[0] * w) + c elif self.phase == 1: ''' Cálculo da fitness G1 -> G2 (Parte 1) Nesta parte 1, é colocado os meios na camada do meio apenas. Este processo facilita a convergência para o real cálculo da fitness G1->G2 na parte 2. ''' w = 0 #-#-# Punição por meios fora da camada do meio. #-#-# f = self.cube.matrix[0][1] # Face da frente, camada do meio. w += 0 if f[0] == Color.FRONT or f[0] == Color.BACK else 1 w += 0 if f[2] == Color.FRONT or f[2] == Color.BACK else 1 f = self.cube.matrix[3][1] # Face de trás, camada do meio. w += 0 if f[0] == Color.FRONT or f[0] == Color.BACK else 1 w += 0 if f[2] == Color.FRONT or f[2] == Color.BACK else 1 f = self.cube.matrix[1][1] # Face da esquerda, camada do meio. w += 0 if f[0] == Color.LEFT or f[0] == Color.RIGHT else 1 w += 0 if f[2] == Color.LEFT or f[2] == Color.RIGHT else 1 f = self.cube.matrix[2][1] # Face da direita, camada do meio. w += 0 if f[0] == Color.LEFT or f[0] == Color.RIGHT else 1 w += 0 if f[2] == Color.LEFT or f[2] == Color.RIGHT else 1 # Parâmetros de multiplicação # Aumenta ou diminui a pressão seletiva da fase. result = (CONST_PHASES[1] * w) + c elif self.phase == 2: ''' Cálculo da fitness G1 -> G2 (Parte 2) Todos as cores FRONT e BACK precisam estar nas faces FRONT e BACK. ''' # Mesmo código da fase 1 # w = 0 #-#-# Punição por meios fora da camada do meio. #-#-# f = self.cube.matrix[0][1] # Face da frente, camada do meio. w += 0 if f[0] == Color.FRONT or f[0] == Color.BACK else 1 w += 0 if f[2] == Color.FRONT or f[2] == Color.BACK else 1 f = self.cube.matrix[3][1] # Face de trás, camada do meio. w += 0 if f[0] == Color.FRONT or f[0] == Color.BACK else 1 w += 0 if f[2] == Color.FRONT or f[2] == Color.BACK else 1 f = self.cube.matrix[1][1] # Face da esquerda, camada do meio. w += 0 if f[0] == Color.LEFT or f[0] == Color.RIGHT else 1 w += 0 if f[2] == Color.LEFT or f[2] == Color.RIGHT else 1 f = self.cube.matrix[2][1] # Face da direita, camada do meio. w += 0 if f[0] == Color.LEFT or f[0] == Color.RIGHT else 1 w += 0 if f[2] == Color.LEFT or f[2] == Color.RIGHT else 1 result = (CONST_PHASES[1] * w) + c # Fim do mesmo código da fase 1 # v = 0 #-#-# Punição para cada canto não orientado. #-#-# f = self.cube.matrix[4] # Face de cima v += 0 if f[0][0] == Color.TOP or f[0][0] == Color.BOTTOM else 1 v += 0 if f[0][2] == Color.TOP or f[0][2] == Color.BOTTOM else 1 v += 0 if f[2][0] == Color.TOP or f[2][0] == Color.BOTTOM else 1 v += 0 if f[2][2] == Color.TOP or f[2][2] == Color.BOTTOM else 1 f = self.cube.matrix[5] # Face de baixo v += 0 if f[0][0] == Color.TOP or f[0][0] == Color.BOTTOM else 1 v += 0 if f[0][2] == Color.TOP or f[0][2] == Color.BOTTOM else 1 v += 0 if f[2][0] == Color.TOP or f[2][0] == Color.BOTTOM else 1 v += 0 if f[2][2] == Color.TOP or f[2][2] == Color.BOTTOM else 1 # Parâmetros de multiplicação # Aumenta ou diminui a pressão seletiva da fase. result = (CONST_PHASES[2] * v) + result elif self.phase == 3: ''' Cálculo da fitness G2 -> G3 (Parte 1) Todos as faces precisam ter sua cor original ou sua cor oposta, além dos cantos vizinhos precisam compartilhar a mesma cor "lateral", não importando o topo/baixo. ''' y = 0 #-#-# Mapeamento de todos os cantos do cubo #-#-# # Também deu trabalho :( all_corners = [ (self.cube.matrix[0][0][0], self.cube.matrix[1][0][2]), #Y-O-G (self.cube.matrix[0][2][0], self.cube.matrix[1][2][2]), #W-O-G (self.cube.matrix[0][0][2], self.cube.matrix[2][0][0]), #Y-O-B (self.cube.matrix[0][2][2], self.cube.matrix[2][2][0]), #W-O-B (self.cube.matrix[3][0][0], self.cube.matrix[2][0][2]), #Y-R-B (self.cube.matrix[3][2][0], self.cube.matrix[2][2][2]), #W-R-B (self.cube.matrix[3][0][2], self.cube.matrix[1][0][0]), #Y-R-G (self.cube.matrix[3][2][2], self.cube.matrix[1][2][0]), #W-R-G ] #-#-# Punição para cada canto da camada superior que não combina # sua cor com o canto da camada inferior (formando uma "coluna"). #-#-# for i in range(0, 8, 2): if all_corners[i][0] != all_corners[i+1][0] or \ all_corners[i][1] != all_corners[i+1][1]: y += 1 # Parâmetros de multiplicação # Aumenta ou diminui a pressão seletiva da fase. result = (CONST_PHASES[3] * y) + c elif self.phase == 4: x, y = 0, 0 # Mesmo código da fase 3 # #-#-# Mapeamento de todos os cantos do cubo #-#-# # Também deu trabalho :( all_corners = [ (self.cube.matrix[0][0][0], self.cube.matrix[1][0][2]), #Y-O-G (self.cube.matrix[0][2][0], self.cube.matrix[1][2][2]), #W-O-G (self.cube.matrix[0][0][2], self.cube.matrix[2][0][0]), #Y-O-B (self.cube.matrix[0][2][2], self.cube.matrix[2][2][0]), #W-O-B (self.cube.matrix[3][0][0], self.cube.matrix[2][0][2]), #Y-R-B (self.cube.matrix[3][2][0], self.cube.matrix[2][2][2]), #W-R-B (self.cube.matrix[3][0][2], self.cube.matrix[1][0][0]), #Y-R-G (self.cube.matrix[3][2][2], self.cube.matrix[1][2][0]), #W-R-G ] #-#-# Punição para cada canto da camada superior que não combina # sua cor com o canto da camada inferior (formando uma "coluna"). #-#-# for i in range(0, 8, 2): if all_corners[i][0] != all_corners[i+1][0] or \ all_corners[i][1] != all_corners[i+1][1]: y += 1 result = (CONST_PHASES[3] * y) + c # Fim do mesmo código da fase 3 # #-#-# Recebe uma punição cada cor de cubo que não é a # cor da correta ou não é a cor oposta da face. #-#-# for face in self.cube.matrix: center = face[1][1] for i in range(3): for j in range(3): if face[i][j] != center and face[i][j] != OP[center]: x += 1 # Parâmetros de multiplicação # Aumenta ou diminui a pressão seletiva da fase. result = (CONST_PHASES[4] * x) + result elif self.phase == 5: ''' Cálculo da fitness G3 -> G4 (Resolvido) Agora apenas movimentos de 180 graus são permitidos, a função de fitness simplesmente olha a cor de cada cubo e verifica com o centro. ''' z = 0 #-#-# Fase final, recebe uma punição por cada cor # que não é a cor da face atual. #-#-# for face in self.cube.matrix: center = face[1][1] for i in range(3): for j in range(3): if face[i][j] != center: z += 1 # Parâmetros de multiplicação # Aumenta ou diminui a pressão seletiva da fase. result = (CONST_PHASES[5] * z) + c self.fitness = result return self.fitness
2.078125
2
Interview-Preparation/Amazon/treesgraphs-flood-fill.py
shoaibur/SWE
1
12783150
<filename>Interview-Preparation/Amazon/treesgraphs-flood-fill.py<gh_stars>1-10 class Solution: def floodFill(self, image: List[List[int]], sr: int, sc: int, newColor: int) -> List[List[int]]: if not image: return image nrow = len(image) ncol = len(image[0]) color = image[sr][sc] if color == newColor: return image def dfs(image, i, j): if image[i][j] == color: image[i][j] = newColor if i > 0: dfs(image, i-1, j) if i < nrow-1: dfs(image, i+1, j) if j > 0: dfs(image, i, j-1) if j < ncol-1: dfs(image, i, j+1) dfs(image, sr, sc) return image
3.390625
3