code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCamelCase__ = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowerCamelCase__ = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[int] = SavedModel() _UpperCAmelCase : Any = [] with open(os.path.join(__lowerCAmelCase , "utils" , "tf_ops" , "onnx.json" ) ) as f: _UpperCAmelCase : Tuple = json.load(__lowerCAmelCase )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__lowerCAmelCase )] ) with open(__lowerCAmelCase , "rb" ) as f: saved_model.ParseFromString(f.read() ) _UpperCAmelCase : Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _UpperCAmelCase : int = sorted(__lowerCAmelCase ) _UpperCAmelCase : Dict = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__lowerCAmelCase ) if strict and len(__lowerCAmelCase ) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(__lowerCAmelCase ) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""" ) print(*__lowerCAmelCase , sep="\n" ) else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) lowerCamelCase__ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
322
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
1
'''simple docstring''' from typing import Any class lowerCAmelCase__ : def __init__( self : List[Any] , lowerCamelCase__ : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = data _UpperCAmelCase : Tuple = None class lowerCAmelCase__ : def __init__( self : str ) ->Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = None def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase : int = temp.next print() def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : Tuple = Node(lowerCamelCase__ ) _UpperCAmelCase : Any = self.head _UpperCAmelCase : Union[str, Any] = new_node def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' if node_data_a == node_data_a: return else: _UpperCAmelCase : Union[str, Any] = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : Union[str, Any] = node_a.next _UpperCAmelCase : List[str] = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : Optional[Any] = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase : Any = node_a.data, node_a.data if __name__ == "__main__": lowerCamelCase__ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
322
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
1
'''simple docstring''' from statistics import mean, stdev def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = 3 ): _UpperCAmelCase : Any = min(__lowerCAmelCase ) _UpperCAmelCase : List[str] = max(__lowerCAmelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , __lowerCAmelCase ) for x in data] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = 3 ): _UpperCAmelCase : List[Any] = mean(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = stdev(__lowerCAmelCase ) # standardize data return [round((x - mu) / (sigma) , __lowerCAmelCase ) for x in data]
322
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
1
'''simple docstring''' from __future__ import annotations lowerCamelCase__ = [True] * 1_000_001 lowerCamelCase__ = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): lowerCamelCase__ = False i += 1 def __lowerCAmelCase (__lowerCAmelCase ): return seive[n] def __lowerCAmelCase (__lowerCAmelCase ): return any(digit in "02468" for digit in str(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase = 1_000_000 ): _UpperCAmelCase : Tuple = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__lowerCAmelCase ) and not contains_an_even_digit(__lowerCAmelCase ): _UpperCAmelCase : str = str(__lowerCAmelCase ) _UpperCAmelCase : Dict = [int(str_num[j:] + str_num[:j] ) for j in range(len(__lowerCAmelCase ) )] if all(is_prime(__lowerCAmelCase ) for i in list_nums ): result.append(__lowerCAmelCase ) return result def __lowerCAmelCase (): return len(find_circular_primes() ) if __name__ == "__main__": print(F'''{len(find_circular_primes()) = }''')
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
1
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase__ = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase__ = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase__ = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase__ = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase__ = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase__ = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase__ = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def __lowerCAmelCase (): _UpperCAmelCase , _UpperCAmelCase : Optional[int] = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) _UpperCAmelCase : Optional[Any] = ["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] _UpperCAmelCase , _UpperCAmelCase : List[Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowerCAmelCase (__lowerCAmelCase = 100 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize("hand, expected" , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowerCAmelCase (): _UpperCAmelCase : int = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] _UpperCAmelCase : str = poker_hands.copy() shuffle(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowerCAmelCase (): # Test that five high straights are compared correctly. _UpperCAmelCase : Optional[int] = [PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowerCAmelCase (): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. _UpperCAmelCase : Any = PokerHand("2C 4S AS 3D 5C" ) _UpperCAmelCase : Any = True _UpperCAmelCase : Tuple = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowerCAmelCase (): # Problem number 54 from Project Euler # Testing from poker_hands.txt file _UpperCAmelCase : Any = 0 _UpperCAmelCase : Optional[int] = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) _UpperCAmelCase : str = os.path.join(__lowerCAmelCase , "poker_hands.txt" ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: _UpperCAmelCase : Dict = line[:14].strip() _UpperCAmelCase : Optional[int] = line[15:].strip() _UpperCAmelCase , _UpperCAmelCase : Tuple = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
1
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCamelCase__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , ): output_path.parent.mkdir(parents=__lowerCAmelCase , exist_ok=__lowerCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __lowerCAmelCase , __lowerCAmelCase , f=output_path.as_posix() , input_names=__lowerCAmelCase , output_names=__lowerCAmelCase , dynamic_axes=__lowerCAmelCase , do_constant_folding=__lowerCAmelCase , use_external_data_format=__lowerCAmelCase , enable_onnx_checker=__lowerCAmelCase , opset_version=__lowerCAmelCase , ) else: export( __lowerCAmelCase , __lowerCAmelCase , f=output_path.as_posix() , input_names=__lowerCAmelCase , output_names=__lowerCAmelCase , dynamic_axes=__lowerCAmelCase , do_constant_folding=__lowerCAmelCase , opset_version=__lowerCAmelCase , ) @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ): _UpperCAmelCase : int = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _UpperCAmelCase : List[str] = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: _UpperCAmelCase : Union[str, Any] = "cpu" _UpperCAmelCase : Tuple = Path(__lowerCAmelCase ) # VAE DECODER _UpperCAmelCase : Union[str, Any] = AutoencoderKL.from_pretrained(model_path + "/vae" ) _UpperCAmelCase : Dict = vae_decoder.config.latent_channels # forward only through the decoder part _UpperCAmelCase : Union[str, Any] = vae_decoder.decode onnx_export( __lowerCAmelCase , model_args=( torch.randn(1 , __lowerCAmelCase , 25 , 25 ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=__lowerCAmelCase , ) del vae_decoder if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') lowerCamelCase__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
322
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
1
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = hf_hub_url(repo_id=__lowerCAmelCase , path=__lowerCAmelCase , revision=__lowerCAmelCase ) assert url == F"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(__lowerCAmelCase )}"""
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
1
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowerCamelCase__ = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: lowerCamelCase__ = json.load(f) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->str: '''simple docstring''' return FSMTTokenizer.from_pretrained(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = FSMTForConditionalGeneration.from_pretrained(lowerCamelCase__ ).to(lowerCamelCase__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 2_6.0], ["ru-en", 2_2.0], ["en-de", 2_2.0], ["de-en", 2_9.0], ] ) @slow def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = F"""facebook/wmt19-{pair}""" _UpperCAmelCase : List[str] = self.get_tokenizer(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.get_model(lowerCamelCase__ ) _UpperCAmelCase : Dict = bleu_data[pair]["src"] _UpperCAmelCase : List[str] = bleu_data[pair]["tgt"] _UpperCAmelCase : List[str] = tokenizer(lowerCamelCase__ , return_tensors="pt" , truncation=lowerCamelCase__ , padding="longest" ).to(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _UpperCAmelCase : Optional[Any] = tokenizer.batch_decode( lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = calculate_bleu(lowerCamelCase__ , lowerCamelCase__ ) print(lowerCamelCase__ ) self.assertGreaterEqual(scores["bleu"] , lowerCamelCase__ )
322
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : List[Any] = KandinskyVaaControlnetImgaImgPipeline lowerCAmelCase : Optional[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] lowerCAmelCase : str = ["image_embeds", "negative_image_embeds", "image", "hint"] lowerCAmelCase : Optional[Any] = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCAmelCase : List[Any] = False @property def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self : int ) ->int: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self : Optional[int] ) ->str: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : str ) ->Optional[Any]: '''simple docstring''' return 1_00 @property def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : List[str] = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _UpperCAmelCase : List[str] = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self : List[str] ) ->Dict: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : int = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self : str ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = self.dummy_unet _UpperCAmelCase : Dict = self.dummy_movq _UpperCAmelCase : Tuple = { "num_train_timesteps": 10_00, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _UpperCAmelCase : Dict = DDIMScheduler(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=0 ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) _UpperCAmelCase : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) # create init_image _UpperCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) _UpperCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : List[Any] = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("RGB" ).resize((2_56, 2_56) ) # create hint _UpperCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith("mps" ): _UpperCAmelCase : Optional[Any] = torch.manual_seed(lowerCamelCase__ ) else: _UpperCAmelCase : int = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _UpperCAmelCase : Any = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : Any = "cpu" _UpperCAmelCase : List[Any] = self.get_dummy_components() _UpperCAmelCase : Tuple = self.pipeline_class(**lowerCamelCase__ ) _UpperCAmelCase : Dict = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCAmelCase : str = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : str = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : List[Any] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : Any ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) _UpperCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) _UpperCAmelCase : Optional[Any] = init_image.resize((5_12, 5_12) ) _UpperCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) _UpperCAmelCase : Union[str, Any] = torch.from_numpy(np.array(lowerCamelCase__ ) ).float() / 2_5_5.0 _UpperCAmelCase : Dict = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _UpperCAmelCase : Tuple = "A robot, 4k photo" _UpperCAmelCase : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) _UpperCAmelCase : Optional[int] = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCAmelCase : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) _UpperCAmelCase , _UpperCAmelCase : List[str] = pipe_prior( lowerCamelCase__ , image=lowerCamelCase__ , strength=0.8_5 , generator=lowerCamelCase__ , negative_prompt="" , ).to_tuple() _UpperCAmelCase : Dict = pipeline( image=lowerCamelCase__ , image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , hint=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="np" , ) _UpperCAmelCase : List[str] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
322
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = '▁' lowerCamelCase__ = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } lowerCamelCase__ = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } lowerCamelCase__ = { 'facebook/s2t-small-librispeech-asr': 1_024, } lowerCamelCase__ = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] lowerCamelCase__ = {'mustc': MUSTC_LANGS} class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : List[str] = VOCAB_FILES_NAMES lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : int = MAX_MODEL_INPUT_SIZES lowerCAmelCase : Any = ["input_ids", "attention_mask"] lowerCAmelCase : List[int] = [] def __init__( self : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int]="<s>" , lowerCamelCase__ : str="</s>" , lowerCamelCase__ : Tuple="<pad>" , lowerCamelCase__ : List[Any]="<unk>" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : int=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Optional[Dict[str, Any]] = None , **lowerCamelCase__ : str , ) ->None: '''simple docstring''' _UpperCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , do_upper_case=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , tgt_lang=lowerCamelCase__ , lang_codes=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) _UpperCAmelCase : Union[str, Any] = do_upper_case _UpperCAmelCase : int = do_lower_case _UpperCAmelCase : Union[str, Any] = load_json(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} _UpperCAmelCase : List[Any] = spm_file _UpperCAmelCase : int = load_spm(lowerCamelCase__ , self.sp_model_kwargs ) if lang_codes is not None: _UpperCAmelCase : List[str] = lang_codes _UpperCAmelCase : List[Any] = LANGUAGES[lang_codes] _UpperCAmelCase : int = [F"""<lang:{lang}>""" for lang in self.langs] _UpperCAmelCase : List[Any] = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} _UpperCAmelCase : List[Any] = self.lang_tokens _UpperCAmelCase : List[Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _UpperCAmelCase : List[Any] = {} @property def lowerCAmelCase__ ( self : List[str] ) ->int: '''simple docstring''' return len(self.encoder ) @property def lowerCAmelCase__ ( self : Optional[int] ) ->str: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Dict ) ->None: '''simple docstring''' _UpperCAmelCase : Tuple = new_tgt_lang self.set_tgt_lang_special_tokens(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str ) ->None: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.lang_code_to_id[tgt_lang] _UpperCAmelCase : int = [lang_code_id] def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : str ) ->Tuple: '''simple docstring''' return self.encoder.get(lowerCamelCase__ , self.encoder[self.unk_token] ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : int ) ->str: '''simple docstring''' return self.decoder.get(lowerCamelCase__ , self.unk_token ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Any = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _UpperCAmelCase : Dict = self.sp_model.decode(lowerCamelCase__ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _UpperCAmelCase : int = [] else: current_sub_tokens.append(lowerCamelCase__ ) _UpperCAmelCase : List[str] = self.sp_model.decode(lowerCamelCase__ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int=None ) ->List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) _UpperCAmelCase : Tuple = [1] * len(self.prefix_tokens ) _UpperCAmelCase : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase__ )) + ([0] * len(lowerCamelCase__ )) + suffix_ones def lowerCAmelCase__ ( self : str ) ->Dict: '''simple docstring''' _UpperCAmelCase : int = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) ->Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.__dict__.copy() _UpperCAmelCase : Any = None return state def __setstate__( self : Optional[Any] , lowerCamelCase__ : Dict ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' _UpperCAmelCase : Dict = Path(lowerCamelCase__ ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" _UpperCAmelCase : Union[str, Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) _UpperCAmelCase : List[Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowerCamelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCamelCase__ ) elif not os.path.isfile(self.spm_file ): with open(lowerCamelCase__ , "wb" ) as fi: _UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (str(lowerCamelCase__ ), str(lowerCamelCase__ )) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = sentencepiece.SentencePieceProcessor(**__lowerCAmelCase ) spm.Load(str(__lowerCAmelCase ) ) return spm def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "r" ) as f: return json.load(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): with open(__lowerCAmelCase , "w" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase , indent=2 )
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowerCAmelCase__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Union[str, Any] , lowerCamelCase__ : float , lowerCamelCase__ : Callable , lowerCamelCase__ : int , lowerCamelCase__ : float = 1.0 , lowerCamelCase__ : str = None , ) ->Union[str, Any]: '''simple docstring''' super().__init__() _UpperCAmelCase : Any = initial_learning_rate _UpperCAmelCase : str = warmup_steps _UpperCAmelCase : Union[str, Any] = power _UpperCAmelCase : List[str] = decay_schedule_fn _UpperCAmelCase : List[str] = name def __call__( self : Tuple , lowerCamelCase__ : Tuple ) ->str: '''simple docstring''' with tf.name_scope(self.name or "WarmUp" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. _UpperCAmelCase : str = tf.cast(lowerCamelCase__ , tf.floataa ) _UpperCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) _UpperCAmelCase : Optional[int] = global_step_float / warmup_steps_float _UpperCAmelCase : Union[str, Any] = self.initial_learning_rate * tf.math.pow(lowerCamelCase__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowerCamelCase__ , ) def lowerCAmelCase__ ( self : Optional[Any] ) ->int: '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 0.9 , __lowerCAmelCase = 0.9_9_9 , __lowerCAmelCase = 1e-8 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = None , ): _UpperCAmelCase : Union[str, Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__lowerCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__lowerCAmelCase , ) if num_warmup_steps: _UpperCAmelCase : Any = WarmUp( initial_learning_rate=__lowerCAmelCase , decay_schedule_fn=__lowerCAmelCase , warmup_steps=__lowerCAmelCase , ) if weight_decay_rate > 0.0: _UpperCAmelCase : str = AdamWeightDecay( learning_rate=__lowerCAmelCase , weight_decay_rate=__lowerCAmelCase , beta_a=__lowerCAmelCase , beta_a=__lowerCAmelCase , epsilon=__lowerCAmelCase , clipnorm=__lowerCAmelCase , global_clipnorm=__lowerCAmelCase , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=__lowerCAmelCase , ) else: _UpperCAmelCase : str = tf.keras.optimizers.Adam( learning_rate=__lowerCAmelCase , beta_a=__lowerCAmelCase , beta_a=__lowerCAmelCase , epsilon=__lowerCAmelCase , clipnorm=__lowerCAmelCase , global_clipnorm=__lowerCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : List[str] , lowerCamelCase__ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.0_0_1 , lowerCamelCase__ : float = 0.9 , lowerCamelCase__ : float = 0.9_9_9 , lowerCamelCase__ : float = 1E-7 , lowerCamelCase__ : bool = False , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : Optional[List[str]] = None , lowerCamelCase__ : Optional[List[str]] = None , lowerCamelCase__ : str = "AdamWeightDecay" , **lowerCamelCase__ : int , ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Tuple = weight_decay_rate _UpperCAmelCase : int = include_in_weight_decay _UpperCAmelCase : Tuple = exclude_from_weight_decay @classmethod def lowerCAmelCase__ ( cls : Any , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = {"WarmUp": WarmUp} return super(lowerCamelCase__ , cls ).from_config(lowerCamelCase__ , custom_objects=lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str ) ->Optional[Any]: '''simple docstring''' super(lowerCamelCase__ , self )._prepare_local(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate" ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple=None , **lowerCamelCase__ : Any ) ->Any: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[str] = list(zip(*lowerCamelCase__ ) ) return super(lowerCamelCase__ , self ).apply_gradients(zip(lowerCamelCase__ , lowerCamelCase__ ) , name=lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} _UpperCAmelCase : Any = apply_state or {} _UpperCAmelCase : Tuple = apply_state.get((var_device, var_dtype) ) if coefficients is None: _UpperCAmelCase : Optional[Any] = self._fallback_apply_state(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[str] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=None ) ->str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self._decay_weights_op(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__ , self )._resource_apply_dense(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : int , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Any=None ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , lowerCamelCase__ ) _UpperCAmelCase : str = self._decay_weights_op(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__ , self )._resource_apply_sparse(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate} ) return config def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Any ) ->str: '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCamelCase__ , lowerCamelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCamelCase__ , lowerCamelCase__ ) is not None: return False return True class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Optional[int] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Dict = None @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' if self._accum_steps is None: _UpperCAmelCase : List[str] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowerCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCAmelCase__ ( self : str ) ->Tuple: '''simple docstring''' if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : str , lowerCamelCase__ : List[Any] ) ->Dict: '''simple docstring''' if not self._gradients: _UpperCAmelCase : List[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCamelCase__ ) , trainable=lowerCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCamelCase__ ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(lowerCamelCase__ )}""" ) for accum_gradient, gradient in zip(self._gradients , lowerCamelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCamelCase__ ) self._accum_steps.assign_add(1 ) def lowerCAmelCase__ ( self : Optional[Any] ) ->str: '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCamelCase__ ) )
322
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : List[str] = MvpTokenizer lowerCAmelCase : List[Any] = MvpTokenizerFast lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : str = filter_roberta_detectors def lowerCAmelCase__ ( self : List[Any] ) ->Optional[int]: '''simple docstring''' super().setUp() _UpperCAmelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _UpperCAmelCase : Union[str, Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) _UpperCAmelCase : Any = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCAmelCase : List[Any] = {"unk_token": "<unk>"} _UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Union[str, Any] , **lowerCamelCase__ : List[str] ) ->Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[int] ) ->Optional[Any]: '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCAmelCase__ ( self : int ) ->Optional[Any]: '''simple docstring''' return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def lowerCAmelCase__ ( self : List[Any] ) ->Dict: '''simple docstring''' return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def lowerCAmelCase__ ( self : Optional[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Tuple = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Optional[int] = tokenizer(lowerCamelCase__ , max_length=len(lowerCamelCase__ ) , padding=lowerCamelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _UpperCAmelCase : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that special tokens are reset @require_torch def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Dict = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" , lowerCamelCase__ ) self.assertIn("attention_mask" , lowerCamelCase__ ) self.assertNotIn("labels" , lowerCamelCase__ ) self.assertNotIn("decoder_attention_mask" , lowerCamelCase__ ) @require_torch def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Tuple = tokenizer(text_target=lowerCamelCase__ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def lowerCAmelCase__ ( self : Optional[Any] ) ->int: '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Union[str, Any] = tokenizer( ["I am a small frog" * 10_24, "I am a small frog"] , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 10_24) ) @require_torch def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ["A long paragraph for summarization."] _UpperCAmelCase : str = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Union[str, Any] = tokenizer(lowerCamelCase__ , text_target=lowerCamelCase__ , return_tensors="pt" ) _UpperCAmelCase : Dict = inputs["input_ids"] _UpperCAmelCase : List[Any] = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCAmelCase__ ( self : List[Any] ) ->List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Any = "A, <mask> AllenNLP sentence." _UpperCAmelCase : Any = tokenizer_r.encode_plus(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ ) _UpperCAmelCase : str = tokenizer_p.encode_plus(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) _UpperCAmelCase : int = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) _UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowerCamelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowerCamelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
322
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
1
'''simple docstring''' import re def __lowerCAmelCase (__lowerCAmelCase ): return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): try: _UpperCAmelCase : Optional[int] = split_input(__lowerCAmelCase ) if upper: _UpperCAmelCase : Optional[Any] = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: _UpperCAmelCase : Optional[Any] = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __lowerCAmelCase (__lowerCAmelCase ): return to_simple_case(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): try: _UpperCAmelCase : Tuple = to_simple_case(__lowerCAmelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return to_complex_case(__lowerCAmelCase , __lowerCAmelCase , "_" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return to_complex_case(__lowerCAmelCase , __lowerCAmelCase , "-" ) if __name__ == "__main__": __import__('doctest').testmod()
322
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
1
'''simple docstring''' lowerCamelCase__ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} lowerCamelCase__ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : Tuple = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) order.append(__lowerCAmelCase ) return order def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = True _UpperCAmelCase : List[Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return component def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Optional[int] = len(__lowerCAmelCase ) * [False] _UpperCAmelCase : dict[int, list[int]] = {vert: [] for vert in range(len(__lowerCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [] for i, was_visited in enumerate(__lowerCAmelCase ): if not was_visited: order += topology_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Tuple = [] _UpperCAmelCase : str = len(__lowerCAmelCase ) * [False] for i in range(len(__lowerCAmelCase ) ): _UpperCAmelCase : str = order[len(__lowerCAmelCase ) - i - 1] if not visited[vert]: _UpperCAmelCase : Optional[int] = find_components(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) components_list.append(__lowerCAmelCase ) return components_list
322
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
1
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase__ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase__ : def __init__( self : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any]=16 , lowerCamelCase__ : Any=13 , lowerCamelCase__ : Any=7 , lowerCamelCase__ : Any=14 , lowerCamelCase__ : Any=10 , lowerCamelCase__ : List[Any]=19 , lowerCamelCase__ : Optional[int]=5 , lowerCamelCase__ : Any=4 , lowerCamelCase__ : Dict=True , lowerCamelCase__ : str=16 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : str=4 , lowerCamelCase__ : str=4 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : Optional[Any]=0.1 , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Tuple=[1, 2, 3, 4, 5] , lowerCamelCase__ : Union[str, Any]=25 , lowerCamelCase__ : Tuple=5 , ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : Any = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Union[str, Any] = prediction_length _UpperCAmelCase : Dict = context_length _UpperCAmelCase : Tuple = cardinality _UpperCAmelCase : Dict = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Optional[Any] = embedding_dimension _UpperCAmelCase : str = is_training _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : List[str] = num_attention_heads _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = context_length _UpperCAmelCase : str = prediction_length + label_length _UpperCAmelCase : List[str] = label_length _UpperCAmelCase : Optional[Any] = moving_average _UpperCAmelCase : int = autocorrelation_factor def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : Any = config.context_length + max(config.lags_sequence ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _UpperCAmelCase : str = floats_tensor([self.batch_size, _past_length] ) _UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _UpperCAmelCase : List[str] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _UpperCAmelCase : int = floats_tensor([self.batch_size, config.prediction_length] ) _UpperCAmelCase : List[str] = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def lowerCAmelCase__ ( self : Any ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Any = self.prepare_autoformer_inputs_dict(lowerCamelCase__ ) return config, inputs_dict def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : str = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = AutoformerModel(config=lowerCamelCase__ ).to(lowerCamelCase__ ).eval() _UpperCAmelCase : List[Any] = model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = outputs.encoder_last_hidden_state _UpperCAmelCase : str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : int = model.get_encoder() encoder.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = AutoformerEncoder.from_pretrained(lowerCamelCase__ ).to(lowerCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = model.create_network_inputs(**lowerCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _UpperCAmelCase : List[str] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _UpperCAmelCase : Tuple = encoder(inputs_embeds=lowerCamelCase__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _UpperCAmelCase : Union[str, Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _UpperCAmelCase : Dict = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _UpperCAmelCase : Optional[int] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _UpperCAmelCase : Union[str, Any] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : List[str] = model.get_decoder() decoder.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : int = AutoformerDecoder.from_pretrained(lowerCamelCase__ ).to(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = decoder( trend=lowerCamelCase__ , inputs_embeds=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : int = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCAmelCase : Union[str, Any] = (AutoformerForPrediction,) if is_torch_available() else () lowerCAmelCase : List[Any] = {"feature-extraction": AutoformerModel} if is_torch_available() else {} lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False def lowerCAmelCase__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoformerModelTester(self ) _UpperCAmelCase : int = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase : Dict = model_class.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertEqual(info["missing_keys"] , [] ) def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCamelCase__ ) @unittest.skip(reason="Model has no tokens embeddings" ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = inspect.signature(getattr(lowerCamelCase__ , "forward" ) ) # The main input is the name of the argument after `self` _UpperCAmelCase : Union[str, Any] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Optional[Any] = model_class(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : List[str] = [*signature.parameters.keys()] _UpperCAmelCase : Optional[int] = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(lowerCamelCase__ )] , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Tuple = True _UpperCAmelCase : Union[str, Any] = getattr(self.model_tester , "seq_length" , lowerCamelCase__ ) _UpperCAmelCase : Dict = getattr(self.model_tester , "decoder_seq_length" , lowerCamelCase__ ) _UpperCAmelCase : Dict = getattr(self.model_tester , "encoder_seq_length" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = getattr(self.model_tester , "d_model" , lowerCamelCase__ ) _UpperCAmelCase : Dict = getattr(self.model_tester , "num_attention_heads" , lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = d_model // num_attention_heads for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = True _UpperCAmelCase : Tuple = False _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Union[str, Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : int = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _UpperCAmelCase : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : List[str] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = outputs.encoder_attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _UpperCAmelCase : Optional[Any] = len(lowerCamelCase__ ) _UpperCAmelCase : Any = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) # decoder attentions _UpperCAmelCase : Tuple = outputs.decoder_attentions self.assertIsInstance(lowerCamelCase__ , (list, tuple) ) self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _UpperCAmelCase : Union[str, Any] = outputs.cross_attentions self.assertIsInstance(lowerCamelCase__ , (list, tuple) ) self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _UpperCAmelCase : Any = True _UpperCAmelCase : Tuple = True _UpperCAmelCase : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(out_len + 2 , len(lowerCamelCase__ ) ) _UpperCAmelCase : List[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def __lowerCAmelCase (__lowerCAmelCase="train-batch.pt" ): _UpperCAmelCase : Optional[int] = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=__lowerCAmelCase , repo_type="dataset" ) _UpperCAmelCase : str = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : List[Any] = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(lowerCamelCase__ ) _UpperCAmelCase : Any = prepare_batch() with torch.no_grad(): _UpperCAmelCase : Any = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] _UpperCAmelCase : Dict = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : Tuple = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=lowerCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(lowerCamelCase__ ) _UpperCAmelCase : Dict = prepare_batch("val-batch.pt" ) with torch.no_grad(): _UpperCAmelCase : Optional[int] = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state _UpperCAmelCase : Dict = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=lowerCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = prepare_batch("val-batch.pt" ) with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) _UpperCAmelCase : Tuple = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , lowerCamelCase__ ) _UpperCAmelCase : Tuple = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=lowerCamelCase__ ) _UpperCAmelCase : List[str] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowerCamelCase__ , rtol=1E-1 ) )
322
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : Optional[int] , lowerCamelCase__ : int = 7_68 , ) ->List[Any]: '''simple docstring''' super().__init__() _UpperCAmelCase : List[Any] = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) _UpperCAmelCase : Any = nn.Parameter(torch.ones(1 , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[Union[str, torch.device]] = None , lowerCamelCase__ : Optional[torch.dtype] = None , ) ->str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.Parameter(self.mean.to(lowerCamelCase__ ).to(lowerCamelCase__ ) ) _UpperCAmelCase : str = nn.Parameter(self.std.to(lowerCamelCase__ ).to(lowerCamelCase__ ) ) return self def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : List[str] ) ->Any: '''simple docstring''' _UpperCAmelCase : str = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Any ) ->Dict: '''simple docstring''' _UpperCAmelCase : Any = (embeds * self.std) + self.mean return embeds
322
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
1
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if index == r: for j in range(__lowerCAmelCase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _UpperCAmelCase : List[Any] = arr[i] combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index + 1 , __lowerCAmelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # A temporary array to store all combination one by one _UpperCAmelCase : List[Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 0 , __lowerCAmelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above lowerCamelCase__ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
322
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCamelCase__ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
322
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCAmelCase : str = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase : ClassVar[Features] = Features({"text": Value("string" )} ) lowerCAmelCase : ClassVar[Features] = Features({"labels": ClassLabel} ) lowerCAmelCase : str = "text" lowerCAmelCase : str = "labels" def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Tuple ) ->Optional[int]: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCamelCase__ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) _UpperCAmelCase : Any = copy.deepcopy(self ) _UpperCAmelCase : Tuple = self.label_schema.copy() _UpperCAmelCase : str = features[self.label_column] _UpperCAmelCase : str = label_schema return task_template @property def lowerCAmelCase__ ( self : int ) ->Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
322
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
1
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Union[str, Any] = Rectangle(height=0.2_5 , width=0.2_5 ) _UpperCAmelCase : str = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : List[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = [mem.copy() for i in range(6 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Tuple = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = Text("CPU" , font_size=24 ) _UpperCAmelCase : List[Any] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Tuple = [mem.copy() for i in range(4 )] _UpperCAmelCase : Optional[int] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = Text("GPU" , font_size=24 ) _UpperCAmelCase : List[str] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : str = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[int] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = Text("Model" , font_size=24 ) _UpperCAmelCase : Optional[Any] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : str = [] for i, rect in enumerate(lowerCamelCase__ ): rect.set_stroke(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowerCamelCase__ , buff=0.0 ) self.add(lowerCamelCase__ ) model_cpu_arr.append(lowerCamelCase__ ) self.add(*lowerCamelCase__ , *lowerCamelCase__ , *lowerCamelCase__ ) _UpperCAmelCase : List[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : int = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Loaded Checkpoint" , font_size=24 ) _UpperCAmelCase : Optional[int] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Optional[Any] = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : Dict = fill.copy().set_fill(lowerCamelCase__ , opacity=0.7 ) target.move_to(lowerCamelCase__ ) ckpt_arr.append(lowerCamelCase__ ) _UpperCAmelCase : int = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowerCamelCase__ ) self.add(*lowerCamelCase__ , *lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Any = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowerCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Any = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) _UpperCAmelCase : str = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Union[str, Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : List[str] = Text("Disk" , font_size=24 ) _UpperCAmelCase : Union[str, Any] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(lowerCamelCase__ , run_time=3 ) , Write(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) ) _UpperCAmelCase : List[str] = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : Dict = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(FadeOut(lowerCamelCase__ ) ) _UpperCAmelCase : Any = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=3 ) ) self.play( FadeOut(lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ , *lowerCamelCase__ ) , ) self.wait()
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase__ = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase__ = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase__ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase__ = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) lowerCamelCase__ = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions lowerCamelCase__ = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) lowerCamelCase__ = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase__ = np.expand_dims(test_image, axis=0) lowerCamelCase__ = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase__ = 'Normal' if result[0][0] == 1: lowerCamelCase__ = 'Abnormality detected'
322
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
1
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) lowerCamelCase__ = 299_792_458 # Symbols lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = symbols('ct x y z') def __lowerCAmelCase (__lowerCAmelCase ): if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def __lowerCAmelCase (__lowerCAmelCase ): return 1 / sqrt(1 - beta(__lowerCAmelCase ) ** 2 ) def __lowerCAmelCase (__lowerCAmelCase ): return np.array( [ [gamma(__lowerCAmelCase ), -gamma(__lowerCAmelCase ) * beta(__lowerCAmelCase ), 0, 0], [-gamma(__lowerCAmelCase ) * beta(__lowerCAmelCase ), gamma(__lowerCAmelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = None ): # Ensure event is not empty if event is None: _UpperCAmelCase : Union[str, Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__lowerCAmelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: lowerCamelCase__ = transform(29_979_245) print('Example of four vector: ') print(F'''ct\' = {four_vector[0]}''') print(F'''x\' = {four_vector[1]}''') print(F'''y\' = {four_vector[2]}''') print(F'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values lowerCamelCase__ = {ct: c, x: 1, y: 1, z: 1} lowerCamelCase__ = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'''\n{numerical_vector}''')
322
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : int , lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any]=13 , lowerCamelCase__ : List[str]=30 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=3 , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Tuple=32 , lowerCamelCase__ : Any=5 , lowerCamelCase__ : Tuple=4 , lowerCamelCase__ : Dict=37 , lowerCamelCase__ : str="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Optional[Any]=0.1 , lowerCamelCase__ : str=10 , lowerCamelCase__ : List[Any]=0.0_2 , ) ->Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Tuple = image_size _UpperCAmelCase : str = patch_size _UpperCAmelCase : Any = num_channels _UpperCAmelCase : Optional[int] = is_training _UpperCAmelCase : Union[str, Any] = use_labels _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : List[str] = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Dict = type_sequence_label_size _UpperCAmelCase : Union[str, Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : Any = (image_size // patch_size) ** 2 _UpperCAmelCase : Optional[int] = num_patches + 1 def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Any = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = FlaxViTModel(config=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : str = (self.image_size, self.image_size) _UpperCAmelCase : Any = (self.patch_size, self.patch_size) _UpperCAmelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str , lowerCamelCase__ : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Any = self.type_sequence_label_size _UpperCAmelCase : Any = FlaxViTForImageClassification(config=lowerCamelCase__ ) _UpperCAmelCase : int = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : str = FlaxViTForImageClassification(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : Tuple = model(lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Union[str, Any] = config_and_inputs _UpperCAmelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Union[str, Any] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCAmelCase__ ( self : Any ) ->None: '''simple docstring''' _UpperCAmelCase : Any = FlaxViTModelTester(self ) _UpperCAmelCase : List[str] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Dict = model_class(lowerCamelCase__ ) _UpperCAmelCase : Tuple = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Tuple = [*signature.parameters.keys()] _UpperCAmelCase : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Union[str, Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[str] = model_class(lowerCamelCase__ ) @jax.jit def model_jitted(lowerCamelCase__ : Optional[Any] , **lowerCamelCase__ : str ): return model(pixel_values=lowerCamelCase__ , **lowerCamelCase__ ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : Union[str, Any] = model_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : List[Any] = model_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("google/vit-base-patch16-224" ) _UpperCAmelCase : Optional[Any] = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(lowerCamelCase__ )
322
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
1
'''simple docstring''' import gc import threading import time import psutil import torch class lowerCAmelCase__ : def __init__( self : str ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = psutil.Process() _UpperCAmelCase : int = False def lowerCAmelCase__ ( self : Union[str, Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Tuple = -1 while True: _UpperCAmelCase : Optional[int] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Any = True _UpperCAmelCase : Union[str, Any] = threading.Thread(target=self.peak_monitor ) _UpperCAmelCase : Any = True self.thread.start() def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Any = False self.thread.join() return self.cpu_memory_peak lowerCamelCase__ = PeakCPUMemory() def __lowerCAmelCase (): # Time _UpperCAmelCase : Dict = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _UpperCAmelCase : List[str] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _UpperCAmelCase : Union[str, Any] = torch.cuda.memory_allocated(__lowerCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def __lowerCAmelCase (__lowerCAmelCase ): # Time _UpperCAmelCase : Union[str, Any] = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _UpperCAmelCase : List[Any] = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _UpperCAmelCase : Union[str, Any] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _UpperCAmelCase : List[str] = (torch.cuda.memory_allocated(__lowerCAmelCase ) - start_measures[str(__lowerCAmelCase )]) / 2**20 _UpperCAmelCase : Tuple = (torch.cuda.max_memory_allocated(__lowerCAmelCase ) - start_measures[str(__lowerCAmelCase )]) / 2**20 return measures def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): print(F"""{description}:""" ) print(F"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(__lowerCAmelCase )]:.2f}MiB""" ) _UpperCAmelCase : Union[str, Any] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
322
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : Dict = "nat" lowerCAmelCase : List[str] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowerCamelCase__ : Tuple=4 , lowerCamelCase__ : Optional[int]=3 , lowerCamelCase__ : Tuple=64 , lowerCamelCase__ : int=[3, 4, 6, 5] , lowerCamelCase__ : Tuple=[2, 4, 8, 16] , lowerCamelCase__ : List[Any]=7 , lowerCamelCase__ : str=3.0 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : int=0.0 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : str=0.0_2 , lowerCamelCase__ : str=1E-5 , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : Any=None , lowerCamelCase__ : Any=None , **lowerCamelCase__ : Any , ) ->str: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = patch_size _UpperCAmelCase : Union[str, Any] = num_channels _UpperCAmelCase : str = embed_dim _UpperCAmelCase : int = depths _UpperCAmelCase : Tuple = len(lowerCamelCase__ ) _UpperCAmelCase : Any = num_heads _UpperCAmelCase : Optional[int] = kernel_size _UpperCAmelCase : Optional[Any] = mlp_ratio _UpperCAmelCase : int = qkv_bias _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : Dict = drop_path_rate _UpperCAmelCase : int = hidden_act _UpperCAmelCase : str = layer_norm_eps _UpperCAmelCase : Any = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase : Optional[int] = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) _UpperCAmelCase : Tuple = layer_scale_init_value _UpperCAmelCase : Tuple = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : int = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = tempfile.mkdtemp() # fmt: off _UpperCAmelCase : Any = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _UpperCAmelCase : Optional[int] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) _UpperCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _UpperCAmelCase : List[str] = {"unk_token": "<unk>"} _UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase__ ) ) _UpperCAmelCase : List[Any] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _UpperCAmelCase : Dict = os.path.join(self.tmpdirname , lowerCamelCase__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , **lowerCamelCase__ : Optional[Any] ) ->List[Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , **lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , **lowerCamelCase__ : Optional[Any] ) ->int: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : Any ) ->int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _UpperCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : int = self.get_rust_tokenizer() _UpperCAmelCase : List[Any] = self.get_image_processor() _UpperCAmelCase : Dict = OwlViTProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = OwlViTProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : List[str] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase : int = self.get_image_processor(do_normalize=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCamelCase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : int = self.get_image_processor() _UpperCAmelCase : List[str] = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = OwlViTProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) _UpperCAmelCase : int = self.prepare_image_inputs() _UpperCAmelCase : Optional[int] = image_processor(lowerCamelCase__ , return_tensors="np" ) _UpperCAmelCase : Union[str, Any] = processor(images=lowerCamelCase__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase__ ( self : int ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_image_processor() _UpperCAmelCase : Dict = self.get_tokenizer() _UpperCAmelCase : Optional[int] = OwlViTProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) _UpperCAmelCase : Any = "lower newer" _UpperCAmelCase : Dict = processor(text=lowerCamelCase__ , return_tensors="np" ) _UpperCAmelCase : List[Any] = tokenizer(lowerCamelCase__ , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def lowerCAmelCase__ ( self : str ) ->int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.get_image_processor() _UpperCAmelCase : List[str] = self.get_tokenizer() _UpperCAmelCase : int = OwlViTProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = "lower newer" _UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs() _UpperCAmelCase : Optional[int] = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "google/owlvit-base-patch32" _UpperCAmelCase : Dict = OwlViTProcessor.from_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Any = ["cat", "nasa badge"] _UpperCAmelCase : List[Any] = processor(text=lowerCamelCase__ ) _UpperCAmelCase : Dict = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def lowerCAmelCase__ ( self : List[str] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = "google/owlvit-base-patch32" _UpperCAmelCase : Dict = OwlViTProcessor.from_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = [["cat", "nasa badge"], ["person"]] _UpperCAmelCase : Tuple = processor(text=lowerCamelCase__ ) _UpperCAmelCase : int = 16 _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : Any = max([len(lowerCamelCase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = "google/owlvit-base-patch32" _UpperCAmelCase : Any = OwlViTProcessor.from_pretrained(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = ["cat", "nasa badge"] _UpperCAmelCase : Optional[Any] = processor(text=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = 16 _UpperCAmelCase : str = inputs["input_ids"] _UpperCAmelCase : List[Any] = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def lowerCAmelCase__ ( self : Dict ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Any = self.get_image_processor() _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Any = OwlViTProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) _UpperCAmelCase : int = self.prepare_image_inputs() _UpperCAmelCase : Any = self.prepare_image_inputs() _UpperCAmelCase : List[str] = processor(images=lowerCamelCase__ , query_images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = self.get_image_processor() _UpperCAmelCase : List[Any] = self.get_tokenizer() _UpperCAmelCase : List[Any] = OwlViTProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase : str = processor.batch_decode(lowerCamelCase__ ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[str] = len(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): _UpperCAmelCase : List[Any] = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
1
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowerCamelCase__ = getLogger(__name__) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 8 , __lowerCAmelCase = 1_024 , __lowerCAmelCase="val" , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase="summarization" , __lowerCAmelCase=None , __lowerCAmelCase=1 , __lowerCAmelCase = None , __lowerCAmelCase="" , **__lowerCAmelCase , ): _UpperCAmelCase : Optional[Any] = str(__lowerCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = Path(__lowerCAmelCase ) _UpperCAmelCase : List[str] = save_dir.joinpath(F"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(__lowerCAmelCase ) _UpperCAmelCase : str = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ).cuda() if fpaa: _UpperCAmelCase : str = model.half() # determine if we need to increase num_beams use_task_specific_params(__lowerCAmelCase , __lowerCAmelCase ) # update config with task specific params _UpperCAmelCase : Any = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _UpperCAmelCase : Tuple = num_return_sequences _UpperCAmelCase : str = AutoTokenizer.from_pretrained(__lowerCAmelCase ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: _UpperCAmelCase : str = tokenizer.model_max_length if prefix is None: _UpperCAmelCase : Optional[int] = prefix or getattr(model.config , "prefix" , "" ) or "" _UpperCAmelCase : Dict = SeqaSeqDataset( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , max_target_length=1_024 , type_path=__lowerCAmelCase , n_obs=__lowerCAmelCase , prefix=__lowerCAmelCase , **__lowerCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _UpperCAmelCase : Union[str, Any] = ds.make_sortish_sampler(__lowerCAmelCase , distributed=__lowerCAmelCase , add_extra_examples=__lowerCAmelCase , shuffle=__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=__lowerCAmelCase , collate_fn=ds.collate_fn ) _UpperCAmelCase : int = [] for batch in tqdm(__lowerCAmelCase ): _UpperCAmelCase : Any = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__lowerCAmelCase , num_beams=__lowerCAmelCase , **__lowerCAmelCase , ) _UpperCAmelCase : Dict = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) _UpperCAmelCase : int = batch["ids"] if num_return_sequences > 1: _UpperCAmelCase : int = chunks(__lowerCAmelCase , __lowerCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__lowerCAmelCase ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(__lowerCAmelCase , __lowerCAmelCase ) return results, sampler.num_replicas def __lowerCAmelCase (): _UpperCAmelCase : int = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=__lowerCAmelCase , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=__lowerCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=__lowerCAmelCase , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=__lowerCAmelCase , default=__lowerCAmelCase ) parser.add_argument( "--type_path" , type=__lowerCAmelCase , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=__lowerCAmelCase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=__lowerCAmelCase , default=8 , required=__lowerCAmelCase , help="batch size" ) parser.add_argument( "--local_rank" , type=__lowerCAmelCase , default=-1 , required=__lowerCAmelCase , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=__lowerCAmelCase , default=__lowerCAmelCase , required=__lowerCAmelCase , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=__lowerCAmelCase , default=1 , required=__lowerCAmelCase , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=__lowerCAmelCase , default=600 , required=__lowerCAmelCase , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=__lowerCAmelCase , default=__lowerCAmelCase , required=__lowerCAmelCase ) parser.add_argument("--tgt_lang" , type=__lowerCAmelCase , default=__lowerCAmelCase , required=__lowerCAmelCase ) parser.add_argument( "--prefix" , type=__lowerCAmelCase , required=__lowerCAmelCase , default=__lowerCAmelCase , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) _UpperCAmelCase : Optional[int] = time.time() _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_known_args() _UpperCAmelCase : Optional[Any] = parse_numeric_n_bool_cl_kwargs(__lowerCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(F"""parsed the following generate kwargs: {generate_kwargs}""" ) _UpperCAmelCase : Optional[Any] = Path(args.save_dir + "_tmp" ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) # this handles locking. _UpperCAmelCase : Any = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _UpperCAmelCase : List[Any] = {} if args.src_lang is not None: _UpperCAmelCase : Union[str, Any] = args.src_lang if args.tgt_lang is not None: _UpperCAmelCase : Optional[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = eval_data_dir( args.data_dir , __lowerCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__lowerCAmelCase , **__lowerCAmelCase , ) if args.local_rank <= 0: _UpperCAmelCase : str = Path(args.save_dir ) save_dir.mkdir(exist_ok=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = gather_results_from_each_node(__lowerCAmelCase , __lowerCAmelCase , args.sync_timeout ) _UpperCAmelCase : str = combine_partial_results(__lowerCAmelCase ) if args.num_return_sequences > 1: _UpperCAmelCase : Optional[int] = save_dir.joinpath("pseudolabel_results.json" ) print(F"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(__lowerCAmelCase , __lowerCAmelCase ) return _UpperCAmelCase : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(__lowerCAmelCase ) as f: _UpperCAmelCase : int = [x.rstrip() for x in f.readlines()][: len(__lowerCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt _UpperCAmelCase : str = "translation" in args.task _UpperCAmelCase : Optional[int] = calculate_bleu if calc_bleu else calculate_rouge _UpperCAmelCase : Optional[int] = "bleu" if calc_bleu else "rouge" _UpperCAmelCase : Dict = score_fn(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : List[str] = time.time() - start_time _UpperCAmelCase : str = round(runtime / metrics["n_obs"] , 4 ) _UpperCAmelCase : int = num_replicas # TODO(@stas00): add whatever metadata to metrics _UpperCAmelCase : Optional[Any] = save_dir.joinpath(F"""{args.type_path}_{metric_name}.json""" ) save_json(__lowerCAmelCase , __lowerCAmelCase , indent=__lowerCAmelCase ) print(__lowerCAmelCase ) write_txt_file(__lowerCAmelCase , save_dir.joinpath(F"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(__lowerCAmelCase , save_dir.joinpath(F"""{args.type_path}.target""" ) ) else: shutil.rmtree(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = [] for partial_result in partial_results: records.extend(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x["id"] ) _UpperCAmelCase : Dict = [x["pred"] for x in records] return preds def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # WAIT FOR lots of .json files _UpperCAmelCase : List[str] = time.time() logger.info("waiting for all nodes to finish" ) _UpperCAmelCase : Optional[Any] = None while (time.time() - start_wait) < timeout: _UpperCAmelCase : Optional[int] = list(save_dir.glob("rank_*.json" ) ) if len(__lowerCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved _UpperCAmelCase : Union[str, Any] = lmap(__lowerCAmelCase , __lowerCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
1
'''simple docstring''' import baseaa def __lowerCAmelCase (__lowerCAmelCase ): return baseaa.baaencode(string.encode("utf-8" ) ) def __lowerCAmelCase (__lowerCAmelCase ): return baseaa.baadecode(__lowerCAmelCase ).decode("utf-8" ) if __name__ == "__main__": lowerCamelCase__ = 'Hello World!' lowerCamelCase__ = baseaa_encode(test) print(encoded) lowerCamelCase__ = baseaa_decode(encoded) print(decoded)
322
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[str] = credit_card_number _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : str = len(__lowerCAmelCase ) - 2 for i in range(__lowerCAmelCase , -1 , -2 ): # double the value of every second digit _UpperCAmelCase : Tuple = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _UpperCAmelCase : Tuple = cc_number[:i] + str(__lowerCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__lowerCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Optional[int] = F"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(F"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(__lowerCAmelCase ) <= 16: print(F"""{error_message} of its length.""" ) return False if not validate_initial_digits(__lowerCAmelCase ): print(F"""{error_message} of its first two digits.""" ) return False if not luhn_validation(__lowerCAmelCase ): print(F"""{error_message} it fails the Luhn check.""" ) return False print(F"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
322
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) _UpperCAmelCase : List[Any] = sorted(string.lower() ) return len(__lowerCAmelCase ) == len(set(__lowerCAmelCase ) ) if __name__ == "__main__": lowerCamelCase__ = input('Enter a string ').strip() lowerCamelCase__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Dict = "falcon" lowerCAmelCase : Union[str, Any] = ["past_key_values"] def __init__( self : Optional[Any] , lowerCamelCase__ : Any=6_50_24 , lowerCamelCase__ : Optional[Any]=45_44 , lowerCamelCase__ : Union[str, Any]=32 , lowerCamelCase__ : List[Any]=71 , lowerCamelCase__ : Any=1E-5 , lowerCamelCase__ : Tuple=0.0_2 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[str]=0.0 , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : Dict=False , lowerCamelCase__ : Dict=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=True , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : str=11 , lowerCamelCase__ : List[Any]=11 , **lowerCamelCase__ : List[str] , ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase : Any = kwargs.pop("n_embed" , lowerCamelCase__ ) _UpperCAmelCase : Dict = hidden_size if n_embed is None else n_embed _UpperCAmelCase : List[Any] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Tuple = layer_norm_epsilon _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : int = use_cache _UpperCAmelCase : List[str] = hidden_dropout _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : List[str] = bos_token_id _UpperCAmelCase : Tuple = eos_token_id _UpperCAmelCase : List[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase : Union[str, Any] = alibi _UpperCAmelCase : str = new_decoder_architecture _UpperCAmelCase : int = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase : Any = parallel_attn _UpperCAmelCase : Tuple = bias super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) @property def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' return not self.alibi
322
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __lowerCAmelCase (__lowerCAmelCase ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def __lowerCAmelCase (__lowerCAmelCase ): # word like '180' or '身高' or '神' for char in word: _UpperCAmelCase : Union[str, Any] = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = set() for token in tokens: _UpperCAmelCase : Union[str, Any] = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) _UpperCAmelCase : str = list(__lowerCAmelCase ) return word_list def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if not chinese_word_set: return bert_tokens _UpperCAmelCase : int = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) _UpperCAmelCase : Optional[int] = bert_tokens _UpperCAmelCase , _UpperCAmelCase : Dict = 0, len(__lowerCAmelCase ) while start < end: _UpperCAmelCase : List[Any] = True if is_chinese(bert_word[start] ): _UpperCAmelCase : Optional[Any] = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): _UpperCAmelCase : Tuple = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _UpperCAmelCase : Any = "##" + bert_word[j] _UpperCAmelCase : List[Any] = start + i _UpperCAmelCase : Dict = False break if single_word: start += 1 return bert_word def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): _UpperCAmelCase : Union[str, Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws _UpperCAmelCase : Union[str, Any] = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): _UpperCAmelCase : List[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [] for id in input_ids: _UpperCAmelCase : Optional[Any] = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": _UpperCAmelCase : Optional[Any] = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def __lowerCAmelCase (__lowerCAmelCase ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , "r" , encoding="utf-8" ) as f: _UpperCAmelCase : Optional[int] = f.readlines() _UpperCAmelCase : Union[str, Any] = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCAmelCase : str = LTP(args.ltp ) # faster in GPU device _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained(args.bert ) _UpperCAmelCase : Any = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: _UpperCAmelCase : Optional[int] = [json.dumps(__lowerCAmelCase ) + "\n" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) lowerCamelCase__ = parser.parse_args() main(args)
322
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
1
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Optional[Any] ) ->int: '''simple docstring''' debug_launcher(test_script.main ) def lowerCAmelCase__ ( self : Optional[int] ) ->str: '''simple docstring''' debug_launcher(test_ops.main )
322
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
1
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCamelCase__ = ['text', 'image', 'audio'] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Optional[int] = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): inputs.append(create_inputs(__lowerCAmelCase ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Any = [] for output in outputs: if isinstance(__lowerCAmelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(__lowerCAmelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__lowerCAmelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class lowerCAmelCase__ : def lowerCAmelCase__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) _UpperCAmelCase : int = self.tool.inputs for _input in inputs: if isinstance(_input , lowerCamelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) _UpperCAmelCase : int = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = create_inputs(self.tool.inputs ) _UpperCAmelCase : Tuple = self.tool(*lowerCamelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: _UpperCAmelCase : Union[str, Any] = [outputs] self.assertListEqual(output_types(lowerCamelCase__ ) , self.tool.outputs ) def lowerCAmelCase__ ( self : Dict ) ->Tuple: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = create_inputs(self.tool.inputs ) _UpperCAmelCase : str = self.tool(*lowerCamelCase__ ) if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : int = [outputs] self.assertEqual(len(lowerCamelCase__ ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCamelCase__ , self.tool.outputs ): _UpperCAmelCase : List[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = create_inputs(self.tool.inputs ) _UpperCAmelCase : List[Any] = [] for _input, input_type in zip(lowerCamelCase__ , self.tool.inputs ): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error _UpperCAmelCase : List[Any] = self.tool(*lowerCamelCase__ ) if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : List[Any] = [outputs] self.assertEqual(len(lowerCamelCase__ ) , len(self.tool.outputs ) )
322
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
1
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) set_seed(770) lowerCamelCase__ = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } lowerCamelCase__ = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } lowerCamelCase__ = os.path.dirname(os.path.abspath(__file__)) lowerCamelCase__ = os.path.join(os.path.expanduser('~'), '.cache') lowerCamelCase__ = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=False ): _UpperCAmelCase : Any = model_type if use_small: key += "_small" return os.path.join(__lowerCAmelCase , REMOTE_MODEL_PATHS[key]["file_name"] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) hf_hub_download(repo_id=__lowerCAmelCase , filename=__lowerCAmelCase , local_dir=__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase="text" ): if model_type == "text": _UpperCAmelCase : Union[str, Any] = BarkSemanticModel _UpperCAmelCase : Optional[int] = BarkSemanticConfig _UpperCAmelCase : List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": _UpperCAmelCase : Any = BarkCoarseModel _UpperCAmelCase : Dict = BarkCoarseConfig _UpperCAmelCase : Union[str, Any] = BarkCoarseGenerationConfig elif model_type == "fine": _UpperCAmelCase : List[Any] = BarkFineModel _UpperCAmelCase : List[Any] = BarkFineConfig _UpperCAmelCase : List[Any] = BarkFineGenerationConfig else: raise NotImplementedError() _UpperCAmelCase : Optional[Any] = F"""{model_type}_small""" if use_small else model_type _UpperCAmelCase : Optional[int] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__lowerCAmelCase ): logger.info(F"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["repo_id"] , model_info["file_name"] ) _UpperCAmelCase : int = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase ) # this is a hack _UpperCAmelCase : Optional[int] = checkpoint["model_args"] if "input_vocab_size" not in model_args: _UpperCAmelCase : Optional[int] = model_args["vocab_size"] _UpperCAmelCase : str = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _UpperCAmelCase : Optional[Any] = model_args.pop("n_head" ) _UpperCAmelCase : Tuple = model_args.pop("n_embd" ) _UpperCAmelCase : Tuple = model_args.pop("n_layer" ) _UpperCAmelCase : Optional[Any] = ConfigClass(**checkpoint["model_args"] ) _UpperCAmelCase : str = ModelClass(config=__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = GenerationConfigClass() _UpperCAmelCase : List[Any] = model_generation_config _UpperCAmelCase : Any = checkpoint["model"] # fixup checkpoint _UpperCAmelCase : List[str] = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(__lowerCAmelCase ): # replace part of the key with corresponding layer name in HF implementation _UpperCAmelCase : Optional[Any] = k[len(__lowerCAmelCase ) :] for old_layer_name in new_layer_name_dict: _UpperCAmelCase : int = new_k.replace(__lowerCAmelCase , new_layer_name_dict[old_layer_name] ) _UpperCAmelCase : Optional[int] = state_dict.pop(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) _UpperCAmelCase : List[Any] = {k for k in extra_keys if not k.endswith(".attn.bias" )} _UpperCAmelCase : Union[str, Any] = set(model.state_dict().keys() ) - set(state_dict.keys() ) _UpperCAmelCase : Tuple = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(__lowerCAmelCase ) != 0: raise ValueError(F"""extra keys found: {extra_keys}""" ) if len(__lowerCAmelCase ) != 0: raise ValueError(F"""missing keys: {missing_keys}""" ) model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) _UpperCAmelCase : Dict = model.num_parameters(exclude_embeddings=__lowerCAmelCase ) _UpperCAmelCase : str = checkpoint["best_val_loss"].item() logger.info(F"""model loaded: {round(n_params/1e6 , 1 )}M params, {round(__lowerCAmelCase , 3 )} loss""" ) model.eval() model.to(__lowerCAmelCase ) del checkpoint, state_dict return model def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _UpperCAmelCase : Any = "cpu" # do conversion on cpu _UpperCAmelCase : Optional[Any] = _get_ckpt_path(__lowerCAmelCase , use_small=__lowerCAmelCase ) _UpperCAmelCase : Tuple = _load_model(__lowerCAmelCase , __lowerCAmelCase , model_type=__lowerCAmelCase , use_small=__lowerCAmelCase ) # load bark initial model _UpperCAmelCase : int = _bark_load_model(__lowerCAmelCase , "cpu" , model_type=__lowerCAmelCase , use_small=__lowerCAmelCase ) if model_type == "text": _UpperCAmelCase : Union[str, Any] = bark_model["model"] if model.num_parameters(exclude_embeddings=__lowerCAmelCase ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model _UpperCAmelCase : Any = 5 _UpperCAmelCase : List[str] = 10 if model_type in ["text", "coarse"]: _UpperCAmelCase : List[str] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) _UpperCAmelCase : Any = bark_model(__lowerCAmelCase )[0] _UpperCAmelCase : Optional[Any] = model(__lowerCAmelCase ) # take last logits _UpperCAmelCase : Optional[int] = output_new_model_total.logits[:, [-1], :] else: _UpperCAmelCase : Union[str, Any] = 3 _UpperCAmelCase : List[str] = 8 _UpperCAmelCase : Union[str, Any] = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _UpperCAmelCase : str = model(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Any = bark_model(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : List[Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("initial and new outputs are not equal" ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): _UpperCAmelCase : Union[str, Any] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = BarkSemanticConfig.from_pretrained(os.path.join(__lowerCAmelCase , "config.json" ) ) _UpperCAmelCase : Union[str, Any] = BarkCoarseConfig.from_pretrained(os.path.join(__lowerCAmelCase , "config.json" ) ) _UpperCAmelCase : Union[str, Any] = BarkFineConfig.from_pretrained(os.path.join(__lowerCAmelCase , "config.json" ) ) _UpperCAmelCase : List[str] = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) _UpperCAmelCase : Any = BarkSemanticModel.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : Dict = BarkCoarseModel.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : Tuple = BarkFineModel.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : Any = EncodecModel.from_pretrained("facebook/encodec_24khz" ) _UpperCAmelCase : Tuple = BarkConfig.from_sub_model_configs( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Any = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _UpperCAmelCase : int = BarkModel(__lowerCAmelCase ) _UpperCAmelCase : int = semantic _UpperCAmelCase : List[Any] = coarseAcoustic _UpperCAmelCase : str = fineAcoustic _UpperCAmelCase : Union[str, Any] = codec _UpperCAmelCase : List[Any] = bark_generation_config Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) bark.save_pretrained(__lowerCAmelCase , repo_id=__lowerCAmelCase , push_to_hub=__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') lowerCamelCase__ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
322
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : List[Any] = ["pixel_values"] def __init__( self : Optional[int] , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[int, float] = 1 / 2_55 , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : bool = True , **lowerCamelCase__ : Dict , ) ->None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = size if size is not None else {"shortest_edge": 2_24} _UpperCAmelCase : List[Any] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} _UpperCAmelCase : Union[str, Any] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ , param_name="crop_size" ) _UpperCAmelCase : int = do_resize _UpperCAmelCase : Tuple = size _UpperCAmelCase : str = resample _UpperCAmelCase : List[str] = do_center_crop _UpperCAmelCase : int = crop_size _UpperCAmelCase : Dict = do_rescale _UpperCAmelCase : Any = rescale_factor _UpperCAmelCase : Optional[int] = do_normalize _UpperCAmelCase : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCAmelCase : str = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCAmelCase : Tuple = do_convert_rgb def lowerCAmelCase__ ( self : str , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : List[Any] , ) ->np.ndarray: '''simple docstring''' _UpperCAmelCase : List[str] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCAmelCase : List[str] = get_resize_output_image_size(lowerCamelCase__ , size=size["shortest_edge"] , default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : str , ) ->np.ndarray: '''simple docstring''' _UpperCAmelCase : Optional[int] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(lowerCamelCase__ , size=(size["height"], size["width"]) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[int, float] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : int , ) ->Any: '''simple docstring''' return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Optional[Any] , ) ->np.ndarray: '''simple docstring''' return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : ImageInput , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : int = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : float = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCamelCase__ : List[str] , ) ->PIL.Image.Image: '''simple docstring''' _UpperCAmelCase : List[Any] = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Optional[int] = size if size is not None else self.size _UpperCAmelCase : Optional[Any] = get_size_dict(lowerCamelCase__ , param_name="size" , default_to_square=lowerCamelCase__ ) _UpperCAmelCase : Tuple = resample if resample is not None else self.resample _UpperCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : int = get_size_dict(lowerCamelCase__ , param_name="crop_size" , default_to_square=lowerCamelCase__ ) _UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Dict = image_std if image_std is not None else self.image_std _UpperCAmelCase : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase : Tuple = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase : Optional[int] = [convert_to_rgb(lowerCamelCase__ ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase : Tuple = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: _UpperCAmelCase : Tuple = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: _UpperCAmelCase : List[Any] = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: _UpperCAmelCase : int = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: _UpperCAmelCase : Any = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] _UpperCAmelCase : str = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] _UpperCAmelCase : str = {"pixel_values": images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
322
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
1
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowerCamelCase__ = logging.getLogger() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = "\n".join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open("w" ).writelines(__lowerCAmelCase ) lowerCamelCase__ = 'patrickvonplaten/t5-tiny-random' lowerCamelCase__ = 'sshleifer/bart-tiny-random' lowerCamelCase__ = 'sshleifer/tiny-mbart' lowerCamelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" _UpperCAmelCase : Dict = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() _UpperCAmelCase : List[str] = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Dict = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) _UpperCAmelCase : Optional[Any] = "translation_en_to_de" if model == T5_TINY else "summarization" _UpperCAmelCase : Any = F""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase__ , "argv" , lowerCamelCase__ ): run_generate() assert Path(lowerCamelCase__ ).exists() # os.remove(Path(output_file_name)) def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' self.run_eval_tester(lowerCamelCase__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[Any] ) ->Dict: '''simple docstring''' self.run_eval_tester(lowerCamelCase__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[str] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" _UpperCAmelCase : Optional[int] = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() _UpperCAmelCase : int = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } _UpperCAmelCase : Tuple = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase : Any = str(tmp_dir / "scores.json" ) _UpperCAmelCase : List[Any] = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase__ , text["en"] ) _dump_articles(lowerCamelCase__ , text["de"] ) _UpperCAmelCase : List[str] = "translation_en_to_de" if model == T5_TINY else "summarization" _UpperCAmelCase : Optional[int] = F""" run_eval_search.py {model} {str(lowerCamelCase__ )} {str(lowerCamelCase__ )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase__ , "argv" , lowerCamelCase__ ): with CaptureStdout() as cs: run_search() _UpperCAmelCase : Dict = [" num_beams | length_penalty", model, "Best score args"] _UpperCAmelCase : int = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase__ ).exists() os.remove(Path(lowerCamelCase__ ) )
322
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowerCamelCase__ = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) _UpperCAmelCase : Optional[int] = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase__ , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = "src/transformers" shutil.rmtree(self.transformer_dir ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str]=None ) ->List[str]: '''simple docstring''' _UpperCAmelCase : str = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCAmelCase : Optional[Any] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCAmelCase : Tuple = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) _UpperCAmelCase : Optional[int] = black.format_str(lowerCamelCase__ , mode=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = os.path.join(self.transformer_dir , "new_code.py" ) with open(lowerCamelCase__ , "w" , newline="\n" ) as f: f.write(lowerCamelCase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCamelCase__ ) with open(lowerCamelCase__ , "r" ) as f: self.assertTrue(f.read() , lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , lowerCamelCase__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , lowerCamelCase__ ) , ) # Copy consistency with a really long name _UpperCAmelCase : str = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , F"""{long_class_name}LMPredictionHead""" , re.sub("Bert" , lowerCamelCase__ , lowerCamelCase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , lowerCamelCase__ , overwrite_result=re.sub("Bert" , "TestModel" , lowerCamelCase__ ) , ) def lowerCAmelCase__ ( self : Tuple ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : int = check_copies.LOCALIZED_READMES["README_zh-hans.md"] _UpperCAmelCase : Dict = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) _UpperCAmelCase : Dict = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _UpperCAmelCase : str = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) _UpperCAmelCase , _UpperCAmelCase : Dict = check_copies.convert_to_localized_md( lowerCamelCase__ , lowerCamelCase__ , localized_readme["format_model_list"] ) self.assertFalse(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = check_copies.convert_to_localized_md( lowerCamelCase__ , lowerCamelCase__ , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) _UpperCAmelCase : Tuple = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _UpperCAmelCase : Optional[Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _UpperCAmelCase , _UpperCAmelCase : List[str] = check_copies.convert_to_localized_md( lowerCamelCase__ , lowerCamelCase__ , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
322
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
1
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Tuple = analyze_text(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = list(" " + ascii_lowercase ) # what is our total sum of probabilities. _UpperCAmelCase : Optional[int] = sum(single_char_strings.values() ) # one length string _UpperCAmelCase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _UpperCAmelCase : Tuple = single_char_strings[ch] _UpperCAmelCase : List[str] = my_str / all_sum my_fir_sum += prob * math.loga(__lowerCAmelCase ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string _UpperCAmelCase : Tuple = sum(two_char_strings.values() ) _UpperCAmelCase : List[str] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _UpperCAmelCase : str = cha + cha if sequence in two_char_strings: _UpperCAmelCase : List[str] = two_char_strings[sequence] _UpperCAmelCase : Any = int(__lowerCAmelCase ) / all_sum my_sec_sum += prob * math.loga(__lowerCAmelCase ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = Counter() # type: ignore _UpperCAmelCase : Union[str, Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__lowerCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __lowerCAmelCase (): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
322
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
1
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' import math import qiskit def __lowerCAmelCase (__lowerCAmelCase = 1 , __lowerCAmelCase = 1 , __lowerCAmelCase = 1 ): if ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) or isinstance(__lowerCAmelCase , __lowerCAmelCase ) or isinstance(__lowerCAmelCase , __lowerCAmelCase ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(__lowerCAmelCase ) != input_a) or (math.floor(__lowerCAmelCase ) != input_a) or (math.floor(__lowerCAmelCase ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers _UpperCAmelCase : Dict = qiskit.QuantumRegister(4 , "qr" ) _UpperCAmelCase : Tuple = qiskit.ClassicalRegister(2 , "cr" ) # list the entries _UpperCAmelCase : Any = [input_a, input_a, carry_in] _UpperCAmelCase : List[Any] = qiskit.QuantumCircuit(__lowerCAmelCase , __lowerCAmelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowerCAmelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowerCAmelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowerCAmelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowerCAmelCase ) # measure the last two qbits _UpperCAmelCase : List[str] = qiskit.Aer.get_backend("aer_simulator" ) _UpperCAmelCase : Union[str, Any] = qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=1_000 ) return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
322
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
1
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = {'facebook/bart-base': BartForConditionalGeneration} lowerCamelCase__ = {'facebook/bart-base': BartTokenizer} def __lowerCAmelCase (): _UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=__lowerCAmelCase , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=__lowerCAmelCase , default=__lowerCAmelCase , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=__lowerCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__lowerCAmelCase , ) parser.add_argument( "--config_name" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=__lowerCAmelCase , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="Where to store the final ONNX file." ) _UpperCAmelCase : Tuple = parser.parse_args() return args def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase="cpu" ): _UpperCAmelCase : List[str] = model_dict[model_name].from_pretrained(__lowerCAmelCase ).to(__lowerCAmelCase ) _UpperCAmelCase : Any = tokenizer_dict[model_name].from_pretrained(__lowerCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : List[str] = None _UpperCAmelCase : List[Any] = 0 return huggingface_model, tokenizer def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): model.eval() _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Optional[Any] = torch.jit.script(BARTBeamSearchGenerator(__lowerCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase : int = "My friends are cool but they eat too many carbs." _UpperCAmelCase : List[Any] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors="pt" ).to(model.device ) _UpperCAmelCase : int = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=__lowerCAmelCase , max_length=__lowerCAmelCase , early_stopping=__lowerCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __lowerCAmelCase , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , __lowerCAmelCase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=__lowerCAmelCase , ) logger.info("Model exported to {}".format(__lowerCAmelCase ) ) _UpperCAmelCase : Tuple = remove_dup_initializers(os.path.abspath(__lowerCAmelCase ) ) logger.info("Deduplicated and optimized model written to {}".format(__lowerCAmelCase ) ) _UpperCAmelCase : Optional[Any] = onnxruntime.InferenceSession(__lowerCAmelCase ) _UpperCAmelCase : Tuple = ort_sess.run( __lowerCAmelCase , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(__lowerCAmelCase ), "max_length": np.array(__lowerCAmelCase ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def __lowerCAmelCase (): _UpperCAmelCase : List[str] = parse_args() _UpperCAmelCase : List[Any] = 5 _UpperCAmelCase : Optional[int] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase : List[Any] = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = load_model_tokenizer(args.model_name_or_path , __lowerCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(__lowerCAmelCase ) if args.max_length: _UpperCAmelCase : Tuple = args.max_length if args.num_beams: _UpperCAmelCase : Optional[Any] = args.num_beams if args.output_file_path: _UpperCAmelCase : Optional[Any] = args.output_file_path else: _UpperCAmelCase : Optional[Any] = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
322
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
1
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = [] for line in lines: _UpperCAmelCase : int = re.sub(R"#.*" , "" , __lowerCAmelCase ) # remove comments if line: filtered_lines.append(__lowerCAmelCase ) _UpperCAmelCase : int = "\n".join(__lowerCAmelCase ) # Make a hash from all this code _UpperCAmelCase : Optional[Any] = full_str.encode("utf-8" ) return shaaaa(__lowerCAmelCase ).hexdigest() # get importable module names and hash for caching lowerCamelCase__ = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase__ = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase__ = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase__ = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
322
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
1
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCamelCase__ = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): # Initialise PyTorch model _UpperCAmelCase : List[str] = XLNetConfig.from_json_file(__lowerCAmelCase ) _UpperCAmelCase : List[str] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _UpperCAmelCase : List[str] = finetuning_task _UpperCAmelCase : Tuple = GLUE_TASKS_NUM_LABELS[finetuning_task] _UpperCAmelCase : str = XLNetForSequenceClassification(__lowerCAmelCase ) elif "squad" in finetuning_task: _UpperCAmelCase : Tuple = finetuning_task _UpperCAmelCase : Optional[Any] = XLNetForQuestionAnswering(__lowerCAmelCase ) else: _UpperCAmelCase : Any = XLNetLMHeadModel(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model _UpperCAmelCase : Dict = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : List[Any] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F"""Save PyTorch model to {os.path.abspath(__lowerCAmelCase )}""" ) torch.save(model.state_dict() , __lowerCAmelCase ) print(F"""Save configuration file to {os.path.abspath(__lowerCAmelCase )}""" ) with open(__lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) lowerCamelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
1
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : int = mock.Mock() _UpperCAmelCase : str = 5_00 _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : int = HTTPError _UpperCAmelCase : List[str] = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Tuple = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase__ ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : List[str] = {} _UpperCAmelCase : str = HTTPError _UpperCAmelCase : str = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : str = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' try: _UpperCAmelCase : Tuple = tempfile.mktemp() with open(lowerCamelCase__ , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , lowerCamelCase__ ) _UpperCAmelCase : int = AlbertTokenizer.from_pretrained(lowerCamelCase__ ) finally: os.remove(lowerCamelCase__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 10_00 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[int] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): lowerCAmelCase : List[Any] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Optional[Any] ) ->Optional[Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : str = os.path.join(lowerCamelCase__ , "vocab.txt" ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) _UpperCAmelCase : List[Any] = BertTokenizer(lowerCamelCase__ ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) _UpperCAmelCase : int = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase__ , repo_id="test-tokenizer" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Tuple = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Optional[int] = os.path.join(lowerCamelCase__ , "vocab.txt" ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) _UpperCAmelCase : List[Any] = BertTokenizer(lowerCamelCase__ ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-tokenizer-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def lowerCAmelCase__ ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Optional[Any] = os.path.join(lowerCamelCase__ , "vocab.txt" ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) _UpperCAmelCase : Optional[int] = CustomTokenizer(lowerCamelCase__ ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : str = os.path.join(lowerCamelCase__ , "vocab.txt" ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) _UpperCAmelCase : str = BertTokenizerFast.from_pretrained(lowerCamelCase__ ) bert_tokenizer.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = CustomTokenizerFast.from_pretrained(lowerCamelCase__ ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) _UpperCAmelCase : int = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase__ ( self : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : int = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def lowerCAmelCase__ ( self : List[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Tuple = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase__ ( self : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase : List[str] = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def lowerCAmelCase__ ( self : List[str] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def lowerCAmelCase__ ( self : Dict ) ->str: '''simple docstring''' _UpperCAmelCase : int = Trie() _UpperCAmelCase : int = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase__ , ["AB", "C"] )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
1
'''simple docstring''' lowerCamelCase__ = 65_521 def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : Any = 0 for plain_chr in plain_text: _UpperCAmelCase : Dict = (a + ord(__lowerCAmelCase )) % MOD_ADLER _UpperCAmelCase : str = (b + a) % MOD_ADLER return (b << 16) | a
322
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
1
'''simple docstring''' from math import factorial def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(__lowerCAmelCase ) // (factorial(__lowerCAmelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', F'''4 for group projects, there are {combinations(40, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', F'''are {combinations(10, 3)} ways that first, second and''', 'third place can be awarded.', )
322
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : List[str] = "deit" def __init__( self : Union[str, Any] , lowerCamelCase__ : int=7_68 , lowerCamelCase__ : List[Any]=12 , lowerCamelCase__ : List[Any]=12 , lowerCamelCase__ : Optional[Any]=30_72 , lowerCamelCase__ : int="gelu" , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Dict=0.0_2 , lowerCamelCase__ : List[str]=1E-12 , lowerCamelCase__ : Optional[Any]=2_24 , lowerCamelCase__ : Dict=16 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=16 , **lowerCamelCase__ : Union[str, Any] , ) ->str: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : str = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : str = image_size _UpperCAmelCase : int = patch_size _UpperCAmelCase : Union[str, Any] = num_channels _UpperCAmelCase : Dict = qkv_bias _UpperCAmelCase : Tuple = encoder_stride class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[int] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : Union[str, Any] ) ->float: '''simple docstring''' return 1E-4
322
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = filter(lambda __lowerCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase : Union[str, Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCamelCase__ = logging.getLogger(__name__) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if metric == "rouge2": _UpperCAmelCase : Optional[int] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _UpperCAmelCase : int = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _UpperCAmelCase : List[Any] = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": _UpperCAmelCase : Any = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) _UpperCAmelCase : int = ModelCheckpoint( dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=F"""val_{metric}""" , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return EarlyStopping( monitor=F"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , ) class lowerCAmelCase__ ( pl.Callback ): def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : List[str] = {F"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule , lowerCamelCase__ : str , lowerCamelCase__ : int=True ) ->None: '''simple docstring''' logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _UpperCAmelCase : List[Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _UpperCAmelCase : Optional[int] = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase : Optional[Any] = od / "test_results.txt" _UpperCAmelCase : Optional[int] = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase : Tuple = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _UpperCAmelCase : Union[str, Any] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCamelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCamelCase__ ) with open(lowerCamelCase__ , "a+" ) as writer: for key in sorted(lowerCamelCase__ ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase : Any = metrics[key] if isinstance(lowerCamelCase__ , torch.Tensor ): _UpperCAmelCase : Optional[int] = val.item() _UpperCAmelCase : Optional[int] = F"""{key}: {val:.6f}\n""" writer.write(lowerCamelCase__ ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase : List[Any] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple ) ->Optional[int]: '''simple docstring''' try: _UpperCAmelCase : str = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase : Optional[int] = pl_module.model.num_parameters() _UpperCAmelCase : Union[str, Any] = count_trainable_parameters(lowerCamelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self : str , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule ) ->Tuple: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCamelCase__ , lowerCamelCase__ , "test" ) @rank_zero_only def lowerCAmelCase__ ( self : int , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : Optional[int] ) ->Optional[int]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
322
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
1
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Dict = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Dict = [mem.copy() for i in range(6 )] _UpperCAmelCase : int = [mem.copy() for i in range(6 )] _UpperCAmelCase : List[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : List[str] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = Text("CPU" , font_size=24 ) _UpperCAmelCase : Optional[int] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : str = [mem.copy() for i in range(4 )] _UpperCAmelCase : Optional[int] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Dict = Text("GPU" , font_size=24 ) _UpperCAmelCase : List[Any] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Tuple = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : int = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = [] for i, rect in enumerate(lowerCamelCase__ ): rect.set_stroke(lowerCamelCase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _UpperCAmelCase : Optional[int] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowerCamelCase__ , buff=0.0 ) self.add(lowerCamelCase__ ) cpu_targs.append(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Tuple = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Loaded Checkpoint" , font_size=24 ) _UpperCAmelCase : Optional[int] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , aligned_edge=lowerCamelCase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _UpperCAmelCase : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Optional[Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowerCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.play(Write(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) ) _UpperCAmelCase : Any = [] _UpperCAmelCase : str = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : Dict = fill.copy().set_fill(lowerCamelCase__ , opacity=0.7 ) target.move_to(lowerCamelCase__ ) first_animations.append(GrowFromCenter(lowerCamelCase__ , run_time=1 ) ) _UpperCAmelCase : Dict = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
1
'''simple docstring''' import collections import os import re from pathlib import Path lowerCamelCase__ = 'src/transformers' # Matches is_xxx_available() lowerCamelCase__ = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} lowerCamelCase__ = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCamelCase__ = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available lowerCamelCase__ = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") lowerCamelCase__ = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCamelCase__ = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", lowerCamelCase__ = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCamelCase__ = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo lowerCamelCase__ = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: lowerCamelCase__ = re.compile(r'^\s*try:') # Catches a line with else: lowerCamelCase__ = re.compile(r'^\s*else:') def __lowerCAmelCase (__lowerCAmelCase ): if _re_test_backend.search(__lowerCAmelCase ) is None: return None _UpperCAmelCase : Optional[int] = [b[0] for b in _re_backend.findall(__lowerCAmelCase )] backends.sort() return "_and_".join(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCAmelCase : str = f.readlines() _UpperCAmelCase : Union[str, Any] = 0 while line_index < len(__lowerCAmelCase ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure _UpperCAmelCase : Dict = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: _UpperCAmelCase : int = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__lowerCAmelCase ): _UpperCAmelCase : Tuple = _re_one_line_import_struct.search(__lowerCAmelCase ).groups()[0] _UpperCAmelCase : Optional[int] = re.findall(R"\[([^\]]+)\]" , __lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue _UpperCAmelCase : int = _re_import_struct_key_value.search(__lowerCAmelCase ) if single_line_import_search is not None: _UpperCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 _UpperCAmelCase : List[Any] = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. _UpperCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): _UpperCAmelCase : Dict = lines[line_index] if _re_import_struct_add_one.search(__lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__lowerCAmelCase ) is not None: _UpperCAmelCase : List[Any] = _re_import_struct_add_many.search(__lowerCAmelCase ).groups()[0].split(", " ) _UpperCAmelCase : Optional[int] = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_between_brackets.search(__lowerCAmelCase ) is not None: _UpperCAmelCase : Any = _re_between_brackets.search(__lowerCAmelCase ).groups()[0].split(", " ) _UpperCAmelCase : Optional[int] = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_quote_object.search(__lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(__lowerCAmelCase ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 _UpperCAmelCase : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _UpperCAmelCase : Any = [] while ( line_index < len(__lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): _UpperCAmelCase : Optional[int] = lines[line_index] _UpperCAmelCase : Union[str, Any] = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 _UpperCAmelCase : Optional[Any] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(__lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. _UpperCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): _UpperCAmelCase : List[str] = lines[line_index] _UpperCAmelCase : Dict = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 _UpperCAmelCase : str = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): def find_duplicates(__lowerCAmelCase ): return [k for k, v in collections.Counter(__lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _UpperCAmelCase : Dict = [] for key in import_dict_objects.keys(): _UpperCAmelCase : Optional[int] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) _UpperCAmelCase : Any = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _UpperCAmelCase : Optional[int] = "base imports" if key == "none" else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __lowerCAmelCase (): _UpperCAmelCase : int = [] for root, _, files in os.walk(__lowerCAmelCase ): if "__init__.py" in files: _UpperCAmelCase : int = os.path.join(__lowerCAmelCase , "__init__.py" ) _UpperCAmelCase : List[Any] = parse_init(__lowerCAmelCase ) if objects is not None: _UpperCAmelCase : Any = analyze_results(*__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: _UpperCAmelCase : Optional[Any] = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("\n".join(__lowerCAmelCase ) ) if len(__lowerCAmelCase ) > 0: raise ValueError("\n\n".join(__lowerCAmelCase ) ) def __lowerCAmelCase (): _UpperCAmelCase : Dict = [] for path, directories, files in os.walk(__lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(__lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__lowerCAmelCase ) / folder).glob("*.py" ) ) ) == 0: continue _UpperCAmelCase : Dict = str((Path(__lowerCAmelCase ) / folder).relative_to(__lowerCAmelCase ) ) _UpperCAmelCase : Union[str, Any] = short_path.replace(os.path.sep , "." ) submodules.append(__lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue _UpperCAmelCase : Dict = str((Path(__lowerCAmelCase ) / fname).relative_to(__lowerCAmelCase ) ) _UpperCAmelCase : List[Any] = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(__lowerCAmelCase ) return submodules lowerCamelCase__ = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def __lowerCAmelCase (): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _UpperCAmelCase : Any = direct_transformers_import(__lowerCAmelCase ) _UpperCAmelCase : Any = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__lowerCAmelCase , "__init__.py" ) , "r" ) as f: _UpperCAmelCase : Tuple = f.read() import_structure_keys.update(set(re.findall(R"import_structure\[\"([^\"]*)\"\]" , __lowerCAmelCase ) ) ) _UpperCAmelCase : Union[str, Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__lowerCAmelCase ) > 0: _UpperCAmelCase : List[Any] = "\n".join(F"""- {module}""" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" F"""{list_of_modules}\n""" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
322
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : List[str] = ["pixel_values"] def __init__( self : Tuple , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = PIL.Image.BICUBIC , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : Union[int, float] = 1 / 2_55 , lowerCamelCase__ : bool = True , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , **lowerCamelCase__ : Optional[int] , ) ->None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = size if size is not None else {"height": 2_56, "width": 2_56} _UpperCAmelCase : int = get_size_dict(lowerCamelCase__ ) _UpperCAmelCase : Any = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} _UpperCAmelCase : Tuple = get_size_dict(lowerCamelCase__ , param_name="crop_size" ) _UpperCAmelCase : str = do_resize _UpperCAmelCase : List[str] = size _UpperCAmelCase : List[str] = resample _UpperCAmelCase : List[str] = do_center_crop _UpperCAmelCase : int = crop_size _UpperCAmelCase : int = do_rescale _UpperCAmelCase : Tuple = rescale_factor _UpperCAmelCase : Tuple = do_normalize _UpperCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : PILImageResampling = PIL.Image.BICUBIC , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : List[str] , ) ->np.ndarray: '''simple docstring''' _UpperCAmelCase : Optional[int] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( lowerCamelCase__ , size=(size["height"], size["width"]) , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Any , ) ->np.ndarray: '''simple docstring''' _UpperCAmelCase : Optional[int] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCamelCase__ , size=(size["height"], size["width"]) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[int, float] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Tuple , ) ->str: '''simple docstring''' return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : List[Any] , ) ->np.ndarray: '''simple docstring''' return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : ImageInput , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : float = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase__ : Dict , ) ->PIL.Image.Image: '''simple docstring''' _UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : List[Any] = resample if resample is not None else self.resample _UpperCAmelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Any = image_std if image_std is not None else self.image_std _UpperCAmelCase : Union[str, Any] = size if size is not None else self.size _UpperCAmelCase : List[str] = get_size_dict(lowerCamelCase__ ) _UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : Optional[Any] = get_size_dict(lowerCamelCase__ , param_name="crop_size" ) _UpperCAmelCase : List[Any] = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase : List[str] = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: _UpperCAmelCase : Union[str, Any] = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: _UpperCAmelCase : Optional[int] = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: _UpperCAmelCase : Optional[int] = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: _UpperCAmelCase : str = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] _UpperCAmelCase : Dict = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] _UpperCAmelCase : Optional[int] = {"pixel_values": images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
322
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(__lowerCAmelCase ) if number < 0: return False _UpperCAmelCase : List[str] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCAmelCase__ : def __init__( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Tuple=7 , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[Any]=99 , lowerCamelCase__ : str=32 , lowerCamelCase__ : Tuple=5 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : str=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Optional[Any]=5_12 , lowerCamelCase__ : List[str]=16 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Dict=0.0_2 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[int]=4 , lowerCamelCase__ : Union[str, Any]=None , ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : List[Any] = seq_length _UpperCAmelCase : Tuple = is_training _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : str = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : Dict = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : int = type_vocab_size _UpperCAmelCase : Union[str, Any] = type_sequence_label_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : str = num_labels _UpperCAmelCase : Any = num_choices _UpperCAmelCase : Optional[int] = scope _UpperCAmelCase : Union[str, Any] = self.vocab_size - 1 def lowerCAmelCase__ ( self : Optional[int] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : List[str] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = None _UpperCAmelCase : List[Any] = None if self.use_labels: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Optional[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _UpperCAmelCase : List[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : str , *lowerCamelCase__ : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = OpenAIGPTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : List[str] = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ , head_mask=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , *lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : str = OpenAIGPTLMHeadModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : int = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , *lowerCamelCase__ : Dict ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Dict = OpenAIGPTDoubleHeadsModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , *lowerCamelCase__ : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : int = OpenAIGPTForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Any = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Optional[int] = config_and_inputs _UpperCAmelCase : List[Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCAmelCase : int = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Any ) ->Union[str, Any]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int=False ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _UpperCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase__ , ) _UpperCAmelCase : int = inputs_dict["labels"] _UpperCAmelCase : List[str] = inputs_dict["labels"] _UpperCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCamelCase__ , ) _UpperCAmelCase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ ) return inputs_dict def lowerCAmelCase__ ( self : Optional[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = OpenAIGPTModelTester(self ) _UpperCAmelCase : Tuple = ConfigTester(self , config_class=lowerCamelCase__ , n_embd=37 ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Optional[int] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Dict = OpenAIGPTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[int] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=lowerCamelCase__ ) # the president is _UpperCAmelCase : Union[str, Any] = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the _UpperCAmelCase : Dict = model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCamelCase__ )
322
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
1
'''simple docstring''' # Algorithm for the pigeonhole sorting def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = min(__lowerCAmelCase ) # min() finds the minimum value _UpperCAmelCase : Any = max(__lowerCAmelCase ) # max() finds the maximum value _UpperCAmelCase : Optional[Any] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _UpperCAmelCase : Optional[Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _UpperCAmelCase : Any = 0 for count in range(__lowerCAmelCase ): while holes[count] > 0: holes[count] -= 1 _UpperCAmelCase : str = count + min_val i += 1 def __lowerCAmelCase (): _UpperCAmelCase : Tuple = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__lowerCAmelCase ) print("Sorted order is:" , " ".join(__lowerCAmelCase ) ) if __name__ == "__main__": main()
322
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 't5-small': 'https://huggingface.co/t5-small/resolve/main/config.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/config.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/config.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/config.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[int] = "t5" lowerCAmelCase : Optional[int] = ["past_key_values"] lowerCAmelCase : str = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : List[str] , lowerCamelCase__ : List[str]=3_21_28 , lowerCamelCase__ : str=5_12 , lowerCamelCase__ : Union[str, Any]=64 , lowerCamelCase__ : Any=20_48 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : str=8 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=1_28 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Any=1E-6 , lowerCamelCase__ : Optional[int]=1.0 , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : str=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : Any=0 , lowerCamelCase__ : Union[str, Any]=1 , **lowerCamelCase__ : Optional[Any] , ) ->str: '''simple docstring''' _UpperCAmelCase : int = vocab_size _UpperCAmelCase : Any = d_model _UpperCAmelCase : int = d_kv _UpperCAmelCase : List[Any] = d_ff _UpperCAmelCase : Union[str, Any] = num_layers _UpperCAmelCase : List[str] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _UpperCAmelCase : str = num_heads _UpperCAmelCase : Any = relative_attention_num_buckets _UpperCAmelCase : Optional[Any] = relative_attention_max_distance _UpperCAmelCase : Optional[int] = dropout_rate _UpperCAmelCase : List[str] = layer_norm_epsilon _UpperCAmelCase : Tuple = initializer_factor _UpperCAmelCase : Tuple = feed_forward_proj _UpperCAmelCase : List[Any] = use_cache _UpperCAmelCase : Union[str, Any] = self.feed_forward_proj.split("-" ) _UpperCAmelCase : List[str] = act_info[-1] _UpperCAmelCase : List[str] = act_info[0] == "gated" if len(lowerCamelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCamelCase__ ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _UpperCAmelCase : str = "gelu_new" super().__init__( pad_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): @property def lowerCAmelCase__ ( self : str ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' _UpperCAmelCase : List[Any] = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: _UpperCAmelCase : Optional[Any] = "past_encoder_sequence + sequence" _UpperCAmelCase : Union[str, Any] = {0: "batch"} _UpperCAmelCase : Any = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _UpperCAmelCase : List[str] = {0: "batch", 1: "decoder_sequence"} _UpperCAmelCase : List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction="inputs" ) return common_inputs @property def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' return 13
322
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
322
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCamelCase__ = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class lowerCAmelCase__ ( unittest.TestCase , UpperCAmelCase__ ): def lowerCAmelCase__ ( self : str ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = load_tool("text-question-answering" ) self.tool.setup() _UpperCAmelCase : Union[str, Any] = load_tool("text-question-answering" , remote=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : int = self.tool(lowerCamelCase__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase__ , "launched the BigScience Research Workshop" ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : Any = self.remote_tool(lowerCamelCase__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase__ , "launched the BigScience Research Workshop" ) def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' _UpperCAmelCase : List[Any] = self.tool(text=lowerCamelCase__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase__ , "launched the BigScience Research Workshop" ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.remote_tool(text=lowerCamelCase__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase__ , "launched the BigScience Research Workshop" )
322
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
1
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' import os def __lowerCAmelCase (): with open(os.path.dirname(__lowerCAmelCase ) + "/grid.txt" ) as f: _UpperCAmelCase : List[Any] = [] # noqa: E741 for _ in range(20 ): l.append([int(__lowerCAmelCase ) for x in f.readline().split()] ) _UpperCAmelCase : Any = 0 # right for i in range(20 ): for j in range(17 ): _UpperCAmelCase : Optional[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _UpperCAmelCase : str = temp # down for i in range(17 ): for j in range(20 ): _UpperCAmelCase : Optional[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _UpperCAmelCase : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): _UpperCAmelCase : Union[str, Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _UpperCAmelCase : Optional[int] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): _UpperCAmelCase : Optional[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _UpperCAmelCase : Union[str, Any] = temp return maximum if __name__ == "__main__": print(solution())
322
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
1
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase__ : def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple ) ->Optional[int]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[int] ) ->Tuple: '''simple docstring''' pass def lowerCAmelCase__ ( self : Dict ) ->List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : float ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = np.abs((a - b) ).max() self.assertLessEqual(lowerCamelCase__ , lowerCamelCase__ , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any]=None , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase__ ) _UpperCAmelCase : str = model(input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str=None , **lowerCamelCase__ : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.get_vision_text_model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = {"vision_model": vision_model, "text_model": text_model} _UpperCAmelCase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = model(input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any]=None , **lowerCamelCase__ : Optional[Any] ) ->str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.get_vision_text_model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Any = {"vision_model": vision_model, "text_model": text_model} _UpperCAmelCase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase__ ) _UpperCAmelCase : Tuple = model(input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase__ ) _UpperCAmelCase : List[str] = model(input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) _UpperCAmelCase : Any = after_output[0] _UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase__ , 1E-3 ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.get_vision_text_model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[str] = {"vision_model": vision_model, "text_model": text_model} _UpperCAmelCase : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase__ ) _UpperCAmelCase : str = model( input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_attentions=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : Dict = to_atuple(vision_model.config.image_size ) _UpperCAmelCase : str = to_atuple(vision_model.config.patch_size ) _UpperCAmelCase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCAmelCase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCAmelCase : Optional[int] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple , lowerCamelCase__ : int ) ->Optional[int]: '''simple docstring''' pt_model.to(lowerCamelCase__ ) pt_model.eval() # prepare inputs _UpperCAmelCase : Any = inputs_dict _UpperCAmelCase : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _UpperCAmelCase : Optional[int] = pt_model(**lowerCamelCase__ ).to_tuple() _UpperCAmelCase : str = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCamelCase__ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) _UpperCAmelCase : Any = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCamelCase__ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Tuple = VisionTextDualEncoderModel.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) pt_model_loaded.to(lowerCamelCase__ ) pt_model_loaded.eval() with torch.no_grad(): _UpperCAmelCase : int = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCamelCase__ , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : int , lowerCamelCase__ : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : str = VisionTextDualEncoderModel(lowerCamelCase__ ) _UpperCAmelCase : Tuple = FlaxVisionTextDualEncoderModel(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = fx_state self.check_pt_flax_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : int = VisionTextDualEncoderModel(lowerCamelCase__ ) _UpperCAmelCase : List[str] = FlaxVisionTextDualEncoderModel(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) self.check_pt_flax_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase__ ) @is_pt_flax_cross_test def lowerCAmelCase__ ( self : Union[str, Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() _UpperCAmelCase : Optional[int] = config_inputs_dict.pop("vision_config" ) _UpperCAmelCase : Dict = config_inputs_dict.pop("text_config" ) _UpperCAmelCase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.check_equivalence_flax_to_pt(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : str ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = self.get_pretrained_model_and_inputs() _UpperCAmelCase : Dict = model_a(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase__ ) _UpperCAmelCase : str = model_a(**lowerCamelCase__ ) _UpperCAmelCase : int = after_outputs[0] _UpperCAmelCase : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase__ , 1E-5 ) @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): def lowerCAmelCase__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCamelCase__ , text_from_pt=lowerCamelCase__ , ) _UpperCAmelCase : Optional[int] = 13 _UpperCAmelCase : int = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCAmelCase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCAmelCase : Dict = random_attention_mask([batch_size, 4] ) _UpperCAmelCase : Optional[int] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCAmelCase__ ( self : str , lowerCamelCase__ : str , lowerCamelCase__ : str ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = FlaxViTModel(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = FlaxBertModel(lowerCamelCase__ ) return vision_model, text_model def lowerCAmelCase__ ( self : Dict ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = FlaxViTModelTester(self ) _UpperCAmelCase : List[str] = FlaxBertModelTester(self ) _UpperCAmelCase : Any = vit_model_tester.prepare_config_and_inputs() _UpperCAmelCase : int = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase : List[Any] = vision_config_and_inputs _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): def lowerCAmelCase__ ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCamelCase__ , text_from_pt=lowerCamelCase__ , ) _UpperCAmelCase : List[str] = 13 _UpperCAmelCase : Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCAmelCase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCAmelCase : str = random_attention_mask([batch_size, 4] ) _UpperCAmelCase : Dict = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = FlaxCLIPVisionModel(lowerCamelCase__ ) _UpperCAmelCase : Any = FlaxBertModel(lowerCamelCase__ ) return vision_model, text_model def lowerCAmelCase__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = FlaxCLIPVisionModelTester(self ) _UpperCAmelCase : Union[str, Any] = FlaxBertModelTester(self ) _UpperCAmelCase : str = clip_model_tester.prepare_config_and_inputs() _UpperCAmelCase : int = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase : List[str] = vision_config_and_inputs _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Dict ) ->Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) _UpperCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) _UpperCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase : Optional[int] = processor( text=["una foto di un gatto", "una foto di un cane"] , images=lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors="np" ) _UpperCAmelCase : Dict = model(**lowerCamelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _UpperCAmelCase : Optional[int] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCamelCase__ , atol=1E-3 ) )
322
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
1
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
322
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): for nxt, d in graph[v]: if nxt in visited_forward: continue _UpperCAmelCase : Dict = cst_fwd.get(__lowerCAmelCase , np.inf ) _UpperCAmelCase : List[Any] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _UpperCAmelCase : int = new_cost_f _UpperCAmelCase : str = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _UpperCAmelCase : Tuple = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[int] = -1 _UpperCAmelCase : Optional[int] = set() _UpperCAmelCase : List[Any] = set() _UpperCAmelCase : str = {source: 0} _UpperCAmelCase : Union[str, Any] = {destination: 0} _UpperCAmelCase : Union[str, Any] = {source: None} _UpperCAmelCase : List[Any] = {destination: None} _UpperCAmelCase : PriorityQueue[Any] = PriorityQueue() _UpperCAmelCase : PriorityQueue[Any] = PriorityQueue() _UpperCAmelCase : Union[str, Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _UpperCAmelCase , _UpperCAmelCase : Dict = queue_forward.get() visited_forward.add(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = queue_backward.get() visited_backward.add(__lowerCAmelCase ) _UpperCAmelCase : List[str] = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) _UpperCAmelCase : Optional[int] = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _UpperCAmelCase : str = shortest_distance return shortest_path_distance lowerCamelCase__ = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } lowerCamelCase__ = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = int(__lowerCAmelCase ) # Initialize Result _UpperCAmelCase : Tuple = [] # Traverse through all denomination for denomination in reversed(__lowerCAmelCase ): # Find denominations while int(__lowerCAmelCase ) >= int(__lowerCAmelCase ): total_value -= int(__lowerCAmelCase ) answer.append(__lowerCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowerCamelCase__ = [] lowerCamelCase__ = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): lowerCamelCase__ = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) lowerCamelCase__ = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter lowerCamelCase__ = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] lowerCamelCase__ = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(F'''Following is minimal change for {value}: ''') lowerCamelCase__ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = len(__lowerCAmelCase ), len(grid[0] ) if ( min(__lowerCAmelCase , __lowerCAmelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _UpperCAmelCase : int = 0 count += depth_first_search(__lowerCAmelCase , row + 1 , __lowerCAmelCase , __lowerCAmelCase ) count += depth_first_search(__lowerCAmelCase , row - 1 , __lowerCAmelCase , __lowerCAmelCase ) count += depth_first_search(__lowerCAmelCase , __lowerCAmelCase , col + 1 , __lowerCAmelCase ) count += depth_first_search(__lowerCAmelCase , __lowerCAmelCase , col - 1 , __lowerCAmelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } lowerCamelCase__ = { 'yjernite/retribert-base-uncased': 512, } lowerCamelCase__ = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Dict = VOCAB_FILES_NAMES lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : int = RetriBertTokenizer lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : List[Any]="[UNK]" , lowerCamelCase__ : List[Any]="[SEP]" , lowerCamelCase__ : Dict="[PAD]" , lowerCamelCase__ : List[str]="[CLS]" , lowerCamelCase__ : Tuple="[MASK]" , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : int , ) ->int: '''simple docstring''' super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) _UpperCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCamelCase__ ) != tokenize_chinese_chars ): _UpperCAmelCase : Dict = getattr(lowerCamelCase__ , normalizer_state.pop("type" ) ) _UpperCAmelCase : Optional[int] = do_lower_case _UpperCAmelCase : Optional[Any] = strip_accents _UpperCAmelCase : str = tokenize_chinese_chars _UpperCAmelCase : Optional[int] = normalizer_class(**lowerCamelCase__ ) _UpperCAmelCase : List[Any] = do_lower_case def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple=None ) ->Tuple: '''simple docstring''' _UpperCAmelCase : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : int = [self.sep_token_id] _UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
1
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : int = CLIPTokenizer lowerCAmelCase : Dict = CLIPTokenizerFast lowerCAmelCase : Any = True lowerCAmelCase : Any = {} lowerCAmelCase : List[Any] = False def lowerCAmelCase__ ( self : Any ) ->Optional[int]: '''simple docstring''' super().setUp() # fmt: off _UpperCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _UpperCAmelCase : Optional[Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) _UpperCAmelCase : Tuple = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] _UpperCAmelCase : List[str] = {"unk_token": "<unk>"} _UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] , **lowerCamelCase__ : Dict ) ->Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any , **lowerCamelCase__ : Tuple ) ->Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[int] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "lower newer" _UpperCAmelCase : int = "lower newer" return input_text, output_text def lowerCAmelCase__ ( self : Tuple ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase : str = "lower newer" _UpperCAmelCase : Optional[int] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] _UpperCAmelCase : Union[str, Any] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : str = tokens + [tokenizer.unk_token] _UpperCAmelCase : Tuple = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @require_ftfy def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." _UpperCAmelCase : Tuple = tokenizer_s.tokenize(lowerCamelCase__ ) _UpperCAmelCase : Dict = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _UpperCAmelCase : List[Any] = "xa\u0303y" + " " + "x\xe3y" _UpperCAmelCase : Optional[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) _UpperCAmelCase : List[str] = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of space type _UpperCAmelCase : int = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _UpperCAmelCase : List[str] = tokenizer_s.tokenize(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of line break type _UpperCAmelCase : int = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _UpperCAmelCase : Tuple = tokenizer_s.tokenize(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCAmelCase : int = "hello" # `hello` is a token in the vocabulary of `pretrained_name` _UpperCAmelCase : List[Any] = F"""{text_of_1_token} {text_of_1_token}""" _UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) _UpperCAmelCase : str = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) _UpperCAmelCase : Optional[int] = F""" {text}""" _UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) _UpperCAmelCase : Tuple = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ) + 1, 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowerCAmelCase__ ( self : Union[str, Any] ) ->Dict: '''simple docstring''' super().test_tokenization_python_rust_equals() def lowerCAmelCase__ ( self : str ) ->Dict: '''simple docstring''' pass
322
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
322
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
1
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file _UpperCAmelCase : List[Any] = TapasConfig.from_json_file(__lowerCAmelCase ) # set absolute/relative position embeddings parameter _UpperCAmelCase : Optional[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase : int = TapasForQuestionAnswering(config=__lowerCAmelCase ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase : Any = 4 _UpperCAmelCase : List[Any] = True # hparam_utils.py hparams _UpperCAmelCase : str = 0.6_6_4_6_9_4 _UpperCAmelCase : int = 0.2_0_7_9_5_1 _UpperCAmelCase : List[Any] = 0.1_2_1_1_9_4 _UpperCAmelCase : Any = True _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Union[str, Any] = 0.0_3_5_2_5_1_3 _UpperCAmelCase : Tuple = TapasForQuestionAnswering(config=__lowerCAmelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase : List[str] = 4 _UpperCAmelCase : Optional[int] = False # hparam_utils.py hparams _UpperCAmelCase : int = 3_6.4_5_1_9 _UpperCAmelCase : List[Any] = 0.9_0_3_4_2_1 _UpperCAmelCase : int = 2_2_2.0_8_8 _UpperCAmelCase : Tuple = True _UpperCAmelCase : Tuple = True _UpperCAmelCase : str = True _UpperCAmelCase : Optional[int] = 0.7_6_3_1_4_1 _UpperCAmelCase : int = TapasForQuestionAnswering(config=__lowerCAmelCase ) elif task == "TABFACT": _UpperCAmelCase : Tuple = TapasForSequenceClassification(config=__lowerCAmelCase ) elif task == "MLM": _UpperCAmelCase : List[str] = TapasForMaskedLM(config=__lowerCAmelCase ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase : Optional[Any] = TapasModel(config=__lowerCAmelCase ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__lowerCAmelCase ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) _UpperCAmelCase : Any = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(__lowerCAmelCase ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' import math def __lowerCAmelCase (): _UpperCAmelCase : str = input("Enter message: " ) _UpperCAmelCase : Union[str, Any] = int(input(F"""Enter key [2-{len(__lowerCAmelCase ) - 1}]: """ ) ) _UpperCAmelCase : List[str] = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): _UpperCAmelCase : int = encrypt_message(__lowerCAmelCase , __lowerCAmelCase ) elif mode.lower().startswith("d" ): _UpperCAmelCase : Optional[int] = decrypt_message(__lowerCAmelCase , __lowerCAmelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F"""Output:\n{text + '|'}""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = [""] * key for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = col while pointer < len(__lowerCAmelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = math.ceil(len(__lowerCAmelCase ) / key ) _UpperCAmelCase : str = key _UpperCAmelCase : List[Any] = (num_cols * num_rows) - len(__lowerCAmelCase ) _UpperCAmelCase : str = [""] * num_cols _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : List[Any] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): _UpperCAmelCase : int = 0 row += 1 return "".join(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
322
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = "encodec" def __init__( self : int , lowerCamelCase__ : Optional[int]=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , lowerCamelCase__ : Optional[int]=2_40_00 , lowerCamelCase__ : Any=1 , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : str=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Tuple=1_28 , lowerCamelCase__ : Optional[int]=32 , lowerCamelCase__ : Dict=1 , lowerCamelCase__ : int=[8, 5, 4, 2] , lowerCamelCase__ : Any="weight_norm" , lowerCamelCase__ : Any=7 , lowerCamelCase__ : Any=7 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : List[Any]=2 , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int="reflect" , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : Tuple=1.0 , lowerCamelCase__ : List[str]=10_24 , lowerCamelCase__ : str=None , lowerCamelCase__ : Optional[Any]=True , **lowerCamelCase__ : int , ) ->Dict: '''simple docstring''' _UpperCAmelCase : int = target_bandwidths _UpperCAmelCase : List[str] = sampling_rate _UpperCAmelCase : Dict = audio_channels _UpperCAmelCase : Union[str, Any] = normalize _UpperCAmelCase : List[str] = chunk_length_s _UpperCAmelCase : List[str] = overlap _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Optional[int] = num_filters _UpperCAmelCase : Dict = num_residual_layers _UpperCAmelCase : Tuple = upsampling_ratios _UpperCAmelCase : Any = norm_type _UpperCAmelCase : Tuple = kernel_size _UpperCAmelCase : List[Any] = last_kernel_size _UpperCAmelCase : int = residual_kernel_size _UpperCAmelCase : List[str] = dilation_growth_rate _UpperCAmelCase : Any = use_causal_conv _UpperCAmelCase : Tuple = pad_mode _UpperCAmelCase : str = compress _UpperCAmelCase : Optional[Any] = num_lstm_layers _UpperCAmelCase : Optional[Any] = trim_right_ratio _UpperCAmelCase : Optional[Any] = codebook_size _UpperCAmelCase : List[str] = codebook_dim if codebook_dim is not None else hidden_size _UpperCAmelCase : Any = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCamelCase__ ) @property def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCAmelCase__ ( self : str ) ->Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->int: '''simple docstring''' return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
322
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=0.9_9_9 , __lowerCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _UpperCAmelCase : Optional[int] = [] for i in range(__lowerCAmelCase ): _UpperCAmelCase : Any = i / num_diffusion_timesteps _UpperCAmelCase : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase , dtype=torch.floataa ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] lowerCAmelCase : Union[str, Any] = 2 @register_to_config def __init__( self : Optional[Any] , lowerCamelCase__ : int = 10_00 , lowerCamelCase__ : float = 0.0_0_0_8_5 , lowerCamelCase__ : float = 0.0_1_2 , lowerCamelCase__ : str = "linear" , lowerCamelCase__ : Optional[Union[np.ndarray, List[float]]] = None , lowerCamelCase__ : str = "epsilon" , lowerCamelCase__ : str = "linspace" , lowerCamelCase__ : int = 0 , ) ->List[Any]: '''simple docstring''' if trained_betas is not None: _UpperCAmelCase : Dict = torch.tensor(lowerCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase : Any = torch.linspace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase : Dict = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase : Optional[int] = betas_for_alpha_bar(lowerCamelCase__ ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _UpperCAmelCase : Optional[int] = 1.0 - self.betas _UpperCAmelCase : int = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int=None ) ->Union[str, Any]: '''simple docstring''' if schedule_timesteps is None: _UpperCAmelCase : Tuple = self.timesteps _UpperCAmelCase : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _UpperCAmelCase : List[Any] = 1 if len(lowerCamelCase__ ) > 1 else 0 else: _UpperCAmelCase : str = timestep.cpu().item() if torch.is_tensor(lowerCamelCase__ ) else timestep _UpperCAmelCase : Optional[int] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self : int ) ->List[Any]: '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : Union[float, torch.FloatTensor] , ) ->torch.FloatTensor: '''simple docstring''' _UpperCAmelCase : Dict = self.index_for_timestep(lowerCamelCase__ ) if self.state_in_first_order: _UpperCAmelCase : Optional[int] = self.sigmas[step_index] else: _UpperCAmelCase : List[Any] = self.sigmas_interpol[step_index] _UpperCAmelCase : List[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self : str , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, torch.device] = None , lowerCamelCase__ : Optional[int] = None , ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = num_inference_steps _UpperCAmelCase : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _UpperCAmelCase : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCamelCase__ , dtype=lowerCamelCase__ )[::-1].copy() elif self.config.timestep_spacing == "leading": _UpperCAmelCase : Optional[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase : Optional[Any] = (np.arange(0 , lowerCamelCase__ ) * step_ratio).round()[::-1].copy().astype(lowerCamelCase__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _UpperCAmelCase : Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase : Any = (np.arange(lowerCamelCase__ , 0 , -step_ratio )).round().copy().astype(lowerCamelCase__ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _UpperCAmelCase : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _UpperCAmelCase : int = torch.from_numpy(np.log(lowerCamelCase__ ) ).to(lowerCamelCase__ ) _UpperCAmelCase : Dict = np.interp(lowerCamelCase__ , np.arange(0 , len(lowerCamelCase__ ) ) , lowerCamelCase__ ) _UpperCAmelCase : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _UpperCAmelCase : Dict = torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ ) # interpolate sigmas _UpperCAmelCase : Union[str, Any] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _UpperCAmelCase : List[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _UpperCAmelCase : int = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowerCamelCase__ ).startswith("mps" ): # mps does not support float64 _UpperCAmelCase : Dict = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ , dtype=torch.floataa ) else: _UpperCAmelCase : int = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) # interpolate timesteps _UpperCAmelCase : List[str] = self.sigma_to_t(lowerCamelCase__ ).to(lowerCamelCase__ , dtype=timesteps.dtype ) _UpperCAmelCase : Optional[int] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _UpperCAmelCase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _UpperCAmelCase : List[str] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _UpperCAmelCase : List[str] = defaultdict(lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] = sigma.log() # get distribution _UpperCAmelCase : List[str] = log_sigma - self.log_sigmas[:, None] # get sigmas range _UpperCAmelCase : List[str] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _UpperCAmelCase : Tuple = low_idx + 1 _UpperCAmelCase : List[str] = self.log_sigmas[low_idx] _UpperCAmelCase : Optional[Any] = self.log_sigmas[high_idx] # interpolate sigmas _UpperCAmelCase : int = (low - log_sigma) / (low - high) _UpperCAmelCase : Tuple = w.clamp(0 , 1 ) # transform interpolation to time range _UpperCAmelCase : List[str] = (1 - w) * low_idx + w * high_idx _UpperCAmelCase : Any = t.view(sigma.shape ) return t @property def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' return self.sample is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Union[torch.FloatTensor, np.ndarray] , lowerCamelCase__ : Union[float, torch.FloatTensor] , lowerCamelCase__ : Union[torch.FloatTensor, np.ndarray] , lowerCamelCase__ : bool = True , ) ->Union[SchedulerOutput, Tuple]: '''simple docstring''' _UpperCAmelCase : int = self.index_for_timestep(lowerCamelCase__ ) # advance index counter by 1 _UpperCAmelCase : int = timestep.cpu().item() if torch.is_tensor(lowerCamelCase__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _UpperCAmelCase : Any = self.sigmas[step_index] _UpperCAmelCase : Any = self.sigmas_interpol[step_index + 1] _UpperCAmelCase : Any = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _UpperCAmelCase : Dict = self.sigmas[step_index - 1] _UpperCAmelCase : List[str] = self.sigmas_interpol[step_index] _UpperCAmelCase : Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _UpperCAmelCase : Dict = sigma_hat if self.state_in_first_order else sigma_interpol _UpperCAmelCase : Tuple = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _UpperCAmelCase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _UpperCAmelCase : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _UpperCAmelCase : Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _UpperCAmelCase : int = sigma_interpol - sigma_hat # store for 2nd order step _UpperCAmelCase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _UpperCAmelCase : Tuple = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _UpperCAmelCase : int = sigma_next - sigma_hat _UpperCAmelCase : Tuple = self.sample _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Union[str, Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : torch.FloatTensor , ) ->torch.FloatTensor: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCamelCase__ ): # mps does not support float64 _UpperCAmelCase : Tuple = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _UpperCAmelCase : Optional[int] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _UpperCAmelCase : Optional[Any] = self.timesteps.to(original_samples.device ) _UpperCAmelCase : Tuple = timesteps.to(original_samples.device ) _UpperCAmelCase : List[Any] = [self.index_for_timestep(lowerCamelCase__ , lowerCamelCase__ ) for t in timesteps] _UpperCAmelCase : Union[str, Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _UpperCAmelCase : Optional[Any] = sigma.unsqueeze(-1 ) _UpperCAmelCase : str = original_samples + noise * sigma return noisy_samples def __len__( self : List[str] ) ->Any: '''simple docstring''' return self.config.num_train_timesteps
322
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
1
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : str = AudioLDMPipeline lowerCAmelCase : int = TEXT_TO_AUDIO_PARAMS lowerCAmelCase : Optional[Any] = TEXT_TO_AUDIO_BATCH_PARAMS lowerCAmelCase : Union[str, Any] = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->str: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=(32, 64) , class_embed_type="simple_projection" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowerCamelCase__ , ) _UpperCAmelCase : List[str] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , projection_dim=32 , ) _UpperCAmelCase : Any = ClapTextModelWithProjection(lowerCamelCase__ ) _UpperCAmelCase : List[str] = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" , model_max_length=77 ) _UpperCAmelCase : str = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_60_00 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowerCamelCase__ , ) _UpperCAmelCase : Dict = SpeechTaHifiGan(lowerCamelCase__ ) _UpperCAmelCase : int = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict=0 ) ->List[str]: '''simple docstring''' if str(lowerCamelCase__ ).startswith("mps" ): _UpperCAmelCase : Any = torch.manual_seed(lowerCamelCase__ ) else: _UpperCAmelCase : str = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _UpperCAmelCase : Tuple = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def lowerCAmelCase__ ( self : Tuple ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Any = self.get_dummy_components() _UpperCAmelCase : Any = AudioLDMPipeline(**lowerCamelCase__ ) _UpperCAmelCase : int = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCAmelCase : Dict = self.get_dummy_inputs(lowerCamelCase__ ) _UpperCAmelCase : Any = audioldm_pipe(**lowerCamelCase__ ) _UpperCAmelCase : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 2_56 _UpperCAmelCase : Union[str, Any] = audio[:10] _UpperCAmelCase : int = np.array( [-0.0_0_5_0, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_3, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_3] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.get_dummy_components() _UpperCAmelCase : Dict = AudioLDMPipeline(**lowerCamelCase__ ) _UpperCAmelCase : Any = audioldm_pipe.to(lowerCamelCase__ ) _UpperCAmelCase : Dict = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCAmelCase : int = self.get_dummy_inputs(lowerCamelCase__ ) _UpperCAmelCase : str = 3 * [inputs["prompt"]] # forward _UpperCAmelCase : int = audioldm_pipe(**lowerCamelCase__ ) _UpperCAmelCase : Any = output.audios[0] _UpperCAmelCase : Tuple = self.get_dummy_inputs(lowerCamelCase__ ) _UpperCAmelCase : Tuple = 3 * [inputs.pop("prompt" )] _UpperCAmelCase : Optional[Any] = audioldm_pipe.tokenizer( lowerCamelCase__ , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase__ , return_tensors="pt" , ) _UpperCAmelCase : Union[str, Any] = text_inputs["input_ids"].to(lowerCamelCase__ ) _UpperCAmelCase : Tuple = audioldm_pipe.text_encoder( lowerCamelCase__ , ) _UpperCAmelCase : Union[str, Any] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _UpperCAmelCase : List[str] = F.normalize(lowerCamelCase__ , dim=-1 ) _UpperCAmelCase : Tuple = prompt_embeds # forward _UpperCAmelCase : Dict = audioldm_pipe(**lowerCamelCase__ ) _UpperCAmelCase : int = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowerCAmelCase__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.get_dummy_components() _UpperCAmelCase : Optional[Any] = AudioLDMPipeline(**lowerCamelCase__ ) _UpperCAmelCase : int = audioldm_pipe.to(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCAmelCase : int = self.get_dummy_inputs(lowerCamelCase__ ) _UpperCAmelCase : Tuple = 3 * ["this is a negative prompt"] _UpperCAmelCase : str = negative_prompt _UpperCAmelCase : Dict = 3 * [inputs["prompt"]] # forward _UpperCAmelCase : Dict = audioldm_pipe(**lowerCamelCase__ ) _UpperCAmelCase : str = output.audios[0] _UpperCAmelCase : Tuple = self.get_dummy_inputs(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = 3 * [inputs.pop("prompt" )] _UpperCAmelCase : str = [] for p in [prompt, negative_prompt]: _UpperCAmelCase : Optional[int] = audioldm_pipe.tokenizer( lowerCamelCase__ , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase__ , return_tensors="pt" , ) _UpperCAmelCase : Any = text_inputs["input_ids"].to(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = audioldm_pipe.text_encoder( lowerCamelCase__ , ) _UpperCAmelCase : Union[str, Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _UpperCAmelCase : Union[str, Any] = F.normalize(lowerCamelCase__ , dim=-1 ) embeds.append(lowerCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase : Tuple = embeds # forward _UpperCAmelCase : List[Any] = audioldm_pipe(**lowerCamelCase__ ) _UpperCAmelCase : int = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowerCAmelCase__ ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : int = self.get_dummy_components() _UpperCAmelCase : Any = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = AudioLDMPipeline(**lowerCamelCase__ ) _UpperCAmelCase : Dict = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCAmelCase : Any = self.get_dummy_inputs(lowerCamelCase__ ) _UpperCAmelCase : int = "egg cracking" _UpperCAmelCase : Tuple = audioldm_pipe(**lowerCamelCase__ , negative_prompt=lowerCamelCase__ ) _UpperCAmelCase : int = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 2_56 _UpperCAmelCase : Dict = audio[:10] _UpperCAmelCase : Optional[int] = np.array( [-0.0_0_5_1, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_4, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_2] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self : Dict ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Dict = self.get_dummy_components() _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = AudioLDMPipeline(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCAmelCase : int = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) _UpperCAmelCase : Optional[Any] = audioldm_pipe(lowerCamelCase__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_56) # test num_waveforms_per_prompt=1 (default) for batch of prompts _UpperCAmelCase : Dict = 2 _UpperCAmelCase : List[str] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_56) # test num_waveforms_per_prompt for single prompt _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : List[str] = audioldm_pipe(lowerCamelCase__ , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_56) # test num_waveforms_per_prompt for batch of prompts _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Any = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_56) def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Optional[Any] = self.get_dummy_components() _UpperCAmelCase : Optional[Any] = AudioLDMPipeline(**lowerCamelCase__ ) _UpperCAmelCase : str = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCAmelCase : Any = audioldm_pipe.vocoder.config.sampling_rate _UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.0_1_6 , **lowerCamelCase__ ) _UpperCAmelCase : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) / vocoder_sampling_rate == 0.0_1_6 _UpperCAmelCase : int = audioldm_pipe(audio_length_in_s=0.0_3_2 , **lowerCamelCase__ ) _UpperCAmelCase : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) / vocoder_sampling_rate == 0.0_3_2 def lowerCAmelCase__ ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = self.get_dummy_components() _UpperCAmelCase : List[str] = AudioLDMPipeline(**lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCAmelCase : Tuple = ["hey"] _UpperCAmelCase : List[str] = audioldm_pipe(lowerCamelCase__ , num_inference_steps=1 ) _UpperCAmelCase : Any = output.audios.shape assert audio_shape == (1, 2_56) _UpperCAmelCase : str = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _UpperCAmelCase : Any = SpeechTaHifiGan(lowerCamelCase__ ).to(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = audioldm_pipe(lowerCamelCase__ , num_inference_steps=1 ) _UpperCAmelCase : List[Any] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_56) def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] ) ->Dict: '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCamelCase__ ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase__ ) @slow class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : str="cpu" , lowerCamelCase__ : Optional[int]=torch.floataa , lowerCamelCase__ : Optional[Any]=0 ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _UpperCAmelCase : Dict = np.random.RandomState(lowerCamelCase__ ).standard_normal((1, 8, 1_28, 16) ) _UpperCAmelCase : Optional[Any] = torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) _UpperCAmelCase : Dict = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) _UpperCAmelCase : Any = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_inputs(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = 25 _UpperCAmelCase : Optional[Any] = audioldm_pipe(**lowerCamelCase__ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 8_19_20 _UpperCAmelCase : Optional[Any] = audio[7_72_30:7_72_40] _UpperCAmelCase : int = np.array( [-0.4_8_8_4, -0.4_6_0_7, 0.0_0_2_3, 0.5_0_0_7, 0.5_8_9_6, 0.5_1_5_1, 0.3_8_1_3, -0.0_2_0_8, -0.3_6_8_7, -0.4_3_1_5] ) _UpperCAmelCase : Optional[int] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : List[Any] = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) _UpperCAmelCase : List[Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _UpperCAmelCase : int = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCAmelCase : Any = self.get_inputs(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = audioldm_pipe(**lowerCamelCase__ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 8_19_20 _UpperCAmelCase : Dict = audio[2_77_80:2_77_90] _UpperCAmelCase : Union[str, Any] = np.array([-0.2_1_3_1, -0.0_8_7_3, -0.0_1_2_4, -0.0_1_8_9, 0.0_5_6_9, 0.1_3_7_3, 0.1_8_8_3, 0.2_8_8_6, 0.3_2_9_7, 0.2_2_1_2] ) _UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
322
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = ["image_processor", "tokenizer"] lowerCAmelCase : Tuple = "LayoutLMv3ImageProcessor" lowerCAmelCase : Tuple = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : Dict , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : Optional[Any]=None , **lowerCamelCase__ : Any ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase__ , ) _UpperCAmelCase : Any = kwargs.pop("feature_extractor" ) _UpperCAmelCase : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowerCamelCase__ : Union[List[List[int]], List[List[List[int]]]] = None , lowerCamelCase__ : Optional[Union[List[int], List[List[int]]]] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : int = 0 , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , **lowerCamelCase__ : Tuple , ) ->BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor _UpperCAmelCase : Any = self.image_processor(images=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) _UpperCAmelCase : List[str] = features["words"] _UpperCAmelCase : int = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) # add pixel values _UpperCAmelCase : int = features.pop("pixel_values" ) if return_overflowing_tokens is True: _UpperCAmelCase : str = self.get_overflowing_images(lowerCamelCase__ , encoded_inputs["overflow_to_sample_mapping"] ) _UpperCAmelCase : Any = images return encoded_inputs def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F""" {len(lowerCamelCase__ )} and {len(lowerCamelCase__ )}""" ) return images_with_overflow def lowerCAmelCase__ ( self : Union[str, Any] , *lowerCamelCase__ : int , **lowerCamelCase__ : Optional[Any] ) ->str: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Dict ) ->Tuple: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def lowerCAmelCase__ ( self : Tuple ) ->List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase__ , ) return self.image_processor_class @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Dict: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase__ , ) return self.image_processor
322
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
1
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # noqa: E741 while r - l > 1: _UpperCAmelCase : Dict = (l + r) // 2 if v[m] >= key: _UpperCAmelCase : Any = m else: _UpperCAmelCase : Any = m # noqa: E741 return r def __lowerCAmelCase (__lowerCAmelCase ): if len(__lowerCAmelCase ) == 0: return 0 _UpperCAmelCase : int = [0] * len(__lowerCAmelCase ) _UpperCAmelCase : int = 1 _UpperCAmelCase : int = v[0] for i in range(1 , len(__lowerCAmelCase ) ): if v[i] < tail[0]: _UpperCAmelCase : List[str] = v[i] elif v[i] > tail[length - 1]: _UpperCAmelCase : Optional[Any] = v[i] length += 1 else: _UpperCAmelCase : Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
1
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): lowerCAmelCase : Union[str, Any] = MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def lowerCAmelCase__ ( self : Any ) ->Dict: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowerCAmelCase__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) _UpperCAmelCase : Optional[Any] = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1E-05, "token": 3_80_15, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1E-05, "token": 2_55_06, "token_str": " accuser"}, ] , ) _UpperCAmelCase : Dict = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1E-05, "token": 3_80_15, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1E-05, "token": 2_55_06, "token_str": " accuser", }, ] , ) _UpperCAmelCase : List[str] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2E-05, "token": 1_36_06, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2E-05, "token": 34_99, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9E-05, "token": 29_41, "token_str": " Te"}, ] , ) @require_torch def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : int = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) _UpperCAmelCase : List[Any] = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2E-05, "token": 3_56_76, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2E-05, "token": 1_64_16, "token_str": "ELS"}, ] , ) _UpperCAmelCase : List[str] = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2E-05, "token": 3_56_76, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2E-05, "token": 1_64_16, "token_str": "ELS"}, ] , ) _UpperCAmelCase : int = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1E-05, "token": 34_99, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2E-05, "token": 29_41, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2E-05, "token": 1_36_06, "token_str": " Clara"}, ] , ) _UpperCAmelCase : List[Any] = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=6 ) , [ [ { "score": 2.2E-05, "token": 3_56_76, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2E-05, "token": 1_64_16, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2E-05, "token": 3_56_76, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2E-05, "token": 1_64_16, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def lowerCAmelCase__ ( self : Dict ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() _UpperCAmelCase : Union[str, Any] = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow @require_torch def lowerCAmelCase__ ( self : str ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(lowerCamelCase__ ) @slow @require_tf def lowerCAmelCase__ ( self : str ) ->Any: '''simple docstring''' _UpperCAmelCase : Tuple = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , [ {"sequence": "My name is John", "score": 0.0_0_8, "token": 6_10, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.0_0_7, "token": 15_73, "token_str": " Chris"}, ] , ) _UpperCAmelCase : Union[str, Any] = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , [ { "sequence": "The largest city in France is Paris", "score": 0.2_5_1, "token": 22_01, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.2_1_4, "token": 1_27_90, "token_str": " Lyon", }, ] , ) _UpperCAmelCase : List[str] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , [ {"sequence": "My name is Patrick", "score": 0.0_0_5, "token": 34_99, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.0_0_0, "token": 1_36_06, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.0_0_0, "token": 29_41, "token_str": " Te"}, ] , ) @require_torch def lowerCAmelCase__ ( self : str ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) _UpperCAmelCase : Dict = None _UpperCAmelCase : Tuple = None self.run_pipeline_test(lowerCamelCase__ , [] ) @require_tf def lowerCAmelCase__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Tuple = None self.run_pipeline_test(lowerCamelCase__ , [] ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : int ) ->Dict: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) _UpperCAmelCase : Optional[int] = FillMaskPipeline(model=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [ F"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = fill_masker.tokenizer _UpperCAmelCase : int = fill_masker.model _UpperCAmelCase : str = fill_masker( F"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( lowerCamelCase__ , [ {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, ] , ) _UpperCAmelCase : str = fill_masker([F"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( lowerCamelCase__ , [ {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, ] , ) _UpperCAmelCase : Optional[Any] = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( lowerCamelCase__ , [ [ {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, ], [ {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, ], ] , ) with self.assertRaises(lowerCamelCase__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(lowerCamelCase__ ): fill_masker("This is" ) self.run_test_top_k(lowerCamelCase__ , lowerCamelCase__ ) self.run_test_targets(lowerCamelCase__ , lowerCamelCase__ ) self.run_test_top_k_targets(lowerCamelCase__ , lowerCamelCase__ ) self.fill_mask_with_duplicate_targets_and_top_k(lowerCamelCase__ , lowerCamelCase__ ) self.fill_mask_with_multiple_masks(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = tokenizer.get_vocab() _UpperCAmelCase : Any = sorted(vocab.keys() )[:2] # Pipeline argument _UpperCAmelCase : str = FillMaskPipeline(model=lowerCamelCase__ , tokenizer=lowerCamelCase__ , targets=lowerCamelCase__ ) _UpperCAmelCase : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( lowerCamelCase__ , [ {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, ] , ) _UpperCAmelCase : Union[str, Any] = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , lowerCamelCase__ ) _UpperCAmelCase : str = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(lowerCamelCase__ ) ) # Call argument _UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ , [ {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, ] , ) _UpperCAmelCase : Optional[Any] = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(lowerCamelCase__ ) ) # Score equivalence _UpperCAmelCase : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=lowerCamelCase__ ) _UpperCAmelCase : List[str] = [top_mask["token_str"] for top_mask in outputs] _UpperCAmelCase : str = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCamelCase__ ) == set(lowerCamelCase__ ): _UpperCAmelCase : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowerCamelCase__ ) , nested_simplify(lowerCamelCase__ ) ) # Raises with invalid with self.assertRaises(lowerCamelCase__ ): _UpperCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[""] ) with self.assertRaises(lowerCamelCase__ ): _UpperCAmelCase : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets="" ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=lowerCamelCase__ , tokenizer=lowerCamelCase__ , top_k=2 ) _UpperCAmelCase : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( lowerCamelCase__ , [ {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, ] , ) _UpperCAmelCase : str = FillMaskPipeline(model=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) _UpperCAmelCase : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( lowerCamelCase__ , [ {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, ] , ) self.assertEqual(nested_simplify(lowerCamelCase__ ) , nested_simplify(lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ) ->str: '''simple docstring''' _UpperCAmelCase : Any = tokenizer.get_vocab() _UpperCAmelCase : Tuple = FillMaskPipeline(model=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) # top_k=2, ntargets=3 _UpperCAmelCase : List[Any] = sorted(vocab.keys() )[:3] _UpperCAmelCase : List[str] = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=lowerCamelCase__ ) # If we use the most probably targets, and filter differently, we should still # have the same results _UpperCAmelCase : Any = [el["token_str"] for el in sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x["score"] , reverse=lowerCamelCase__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCamelCase__ ).issubset(lowerCamelCase__ ): _UpperCAmelCase : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=lowerCamelCase__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(lowerCamelCase__ ) , nested_simplify(lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str ) ->str: '''simple docstring''' _UpperCAmelCase : List[str] = FillMaskPipeline(model=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) _UpperCAmelCase : List[str] = tokenizer.get_vocab() # String duplicates + id duplicates _UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] _UpperCAmelCase : str = [targets[0], targets[1], targets[0], targets[2], targets[1]] _UpperCAmelCase : int = fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=lowerCamelCase__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowerCamelCase__ ) , 3 ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = fill_masker( F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( lowerCamelCase__ , [ [ {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, ], [ {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, ], [ {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, {"sequence": ANY(lowerCamelCase__ ), "score": ANY(lowerCamelCase__ ), "token": ANY(lowerCamelCase__ ), "token_str": ANY(lowerCamelCase__ )}, ], ] , )
322
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False ): _UpperCAmelCase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for i in range(config.num_hidden_layers ): _UpperCAmelCase : List[str] = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase : int = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Any = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : Tuple = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = dct.pop(__lowerCAmelCase ) _UpperCAmelCase : int = val @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Tuple = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : List[Any] = False if "vqa" in checkpoint_url: _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : List[str] = 3_129 _UpperCAmelCase : Dict = "huggingface/label-files" _UpperCAmelCase : Any = "vqa2-id2label.json" _UpperCAmelCase : int = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : Dict = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : List[Any] = idalabel _UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : int = ViltForQuestionAnswering(__lowerCAmelCase ) elif "nlvr" in checkpoint_url: _UpperCAmelCase : int = True _UpperCAmelCase : str = 2 _UpperCAmelCase : Optional[Any] = {0: "False", 1: "True"} _UpperCAmelCase : Optional[int] = {v: k for k, v in config.idalabel.items()} _UpperCAmelCase : int = 3 _UpperCAmelCase : str = ViltForImagesAndTextClassification(__lowerCAmelCase ) elif "irtr" in checkpoint_url: _UpperCAmelCase : Any = True _UpperCAmelCase : List[str] = ViltForImageAndTextRetrieval(__lowerCAmelCase ) elif "mlm_itm" in checkpoint_url: _UpperCAmelCase : str = True _UpperCAmelCase : Tuple = ViltForMaskedLM(__lowerCAmelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="cpu" )["state_dict"] _UpperCAmelCase : Optional[int] = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) if mlm_model or irtr_model: _UpperCAmelCase : Tuple = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _UpperCAmelCase , _UpperCAmelCase : Dict = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__lowerCAmelCase ) # Define processor _UpperCAmelCase : Union[str, Any] = ViltImageProcessor(size=384 ) _UpperCAmelCase : Any = BertTokenizer.from_pretrained("bert-base-uncased" ) _UpperCAmelCase : Optional[Any] = ViltProcessor(__lowerCAmelCase , __lowerCAmelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _UpperCAmelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=__lowerCAmelCase ).raw ) _UpperCAmelCase : Optional[int] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=__lowerCAmelCase ).raw ) _UpperCAmelCase : int = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _UpperCAmelCase : Dict = processor(__lowerCAmelCase , __lowerCAmelCase , return_tensors="pt" ) _UpperCAmelCase : List[Any] = processor(__lowerCAmelCase , __lowerCAmelCase , return_tensors="pt" ) _UpperCAmelCase : Tuple = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _UpperCAmelCase : int = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=__lowerCAmelCase ).raw ) if mlm_model: _UpperCAmelCase : Optional[int] = "a bunch of [MASK] laying on a [MASK]." else: _UpperCAmelCase : Tuple = "How many cats are there?" _UpperCAmelCase : str = processor(__lowerCAmelCase , __lowerCAmelCase , return_tensors="pt" ) _UpperCAmelCase : Union[str, Any] = model(**__lowerCAmelCase ) # Verify outputs if mlm_model: _UpperCAmelCase : Union[str, Any] = torch.Size([1, 11, 30_522] ) _UpperCAmelCase : Union[str, Any] = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowerCAmelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _UpperCAmelCase : Union[str, Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _UpperCAmelCase : Dict = torch.Size([1, 3_129] ) _UpperCAmelCase : Dict = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowerCAmelCase , atol=1e-4 ) # verify vqa prediction equals "2" _UpperCAmelCase : List[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _UpperCAmelCase : str = torch.Size([1, 2] ) _UpperCAmelCase : str = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCamelCase__ = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
322
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
1
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase (__lowerCAmelCase ): create_state_space_tree(__lowerCAmelCase , [] , 0 , [0 for i in range(len(__lowerCAmelCase ) )] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): if index == len(__lowerCAmelCase ): print(__lowerCAmelCase ) return for i in range(len(__lowerCAmelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _UpperCAmelCase : int = True create_state_space_tree(__lowerCAmelCase , __lowerCAmelCase , index + 1 , __lowerCAmelCase ) current_sequence.pop() _UpperCAmelCase : Dict = False lowerCamelCase__ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCamelCase__ = ["A", "B", "C"] generate_all_permutations(sequence_a)
322
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any=13 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=2_24 , lowerCamelCase__ : Dict=30 , lowerCamelCase__ : int=4_00 , lowerCamelCase__ : int=True , lowerCamelCase__ : str=None , lowerCamelCase__ : Any=True , lowerCamelCase__ : str=[0.5, 0.5, 0.5] , lowerCamelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = size if size is not None else {"height": 18, "width": 18} _UpperCAmelCase : int = parent _UpperCAmelCase : Dict = batch_size _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : str = min_resolution _UpperCAmelCase : Union[str, Any] = max_resolution _UpperCAmelCase : List[Any] = do_resize _UpperCAmelCase : Any = size _UpperCAmelCase : List[str] = do_normalize _UpperCAmelCase : Optional[Any] = image_mean _UpperCAmelCase : Union[str, Any] = image_std def lowerCAmelCase__ ( self : Union[str, Any] ) ->str: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Tuple = ViTImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : int ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Any = EfficientFormerImageProcessorTester(self ) @property def lowerCAmelCase__ ( self : str ) ->Dict: '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "size" ) ) def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' pass def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched _UpperCAmelCase : List[str] = image_processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def lowerCAmelCase__ ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input _UpperCAmelCase : Optional[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched _UpperCAmelCase : Tuple = image_processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : Tuple = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched _UpperCAmelCase : List[str] = image_processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
1
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def __lowerCAmelCase (__lowerCAmelCase ): if num <= 0: raise ValueError("math domain error" ) return quad(__lowerCAmelCase , 0 , __lowerCAmelCase , args=(__lowerCAmelCase) )[0] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return math.pow(__lowerCAmelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
322
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Dict=32 , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : str=10 , lowerCamelCase__ : int=[10, 20, 30, 40] , lowerCamelCase__ : Tuple=[1, 1, 2, 1] , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : str=True , lowerCamelCase__ : str="relu" , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : int=None , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Optional[int] = batch_size _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Any = embeddings_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Union[str, Any] = depths _UpperCAmelCase : Dict = is_training _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Dict = num_labels _UpperCAmelCase : List[str] = scope _UpperCAmelCase : str = len(lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Dict = None if self.use_labels: _UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Dict ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = RegNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : str = model(lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : Dict = RegNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : List[Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : str ) ->Tuple: '''simple docstring''' _UpperCAmelCase : int = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = config_and_inputs _UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowerCAmelCase : List[Any] = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Optional[int] = False lowerCAmelCase : str = False def lowerCAmelCase__ ( self : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase : str = RegNetModelTester(self ) _UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any ) ->Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self : Dict ) ->Optional[int]: '''simple docstring''' return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def lowerCAmelCase__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Dict = model_class(lowerCamelCase__ ) _UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] _UpperCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->List[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : str = model_class(config=lowerCamelCase__ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCAmelCase__ ( self : Dict ) ->Tuple: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str ): _UpperCAmelCase : Optional[Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Tuple = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _UpperCAmelCase : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase : str = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Union[str, Any] = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase : Tuple = layer_type _UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Optional[Any] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : str ) ->Any: '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : int = RegNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowerCAmelCase (): _UpperCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : Optional[Any] ) ->int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self : Any ) ->int: '''simple docstring''' _UpperCAmelCase : int = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase__ ) _UpperCAmelCase : Any = self.default_image_processor _UpperCAmelCase : Optional[int] = prepare_img() _UpperCAmelCase : List[str] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : Any = model(**lowerCamelCase__ ) # verify the logits _UpperCAmelCase : Optional[int] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
322
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
1
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ : def __init__( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[Any]=2 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Any=4 , lowerCamelCase__ : int=2 , lowerCamelCase__ : int=7 , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=36 , lowerCamelCase__ : Any=2 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Any=37 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Any=5_12 , lowerCamelCase__ : List[Any]=16 , lowerCamelCase__ : int=2 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Dict=6 , lowerCamelCase__ : Union[str, Any]=6 , lowerCamelCase__ : Any=3 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : int=None , lowerCamelCase__ : Dict=10_00 , ) ->str: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[str] = batch_size _UpperCAmelCase : Union[str, Any] = num_channels _UpperCAmelCase : Dict = image_size _UpperCAmelCase : List[str] = patch_size _UpperCAmelCase : str = is_training _UpperCAmelCase : Union[str, Any] = use_input_mask _UpperCAmelCase : str = use_token_type_ids _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Dict = type_vocab_size _UpperCAmelCase : int = type_sequence_label_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Any = coordinate_size _UpperCAmelCase : Optional[int] = shape_size _UpperCAmelCase : int = num_labels _UpperCAmelCase : Tuple = num_choices _UpperCAmelCase : str = scope _UpperCAmelCase : Optional[int] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _UpperCAmelCase : Tuple = text_seq_length _UpperCAmelCase : List[Any] = (image_size // patch_size) ** 2 + 1 _UpperCAmelCase : int = self.text_seq_length + self.image_seq_length def lowerCAmelCase__ ( self : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) _UpperCAmelCase : List[Any] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase : List[Any] = bbox[i, j, 3] _UpperCAmelCase : Any = bbox[i, j, 1] _UpperCAmelCase : Optional[int] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase : Union[str, Any] = bbox[i, j, 2] _UpperCAmelCase : str = bbox[i, j, 0] _UpperCAmelCase : List[str] = tmp_coordinate _UpperCAmelCase : Union[str, Any] = tf.constant(lowerCamelCase__ ) _UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : str = None if self.use_input_mask: _UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) _UpperCAmelCase : List[str] = None if self.use_token_type_ids: _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _UpperCAmelCase : Any = None _UpperCAmelCase : Tuple = None if self.use_labels: _UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _UpperCAmelCase : List[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict ) ->Any: '''simple docstring''' _UpperCAmelCase : Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image _UpperCAmelCase : str = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) _UpperCAmelCase : Optional[int] = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _UpperCAmelCase : List[str] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _UpperCAmelCase : Optional[Any] = model({"pixel_values": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = self.num_labels _UpperCAmelCase : Any = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) _UpperCAmelCase : Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : Tuple = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) _UpperCAmelCase : Dict = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Union[str, Any] = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) _UpperCAmelCase : Dict = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self : Dict ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : Union[str, Any] = config_and_inputs _UpperCAmelCase : List[str] = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase : List[str] = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCAmelCase : Tuple = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Optional[Any] = False def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int ) ->Tuple: '''simple docstring''' return True def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Dict=False ) ->dict: '''simple docstring''' _UpperCAmelCase : List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): _UpperCAmelCase : List[str] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): _UpperCAmelCase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) _UpperCAmelCase : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Dict = TFLayoutLMvaModelTester(self ) _UpperCAmelCase : Tuple = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , "hf_compute_loss" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label _UpperCAmelCase : Optional[int] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] _UpperCAmelCase : str = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _UpperCAmelCase : List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = prepared_for_class.pop("input_ids" ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions _UpperCAmelCase : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: _UpperCAmelCase : List[str] = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: _UpperCAmelCase : Union[str, Any] = -1_00 _UpperCAmelCase : List[str] = tf.convert_to_tensor(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict _UpperCAmelCase : int = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : Any = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple _UpperCAmelCase : Any = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function _UpperCAmelCase : Dict = prepared_for_class.keys() - inputs_dict.keys() _UpperCAmelCase : List[str] = inspect.signature(model.call ).parameters _UpperCAmelCase : Optional[Any] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple _UpperCAmelCase : Optional[Any] = {0: "input_ids"} for label_key in label_keys: _UpperCAmelCase : Any = signature_names.index(lowerCamelCase__ ) _UpperCAmelCase : Dict = label_key _UpperCAmelCase : Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple _UpperCAmelCase : int = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: _UpperCAmelCase : Union[str, Any] = prepared_for_class[value] _UpperCAmelCase : str = tuple(lowerCamelCase__ ) # Send to model _UpperCAmelCase : Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : Any = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->Any: '''simple docstring''' ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Tuple ) ->List[Any]: '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Any = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowerCAmelCase (): _UpperCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : Tuple ) ->Dict: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) _UpperCAmelCase : List[Any] = self.default_image_processor _UpperCAmelCase : Optional[int] = prepare_img() _UpperCAmelCase : int = image_processor(images=lowerCamelCase__ , return_tensors="tf" ).pixel_values _UpperCAmelCase : Optional[int] = tf.constant([[1, 2]] ) _UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass _UpperCAmelCase : List[Any] = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits _UpperCAmelCase : Dict = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) )
322
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['DeiTFeatureExtractor'] lowerCamelCase__ = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
1
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput lowerCamelCase__ = 'scheduler_config.json' class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : Any = 2 lowerCAmelCase : Union[str, Any] = 3 lowerCAmelCase : Union[str, Any] = 4 lowerCAmelCase : Union[str, Any] = 5 @dataclass class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : jnp.ndarray class lowerCAmelCase__ : lowerCAmelCase : Any = SCHEDULER_CONFIG_NAME lowerCAmelCase : int = ["dtype"] lowerCAmelCase : Dict = [] lowerCAmelCase : Optional[Any] = True @classmethod def lowerCAmelCase__ ( cls : List[Any] , lowerCamelCase__ : Dict[str, Any] = None , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : List[str]=False , **lowerCamelCase__ : str , ) ->Any: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : int = cls.load_config( pretrained_model_name_or_path=lowerCamelCase__ , subfolder=lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ , **lowerCamelCase__ , ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = cls.from_config(lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ , **lowerCamelCase__ ) if hasattr(lowerCamelCase__ , "create_state" ) and getattr(lowerCamelCase__ , "has_state" , lowerCamelCase__ ): _UpperCAmelCase : List[Any] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Union[str, os.PathLike] , lowerCamelCase__ : bool = False , **lowerCamelCase__ : Dict ) ->Optional[int]: '''simple docstring''' self.save_config(save_directory=lowerCamelCase__ , push_to_hub=lowerCamelCase__ , **lowerCamelCase__ ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' return self._get_compatibles() @classmethod def lowerCAmelCase__ ( cls : Dict ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = list(set([cls.__name__] + cls._compatibles ) ) _UpperCAmelCase : Optional[int] = importlib.import_module(__name__.split("." )[0] ) _UpperCAmelCase : Union[str, Any] = [ getattr(lowerCamelCase__ , lowerCamelCase__ ) for c in compatible_classes_str if hasattr(lowerCamelCase__ , lowerCamelCase__ ) ] return compatible_classes def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): assert len(__lowerCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__lowerCAmelCase ) - x.ndim) ) , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=0.9_9_9 , __lowerCAmelCase=jnp.floataa ): def alpha_bar(__lowerCAmelCase ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = [] for i in range(__lowerCAmelCase ): _UpperCAmelCase : List[Any] = i / num_diffusion_timesteps _UpperCAmelCase : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__lowerCAmelCase ) / alpha_bar(__lowerCAmelCase ) , __lowerCAmelCase ) ) return jnp.array(__lowerCAmelCase , dtype=__lowerCAmelCase ) @flax.struct.dataclass class lowerCAmelCase__ : lowerCAmelCase : jnp.ndarray lowerCAmelCase : jnp.ndarray lowerCAmelCase : jnp.ndarray @classmethod def lowerCAmelCase__ ( cls : Tuple , lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = scheduler.config if config.trained_betas is not None: _UpperCAmelCase : Dict = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": _UpperCAmelCase : Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase : int = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase : Any = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) _UpperCAmelCase : Tuple = 1.0 - betas _UpperCAmelCase : Tuple = jnp.cumprod(lowerCamelCase__ , axis=0 ) return cls( alphas=lowerCamelCase__ , betas=lowerCamelCase__ , alphas_cumprod=lowerCamelCase__ , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[int] = state.alphas_cumprod _UpperCAmelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5 _UpperCAmelCase : Any = sqrt_alpha_prod.flatten() _UpperCAmelCase : Union[str, Any] = broadcast_to_shape_from_left(__lowerCAmelCase , original_samples.shape ) _UpperCAmelCase : str = (1 - alphas_cumprod[timesteps]) ** 0.5 _UpperCAmelCase : List[str] = sqrt_one_minus_alpha_prod.flatten() _UpperCAmelCase : str = broadcast_to_shape_from_left(__lowerCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Optional[int] = get_sqrt_alpha_prod(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : int = get_sqrt_alpha_prod(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = "ibert" def __init__( self : List[Any] , lowerCamelCase__ : Dict=3_05_22 , lowerCamelCase__ : Dict=7_68 , lowerCamelCase__ : Union[str, Any]=12 , lowerCamelCase__ : Tuple=12 , lowerCamelCase__ : List[Any]=30_72 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : str=5_12 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : List[str]=0.0_2 , lowerCamelCase__ : Optional[Any]=1E-12 , lowerCamelCase__ : List[str]=1 , lowerCamelCase__ : Tuple=0 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Tuple="absolute" , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : Dict="none" , **lowerCamelCase__ : str , ) ->int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : Dict = type_vocab_size _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Optional[Any] = layer_norm_eps _UpperCAmelCase : Optional[int] = position_embedding_type _UpperCAmelCase : Dict = quant_mode _UpperCAmelCase : str = force_dequant class lowerCAmelCase__ ( UpperCAmelCase__ ): @property def lowerCAmelCase__ ( self : Dict ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCAmelCase : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
322
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
1
'''simple docstring''' import re def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = re.compile( R"^(?:0|94|\+94|0{2}94)" R"7(0|1|2|4|5|6|7|8)" R"(-| |)" R"\d{7}$" ) return bool(re.search(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": lowerCamelCase__ = '0094702343221' print(is_sri_lankan_phone_number(phone))
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
1
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase__ = parser.parse_args() if args.model_type == "roberta": lowerCamelCase__ = RobertaForMaskedLM.from_pretrained(args.model_name) lowerCamelCase__ = 'roberta' elif args.model_type == "gpt2": lowerCamelCase__ = GPTaLMHeadModel.from_pretrained(args.model_name) lowerCamelCase__ = 'transformer' lowerCamelCase__ = model.state_dict() lowerCamelCase__ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowerCamelCase__ = state_dict[F'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowerCamelCase__ = F'''{prefix}.embeddings.{w}.weight''' lowerCamelCase__ = state_dict[param_name] for w in ["weight", "bias"]: lowerCamelCase__ = F'''{prefix}.embeddings.LayerNorm.{w}''' lowerCamelCase__ = state_dict[param_name] # Transformer Blocks # lowerCamelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowerCamelCase__ = state_dict[ F'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] lowerCamelCase__ = state_dict[F'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowerCamelCase__ = state_dict[F'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase__ = state_dict[F'''lm_head.dense.{w}'''] lowerCamelCase__ = state_dict[F'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowerCamelCase__ = state_dict[F'''{prefix}.ln_f.{w}'''] lowerCamelCase__ = state_dict['lm_head.weight'] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
322
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
1
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline lowerCamelCase__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , ): output_path.parent.mkdir(parents=__lowerCAmelCase , exist_ok=__lowerCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __lowerCAmelCase , __lowerCAmelCase , f=output_path.as_posix() , input_names=__lowerCAmelCase , output_names=__lowerCAmelCase , dynamic_axes=__lowerCAmelCase , do_constant_folding=__lowerCAmelCase , use_external_data_format=__lowerCAmelCase , enable_onnx_checker=__lowerCAmelCase , opset_version=__lowerCAmelCase , ) else: export( __lowerCAmelCase , __lowerCAmelCase , f=output_path.as_posix() , input_names=__lowerCAmelCase , output_names=__lowerCAmelCase , dynamic_axes=__lowerCAmelCase , do_constant_folding=__lowerCAmelCase , opset_version=__lowerCAmelCase , ) @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ): _UpperCAmelCase : int = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _UpperCAmelCase : Optional[int] = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: _UpperCAmelCase : Tuple = "cpu" _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase , torch_dtype=__lowerCAmelCase ).to(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = Path(__lowerCAmelCase ) # TEXT ENCODER _UpperCAmelCase : Union[str, Any] = pipeline.text_encoder.config.max_position_embeddings _UpperCAmelCase : Optional[int] = pipeline.text_encoder.config.hidden_size _UpperCAmelCase : Optional[int] = pipeline.tokenizer( "A sample prompt" , padding="max_length" , max_length=pipeline.tokenizer.model_max_length , truncation=__lowerCAmelCase , return_tensors="pt" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__lowerCAmelCase , dtype=torch.intaa )) , output_path=output_path / "text_encoder" / "model.onnx" , ordered_input_names=["input_ids"] , output_names=["last_hidden_state", "pooler_output"] , dynamic_axes={ "input_ids": {0: "batch", 1: "sequence"}, } , opset=__lowerCAmelCase , ) del pipeline.text_encoder # UNET _UpperCAmelCase : Optional[int] = pipeline.unet.config.in_channels _UpperCAmelCase : Any = pipeline.unet.config.sample_size _UpperCAmelCase : Optional[int] = output_path / "unet" / "model.onnx" onnx_export( pipeline.unet , model_args=( torch.randn(2 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), torch.randn(2 ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), torch.randn(2 , __lowerCAmelCase , __lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), False, ) , output_path=__lowerCAmelCase , ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"] , output_names=["out_sample"] , dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "timestep": {0: "batch"}, "encoder_hidden_states": {0: "batch", 1: "sequence"}, } , opset=__lowerCAmelCase , use_external_data_format=__lowerCAmelCase , ) _UpperCAmelCase : List[str] = str(unet_path.absolute().as_posix() ) _UpperCAmelCase : int = os.path.dirname(__lowerCAmelCase ) _UpperCAmelCase : Any = onnx.load(__lowerCAmelCase ) # clean up existing tensor files shutil.rmtree(__lowerCAmelCase ) os.mkdir(__lowerCAmelCase ) # collate external tensor files into one onnx.save_model( __lowerCAmelCase , __lowerCAmelCase , save_as_external_data=__lowerCAmelCase , all_tensors_to_one_file=__lowerCAmelCase , location="weights.pb" , convert_attribute=__lowerCAmelCase , ) del pipeline.unet # VAE ENCODER _UpperCAmelCase : List[Any] = pipeline.vae _UpperCAmelCase : Tuple = vae_encoder.config.in_channels _UpperCAmelCase : List[Any] = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder _UpperCAmelCase : Tuple = lambda __lowerCAmelCase , __lowerCAmelCase : vae_encoder.encode(__lowerCAmelCase , __lowerCAmelCase )[0].sample() onnx_export( __lowerCAmelCase , model_args=( torch.randn(1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), False, ) , output_path=output_path / "vae_encoder" / "model.onnx" , ordered_input_names=["sample", "return_dict"] , output_names=["latent_sample"] , dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=__lowerCAmelCase , ) # VAE DECODER _UpperCAmelCase : List[str] = pipeline.vae _UpperCAmelCase : Dict = vae_decoder.config.latent_channels _UpperCAmelCase : int = vae_decoder.config.out_channels # forward only through the decoder part _UpperCAmelCase : str = vae_encoder.decode onnx_export( __lowerCAmelCase , model_args=( torch.randn(1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=__lowerCAmelCase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: _UpperCAmelCase : Optional[Any] = pipeline.safety_checker _UpperCAmelCase : List[Any] = safety_checker.config.vision_config.num_channels _UpperCAmelCase : List[str] = safety_checker.config.vision_config.image_size _UpperCAmelCase : Union[str, Any] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), torch.randn(1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ), ) , output_path=output_path / "safety_checker" / "model.onnx" , ordered_input_names=["clip_input", "images"] , output_names=["out_images", "has_nsfw_concepts"] , dynamic_axes={ "clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "images": {0: "batch", 1: "height", 2: "width", 3: "channels"}, } , opset=__lowerCAmelCase , ) del pipeline.safety_checker _UpperCAmelCase : Dict = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker" ) _UpperCAmelCase : List[str] = pipeline.feature_extractor else: _UpperCAmelCase : List[str] = None _UpperCAmelCase : int = None _UpperCAmelCase : List[str] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / "unet" ) , scheduler=pipeline.scheduler , safety_checker=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(__lowerCAmelCase ) print("ONNX pipeline saved to" , __lowerCAmelCase ) del pipeline del onnx_pipeline _UpperCAmelCase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(__lowerCAmelCase , provider="CPUExecutionProvider" ) print("ONNX pipeline is loadable" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') lowerCamelCase__ = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
322
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
1
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowerCamelCase__ = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = list(s_dict.keys() ) for key in keys: _UpperCAmelCase : Union[str, Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: _UpperCAmelCase : Dict = new_key.replace(__lowerCAmelCase , __lowerCAmelCase ) print(F"""{key} -> {new_key}""" ) _UpperCAmelCase : int = s_dict.pop(__lowerCAmelCase ) return s_dict def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : str = emb.weight.shape _UpperCAmelCase : List[Any] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = emb.weight.data return lin_layer def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) _UpperCAmelCase : str = os.path.basename(__lowerCAmelCase ) _UpperCAmelCase : int = url.split("/" )[-2] _UpperCAmelCase : List[Any] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ) and not os.path.isfile(__lowerCAmelCase ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(__lowerCAmelCase ): _UpperCAmelCase : Any = open(__lowerCAmelCase , "rb" ).read() if hashlib.shaaaa(__lowerCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(__lowerCAmelCase ) as source, open(__lowerCAmelCase , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=__lowerCAmelCase , unit_divisor=1_024 ) as loop: while True: _UpperCAmelCase : Tuple = source.read(8_192 ) if not buffer: break output.write(__lowerCAmelCase ) loop.update(len(__lowerCAmelCase ) ) _UpperCAmelCase : Union[str, Any] = open(__lowerCAmelCase , "rb" ).read() if hashlib.shaaaa(__lowerCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if ".pt" not in checkpoint_path: _UpperCAmelCase : int = _download(_MODELS[checkpoint_path] ) else: _UpperCAmelCase : int = torch.load(__lowerCAmelCase , map_location="cpu" ) _UpperCAmelCase : List[str] = original_checkpoint["dims"] _UpperCAmelCase : Dict = original_checkpoint["model_state_dict"] _UpperCAmelCase : int = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(__lowerCAmelCase ) rename_keys(__lowerCAmelCase ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : str = state_dict["decoder.layers.0.fc1.weight"].shape[0] _UpperCAmelCase : Dict = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=__lowerCAmelCase , decoder_ffn_dim=__lowerCAmelCase , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) _UpperCAmelCase : Any = WhisperForConditionalGeneration(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0 and not set(__lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F""" but all the following weights are missing {missing}""" ) if tie_embeds: _UpperCAmelCase : str = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _UpperCAmelCase : Any = proj_out_weights model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCamelCase__ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' from __future__ import annotations lowerCamelCase__ = 10 def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Dict = max(__lowerCAmelCase ) while placement <= max_digit: # declare and initialize empty buckets _UpperCAmelCase : list[list] = [[] for _ in range(__lowerCAmelCase )] # split list_of_ints between the buckets for i in list_of_ints: _UpperCAmelCase : Optional[int] = int((i / placement) % RADIX ) buckets[tmp].append(__lowerCAmelCase ) # put each buckets' contents into list_of_ints _UpperCAmelCase : List[str] = 0 for b in range(__lowerCAmelCase ): for i in buckets[b]: _UpperCAmelCase : str = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
1
'''simple docstring''' from __future__ import annotations lowerCamelCase__ = 'Muhammad Umer Farooq' lowerCamelCase__ = 'MIT' lowerCamelCase__ = '1.0.0' lowerCamelCase__ = 'Muhammad Umer Farooq' lowerCamelCase__ = 'contact@muhammadumerfarooq.me' lowerCamelCase__ = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Optional[int] , lowerCamelCase__ : str ) ->None: '''simple docstring''' super().__init__() _UpperCAmelCase : list[str] = [] _UpperCAmelCase : List[str] = domain def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : list[tuple[str, str | None]] ) ->None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _UpperCAmelCase : List[Any] = parse.urljoin(self.domain , lowerCamelCase__ ) self.urls.append(lowerCamelCase__ ) def __lowerCAmelCase (__lowerCAmelCase ): return ".".join(get_sub_domain_name(__lowerCAmelCase ).split("." )[-2:] ) def __lowerCAmelCase (__lowerCAmelCase ): return parse.urlparse(__lowerCAmelCase ).netloc def __lowerCAmelCase (__lowerCAmelCase = "https://github.com" ): _UpperCAmelCase : str = get_domain_name(__lowerCAmelCase ) # Initialize the parser _UpperCAmelCase : Any = Parser(__lowerCAmelCase ) try: # Open URL _UpperCAmelCase : List[Any] = requests.get(__lowerCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _UpperCAmelCase : Optional[Any] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _UpperCAmelCase : Any = requests.get(__lowerCAmelCase ) # Get the valid email. _UpperCAmelCase : List[Any] = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__lowerCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = emails_from_url('https://github.com') print(F'''{len(emails)} emails found:''') print('\n'.join(sorted(emails)))
322
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
1