code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE =[
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ):
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
lowercase_ : str = k.replace(_A , _A )
if k.startswith('encoder' ):
lowercase_ : Tuple = k.replace('.attn' , '.self_attn' )
lowercase_ : Any = k.replace('norm1' , 'self_attn_layer_norm' )
lowercase_ : Dict = k.replace('norm2' , 'final_layer_norm' )
elif k.startswith('decoder' ):
lowercase_ : Dict = k.replace('norm1' , 'self_attn_layer_norm' )
lowercase_ : str = k.replace('norm2' , 'encoder_attn_layer_norm' )
lowercase_ : List[str] = k.replace('norm3' , 'final_layer_norm' )
return k
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ):
lowercase_ : List[Any] = [
'model.encoder.layernorm_embedding.weight',
'model.encoder.layernorm_embedding.bias',
'model.decoder.layernorm_embedding.weight',
'model.decoder.layernorm_embedding.bias',
]
for k in keys:
lowercase_ : List[str] = sd.pop(_A )
lowercase_ : List[str] = k.replace('layernorm_embedding' , 'layer_norm' )
assert new_k not in sd
lowercase_ : Tuple = v
__SCREAMING_SNAKE_CASE =['START']
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ):
lowercase_ : Any = torch.load(_A , map_location='cpu' )
lowercase_ : Dict = model['model']
lowercase_ : Any = BlenderbotConfig.from_json_file(_A )
lowercase_ : Tuple = BlenderbotForConditionalGeneration(_A )
lowercase_ : List[Any] = m.model.state_dict().keys()
lowercase_ : List[Any] = []
lowercase_ : Union[str, Any] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
lowercase_ : Optional[Any] = rename_state_dict_key(_A )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
lowercase_ : List[Any] = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(_A )
m.model.load_state_dict(_A , strict=_A )
m.half()
m.save_pretrained(_A )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 355
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ):
lowercase_ : int = 'backbone.' if is_semantic else ''
lowercase_ : List[str] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(F'''{prefix}cls_token''', 'beit.embeddings.cls_token'),
(F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'),
(F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'),
(F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('mask_token', 'beit.embeddings.mask_token'),
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('fc_norm.weight', 'beit.pooler.layernorm.weight'),
('fc_norm.bias', 'beit.pooler.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ):
for i in range(config.num_hidden_layers ):
lowercase_ : Any = 'backbone.' if is_semantic else ''
# queries, keys and values
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' )
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' )
lowercase_ : List[str] = in_proj_weight[
: config.hidden_size, :
]
lowercase_ : List[str] = q_bias
lowercase_ : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ : Any = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ : Any = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' )
lowercase_ : Tuple = gamma_a
lowercase_ : List[Any] = gamma_a
def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = val
def lowercase__( ):
lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ):
lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True
lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
lowercase_ : Any = 10_24
lowercase_ : List[str] = 40_96
lowercase_ : Tuple = 24
lowercase_ : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
lowercase_ : Optional[Any] = 16
lowercase_ : Any = 'huggingface/label-files'
lowercase_ : int = 'rvlcdip-id2label.json'
lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowercase_ : str = idalabel
lowercase_ : str = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
# load HuggingFace model
lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(__SCREAMING_SNAKE_CASE )
# Check outputs on an image
lowercase_ : List[Any] = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE )
lowercase_ : str = prepare_img()
lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' )
lowercase_ : int = encoding['pixel_values']
lowercase_ : Any = model(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = outputs.logits
# verify logits
lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92]
assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected"
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
if has_lm_head:
lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large'
else:
lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip'
image_processor.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
model.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 321
| 0
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : dict ):
lowercase_ : List[Any] = set()
# edges = list of graph's edges
lowercase_ : Any = get_edges(__SCREAMING_SNAKE_CASE )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
lowercase_ : List[Any] = edges.pop()
chosen_vertices.add(__SCREAMING_SNAKE_CASE )
chosen_vertices.add(__SCREAMING_SNAKE_CASE )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(__SCREAMING_SNAKE_CASE )
return chosen_vertices
def lowercase__( __SCREAMING_SNAKE_CASE : dict ):
lowercase_ : Optional[int] = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 356
|
"""simple docstring"""
__SCREAMING_SNAKE_CASE ={
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
__SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()}
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Union[str, Any] = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
lowercase_ : Dict = ''
for word in coded.split():
while len(__SCREAMING_SNAKE_CASE ) != 0:
decoded += decode_dict[word[:5]]
lowercase_ : Any = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 321
| 0
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE ={
"configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"],
"processing_mgp_str": ["MgpstrProcessor"],
"tokenization_mgp_str": ["MgpstrTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST",
"MgpstrModel",
"MgpstrPreTrainedModel",
"MgpstrForSceneTextRecognition",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 357
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations_with_dp_array(
__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
lowercase_ : str = sum(
count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE )
for item in array )
lowercase_ : Tuple = answer
return answer
lowercase_ : Optional[Any] = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Dict = [0] * (target + 1)
lowercase_ : Dict = 1
for i in range(1 , target + 1 ):
for j in range(__SCREAMING_SNAKE_CASE ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE =3
__SCREAMING_SNAKE_CASE =5
__SCREAMING_SNAKE_CASE =[1, 2, 5]
print(combination_sum_iv(n, array, target))
| 321
| 0
|
"""simple docstring"""
import argparse
import hashlib # hashlib is only used inside the Test class
import struct
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : List[Any] = data
lowercase_ : List[str] = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0]
@staticmethod
def _UpperCAmelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Any:
'''simple docstring'''
return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Tuple = B'\x80' + B'\x00' * (63 - (len(self.data ) + 8) % 64)
lowercase_ : Dict = self.data + padding + struct.pack('>Q' ,8 * len(self.data ) )
return padded_data
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
return [
self.padded_data[i : i + 64] for i in range(0 ,len(self.padded_data ) ,64 )
]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[int] = list(struct.unpack('>16L' ,lowercase__ ) ) + [0] * 64
for i in range(16 ,80 ):
lowercase_ : List[Any] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) ,1 )
return w
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Any = self.padding()
lowercase_ : List[str] = self.split_blocks()
for block in self.blocks:
lowercase_ : Optional[Any] = self.expand_block(lowercase__ )
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.h
for i in range(0 ,80 ):
if 0 <= i < 20:
lowercase_ : List[str] = (b & c) | ((~b) & d)
lowercase_ : Dict = 0X5_A_8_2_7_9_9_9
elif 20 <= i < 40:
lowercase_ : Tuple = b ^ c ^ d
lowercase_ : List[Any] = 0X6_E_D_9_E_B_A_1
elif 40 <= i < 60:
lowercase_ : List[Any] = (b & c) | (b & d) | (c & d)
lowercase_ : List[str] = 0X8_F_1_B_B_C_D_C
elif 60 <= i < 80:
lowercase_ : int = b ^ c ^ d
lowercase_ : Union[str, Any] = 0XC_A_6_2_C_1_D_6
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = (
self.rotate(lowercase__ ,5 ) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F,
a,
self.rotate(lowercase__ ,30 ),
c,
d,
)
lowercase_ : str = (
self.h[0] + a & 0XF_F_F_F_F_F_F_F,
self.h[1] + b & 0XF_F_F_F_F_F_F_F,
self.h[2] + c & 0XF_F_F_F_F_F_F_F,
self.h[3] + d & 0XF_F_F_F_F_F_F_F,
self.h[4] + e & 0XF_F_F_F_F_F_F_F,
)
return ("{:08x}" * 5).format(*self.h )
def lowercase__( ):
lowercase_ : Dict = b'Test String'
assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324
def lowercase__( ):
lowercase_ : Any = argparse.ArgumentParser(description='Process some strings or files' )
parser.add_argument(
'--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' )
lowercase_ : str = parser.parse_args()
lowercase_ : Any = args.input_string
# In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
lowercase_ : List[Any] = f.read()
else:
lowercase_ : int = bytes(A__ , 'utf-8' )
print(SHAaHash(A__ ).final_hash() )
if __name__ == "__main__":
main()
import doctest
doctest.testmod()
| 358
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : int = set_counts
lowercase_ : List[Any] = max(__UpperCamelCase )
lowercase_ : Union[str, Any] = len(__UpperCamelCase )
lowercase_ : Dict = [1] * num_sets
lowercase_ : Optional[int] = list(range(__UpperCamelCase ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase )
lowercase_ : int = self.get_parent(__UpperCamelCase )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : Tuple = 0
lowercase_ : str = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : str = 0
lowercase_ : Tuple = src_parent
lowercase_ : int = self.set_counts[src_parent]
lowercase_ : str = max(self.max_set ,__UpperCamelCase )
return True
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 321
| 0
|
"""simple docstring"""
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str:
lowercase_ : List[str] = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append(
(F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append(
(F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append(
(F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append(
(F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
('encoder.deit.cls_token', 'encoder.embeddings.cls_token'),
('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'),
('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'),
('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'),
('encoder.deit.norm.weight', 'encoder.layernorm.weight'),
('encoder.deit.norm.bias', 'encoder.layernorm.bias'),
] )
return rename_keys
def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]:
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
lowercase_ : List[Any] = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' )
lowercase_ : Dict = in_proj_weight[
: encoder_config.hidden_size, :
]
lowercase_ : Dict = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
lowercase_ : str = in_proj_weight[
-encoder_config.hidden_size :, :
]
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> int:
lowercase_ : Optional[int] = dct.pop(_UpperCAmelCase )
lowercase_ : int = val
def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]:
if "handwritten" in checkpoint_url:
lowercase_ : Tuple = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
lowercase_ : List[str] = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg'
lowercase_ : List[Any] = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' )
return im
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int ) -> List[str]:
lowercase_ : List[Any] = ViTConfig(image_size=3_84 , qkv_bias=_UpperCAmelCase )
lowercase_ : List[Any] = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
lowercase_ : List[Any] = 7_68
elif "large" in checkpoint_url:
# use ViT-large encoder
lowercase_ : int = 10_24
lowercase_ : Union[str, Any] = 40_96
lowercase_ : Union[str, Any] = 24
lowercase_ : int = 16
lowercase_ : List[Any] = 10_24
else:
raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
lowercase_ : Optional[Any] = False
lowercase_ : List[str] = 'relu'
lowercase_ : List[Any] = 10_24
lowercase_ : Any = True
lowercase_ : List[Any] = False
lowercase_ : Any = False
# load HuggingFace model
lowercase_ : Tuple = ViTModel(_UpperCAmelCase , add_pooling_layer=_UpperCAmelCase )
lowercase_ : int = TrOCRForCausalLM(_UpperCAmelCase )
lowercase_ : Union[str, Any] = VisionEncoderDecoderModel(encoder=_UpperCAmelCase , decoder=_UpperCAmelCase )
model.eval()
# load state_dict of original model, rename some keys
lowercase_ : Union[str, Any] = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' , check_hash=_UpperCAmelCase )['model']
lowercase_ : List[str] = create_rename_keys(_UpperCAmelCase , _UpperCAmelCase )
for src, dest in rename_keys:
rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
lowercase_ : List[Any] = state_dict.pop(_UpperCAmelCase )
if key.startswith('decoder' ) and "output_projection" not in key:
lowercase_ : Any = val
else:
lowercase_ : Union[str, Any] = val
# load state dict
model.load_state_dict(_UpperCAmelCase )
# Check outputs on an image
lowercase_ : Union[str, Any] = ViTImageProcessor(size=encoder_config.image_size )
lowercase_ : Optional[int] = RobertaTokenizer.from_pretrained('roberta-large' )
lowercase_ : Any = TrOCRProcessor(_UpperCAmelCase , _UpperCAmelCase )
lowercase_ : Optional[Any] = processor(images=prepare_img(_UpperCAmelCase ) , return_tensors='pt' ).pixel_values
# verify logits
lowercase_ : int = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
lowercase_ : Dict = model(pixel_values=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase )
lowercase_ : int = outputs.logits
lowercase_ : Optional[Any] = torch.Size([1, 1, 5_02_65] )
if "trocr-base-handwritten" in checkpoint_url:
lowercase_ : List[str] = torch.tensor(
[-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] )
elif "trocr-large-handwritten" in checkpoint_url:
lowercase_ : Union[str, Any] = torch.tensor(
[-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] )
elif "trocr-base-printed" in checkpoint_url:
lowercase_ : Tuple = torch.tensor(
[-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] )
elif "trocr-large-printed" in checkpoint_url:
lowercase_ : Any = torch.tensor(
[-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :10] , _UpperCAmelCase , atol=1E-3 ), "First elements of logits not as expected"
Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_UpperCAmelCase )
print(F'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(_UpperCAmelCase )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 359
|
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
__SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BlenderbotTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) )
lowercase_ : Any = add_prefix_space
lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase )
lowercase_ : int = add_prefix_space
lowercase_ : Any = 'post_processor'
lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
if tokenizer_component_instance:
lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ : str = tuple(state['sep'] )
if "cls" in state:
lowercase_ : Union[str, Any] = tuple(state['cls'] )
lowercase_ : str = False
if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Dict = add_prefix_space
lowercase_ : int = True
if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets:
lowercase_ : Optional[Any] = trim_offsets
lowercase_ : Tuple = True
if changes_to_apply:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) )
lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase )
setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value
lowercase_ : str = value
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : int = [self.sep_token_id]
lowercase_ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any:
'''simple docstring'''
return token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]:
'''simple docstring'''
lowercase_ : Optional[Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(__UpperCamelCase )
lowercase_ : Dict = ' '.join(__UpperCamelCase )
lowercase_ : str = self.encode(__UpperCamelCase )
if len(__UpperCamelCase ) > self.model_max_length:
lowercase_ : List[str] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 321
| 0
|
"""simple docstring"""
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
__SCREAMING_SNAKE_CASE ={
"<": operator.lt,
"<=": operator.le,
"==": operator.eq,
"!=": operator.ne,
">=": operator.ge,
">": operator.gt,
}
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] ):
if got_ver is None or want_ver is None:
raise ValueError(
F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider'''
F''' reinstalling {pkg}.''' )
if not ops[op](version.parse(a__ ) , version.parse(a__ ) ):
raise ImportError(
F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' )
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ):
lowercase_ : Dict = F'''\n{hint}''' if hint is not None else ''
# non-versioned check
if re.match(R'^[\w_\-\d]+$' , a__ ):
lowercase_ , lowercase_ , lowercase_ : Any = requirement, None, None
else:
lowercase_ : Optional[int] = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , a__ )
if not match:
raise ValueError(
'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but'
F''' got {requirement}''' )
lowercase_ , lowercase_ : Union[str, Any] = match[0]
lowercase_ : List[str] = want_full.split(',' ) # there could be multiple requirements
lowercase_ : List[Any] = {}
for w in want_range:
lowercase_ : str = re.findall(R'^([\s!=<>]{1,2})(.+)' , a__ )
if not match:
raise ValueError(
'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,'
F''' but got {requirement}''' )
lowercase_ , lowercase_ : Optional[int] = match[0]
lowercase_ : str = want_ver
if op not in ops:
raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' )
# special case
if pkg == "python":
lowercase_ : Tuple = '.'.join([str(a__ ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(a__ , a__ , a__ , a__ , a__ , a__ )
return
# check if any version is installed
try:
lowercase_ : List[Any] = importlib.metadata.version(a__ )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(a__ , a__ , a__ , a__ , a__ , a__ )
def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ):
lowercase_ : Union[str, Any] = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main'
return require_version(a__ , a__ )
| 360
|
"""simple docstring"""
import os
import sys
import unittest
__SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py")
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py")
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'}
lowercase_ : Union[str, Any] = {
'BlipModelTest': 'BlipModelTester',
'BlipTextImageModelTest': 'BlipTextImageModelsModelTester',
'BlipTextModelTest': 'BlipTextModelTester',
'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester',
'BlipVQAModelTest': 'BlipVQAModelTester',
'BlipVisionModelTest': 'BlipVisionModelTester',
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : Any = {
'BertForMaskedLM': ['BertModelTest'],
'BertForMultipleChoice': ['BertModelTest'],
'BertForNextSentencePrediction': ['BertModelTest'],
'BertForPreTraining': ['BertModelTest'],
'BertForQuestionAnswering': ['BertModelTest'],
'BertForSequenceClassification': ['BertModelTest'],
'BertForTokenClassification': ['BertModelTest'],
'BertLMHeadModel': ['BertModelTest'],
'BertModel': ['BertModelTest'],
}
lowercase_ : Any = {
'BlipForConditionalGeneration': ['BlipTextImageModelTest'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'],
'BlipForQuestionAnswering': ['BlipVQAModelTest'],
'BlipModel': ['BlipModelTest'],
'BlipTextModel': ['BlipTextModelTest'],
'BlipVisionModel': ['BlipVisionModelTest'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Tuple = {
'BertForMaskedLM': ['BertModelTester'],
'BertForMultipleChoice': ['BertModelTester'],
'BertForNextSentencePrediction': ['BertModelTester'],
'BertForPreTraining': ['BertModelTester'],
'BertForQuestionAnswering': ['BertModelTester'],
'BertForSequenceClassification': ['BertModelTester'],
'BertForTokenClassification': ['BertModelTester'],
'BertLMHeadModel': ['BertModelTester'],
'BertModel': ['BertModelTester'],
}
lowercase_ : Optional[Any] = {
'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'],
'BlipForQuestionAnswering': ['BlipVQAModelTester'],
'BlipModel': ['BlipModelTester'],
'BlipTextModel': ['BlipTextModelTester'],
'BlipVisionModel': ['BlipVisionModelTester'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=30 ,__UpperCamelCase=2 ,__UpperCamelCase=3 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=10 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=0.6 ,__UpperCamelCase=None ,) -> str:
'''simple docstring'''
lowercase_ : Dict = parent
lowercase_ : List[str] = batch_size
lowercase_ : Tuple = image_size
lowercase_ : Optional[Any] = patch_size
lowercase_ : Union[str, Any] = num_channels
lowercase_ : str = is_training
lowercase_ : str = use_labels
lowercase_ : Tuple = hidden_size
lowercase_ : Tuple = num_hidden_layers
lowercase_ : Optional[Any] = num_attention_heads
lowercase_ : str = intermediate_size
lowercase_ : List[str] = hidden_act
lowercase_ : str = hidden_dropout_prob
lowercase_ : Optional[Any] = attention_probs_dropout_prob
lowercase_ : Optional[Any] = type_sequence_label_size
lowercase_ : Dict = initializer_range
lowercase_ : Any = mask_ratio
lowercase_ : Dict = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowercase_ : int = (image_size // patch_size) ** 2
lowercase_ : int = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase_ : List[str] = None
if self.use_labels:
lowercase_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase_ : Dict = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=UpperCAmelCase__ ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Tuple = ViTMAEModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
lowercase_ : Any = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = ViTMAEForPreTraining(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
lowercase_ : List[str] = model(UpperCAmelCase__ )
lowercase_ : str = (self.image_size // self.patch_size) ** 2
lowercase_ : Optional[int] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowercase_ : Optional[Any] = 1
lowercase_ : Optional[int] = ViTMAEForPreTraining(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowercase_ : Any = model(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = self.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ : Tuple = config_and_inputs
lowercase_ : str = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase ( __lowercase , __lowercase , unittest.TestCase ):
lowercase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
lowercase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {}
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : List[Any] = ViTMAEModelTester(self )
lowercase_ : Union[str, Any] = ConfigTester(self ,config_class=UpperCAmelCase__ ,has_text_modality=UpperCAmelCase__ ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMAE does not use inputs_embeds' )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
pass
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ , lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Union[str, Any] = model_class(UpperCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
lowercase_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase__ ,nn.Linear ) )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Any = model_class(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ : Union[str, Any] = [*signature.parameters.keys()]
lowercase_ : Dict = ['pixel_values']
self.assertListEqual(arg_names[:1] ,UpperCAmelCase__ )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase__ )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
np.random.seed(2 )
lowercase_ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
lowercase_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowercase_ : str = torch.from_numpy(UpperCAmelCase__ )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowercase_ : Optional[int] = pt_noise
super().check_pt_tf_models(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Union[str, Any] = model_class(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
lowercase_ : Dict = model(**self._prepare_for_class(UpperCAmelCase__ ,UpperCAmelCase__ ) )
lowercase_ : str = outputs[0].cpu().numpy()
lowercase_ : Optional[Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase__ )
lowercase_ : List[Any] = model_class.from_pretrained(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
lowercase_ : List[Any] = model(**self._prepare_for_class(UpperCAmelCase__ ,UpperCAmelCase__ ) )
# Make sure we don't have nans
lowercase_ : Any = after_outputs[0].cpu().numpy()
lowercase_ : List[str] = 0
lowercase_ : int = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(UpperCAmelCase__ ,1e-5 )
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
pass
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
pass
@unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
pass
@slow
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : str = ViTMAEModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
def lowercase__( ):
lowercase_ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class UpperCamelCase ( unittest.TestCase ):
@cached_property
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None
@slow
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
np.random.seed(2 )
lowercase_ : List[str] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(UpperCAmelCase__ )
lowercase_ : Dict = self.default_image_processor
lowercase_ : List[str] = prepare_img()
lowercase_ : Optional[Any] = image_processor(images=UpperCAmelCase__ ,return_tensors='pt' ).to(UpperCAmelCase__ )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowercase_ : str = ViTMAEConfig()
lowercase_ : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowercase_ : Any = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
lowercase_ : Optional[Any] = model(**UpperCAmelCase__ ,noise=torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ ) )
# verify the logits
lowercase_ : Optional[int] = torch.Size((1, 196, 768) )
self.assertEqual(outputs.logits.shape ,UpperCAmelCase__ )
lowercase_ : Dict = torch.tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(UpperCAmelCase__ ) ,atol=1e-4 ) )
| 361
|
"""simple docstring"""
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ):
with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX )
try:
print(*__SCREAMING_SNAKE_CASE )
finally:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN )
__SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
__SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank)
__SCREAMING_SNAKE_CASE =socket.gethostname()
__SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]"
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__SCREAMING_SNAKE_CASE =dist.get_rank()
__SCREAMING_SNAKE_CASE =dist.get_world_size()
printflock(F"{gpu} is OK (global rank: {rank}/{world_size})")
dist.barrier()
if rank == 0:
printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
except Exception:
printflock(F"{gpu} is broken")
raise
| 321
| 0
|
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class UpperCamelCase ( UpperCamelCase_ ):
def __init__( self ,*__UpperCamelCase ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Dict:
'''simple docstring'''
super().__init__(*_a ,**_a )
lowercase_ : List[Any] = eval_examples
lowercase_ : Any = post_process_function
def _UpperCAmelCase ( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase = "eval" ) -> int:
'''simple docstring'''
lowercase_ : Tuple = self.eval_dataset if eval_dataset is None else eval_dataset
lowercase_ : List[str] = self.get_eval_dataloader(_a )
lowercase_ : Dict = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
lowercase_ : Dict = self.compute_metrics
lowercase_ : List[Any] = None
lowercase_ : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
lowercase_ : Dict = time.time()
try:
lowercase_ : str = eval_loop(
_a ,description='Evaluation' ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=_a ,metric_key_prefix=_a ,)
finally:
lowercase_ : Optional[int] = compute_metrics
lowercase_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size
if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_a ,_a ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size ) ,) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
lowercase_ : Union[str, Any] = self.post_process_function(_a ,_a ,output.predictions )
lowercase_ : Any = self.compute_metrics(_a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
lowercase_ : Any = metrics.pop(_a )
metrics.update(output.metrics )
else:
lowercase_ : Tuple = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(_a )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
lowercase_ : str = self.callback_handler.on_evaluate(self.args ,self.state ,self.control ,_a )
return metrics
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,__UpperCamelCase = "test" ) -> Optional[int]:
'''simple docstring'''
lowercase_ : int = self.get_test_dataloader(_a )
# Temporarily disable metric computation, we will do it in the loop here.
lowercase_ : Dict = self.compute_metrics
lowercase_ : Optional[int] = None
lowercase_ : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
lowercase_ : Dict = time.time()
try:
lowercase_ : Optional[int] = eval_loop(
_a ,description='Prediction' ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=_a ,metric_key_prefix=_a ,)
finally:
lowercase_ : Dict = compute_metrics
lowercase_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size
if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_a ,_a ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size ) ,) )
if self.post_process_function is None or self.compute_metrics is None:
return output
lowercase_ : Tuple = self.post_process_function(_a ,_a ,output.predictions ,'predict' )
lowercase_ : str = self.compute_metrics(_a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
lowercase_ : str = metrics.pop(_a )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions ,label_ids=predictions.label_ids ,metrics=_a )
| 362
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : List[Any] = name
lowercase_ : int = val
def __str__( self ) -> Tuple:
'''simple docstring'''
return f'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return self.val < other.val
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Optional[int] = {}
lowercase_ : Tuple = {}
lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase )
def __getitem__( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
return self.get_value(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return (idx - 1) // 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return idx * 2 + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return idx * 2 + 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
return self.heap_dict[key]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1
lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase )
for idx, i in enumerate(__UpperCamelCase ):
lowercase_ : Any = idx
lowercase_ : str = i.val
for i in range(__UpperCamelCase ,-1 ,-1 ):
self.sift_down(__UpperCamelCase ,__UpperCamelCase )
return array
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
while True:
lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741
lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase )
lowercase_ : List[str] = idx
if l < len(__UpperCamelCase ) and array[l] < array[idx]:
lowercase_ : List[str] = l
if r < len(__UpperCamelCase ) and array[r] < array[smallest]:
lowercase_ : Dict = r
if smallest != idx:
lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx]
(
(
lowercase_
) , (
lowercase_
) ,
) : str = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
lowercase_ : Any = smallest
else:
break
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase )
while p >= 0 and self.heap[p] > self.heap[idx]:
lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
lowercase_ : int = p
lowercase_ : str = self.get_parent_idx(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return self.heap[0]
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
lowercase_ : Tuple = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 ,self.heap )
return x
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
self.heap.append(__UpperCamelCase )
lowercase_ : Tuple = len(self.heap ) - 1
lowercase_ : Optional[int] = node.val
self.sift_up(len(self.heap ) - 1 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return len(self.heap ) == 0
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
lowercase_ : Any = new_value
lowercase_ : List[str] = new_value
self.sift_up(self.idx_of_element[node] )
__SCREAMING_SNAKE_CASE =Node("R", -1)
__SCREAMING_SNAKE_CASE =Node("B", 6)
__SCREAMING_SNAKE_CASE =Node("A", 3)
__SCREAMING_SNAKE_CASE =Node("X", 1)
__SCREAMING_SNAKE_CASE =Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
__SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 321
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__SCREAMING_SNAKE_CASE ={
'configuration_blenderbot': [
'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BlenderbotConfig',
'BlenderbotOnnxConfig',
],
'tokenization_blenderbot': ['BlenderbotTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =['BlenderbotTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BlenderbotForCausalLM',
'BlenderbotForConditionalGeneration',
'BlenderbotModel',
'BlenderbotPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
'TFBlenderbotForConditionalGeneration',
'TFBlenderbotModel',
'TFBlenderbotPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
'FlaxBlenderbotForConditionalGeneration',
'FlaxBlenderbotModel',
'FlaxBlenderbotPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 363
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[Any] = tempfile.mkdtemp()
# fmt: off
lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) )
lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
lowercase_ : Tuple = {'unk_token': '<unk>'}
lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + '\n' )
with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp:
fp.write('\n'.join(__UpperCamelCase ) )
lowercase_ : Any = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073],
'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase )
with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp:
json.dump(__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )]
lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_tokenizer()
lowercase_ : List[Any] = self.get_rust_tokenizer()
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase )
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase )
self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase )
self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' )
lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 )
lowercase_ : Any = CLIPSegProcessor.from_pretrained(
self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,__UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[str] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = self.prepare_image_inputs()
lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' )
lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[Any] = self.get_tokenizer()
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Dict = 'lower newer'
lowercase_ : Any = processor(text=__UpperCamelCase )
lowercase_ : int = tokenizer(__UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.get_image_processor()
lowercase_ : str = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = 'lower newer'
lowercase_ : str = self.prepare_image_inputs()
lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = self.prepare_image_inputs()
lowercase_ : Optional[Any] = self.prepare_image_inputs()
lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase )
lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class UpperCamelCase ( unittest.TestCase ):
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=7 ,__UpperCamelCase=3 ,__UpperCamelCase=10 ,__UpperCamelCase=18 ,__UpperCamelCase=30 ,__UpperCamelCase=400 ,__UpperCamelCase=True ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=None ,) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = size if size is not None else {"shortest_edge": 18}
lowercase_ : int = crop_size if crop_size is not None else {"height": 18, "width": 18}
lowercase_ : Tuple = parent
lowercase_ : List[Any] = batch_size
lowercase_ : List[str] = num_channels
lowercase_ : int = num_frames
lowercase_ : Union[str, Any] = image_size
lowercase_ : Tuple = min_resolution
lowercase_ : Tuple = max_resolution
lowercase_ : str = do_resize
lowercase_ : Optional[int] = size
lowercase_ : Optional[int] = do_normalize
lowercase_ : Dict = image_mean
lowercase_ : List[Any] = image_std
lowercase_ : List[Any] = crop_size
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = VivitImageProcessor if is_vision_available() else None
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[int] = VivitImageProcessingTester(self )
@property
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'image_std' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'do_center_crop' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'size' ) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{'shortest_edge': 18} )
self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} )
lowercase_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
lowercase_ : Dict = prepare_video_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE )
for video in video_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
self.assertIsInstance(video[0] ,Image.Image )
# Test not batched input
lowercase_ : Any = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
# Test batched
lowercase_ : str = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase_ : Optional[int] = prepare_video_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,numpify=_SCREAMING_SNAKE_CASE )
for video in video_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
self.assertIsInstance(video[0] ,np.ndarray )
# Test not batched input
lowercase_ : Any = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
# Test batched
lowercase_ : List[str] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase_ : Optional[int] = prepare_video_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,torchify=_SCREAMING_SNAKE_CASE )
for video in video_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
self.assertIsInstance(video[0] ,torch.Tensor )
# Test not batched input
lowercase_ : List[str] = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
# Test batched
lowercase_ : Any = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
| 364
|
"""simple docstring"""
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 321
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json"
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class __lowerCamelCase ( __snake_case ):
lowercase = "roformer"
def __init__( self ,__UpperCamelCase=5_0000 ,__UpperCamelCase=None ,__UpperCamelCase=768 ,__UpperCamelCase=12 ,__UpperCamelCase=12 ,__UpperCamelCase=3072 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=1536 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=0 ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Tuple:
'''simple docstring'''
super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ )
lowercase_ : Tuple = vocab_size
lowercase_ : Optional[int] = hidden_size if embedding_size is None else embedding_size
lowercase_ : Optional[Any] = hidden_size
lowercase_ : Optional[int] = num_hidden_layers
lowercase_ : Any = num_attention_heads
lowercase_ : Optional[Any] = hidden_act
lowercase_ : Any = intermediate_size
lowercase_ : Union[str, Any] = hidden_dropout_prob
lowercase_ : Optional[int] = attention_probs_dropout_prob
lowercase_ : Tuple = max_position_embeddings
lowercase_ : Optional[Any] = type_vocab_size
lowercase_ : List[str] = initializer_range
lowercase_ : Optional[int] = layer_norm_eps
lowercase_ : Optional[Any] = rotary_value
lowercase_ : str = use_cache
class __lowerCamelCase ( __snake_case ):
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
lowercase_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase_ : Optional[Any] = {0: """batch""", 1: """sequence"""}
lowercase_ : Any = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 365
|
"""simple docstring"""
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = parent
lowercase_ : Tuple = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Optional[Any] = is_training
lowercase_ : Any = use_input_mask
lowercase_ : Optional[Any] = vocab_size
lowercase_ : str = hidden_size
lowercase_ : Any = num_hidden_layers
lowercase_ : Dict = num_attention_heads
lowercase_ : Optional[int] = intermediate_size
lowercase_ : Any = hidden_act
lowercase_ : Optional[Any] = hidden_dropout_prob
lowercase_ : str = attention_probs_dropout_prob
lowercase_ : Any = max_position_embeddings
lowercase_ : Optional[Any] = initializer_range
lowercase_ : Union[str, Any] = use_labels
lowercase_ : Union[str, Any] = scope
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : List[str] = None
if self.use_input_mask:
lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Any = self.get_config()
return config, input_ids, input_mask, token_labels
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return BertGenerationConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : str = self.prepare_config_and_inputs()
lowercase_ : int = True
lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Optional[Any] = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = True
lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Union[str, Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,)
lowercase_ : Dict = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,)
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int:
'''simple docstring'''
lowercase_ : List[str] = True
lowercase_ : Union[str, Any] = True
lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval()
# first forward pass
lowercase_ : str = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,)
lowercase_ : Dict = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size )
lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 )
# append to next input_ids and
lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 )
lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 )
lowercase_ : int = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
lowercase_ : List[Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
# select random slice
lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
lowercase_ : int = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
lowercase = (BertGenerationDecoder,) if is_torch_available() else ()
lowercase = (
{'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder}
if is_torch_available()
else {}
)
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoderTester(self )
lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs()
lowercase_ : Optional[int] = 'bert'
self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
lowercase_ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,)
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
self.assertIsNotNone(__UpperCamelCase )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Tuple = model(__UpperCamelCase )[0]
lowercase_ : Dict = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : str = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Dict = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : Dict = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE =torch.device("cpu")
def lowercase__( ):
lowercase_ : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowercase_ : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ):
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] )
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
lowercase_ : Union[str, Any] = dct.pop(SCREAMING_SNAKE_CASE_ )
lowercase_ : int = val
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : str = []
for k in state_dict.keys():
lowercase_ : List[Any] = k
if ".pwconv" in k:
lowercase_ : Optional[Any] = k_new.replace('.pwconv' , '.point_wise_conv' )
if ".dwconv" in k:
lowercase_ : str = k_new.replace('.dwconv' , '.depth_wise_conv' )
if ".Proj." in k:
lowercase_ : int = k_new.replace('.Proj.' , '.proj.' )
if "patch_embed" in k_new:
lowercase_ : Optional[Any] = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' )
if "network" in k_new:
lowercase_ : List[Any] = k_new.split('.' )
if ls[2].isdigit():
lowercase_ : Optional[Any] = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] )
else:
lowercase_ : Any = k_new.replace('network' , 'swiftformer.encoder.network' )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ):
lowercase_ : Tuple = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
lowercase_ : Tuple = 10_00
lowercase_ : Optional[int] = 'huggingface/label-files'
lowercase_ : Optional[Any] = 'imagenet-1k-id2label.json'
lowercase_ : List[str] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) )
lowercase_ : Optional[Any] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
lowercase_ : int = idalabel
lowercase_ : Union[str, Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
lowercase_ : str = [3, 3, 6, 4]
lowercase_ : List[Any] = [48, 56, 1_12, 2_20]
elif swiftformer_name == "swiftformer_s":
lowercase_ : int = [3, 3, 9, 6]
lowercase_ : Any = [48, 64, 1_68, 2_24]
elif swiftformer_name == "swiftformer_l1":
lowercase_ : Optional[int] = [4, 3, 10, 5]
lowercase_ : Dict = [48, 96, 1_92, 3_84]
elif swiftformer_name == "swiftformer_l3":
lowercase_ : Union[str, Any] = [4, 4, 12, 6]
lowercase_ : int = [64, 1_28, 3_20, 5_12]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith('https' ):
lowercase_ : Tuple = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' , check_hash=SCREAMING_SNAKE_CASE_ )
else:
lowercase_ : Any = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )
lowercase_ : int = checkpoint
lowercase_ : str = create_rename_keys(SCREAMING_SNAKE_CASE_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load HuggingFace model
lowercase_ : List[str] = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE_ ).eval()
hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# prepare test inputs
lowercase_ : Tuple = prepare_img()
lowercase_ : int = ViTImageProcessor.from_pretrained('preprocessor_config' )
lowercase_ : Optional[Any] = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' )
# compare outputs from both models
lowercase_ : List[str] = get_expected_output(SCREAMING_SNAKE_CASE_ )
lowercase_ : Optional[int] = hf_model(inputs['pixel_values'] ).logits
assert hf_logits.shape == torch.Size([1, 10_00] )
assert torch.allclose(hf_logits[0, 0:5] , SCREAMING_SNAKE_CASE_ , atol=1E-3 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--swiftformer_name",
default="swiftformer_xs",
choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"],
type=str,
help="Name of the SwiftFormer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="./converted_outputs/",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.")
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 366
|
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
return None
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
return None
class UpperCamelCase ( unittest.TestCase ):
lowercase = [
# (model_name, model_kwargs)
('bert-base-cased', {}),
('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
from transformers import BertModel
lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words']
with NamedTemporaryFile(mode='w+t' ) as vocab_file:
vocab_file.write('\n'.join(__UpperCamelCase ) )
vocab_file.flush()
lowercase_ : List[str] = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) )
model.save_pretrained(__UpperCamelCase )
self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase )
@require_tf
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
lowercase_ : int = quantize(Path(__UpperCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
lowercase_ : Tuple = quantize(__UpperCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
try:
# Compute path
with TemporaryDirectory() as tempdir:
lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase )
return path
except Exception as e:
self.fail(__UpperCamelCase )
@require_torch
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
from transformers import BertModel
lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' )
@require_tf
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
from transformers import TFBertModel
lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1']
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase )
# Assert all variables are present
self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase )
self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} )
self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids']
lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]}
lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__UpperCamelCase ) ,3 )
# Should have exactly the same input names
self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__UpperCamelCase ) ,1 )
self.assertEqual(len(__UpperCamelCase ) ,1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] ,tokens['input_ids'] )
self.assertEqual(ordered_input_names[0] ,'input_ids' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' )
self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
| 321
| 0
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class UpperCamelCase ( metaclass=lowerCamelCase_ ):
lowercase = ["""transformers""", """torch""", """note_seq"""]
def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> str:
'''simple docstring'''
requires_backends(self ,['transformers', 'torch', 'note_seq'] )
@classmethod
def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> int:
'''simple docstring'''
requires_backends(cls ,['transformers', 'torch', 'note_seq'] )
@classmethod
def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]:
'''simple docstring'''
requires_backends(cls ,['transformers', 'torch', 'note_seq'] )
| 367
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]]
lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase )
self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(__UpperCamelCase ) # fails here
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 )
lowercase_ : str = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 )
lowercase_ : Any = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 )
lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 321
| 0
|
"""simple docstring"""
import cva
import numpy as np
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
if k in (0.04, 0.06):
lowercase_ : Optional[int] = k
lowercase_ : Union[str, Any] = window_size
else:
raise ValueError('invalid k value' )
def __str__( self ) -> Dict:
'''simple docstring'''
return str(self.k )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : List[Any] = cva.imread(__lowerCamelCase ,0 )
lowercase_ : Union[str, Any] = img.shape
lowercase_ : list[list[int]] = []
lowercase_ : Optional[Any] = img.copy()
lowercase_ : Optional[Any] = cva.cvtColor(__lowerCamelCase ,cva.COLOR_GRAY2RGB )
lowercase_ : List[Any] = np.gradient(__lowerCamelCase )
lowercase_ : Union[str, Any] = dx**2
lowercase_ : str = dy**2
lowercase_ : List[Any] = dx * dy
lowercase_ : str = 0.04
lowercase_ : Union[str, Any] = self.window_size // 2
for y in range(__lowerCamelCase ,h - offset ):
for x in range(__lowerCamelCase ,w - offset ):
lowercase_ : Optional[int] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase_ : Any = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase_ : Optional[int] = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowercase_ : Tuple = (wxx * wyy) - (wxy**2)
lowercase_ : Optional[int] = wxx + wyy
lowercase_ : Union[str, Any] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) ,0 )
color_img.itemset((y, x, 1) ,0 )
color_img.itemset((y, x, 2) ,255 )
return color_img, corner_list
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =HarrisCorner(0.04, 3)
__SCREAMING_SNAKE_CASE =edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 368
|
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[Any] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : Tuple = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
print(F'''Loading model based on config from {config_path}...''' )
lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
lowercase_ : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
lowercase_ : BertSelfAttention = layer.attention.self
lowercase_ : str = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape )
lowercase_ : int = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape )
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape )
lowercase_ : List[Any] = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape )
# Self-attention Output
lowercase_ : BertSelfOutput = layer.attention.output
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape )
lowercase_ : Any = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape )
lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' )
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' )
# Intermediate
lowercase_ : BertIntermediate = layer.intermediate
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' )
lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' )
# Output
lowercase_ : BertOutput = layer.output
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' )
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' )
lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' )
lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' )
# Embeddings
lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' )
lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' )
lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' )
lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' )
# LM Head
lowercase_ : int = model.cls.predictions.transform
lowercase_ : str = get_masked_lm_array('dense/kernel' )
lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' )
lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' )
lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' )
lowercase_ : List[str] = get_masked_lm_array('embedding_table' )
# Pooling
lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' )
# Export final model
model.save_pretrained(__SCREAMING_SNAKE_CASE )
# Integration test - should load without any errors ;)
lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE )
print(new_model.eval() )
print('Model conversion was done sucessfully!' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 321
| 0
|
"""simple docstring"""
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = parent
lowercase_ : Dict = 13
lowercase_ : Tuple = 7
lowercase_ : List[Any] = 30
lowercase_ : int = self.seq_length + self.mem_len
lowercase_ : Tuple = 15
lowercase_ : int = True
lowercase_ : List[str] = True
lowercase_ : List[Any] = 99
lowercase_ : Optional[int] = [10, 50, 80]
lowercase_ : int = 32
lowercase_ : Optional[Any] = 32
lowercase_ : Optional[Any] = 4
lowercase_ : Any = 8
lowercase_ : Union[str, Any] = 128
lowercase_ : List[str] = 2
lowercase_ : Any = 2
lowercase_ : int = None
lowercase_ : Optional[Any] = 1
lowercase_ : str = 0
lowercase_ : Optional[Any] = 3
lowercase_ : Tuple = self.vocab_size - 1
lowercase_ : Dict = 0.01
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Optional[Any] = None
if self.use_labels:
lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : int = TransfoXLConfig(
vocab_size=self.vocab_size ,mem_len=self.mem_len ,clamp_len=self.clamp_len ,cutoffs=self.cutoffs ,d_model=self.hidden_size ,d_embed=self.d_embed ,n_head=self.num_attention_heads ,d_head=self.d_head ,d_inner=self.d_inner ,div_val=self.div_val ,n_layer=self.num_hidden_layers ,eos_token_id=self.eos_token_id ,pad_token_id=self.vocab_size - 1 ,init_range=self.init_range ,num_labels=self.num_labels ,)
return (config, input_ids_a, input_ids_a, lm_labels)
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
random.seed(self.seed )
tf.random.set_seed(self.seed )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = TFTransfoXLModel(lowercase_ )
lowercase_ , lowercase_ : Any = model(lowercase_ ).to_tuple()
lowercase_ : int = {'input_ids': input_ids_a, 'mems': mems_a}
lowercase_ , lowercase_ : Dict = model(lowercase_ ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,)
self.parent.assertListEqual(
[mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Any = TFTransfoXLLMHeadModel(lowercase_ )
lowercase_ , lowercase_ : Union[str, Any] = model(lowercase_ ).to_tuple()
lowercase_ : List[Any] = {'input_ids': input_ids_a, 'labels': lm_labels}
lowercase_ , lowercase_ : List[str] = model(lowercase_ ).to_tuple()
lowercase_ , lowercase_ : str = model([input_ids_a, mems_a] ).to_tuple()
lowercase_ : List[str] = {'input_ids': input_ids_a, 'mems': mems_a, 'labels': lm_labels}
lowercase_ , lowercase_ : str = model(lowercase_ ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,)
self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
lowercase_ : List[str] = TFTransfoXLForSequenceClassification(lowercase_ )
lowercase_ : Any = model(lowercase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Tuple = self.prepare_config_and_inputs()
((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) : int = config_and_inputs
lowercase_ : Optional[int] = {'input_ids': input_ids_a}
return config, inputs_dict
@require_tf
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
lowercase = () if is_tf_available() else ()
lowercase = (
{
'feature-extraction': TFTransfoXLModel,
'text-classification': TFTransfoXLForSequenceClassification,
'text-generation': TFTransfoXLLMHeadModel,
'zero-shot': TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any:
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Dict = TFTransfoXLModelTester(self )
lowercase_ : List[Any] = ConfigTester(self ,config_class=lowercase_ ,d_embed=37 )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
self.model_tester.set_seed()
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*lowercase_ )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
self.model_tester.set_seed()
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase_ )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase_ )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ : Dict = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
lowercase_ : int = model_class(lowercase_ )
assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
lowercase_ : List[str] = model.get_output_embeddings()
assert isinstance(lowercase_ ,tf.keras.layers.Layer )
lowercase_ : List[str] = model.get_bias()
assert name is None
else:
lowercase_ : Dict = model.get_output_embeddings()
assert x is None
lowercase_ : Optional[int] = model.get_bias()
assert name is None
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
pass
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : Any = TFTransfoXLModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
@unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.' )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
pass
@require_tf
class UpperCamelCase ( unittest.TestCase ):
@unittest.skip('Skip test until #12651 is resolved.' )
@slow
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Dict = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103' )
# fmt: off
lowercase_ : Any = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] ,dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
lowercase_ : Dict = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
lowercase_ : int = model.generate(lowercase_ ,max_length=200 ,do_sample=lowercase_ )
self.assertListEqual(output_ids[0].numpy().tolist() ,lowercase_ )
| 369
|
"""simple docstring"""
from collections import namedtuple
import requests
from lxml import html # type: ignore
__SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered")
def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ):
lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) )
__SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 321
| 0
|
"""simple docstring"""
import numpy as np
from cva import destroyAllWindows, imread, imshow, waitKey
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
if dst_width < 0 or dst_height < 0:
raise ValueError('Destination width/height should be > 0' )
lowercase_ : Union[str, Any] = img
lowercase_ : Optional[int] = img.shape[1]
lowercase_ : str = img.shape[0]
lowercase_ : int = dst_width
lowercase_ : str = dst_height
lowercase_ : Tuple = self.src_w / self.dst_w
lowercase_ : Tuple = self.src_h / self.dst_h
lowercase_ : Optional[Any] = (
np.ones((self.dst_h, self.dst_w, 3) ,np.uinta ) * 255
)
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
for i in range(self.dst_h ):
for j in range(self.dst_w ):
lowercase_ : str = self.img[self.get_y(__UpperCamelCase )][self.get_x(__UpperCamelCase )]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return int(self.ratio_x * x )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return int(self.ratio_y * y )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE =800, 600
__SCREAMING_SNAKE_CASE =imread("image_data/lena.jpg", 1)
__SCREAMING_SNAKE_CASE =NearestNeighbour(im, dst_w, dst_h)
n.process()
imshow(
F"Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}", n.output
)
waitKey(0)
destroyAllWindows()
| 370
|
"""simple docstring"""
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 321
| 0
|
"""simple docstring"""
from math import ceil
def lowercase__( __SCREAMING_SNAKE_CASE : Dict = 10_01 ):
lowercase_ : Optional[int] = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
lowercase_ : List[str] = 2 * i + 1
lowercase_ : Optional[Any] = 2 * i
lowercase_ : Tuple = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
__SCREAMING_SNAKE_CASE =int(sys.argv[1])
print(solution(n))
except ValueError:
print("Invalid entry - please enter a number")
| 371
|
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = parent
lowercase_ : str = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Dict = is_training
lowercase_ : Tuple = use_input_mask
lowercase_ : Optional[Any] = use_token_type_ids
lowercase_ : List[str] = use_labels
lowercase_ : Any = vocab_size
lowercase_ : List[str] = hidden_size
lowercase_ : Optional[int] = num_hidden_layers
lowercase_ : int = num_attention_heads
lowercase_ : int = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : Optional[int] = hidden_dropout_prob
lowercase_ : Tuple = attention_probs_dropout_prob
lowercase_ : Tuple = max_position_embeddings
lowercase_ : Optional[int] = type_vocab_size
lowercase_ : Optional[int] = type_sequence_label_size
lowercase_ : Dict = initializer_range
lowercase_ : int = num_labels
lowercase_ : Any = num_choices
lowercase_ : int = scope
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Dict = None
if self.use_input_mask:
lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase_ : Tuple = None
lowercase_ : Tuple = None
lowercase_ : Tuple = None
if self.use_labels:
lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices )
lowercase_ : str = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return EsmConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Union[str, Any] = model(__UpperCamelCase )
lowercase_ : int = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.num_labels
lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Any = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Optional[int] = config_and_inputs
lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = False
lowercase = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase = ()
lowercase = (
{
'feature-extraction': EsmModel,
'fill-mask': EsmForMaskedLM,
'text-classification': EsmForSequenceClassification,
'token-classification': EsmForTokenClassification,
'zero-shot': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = True
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = EsmModelTester(self )
lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowercase_ : Optional[Any] = type
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
lowercase_ : List[Any] = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : List[Any] = torch.empty(2 ,4 ,30 )
lowercase_ : List[str] = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] )
lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@require_torch
class UpperCamelCase ( lowercase_ ):
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowercase_ : List[str] = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = 33
lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : List[str] = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowercase_ : Dict = model(__UpperCamelCase )[0]
# compare the actual values for a slice.
lowercase_ : Any = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
from timeit import timeit
__SCREAMING_SNAKE_CASE ={
"MALAYALAM": True,
"String": False,
"rotor": True,
"level": True,
"A": True,
"BB": True,
"ABC": False,
"amanaplanacanalpanama": True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Any = 0
lowercase_ : str = len(lowerCamelCase__ ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Tuple = len(lowerCamelCase__ ) // 2
lowercase_ : str = len(lowerCamelCase__ )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(lowerCamelCase__ ) )
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
if len(lowerCamelCase__ ) <= 2:
return True
if s[0] == s[len(lowerCamelCase__ ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
return s == s[::-1]
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Optional[Any] = F'''all({name}(key) is value for key, value in test_data.items())'''
lowercase_ : int = F'''from __main__ import test_data, {name}'''
lowercase_ : List[str] = 50_00_00
lowercase_ : List[str] = timeit(stmt=lowerCamelCase__ , setup=lowerCamelCase__ , number=lowerCamelCase__ )
print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(f"{key:21} {value}")
print("a man a plan a canal panama")
# finished 500,000 runs in 0.46793 seconds
benchmark_function("is_palindrome_slice")
# finished 500,000 runs in 0.85234 seconds
benchmark_function("is_palindrome")
# finished 500,000 runs in 1.32028 seconds
benchmark_function("is_palindrome_recursive")
# finished 500,000 runs in 2.08679 seconds
benchmark_function("is_palindrome_traversal")
| 350
|
"""simple docstring"""
import pickle
import numpy as np
from matplotlib import pyplot as plt
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[int] = bp_numa
lowercase_ : Dict = bp_numa
lowercase_ : Tuple = bp_numa
lowercase_ : List[Any] = conva_get[:2]
lowercase_ : int = conva_get[2]
lowercase_ : Dict = size_pa
lowercase_ : int = rate_w
lowercase_ : Union[str, Any] = rate_t
lowercase_ : Dict = [
np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1
lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1
lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : int = {
'num_bp1': self.num_bpa,
'num_bp2': self.num_bpa,
'num_bp3': self.num_bpa,
'conv1': self.conva,
'step_conv1': self.step_conva,
'size_pooling1': self.size_poolinga,
'rate_weight': self.rate_weight,
'rate_thre': self.rate_thre,
'w_conv1': self.w_conva,
'wkj': self.wkj,
'vji': self.vji,
'thre_conv1': self.thre_conva,
'thre_bp2': self.thre_bpa,
'thre_bp3': self.thre_bpa,
}
with open(__UpperCamelCase ,'wb' ) as f:
pickle.dump(__UpperCamelCase ,__UpperCamelCase )
print(f'''Model saved: {save_path}''' )
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
with open(__UpperCamelCase ,'rb' ) as f:
lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301
lowercase_ : str = model_dic.get('conv1' )
conv_get.append(model_dic.get('step_conv1' ) )
lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' )
lowercase_ : Optional[Any] = model_dic.get('num_bp1' )
lowercase_ : str = model_dic.get('num_bp2' )
lowercase_ : Optional[Any] = model_dic.get('num_bp3' )
lowercase_ : Union[str, Any] = model_dic.get('rate_weight' )
lowercase_ : Optional[int] = model_dic.get('rate_thre' )
# create model instance
lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# modify model parameter
lowercase_ : Optional[Any] = model_dic.get('w_conv1' )
lowercase_ : Tuple = model_dic.get('wkj' )
lowercase_ : Union[str, Any] = model_dic.get('vji' )
lowercase_ : Optional[Any] = model_dic.get('thre_conv1' )
lowercase_ : Dict = model_dic.get('thre_bp2' )
lowercase_ : Optional[int] = model_dic.get('thre_bp3' )
return conv_ins
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
return 1 / (1 + np.exp(-1 * x ))
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return round(__UpperCamelCase ,3 )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Dict = convs[0]
lowercase_ : Any = convs[1]
lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0]
# get the data slice of original image data, data_focus
lowercase_ : Tuple = []
for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
lowercase_ : List[Any] = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(__UpperCamelCase )
# calculate the feature map of every single kernel, and saved as list of matrix
lowercase_ : Dict = []
lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(__UpperCamelCase ):
lowercase_ : Tuple = []
for i_focus in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[int] = (
np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(__UpperCamelCase ) )
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape(
__UpperCamelCase ,__UpperCamelCase )
data_featuremap.append(__UpperCamelCase )
# expanding the data slice to One dimenssion
lowercase_ : Optional[int] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) )
lowercase_ : str = np.asarray(__UpperCamelCase )
return focus_list, data_featuremap
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple:
'''simple docstring'''
lowercase_ : Union[str, Any] = len(featuremaps[0] )
lowercase_ : str = int(size_map / size_pooling )
lowercase_ : Optional[int] = []
for i_map in range(len(__UpperCamelCase ) ):
lowercase_ : int = featuremaps[i_map]
lowercase_ : List[str] = []
for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[str] = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(__UpperCamelCase ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(__UpperCamelCase ) )
lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase )
featuremap_pooled.append(__UpperCamelCase )
return featuremap_pooled
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
lowercase_ : Tuple = []
for i in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[Any] = np.shape(data[i] )
lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] )
lowercase_ : List[str] = data_listed.getA().tolist()[0]
data_expanded.extend(__UpperCamelCase )
lowercase_ : int = np.asarray(__UpperCamelCase )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Any = np.asarray(__UpperCamelCase )
lowercase_ : Any = np.shape(__UpperCamelCase )
lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
lowercase_ : Any = []
lowercase_ : List[Any] = 0
for i_map in range(__UpperCamelCase ):
lowercase_ : List[str] = np.ones((size_map, size_map) )
for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[Any] = pd_pool[
i_pool
]
lowercase_ : Any = i_pool + 1
lowercase_ : Optional[int] = np.multiply(
__UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) )
pd_all.append(__UpperCamelCase )
return pd_all
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]:
'''simple docstring'''
print('----------------------Start Training-------------------------' )
print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) )
print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) )
lowercase_ : int = 0
lowercase_ : Tuple = []
lowercase_ : Tuple = 1_0000
while rp < n_repeat and mse >= error_accuracy:
lowercase_ : List[str] = 0
print(f'''-------------Learning Time {rp}--------------''' )
for p in range(len(__UpperCamelCase ) ):
# print('------------Learning Image: %d--------------'%p)
lowercase_ : int = np.asmatrix(datas_train[p] )
lowercase_ : Any = np.asarray(datas_teach[p] )
lowercase_ , lowercase_ : Tuple = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : Optional[int] = np.shape(__UpperCamelCase )
lowercase_ : Optional[int] = self._expand(__UpperCamelCase )
lowercase_ : int = data_bp_input
lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa
lowercase_ : Dict = self.sig(__UpperCamelCase )
lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa
lowercase_ : int = self.sig(__UpperCamelCase )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
lowercase_ : str = np.multiply(
(data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Optional[int] = np.multiply(
np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji )
lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga)
lowercase_ : Dict = pd_conva_pooled.T.getA().tolist()
lowercase_ : List[Any] = self._calculate_gradient_from_pool(
__UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,)
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] )
lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
lowercase_ : Dict = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight
lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre
lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
lowercase_ : int = rp + 1
lowercase_ : Union[str, Any] = error_count / patterns
all_mse.append(__UpperCamelCase )
def draw_error():
lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(__UpperCamelCase ,'+-' )
plt.plot(__UpperCamelCase ,'r--' )
plt.xlabel('Learning Times' )
plt.ylabel('All_mse' )
plt.grid(__UpperCamelCase ,alpha=0.5 )
plt.show()
print('------------------Training Complished---------------------' )
print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') )
if draw_e:
draw_error()
return mse
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Union[str, Any] = []
print('-------------------Start Testing-------------------------' )
print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) )
for p in range(len(__UpperCamelCase ) ):
lowercase_ : List[Any] = np.asmatrix(datas_test[p] )
lowercase_ , lowercase_ : Optional[Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : List[str] = self._expand(__UpperCamelCase )
lowercase_ : Any = data_bp_input
lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa
lowercase_ : str = self.sig(__UpperCamelCase )
lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa
lowercase_ : Optional[int] = self.sig(__UpperCamelCase )
produce_out.extend(bp_outa.getA().tolist() )
lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out]
return np.asarray(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase )
lowercase_ , lowercase_ : Union[str, Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 321
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
__SCREAMING_SNAKE_CASE ={
"configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"],
"processing_trocr": ["TrOCRProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrOCRForCausalLM",
"TrOCRPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 351
|
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ):
lowercase_ : Dict = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification'
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Dict = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : str = 'patrickvonplaten/t5-tiny-random'
lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[int] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] )
lowercase_ : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2'
lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__UpperCamelCase ):
self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'current' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Any = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
| 321
| 0
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ) -> None:
'''simple docstring'''
lowercase_ : dict[str, TrieNode] = {} # Mapping from char to TrieNode
lowercase_ : List[str] = False
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
for word in words:
self.insert(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : List[str] = self
for char in word:
if char not in curr.nodes:
lowercase_ : List[str] = TrieNode()
lowercase_ : Dict = curr.nodes[char]
lowercase_ : Any = True
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> bool:
'''simple docstring'''
lowercase_ : List[Any] = self
for char in word:
if char not in curr.nodes:
return False
lowercase_ : Union[str, Any] = curr.nodes[char]
return curr.is_leaf
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
def _delete(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> bool:
if index == len(__UpperCamelCase ):
# If word does not exist
if not curr.is_leaf:
return False
lowercase_ : List[str] = False
return len(curr.nodes ) == 0
lowercase_ : Any = word[index]
lowercase_ : Any = curr.nodes.get(__UpperCamelCase )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
lowercase_ : Dict = _delete(__UpperCamelCase ,__UpperCamelCase ,index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self ,__UpperCamelCase ,0 )
def lowercase__( __SCREAMING_SNAKE_CASE : TrieNode , __SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
if node.is_leaf:
print(UpperCamelCase__ , end=' ' )
for key, value in node.nodes.items():
print_words(UpperCamelCase__ , word + key )
def lowercase__( ):
"""simple docstring"""
lowercase_ : Tuple = '''banana bananas bandana band apple all beast'''.split()
lowercase_ : str = TrieNode()
root.insert_many(UpperCamelCase__ )
# print_words(root, "")
assert all(root.find(UpperCamelCase__ ) for word in words )
assert root.find('banana' )
assert not root.find('bandanas' )
assert not root.find('apps' )
assert root.find('apple' )
assert root.find('all' )
root.delete('all' )
assert not root.find('all' )
root.delete('banana' )
assert not root.find('banana' )
assert root.find('bananas' )
return True
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : bool ):
"""simple docstring"""
print(str(UpperCamelCase__ ) , 'works!' if passes else 'doesn\'t work :(' )
def lowercase__( ):
"""simple docstring"""
assert test_trie()
def lowercase__( ):
"""simple docstring"""
print_results('Testing trie functionality' , test_trie() )
if __name__ == "__main__":
main()
| 352
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
class UpperCamelCase ( lowercase_ ):
lowercase = ['input_values', 'padding_mask']
def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : List[str] = chunk_length_s
lowercase_ : Tuple = overlap
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
f''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if padding and truncation:
raise ValueError('Both padding and truncation were set. Make sure you only set one.' )
elif padding is None:
# by default let's pad the inputs
lowercase_ : Optional[int] = True
lowercase_ : Optional[int] = bool(
isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) )
if is_batched:
lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ):
lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa )
elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
lowercase_ : List[str] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T]
# verify inputs are valid
for idx, example in enumerate(__UpperCamelCase ):
if example.ndim > 2:
raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' )
lowercase_ : Optional[int] = None
lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio )
lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) )
lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio )
lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) )
lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length
lowercase_ : Union[str, Any] = 'max_length'
else:
lowercase_ : int = input_values
# normal padding on batch
if padded_inputs is None:
lowercase_ : int = self.pad(
__UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,)
if padding:
lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' )
lowercase_ : Dict = []
for example in padded_inputs.pop('input_values' ):
if self.feature_size == 1:
lowercase_ : Optional[int] = example[..., None]
input_values.append(example.T )
lowercase_ : str = input_values
if return_tensors is not None:
lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase )
return padded_inputs
| 321
| 0
|
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
__SCREAMING_SNAKE_CASE ='pt'
elif is_tf_available():
__SCREAMING_SNAKE_CASE ='tf'
else:
__SCREAMING_SNAKE_CASE ='jax'
class UpperCamelCase ( _lowerCamelCase , unittest.TestCase ):
"""simple docstring"""
lowercase = PerceiverTokenizer
lowercase = False
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
lowercase_ : Union[str, Any] = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=False ,__UpperCamelCase=20 ,__UpperCamelCase=5 ) -> List[str]:
'''simple docstring'''
lowercase_ : Tuple = []
for i in range(len(__UpperCamelCase ) ):
try:
lowercase_ : Optional[int] = tokenizer.decode([i] ,clean_up_tokenization_spaces=__UpperCamelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
lowercase_ : int = list(filter(lambda __UpperCamelCase : re.match(r'^[ a-zA-Z]+$' ,t[1] ) ,__UpperCamelCase ) )
lowercase_ : int = list(filter(lambda __UpperCamelCase : [t[0]] == tokenizer.encode(t[1] ,add_special_tokens=__UpperCamelCase ) ,__UpperCamelCase ) )
if max_length is not None and len(__UpperCamelCase ) > max_length:
lowercase_ : List[Any] = toks[:max_length]
if min_length is not None and len(__UpperCamelCase ) < min_length and len(__UpperCamelCase ) > 0:
while len(__UpperCamelCase ) < min_length:
lowercase_ : Tuple = toks + toks
# toks_str = [t[1] for t in toks]
lowercase_ : Optional[int] = [t[0] for t in toks]
# Ensure consistency
lowercase_ : Optional[Any] = tokenizer.decode(__UpperCamelCase ,clean_up_tokenization_spaces=__UpperCamelCase )
if " " not in output_txt and len(__UpperCamelCase ) > 1:
lowercase_ : str = (
tokenizer.decode([toks_ids[0]] ,clean_up_tokenization_spaces=__UpperCamelCase )
+ ' '
+ tokenizer.decode(toks_ids[1:] ,clean_up_tokenization_spaces=__UpperCamelCase )
)
if with_prefix_space:
lowercase_ : str = ' ' + output_txt
lowercase_ : List[str] = tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase )
return output_txt, output_ids
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Any = self.perceiver_tokenizer
lowercase_ : int = 'Unicode €.'
lowercase_ : List[str] = tokenizer(__UpperCamelCase )
lowercase_ : Union[str, Any] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded['input_ids'] ,__UpperCamelCase )
# decoding
lowercase_ : Optional[Any] = tokenizer.decode(__UpperCamelCase )
self.assertEqual(__UpperCamelCase ,'[CLS]Unicode €.[SEP]' )
lowercase_ : Dict = tokenizer('e è é ê ë' )
lowercase_ : str = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded['input_ids'] ,__UpperCamelCase )
# decoding
lowercase_ : Optional[int] = tokenizer.decode(__UpperCamelCase )
self.assertEqual(__UpperCamelCase ,'[CLS]e è é ê ë[SEP]' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) ,'[CLS]e è é ê ë[SEP]' )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Any = self.perceiver_tokenizer
lowercase_ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
lowercase_ : List[str] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
lowercase_ : Optional[Any] = tokenizer(__UpperCamelCase ,padding=__UpperCamelCase ,return_tensors=__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase )
if FRAMEWORK != "jax":
lowercase_ : int = list(batch.input_ids.numpy()[0] )
else:
lowercase_ : Any = list(batch.input_ids.tolist()[0] )
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
self.assertEqual((2, 38) ,batch.input_ids.shape )
self.assertEqual((2, 38) ,batch.attention_mask.shape )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = self.perceiver_tokenizer
lowercase_ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
lowercase_ : str = tokenizer(__UpperCamelCase ,padding=__UpperCamelCase ,return_tensors=__UpperCamelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' ,__UpperCamelCase )
self.assertIn('attention_mask' ,__UpperCamelCase )
self.assertNotIn('decoder_input_ids' ,__UpperCamelCase )
self.assertNotIn('decoder_attention_mask' ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : str = self.perceiver_tokenizer
lowercase_ : Union[str, Any] = [
'Summary of the text.',
'Another summary.',
]
lowercase_ : List[str] = tokenizer(
text_target=__UpperCamelCase ,max_length=32 ,padding='max_length' ,truncation=__UpperCamelCase ,return_tensors=__UpperCamelCase )
self.assertEqual(32 ,targets['input_ids'].shape[1] )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length ,42 )
# Now let's start the test
lowercase_ : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
lowercase_ : Union[str, Any] = tempfile.mkdtemp()
lowercase_ : Optional[int] = ' He is very happy, UNwant\u00E9d,running'
lowercase_ : Dict = tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase )
tokenizer.save_pretrained(__UpperCamelCase )
lowercase_ : Optional[Any] = tokenizer.__class__.from_pretrained(__UpperCamelCase )
lowercase_ : List[str] = after_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase )
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
shutil.rmtree(__UpperCamelCase )
lowercase_ : Dict = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
lowercase_ : int = tempfile.mkdtemp()
lowercase_ : List[str] = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
lowercase_ : List[Any] = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
lowercase_ : Union[str, Any] = tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase )
tokenizer.save_pretrained(__UpperCamelCase )
lowercase_ : Any = tokenizer.__class__.from_pretrained(__UpperCamelCase )
lowercase_ : int = after_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase )
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
self.assertIn('new_additional_special_token' ,after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length ,42 )
lowercase_ : List[Any] = tokenizer.__class__.from_pretrained(__UpperCamelCase ,model_max_length=43 )
self.assertEqual(tokenizer.model_max_length ,43 )
shutil.rmtree(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Any = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__UpperCamelCase )
with open(os.path.join(__UpperCamelCase ,'special_tokens_map.json' ) ,encoding='utf-8' ) as json_file:
lowercase_ : Any = json.load(__UpperCamelCase )
with open(os.path.join(__UpperCamelCase ,'tokenizer_config.json' ) ,encoding='utf-8' ) as json_file:
lowercase_ : int = json.load(__UpperCamelCase )
lowercase_ : Tuple = [f'''<extra_id_{i}>''' for i in range(125 )]
lowercase_ : str = added_tokens_extra_ids + [
'an_additional_special_token'
]
lowercase_ : List[Any] = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(__UpperCamelCase ,'special_tokens_map.json' ) ,'w' ,encoding='utf-8' ) as outfile:
json.dump(__UpperCamelCase ,__UpperCamelCase )
with open(os.path.join(__UpperCamelCase ,'tokenizer_config.json' ) ,'w' ,encoding='utf-8' ) as outfile:
json.dump(__UpperCamelCase ,__UpperCamelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
lowercase_ : Optional[int] = tokenizer_class.from_pretrained(
__UpperCamelCase ,)
self.assertIn(
'an_additional_special_token' ,tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['an_additional_special_token'] ,tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) ,)
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
lowercase_ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' ,lstrip=__UpperCamelCase )]
lowercase_ : List[str] = tokenizer_class.from_pretrained(
__UpperCamelCase ,additional_special_tokens=__UpperCamelCase ,)
self.assertIn('a_new_additional_special_token' ,tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] ,tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) ,)
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Dict = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) ,'�' )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
pass
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
pass
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
pass
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : str = self.get_tokenizers(fast=__UpperCamelCase ,do_lower_case=__UpperCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
lowercase_ : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]']
lowercase_ : Optional[Any] = tokenizer.convert_tokens_to_string(__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase )
| 353
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"MRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"MraForMaskedLM",
"MraForMultipleChoice",
"MraForQuestionAnswering",
"MraForSequenceClassification",
"MraForTokenClassification",
"MraLayer",
"MraModel",
"MraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 321
| 0
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__SCREAMING_SNAKE_CASE ={
'''Acehnese Arabic''': '''ace_Arab''',
'''Acehnese Latin''': '''ace_Latn''',
'''Mesopotamian Arabic''': '''acm_Arab''',
'''Ta\'izzi-Adeni Arabic''': '''acq_Arab''',
'''Tunisian Arabic''': '''aeb_Arab''',
'''Afrikaans''': '''afr_Latn''',
'''South Levantine Arabic''': '''ajp_Arab''',
'''Akan''': '''aka_Latn''',
'''Amharic''': '''amh_Ethi''',
'''North Levantine Arabic''': '''apc_Arab''',
'''Modern Standard Arabic''': '''arb_Arab''',
'''Modern Standard Arabic Romanized''': '''arb_Latn''',
'''Najdi Arabic''': '''ars_Arab''',
'''Moroccan Arabic''': '''ary_Arab''',
'''Egyptian Arabic''': '''arz_Arab''',
'''Assamese''': '''asm_Beng''',
'''Asturian''': '''ast_Latn''',
'''Awadhi''': '''awa_Deva''',
'''Central Aymara''': '''ayr_Latn''',
'''South Azerbaijani''': '''azb_Arab''',
'''North Azerbaijani''': '''azj_Latn''',
'''Bashkir''': '''bak_Cyrl''',
'''Bambara''': '''bam_Latn''',
'''Balinese''': '''ban_Latn''',
'''Belarusian''': '''bel_Cyrl''',
'''Bemba''': '''bem_Latn''',
'''Bengali''': '''ben_Beng''',
'''Bhojpuri''': '''bho_Deva''',
'''Banjar Arabic''': '''bjn_Arab''',
'''Banjar Latin''': '''bjn_Latn''',
'''Standard Tibetan''': '''bod_Tibt''',
'''Bosnian''': '''bos_Latn''',
'''Buginese''': '''bug_Latn''',
'''Bulgarian''': '''bul_Cyrl''',
'''Catalan''': '''cat_Latn''',
'''Cebuano''': '''ceb_Latn''',
'''Czech''': '''ces_Latn''',
'''Chokwe''': '''cjk_Latn''',
'''Central Kurdish''': '''ckb_Arab''',
'''Crimean Tatar''': '''crh_Latn''',
'''Welsh''': '''cym_Latn''',
'''Danish''': '''dan_Latn''',
'''German''': '''deu_Latn''',
'''Southwestern Dinka''': '''dik_Latn''',
'''Dyula''': '''dyu_Latn''',
'''Dzongkha''': '''dzo_Tibt''',
'''Greek''': '''ell_Grek''',
'''English''': '''eng_Latn''',
'''Esperanto''': '''epo_Latn''',
'''Estonian''': '''est_Latn''',
'''Basque''': '''eus_Latn''',
'''Ewe''': '''ewe_Latn''',
'''Faroese''': '''fao_Latn''',
'''Fijian''': '''fij_Latn''',
'''Finnish''': '''fin_Latn''',
'''Fon''': '''fon_Latn''',
'''French''': '''fra_Latn''',
'''Friulian''': '''fur_Latn''',
'''Nigerian Fulfulde''': '''fuv_Latn''',
'''Scottish Gaelic''': '''gla_Latn''',
'''Irish''': '''gle_Latn''',
'''Galician''': '''glg_Latn''',
'''Guarani''': '''grn_Latn''',
'''Gujarati''': '''guj_Gujr''',
'''Haitian Creole''': '''hat_Latn''',
'''Hausa''': '''hau_Latn''',
'''Hebrew''': '''heb_Hebr''',
'''Hindi''': '''hin_Deva''',
'''Chhattisgarhi''': '''hne_Deva''',
'''Croatian''': '''hrv_Latn''',
'''Hungarian''': '''hun_Latn''',
'''Armenian''': '''hye_Armn''',
'''Igbo''': '''ibo_Latn''',
'''Ilocano''': '''ilo_Latn''',
'''Indonesian''': '''ind_Latn''',
'''Icelandic''': '''isl_Latn''',
'''Italian''': '''ita_Latn''',
'''Javanese''': '''jav_Latn''',
'''Japanese''': '''jpn_Jpan''',
'''Kabyle''': '''kab_Latn''',
'''Jingpho''': '''kac_Latn''',
'''Kamba''': '''kam_Latn''',
'''Kannada''': '''kan_Knda''',
'''Kashmiri Arabic''': '''kas_Arab''',
'''Kashmiri Devanagari''': '''kas_Deva''',
'''Georgian''': '''kat_Geor''',
'''Central Kanuri Arabic''': '''knc_Arab''',
'''Central Kanuri Latin''': '''knc_Latn''',
'''Kazakh''': '''kaz_Cyrl''',
'''Kabiyè''': '''kbp_Latn''',
'''Kabuverdianu''': '''kea_Latn''',
'''Khmer''': '''khm_Khmr''',
'''Kikuyu''': '''kik_Latn''',
'''Kinyarwanda''': '''kin_Latn''',
'''Kyrgyz''': '''kir_Cyrl''',
'''Kimbundu''': '''kmb_Latn''',
'''Northern Kurdish''': '''kmr_Latn''',
'''Kikongo''': '''kon_Latn''',
'''Korean''': '''kor_Hang''',
'''Lao''': '''lao_Laoo''',
'''Ligurian''': '''lij_Latn''',
'''Limburgish''': '''lim_Latn''',
'''Lingala''': '''lin_Latn''',
'''Lithuanian''': '''lit_Latn''',
'''Lombard''': '''lmo_Latn''',
'''Latgalian''': '''ltg_Latn''',
'''Luxembourgish''': '''ltz_Latn''',
'''Luba-Kasai''': '''lua_Latn''',
'''Ganda''': '''lug_Latn''',
'''Luo''': '''luo_Latn''',
'''Mizo''': '''lus_Latn''',
'''Standard Latvian''': '''lvs_Latn''',
'''Magahi''': '''mag_Deva''',
'''Maithili''': '''mai_Deva''',
'''Malayalam''': '''mal_Mlym''',
'''Marathi''': '''mar_Deva''',
'''Minangkabau Arabic ''': '''min_Arab''',
'''Minangkabau Latin''': '''min_Latn''',
'''Macedonian''': '''mkd_Cyrl''',
'''Plateau Malagasy''': '''plt_Latn''',
'''Maltese''': '''mlt_Latn''',
'''Meitei Bengali''': '''mni_Beng''',
'''Halh Mongolian''': '''khk_Cyrl''',
'''Mossi''': '''mos_Latn''',
'''Maori''': '''mri_Latn''',
'''Burmese''': '''mya_Mymr''',
'''Dutch''': '''nld_Latn''',
'''Norwegian Nynorsk''': '''nno_Latn''',
'''Norwegian Bokmål''': '''nob_Latn''',
'''Nepali''': '''npi_Deva''',
'''Northern Sotho''': '''nso_Latn''',
'''Nuer''': '''nus_Latn''',
'''Nyanja''': '''nya_Latn''',
'''Occitan''': '''oci_Latn''',
'''West Central Oromo''': '''gaz_Latn''',
'''Odia''': '''ory_Orya''',
'''Pangasinan''': '''pag_Latn''',
'''Eastern Panjabi''': '''pan_Guru''',
'''Papiamento''': '''pap_Latn''',
'''Western Persian''': '''pes_Arab''',
'''Polish''': '''pol_Latn''',
'''Portuguese''': '''por_Latn''',
'''Dari''': '''prs_Arab''',
'''Southern Pashto''': '''pbt_Arab''',
'''Ayacucho Quechua''': '''quy_Latn''',
'''Romanian''': '''ron_Latn''',
'''Rundi''': '''run_Latn''',
'''Russian''': '''rus_Cyrl''',
'''Sango''': '''sag_Latn''',
'''Sanskrit''': '''san_Deva''',
'''Santali''': '''sat_Olck''',
'''Sicilian''': '''scn_Latn''',
'''Shan''': '''shn_Mymr''',
'''Sinhala''': '''sin_Sinh''',
'''Slovak''': '''slk_Latn''',
'''Slovenian''': '''slv_Latn''',
'''Samoan''': '''smo_Latn''',
'''Shona''': '''sna_Latn''',
'''Sindhi''': '''snd_Arab''',
'''Somali''': '''som_Latn''',
'''Southern Sotho''': '''sot_Latn''',
'''Spanish''': '''spa_Latn''',
'''Tosk Albanian''': '''als_Latn''',
'''Sardinian''': '''srd_Latn''',
'''Serbian''': '''srp_Cyrl''',
'''Swati''': '''ssw_Latn''',
'''Sundanese''': '''sun_Latn''',
'''Swedish''': '''swe_Latn''',
'''Swahili''': '''swh_Latn''',
'''Silesian''': '''szl_Latn''',
'''Tamil''': '''tam_Taml''',
'''Tatar''': '''tat_Cyrl''',
'''Telugu''': '''tel_Telu''',
'''Tajik''': '''tgk_Cyrl''',
'''Tagalog''': '''tgl_Latn''',
'''Thai''': '''tha_Thai''',
'''Tigrinya''': '''tir_Ethi''',
'''Tamasheq Latin''': '''taq_Latn''',
'''Tamasheq Tifinagh''': '''taq_Tfng''',
'''Tok Pisin''': '''tpi_Latn''',
'''Tswana''': '''tsn_Latn''',
'''Tsonga''': '''tso_Latn''',
'''Turkmen''': '''tuk_Latn''',
'''Tumbuka''': '''tum_Latn''',
'''Turkish''': '''tur_Latn''',
'''Twi''': '''twi_Latn''',
'''Central Atlas Tamazight''': '''tzm_Tfng''',
'''Uyghur''': '''uig_Arab''',
'''Ukrainian''': '''ukr_Cyrl''',
'''Umbundu''': '''umb_Latn''',
'''Urdu''': '''urd_Arab''',
'''Northern Uzbek''': '''uzn_Latn''',
'''Venetian''': '''vec_Latn''',
'''Vietnamese''': '''vie_Latn''',
'''Waray''': '''war_Latn''',
'''Wolof''': '''wol_Latn''',
'''Xhosa''': '''xho_Latn''',
'''Eastern Yiddish''': '''ydd_Hebr''',
'''Yoruba''': '''yor_Latn''',
'''Yue Chinese''': '''yue_Hant''',
'''Chinese Simplified''': '''zho_Hans''',
'''Chinese Traditional''': '''zho_Hant''',
'''Standard Malay''': '''zsm_Latn''',
'''Zulu''': '''zul_Latn''',
}
class UpperCamelCase ( lowerCamelCase__ ):
lowercase = 'facebook/nllb-200-distilled-600M'
lowercase = (
'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '
'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '
'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '
'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'
)
lowercase = 'translator'
lowercase = AutoTokenizer
lowercase = AutoModelForSeqaSeqLM
lowercase = LANGUAGE_CODES
lowercase = ['text', 'text', 'text']
lowercase = ['text']
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
if src_lang not in self.lang_to_code:
raise ValueError(f'''{src_lang} is not a supported language.''' )
if tgt_lang not in self.lang_to_code:
raise ValueError(f'''{tgt_lang} is not a supported language.''' )
lowercase_ : List[Any] = self.lang_to_code[src_lang]
lowercase_ : Tuple = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
__UpperCamelCase ,return_tensors='pt' ,src_lang=__UpperCamelCase ,tgt_lang=__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
return self.model.generate(**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return self.post_processor.decode(outputs[0].tolist() ,skip_special_tokens=__UpperCamelCase )
| 354
|
"""simple docstring"""
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("dataclasses")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("importlib_metadata")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ):
require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
| 321
| 0
|
"""simple docstring"""
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__SCREAMING_SNAKE_CASE =get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class UpperCamelCase ( lowercase_ , unittest.TestCase ):
lowercase = XLMProphetNetTokenizer
lowercase = False
lowercase = True
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase_ : Tuple = XLMProphetNetTokenizer(lowerCamelCase_ ,keep_accents=lowerCamelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Dict = '[PAD]'
lowercase_ : Dict = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) ,lowerCamelCase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) ,lowerCamelCase_ )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,'[PAD]' )
self.assertEqual(vocab_keys[1] ,'[CLS]' )
self.assertEqual(vocab_keys[-1] ,'j' )
self.assertEqual(len(lowerCamelCase_ ) ,1012 )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size ,1012 )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Any = XLMProphetNetTokenizer(lowerCamelCase_ ,keep_accents=lowerCamelCase_ )
lowercase_ : Optional[Any] = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowerCamelCase_ ,['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,)
lowercase_ : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowerCamelCase_ ,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] ,)
lowercase_ : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ )
self.assertListEqual(
lowerCamelCase_ ,[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] ,)
lowercase_ : str = tokenizer.convert_ids_to_tokens(lowerCamelCase_ )
self.assertListEqual(
lowerCamelCase_ ,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'[UNK]',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'[UNK]',
'.',
] ,)
@cached_property
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' )
@slow
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Optional[Any] = 'Hello World!'
lowercase_ : int = [3_5389, 6672, 49, 2]
self.assertListEqual(lowerCamelCase_ ,self.big_tokenizer.encode(lowerCamelCase_ ) )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = {'input_ids': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCamelCase_ ,model_name='microsoft/xprophetnet-large-wiki100-cased' ,revision='1acad1643ddd54a44df6a1b797ada8373685d90e' ,)
| 355
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ):
lowercase_ : int = 'backbone.' if is_semantic else ''
lowercase_ : List[str] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(F'''{prefix}cls_token''', 'beit.embeddings.cls_token'),
(F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'),
(F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'),
(F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('mask_token', 'beit.embeddings.mask_token'),
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('fc_norm.weight', 'beit.pooler.layernorm.weight'),
('fc_norm.bias', 'beit.pooler.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ):
for i in range(config.num_hidden_layers ):
lowercase_ : Any = 'backbone.' if is_semantic else ''
# queries, keys and values
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' )
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' )
lowercase_ : List[str] = in_proj_weight[
: config.hidden_size, :
]
lowercase_ : List[str] = q_bias
lowercase_ : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ : Any = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ : Any = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' )
lowercase_ : Tuple = gamma_a
lowercase_ : List[Any] = gamma_a
def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = val
def lowercase__( ):
lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ):
lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True
lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
lowercase_ : Any = 10_24
lowercase_ : List[str] = 40_96
lowercase_ : Tuple = 24
lowercase_ : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
lowercase_ : Optional[Any] = 16
lowercase_ : Any = 'huggingface/label-files'
lowercase_ : int = 'rvlcdip-id2label.json'
lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowercase_ : str = idalabel
lowercase_ : str = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
# load HuggingFace model
lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(__SCREAMING_SNAKE_CASE )
# Check outputs on an image
lowercase_ : List[Any] = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE )
lowercase_ : str = prepare_img()
lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' )
lowercase_ : int = encoding['pixel_values']
lowercase_ : Any = model(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = outputs.logits
# verify logits
lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92]
assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected"
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
if has_lm_head:
lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large'
else:
lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip'
image_processor.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
model.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 321
| 0
|
"""simple docstring"""
import unittest
from transformers import AutoTokenizer, NystromformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
NystromformerModel,
)
from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[Any] = parent
lowercase_ : List[str] = batch_size
lowercase_ : Dict = seq_length
lowercase_ : int = is_training
lowercase_ : Union[str, Any] = use_input_mask
lowercase_ : Tuple = use_token_type_ids
lowercase_ : int = use_labels
lowercase_ : Optional[int] = vocab_size
lowercase_ : str = hidden_size
lowercase_ : Optional[Any] = num_hidden_layers
lowercase_ : List[Any] = num_attention_heads
lowercase_ : Optional[int] = intermediate_size
lowercase_ : Optional[int] = hidden_act
lowercase_ : List[str] = hidden_dropout_prob
lowercase_ : str = attention_probs_dropout_prob
lowercase_ : Any = max_position_embeddings
lowercase_ : List[str] = type_vocab_size
lowercase_ : int = type_sequence_label_size
lowercase_ : List[Any] = initializer_range
lowercase_ : Any = num_labels
lowercase_ : Union[str, Any] = num_choices
lowercase_ : Tuple = scope
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Dict = None
if self.use_input_mask:
lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase_ : Dict = None
if self.use_token_type_ids:
lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
lowercase_ : str = None
lowercase_ : Union[str, Any] = None
lowercase_ : List[Any] = None
if self.use_labels:
lowercase_ : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowercase_ : Optional[int] = ids_tensor([self.batch_size] ,self.num_choices )
lowercase_ : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return NystromformerConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase_ ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Optional[Any] = NystromformerModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase_ : List[str] = model(lowercase_ ,attention_mask=lowercase_ ,token_type_ids=lowercase_ )
lowercase_ : str = model(lowercase_ ,token_type_ids=lowercase_ )
lowercase_ : Optional[int] = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[Any] = NystromformerForMaskedLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase_ : List[Any] = model(lowercase_ ,attention_mask=lowercase_ ,token_type_ids=lowercase_ ,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = NystromformerForQuestionAnswering(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase_ : Optional[int] = model(
lowercase_ ,attention_mask=lowercase_ ,token_type_ids=lowercase_ ,start_positions=lowercase_ ,end_positions=lowercase_ ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[Any] = self.num_labels
lowercase_ : Optional[int] = NystromformerForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase_ : Optional[int] = model(lowercase_ ,attention_mask=lowercase_ ,token_type_ids=lowercase_ ,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.num_labels
lowercase_ : Tuple = NystromformerForTokenClassification(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase_ : Optional[int] = model(lowercase_ ,attention_mask=lowercase_ ,token_type_ids=lowercase_ ,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : List[str] = self.num_choices
lowercase_ : Dict = NystromformerForMultipleChoice(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase_ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
lowercase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
lowercase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
lowercase_ : Optional[int] = model(
lowercase_ ,attention_mask=lowercase_ ,token_type_ids=lowercase_ ,labels=lowercase_ ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Tuple = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Tuple = config_and_inputs
lowercase_ : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ):
lowercase = (
(
NystromformerModel,
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase = (
{
'feature-extraction': NystromformerModel,
'fill-mask': NystromformerForMaskedLM,
'question-answering': NystromformerForQuestionAnswering,
'text-classification': NystromformerForSequenceClassification,
'token-classification': NystromformerForTokenClassification,
'zero-shot': NystromformerForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[str] = NystromformerModelTester(self )
lowercase_ : List[Any] = ConfigTester(self ,config_class=lowercase_ ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowercase_ : Tuple = type
self.model_tester.create_and_check_model(*lowercase_ )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase_ )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowercase_ )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase_ )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase_ )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase_ )
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : List[str] = NystromformerModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : int = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' )
lowercase_ : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
with torch.no_grad():
lowercase_ : int = model(lowercase_ )[0]
lowercase_ : str = torch.Size((1, 6, 768) )
self.assertEqual(output.shape ,lowercase_ )
lowercase_ : int = torch.tensor(
[[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,lowercase_ ,atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Any = 'the [MASK] of Belgium is Brussels'
lowercase_ : Dict = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' )
lowercase_ : str = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' )
lowercase_ : Tuple = tokenizer(lowercase_ ,return_tensors='pt' )
with torch.no_grad():
lowercase_ : Tuple = model(encoding.input_ids ).logits
lowercase_ : List[Any] = token_logits[:, 2, :].argmax(-1 )[0]
self.assertEqual(tokenizer.decode(lowercase_ ) ,'capital' )
| 356
|
"""simple docstring"""
__SCREAMING_SNAKE_CASE ={
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
__SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()}
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Union[str, Any] = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
lowercase_ : Dict = ''
for word in coded.split():
while len(__SCREAMING_SNAKE_CASE ) != 0:
decoded += decode_dict[word[:5]]
lowercase_ : Any = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 321
| 0
|
"""simple docstring"""
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"The `image_to_image.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionImg2ImgPipeline` instead."
)
| 357
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations_with_dp_array(
__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
lowercase_ : str = sum(
count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE )
for item in array )
lowercase_ : Tuple = answer
return answer
lowercase_ : Optional[Any] = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Dict = [0] * (target + 1)
lowercase_ : Dict = 1
for i in range(1 , target + 1 ):
for j in range(__SCREAMING_SNAKE_CASE ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE =3
__SCREAMING_SNAKE_CASE =5
__SCREAMING_SNAKE_CASE =[1, 2, 5]
print(combination_sum_iv(n, array, target))
| 321
| 0
|
"""simple docstring"""
from math import factorial, radians
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str = 18 , __SCREAMING_SNAKE_CASE : Optional[Any] = 10 ):
lowercase_ : int = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0)
# Converting from degrees to radians
lowercase_ : Any = radians(A_ )
lowercase_ : Dict = angle_in_radians
lowercase_ : Any = 3
lowercase_ : List[Any] = -1
for _ in range(A_ ):
result += (b * (angle_in_radians**a)) / factorial(A_ )
lowercase_ : Any = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(A_ , A_ )
if __name__ == "__main__":
__import__("doctest").testmod()
| 358
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : int = set_counts
lowercase_ : List[Any] = max(__UpperCamelCase )
lowercase_ : Union[str, Any] = len(__UpperCamelCase )
lowercase_ : Dict = [1] * num_sets
lowercase_ : Optional[int] = list(range(__UpperCamelCase ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase )
lowercase_ : int = self.get_parent(__UpperCamelCase )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : Tuple = 0
lowercase_ : str = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : str = 0
lowercase_ : Tuple = src_parent
lowercase_ : int = self.set_counts[src_parent]
lowercase_ : str = max(self.max_set ,__UpperCamelCase )
return True
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 321
| 0
|
"""simple docstring"""
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
__SCREAMING_SNAKE_CASE =logging.getLogger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple:
lowercase_ : List[str] = git.Repo(search_parent_directories=_lowercase )
lowercase_ : List[Any] = {
'repo_id': str(_lowercase ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
}
with open(os.path.join(_lowercase , 'git_log.json' ) , 'w' ) as f:
json.dump(_lowercase , _lowercase , indent=4 )
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict:
if params.n_gpu <= 0:
lowercase_ : List[str] = 0
lowercase_ : Any = -1
lowercase_ : str = True
lowercase_ : Union[str, Any] = False
return
assert torch.cuda.is_available()
logger.info('Initializing GPUs' )
if params.n_gpu > 1:
assert params.local_rank != -1
lowercase_ : str = int(os.environ['WORLD_SIZE'] )
lowercase_ : Any = int(os.environ['N_GPU_NODE'] )
lowercase_ : Any = int(os.environ['RANK'] )
# number of nodes / node ID
lowercase_ : List[str] = params.world_size // params.n_gpu_per_node
lowercase_ : List[str] = params.global_rank // params.n_gpu_per_node
lowercase_ : Tuple = True
assert params.n_nodes == int(os.environ['N_NODES'] )
assert params.node_id == int(os.environ['NODE_RANK'] )
# local job (single GPU)
else:
assert params.local_rank == -1
lowercase_ : Tuple = 1
lowercase_ : Union[str, Any] = 0
lowercase_ : Any = 0
lowercase_ : Dict = 0
lowercase_ : Union[str, Any] = 1
lowercase_ : Any = 1
lowercase_ : Union[str, Any] = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
lowercase_ : Any = params.node_id == 0 and params.local_rank == 0
lowercase_ : Union[str, Any] = params.n_nodes > 1
# summary
lowercase_ : Any = F'''--- Global rank: {params.global_rank} - '''
logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes )
logger.info(PREFIX + 'Node ID : %i' % params.node_id )
logger.info(PREFIX + 'Local rank : %i' % params.local_rank )
logger.info(PREFIX + 'World size : %i' % params.world_size )
logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node )
logger.info(PREFIX + 'Master : %s' % str(params.is_master ) )
logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) )
logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) )
logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info('Initializing PyTorch distributed' )
torch.distributed.init_process_group(
init_method='env://' , backend='nccl' , )
def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 359
|
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
__SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BlenderbotTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) )
lowercase_ : Any = add_prefix_space
lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase )
lowercase_ : int = add_prefix_space
lowercase_ : Any = 'post_processor'
lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
if tokenizer_component_instance:
lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ : str = tuple(state['sep'] )
if "cls" in state:
lowercase_ : Union[str, Any] = tuple(state['cls'] )
lowercase_ : str = False
if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Dict = add_prefix_space
lowercase_ : int = True
if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets:
lowercase_ : Optional[Any] = trim_offsets
lowercase_ : Tuple = True
if changes_to_apply:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) )
lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase )
setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value
lowercase_ : str = value
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : int = [self.sep_token_id]
lowercase_ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any:
'''simple docstring'''
return token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]:
'''simple docstring'''
lowercase_ : Optional[Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(__UpperCamelCase )
lowercase_ : Dict = ' '.join(__UpperCamelCase )
lowercase_ : str = self.encode(__UpperCamelCase )
if len(__UpperCamelCase ) > self.model_max_length:
lowercase_ : List[str] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 321
| 0
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : list ):
lowercase_ : Any = len(__SCREAMING_SNAKE_CASE )
for i in range(1 , __SCREAMING_SNAKE_CASE ):
lowercase_ : Dict = collection[i]
lowercase_ : Optional[int] = 0
lowercase_ : List[Any] = i - 1
while low <= high:
lowercase_ : List[Any] = (low + high) // 2
if val < collection[mid]:
lowercase_ : Union[str, Any] = mid - 1
else:
lowercase_ : Union[str, Any] = mid + 1
for j in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , -1 ):
lowercase_ : Any = collection[j - 1]
lowercase_ : Any = val
return collection
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =input("Enter numbers separated by a comma:\n").strip()
__SCREAMING_SNAKE_CASE =[int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 360
|
"""simple docstring"""
import os
import sys
import unittest
__SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py")
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py")
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'}
lowercase_ : Union[str, Any] = {
'BlipModelTest': 'BlipModelTester',
'BlipTextImageModelTest': 'BlipTextImageModelsModelTester',
'BlipTextModelTest': 'BlipTextModelTester',
'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester',
'BlipVQAModelTest': 'BlipVQAModelTester',
'BlipVisionModelTest': 'BlipVisionModelTester',
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : Any = {
'BertForMaskedLM': ['BertModelTest'],
'BertForMultipleChoice': ['BertModelTest'],
'BertForNextSentencePrediction': ['BertModelTest'],
'BertForPreTraining': ['BertModelTest'],
'BertForQuestionAnswering': ['BertModelTest'],
'BertForSequenceClassification': ['BertModelTest'],
'BertForTokenClassification': ['BertModelTest'],
'BertLMHeadModel': ['BertModelTest'],
'BertModel': ['BertModelTest'],
}
lowercase_ : Any = {
'BlipForConditionalGeneration': ['BlipTextImageModelTest'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'],
'BlipForQuestionAnswering': ['BlipVQAModelTest'],
'BlipModel': ['BlipModelTest'],
'BlipTextModel': ['BlipTextModelTest'],
'BlipVisionModel': ['BlipVisionModelTest'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Tuple = {
'BertForMaskedLM': ['BertModelTester'],
'BertForMultipleChoice': ['BertModelTester'],
'BertForNextSentencePrediction': ['BertModelTester'],
'BertForPreTraining': ['BertModelTester'],
'BertForQuestionAnswering': ['BertModelTester'],
'BertForSequenceClassification': ['BertModelTester'],
'BertForTokenClassification': ['BertModelTester'],
'BertLMHeadModel': ['BertModelTester'],
'BertModel': ['BertModelTester'],
}
lowercase_ : Optional[Any] = {
'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'],
'BlipForQuestionAnswering': ['BlipVQAModelTester'],
'BlipModel': ['BlipModelTester'],
'BlipTextModel': ['BlipTextModelTester'],
'BlipVisionModel': ['BlipVisionModelTester'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
__SCREAMING_SNAKE_CASE =False
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ,__UpperCamelCase=32 ) -> Union[str, Any]:
'''simple docstring'''
set_seed(0 )
lowercase_ : str = UNetaDModel(sample_size=lowerCamelCase_ ,in_channels=3 ,out_channels=3 )
lowercase_ : int = torch.optim.SGD(model.parameters() ,lr=0.0001 )
return model, optimizer
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : str = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
lowercase_ : str = DDPMScheduler(
num_train_timesteps=1000 ,beta_start=0.0001 ,beta_end=0.02 ,beta_schedule='linear' ,clip_sample=lowerCamelCase_ ,)
lowercase_ : List[str] = DDIMScheduler(
num_train_timesteps=1000 ,beta_start=0.0001 ,beta_end=0.02 ,beta_schedule='linear' ,clip_sample=lowerCamelCase_ ,)
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
lowercase_ : Any = [torch.randn((4, 3, 32, 32) ).clip(-1 ,1 ).to(lowerCamelCase_ ) for _ in range(4 )]
lowercase_ : Dict = [torch.randn((4, 3, 32, 32) ).to(lowerCamelCase_ ) for _ in range(4 )]
lowercase_ : Any = [torch.randint(0 ,1000 ,(4,) ).long().to(lowerCamelCase_ ) for _ in range(4 )]
# train with a DDPM scheduler
lowercase_ , lowercase_ : Any = self.get_model_optimizer(resolution=32 )
model.train().to(lowerCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowercase_ : Union[str, Any] = ddpm_scheduler.add_noise(clean_images[i] ,noise[i] ,timesteps[i] )
lowercase_ : Dict = model(lowerCamelCase_ ,timesteps[i] ).sample
lowercase_ : Union[str, Any] = torch.nn.functional.mse_loss(lowerCamelCase_ ,noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
lowercase_ , lowercase_ : Optional[Any] = self.get_model_optimizer(resolution=32 )
model.train().to(lowerCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowercase_ : int = ddim_scheduler.add_noise(clean_images[i] ,noise[i] ,timesteps[i] )
lowercase_ : Any = model(lowerCamelCase_ ,timesteps[i] ).sample
lowercase_ : int = torch.nn.functional.mse_loss(lowerCamelCase_ ,noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-5 ) )
self.assertTrue(torch.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-5 ) )
| 361
|
"""simple docstring"""
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ):
with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX )
try:
print(*__SCREAMING_SNAKE_CASE )
finally:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN )
__SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
__SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank)
__SCREAMING_SNAKE_CASE =socket.gethostname()
__SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]"
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__SCREAMING_SNAKE_CASE =dist.get_rank()
__SCREAMING_SNAKE_CASE =dist.get_world_size()
printflock(F"{gpu} is OK (global rank: {rank}/{world_size})")
dist.barrier()
if rank == 0:
printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
except Exception:
printflock(F"{gpu} is broken")
raise
| 321
| 0
|
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear",
"self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed",
"self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "ctc_proj",
"mask_emb": "masked_spec_embed",
}
__SCREAMING_SNAKE_CASE =[
"ctc_proj",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
for attribute in key.split('.' ):
lowercase_ : Tuple = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
lowercase_ : Any = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
lowercase_ : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
lowercase_ : List[str] = value
elif weight_type == "weight_g":
lowercase_ : Optional[int] = value
elif weight_type == "weight_v":
lowercase_ : List[Any] = value
elif weight_type == "bias":
lowercase_ : Optional[Any] = value
else:
lowercase_ : int = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any ):
lowercase_ : List[str] = []
lowercase_ : Any = fairseq_model.state_dict()
lowercase_ : int = hf_model.feature_extractor
for name, value in fairseq_dict.items():
lowercase_ : Optional[Any] = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , )
lowercase_ : List[str] = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
lowercase_ : Union[str, Any] = True
if "*" in mapped_key:
lowercase_ : Dict = name.split(__lowerCAmelCase )[0].split('.' )[-2]
lowercase_ : Optional[int] = mapped_key.replace('*' , __lowerCAmelCase )
if "weight_g" in name:
lowercase_ : List[Any] = '''weight_g'''
elif "weight_v" in name:
lowercase_ : Tuple = '''weight_v'''
elif "bias" in name and "relative_attention_bias" not in name:
lowercase_ : Union[str, Any] = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowercase_ : Any = '''weight'''
else:
lowercase_ : Union[str, Any] = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] ):
lowercase_ : str = full_name.split('conv_layers.' )[-1]
lowercase_ : Optional[int] = name.split('.' )
lowercase_ : Optional[int] = int(items[0] )
lowercase_ : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
lowercase_ : str = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
lowercase_ : List[Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
lowercase_ : Any = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
lowercase_ : List[str] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=None ):
lowercase_ : Any = torch.load(__lowerCAmelCase )
lowercase_ : str = WavLMConfigOrig(checkpoint['cfg'] )
lowercase_ : List[str] = WavLMOrig(__lowerCAmelCase )
model.load_state_dict(checkpoint['model'] )
model.eval()
if config_path is not None:
lowercase_ : Tuple = WavLMConfig.from_pretrained(__lowerCAmelCase )
else:
lowercase_ : List[str] = WavLMConfig()
lowercase_ : List[Any] = WavLMModel(__lowerCAmelCase )
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase )
hf_wavlm.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 362
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : List[Any] = name
lowercase_ : int = val
def __str__( self ) -> Tuple:
'''simple docstring'''
return f'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return self.val < other.val
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Optional[int] = {}
lowercase_ : Tuple = {}
lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase )
def __getitem__( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
return self.get_value(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return (idx - 1) // 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return idx * 2 + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return idx * 2 + 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
return self.heap_dict[key]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1
lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase )
for idx, i in enumerate(__UpperCamelCase ):
lowercase_ : Any = idx
lowercase_ : str = i.val
for i in range(__UpperCamelCase ,-1 ,-1 ):
self.sift_down(__UpperCamelCase ,__UpperCamelCase )
return array
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
while True:
lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741
lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase )
lowercase_ : List[str] = idx
if l < len(__UpperCamelCase ) and array[l] < array[idx]:
lowercase_ : List[str] = l
if r < len(__UpperCamelCase ) and array[r] < array[smallest]:
lowercase_ : Dict = r
if smallest != idx:
lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx]
(
(
lowercase_
) , (
lowercase_
) ,
) : str = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
lowercase_ : Any = smallest
else:
break
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase )
while p >= 0 and self.heap[p] > self.heap[idx]:
lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
lowercase_ : int = p
lowercase_ : str = self.get_parent_idx(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return self.heap[0]
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
lowercase_ : Tuple = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 ,self.heap )
return x
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
self.heap.append(__UpperCamelCase )
lowercase_ : Tuple = len(self.heap ) - 1
lowercase_ : Optional[int] = node.val
self.sift_up(len(self.heap ) - 1 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return len(self.heap ) == 0
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
lowercase_ : Any = new_value
lowercase_ : List[str] = new_value
self.sift_up(self.idx_of_element[node] )
__SCREAMING_SNAKE_CASE =Node("R", -1)
__SCREAMING_SNAKE_CASE =Node("B", 6)
__SCREAMING_SNAKE_CASE =Node("A", 3)
__SCREAMING_SNAKE_CASE =Node("X", 1)
__SCREAMING_SNAKE_CASE =Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
__SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 321
| 0
|
"""simple docstring"""
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
@add_end_docstrings(
a__ , r'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , )
class UpperCamelCase ( a__ ):
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> np.ndarray:
'''simple docstring'''
if self.framework == "tf":
lowercase_ : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
lowercase_ : str = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=lowerCAmelCase__ )
else:
raise ValueError('Unsupported framework' )
return masked_index
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> np.ndarray:
'''simple docstring'''
lowercase_ : str = self.get_masked_index(lowerCAmelCase__ )
lowercase_ : Any = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
'fill-mask' ,self.model.base_model_prefix ,f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input['input_ids'][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(lowerCAmelCase__ )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Dict[str, GenericTensor]:
'''simple docstring'''
if return_tensors is None:
lowercase_ : Optional[Any] = self.framework
lowercase_ : Any = self.tokenizer(lowerCAmelCase__ ,return_tensors=lowerCAmelCase__ )
self.ensure_exactly_one_mask_token(lowerCAmelCase__ )
return model_inputs
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Tuple = self.model(**lowerCAmelCase__ )
lowercase_ : str = model_inputs["input_ids"]
return model_outputs
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=5 ,__UpperCamelCase=None ) -> Union[str, Any]:
'''simple docstring'''
if target_ids is not None and target_ids.shape[0] < top_k:
lowercase_ : Tuple = target_ids.shape[0]
lowercase_ : int = model_outputs["input_ids"][0]
lowercase_ : Union[str, Any] = model_outputs["logits"]
if self.framework == "tf":
lowercase_ : List[Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
lowercase_ : Tuple = outputs.numpy()
lowercase_ : Dict = outputs[0, masked_index, :]
lowercase_ : Dict = stable_softmax(lowerCAmelCase__ ,axis=-1 )
if target_ids is not None:
lowercase_ : Any = tf.gather_nd(tf.squeeze(lowerCAmelCase__ ,0 ) ,target_ids.reshape(-1 ,1 ) )
lowercase_ : Optional[int] = tf.expand_dims(lowerCAmelCase__ ,0 )
lowercase_ : Optional[int] = tf.math.top_k(lowerCAmelCase__ ,k=lowerCAmelCase__ )
lowercase_ : Optional[Any] = topk.values.numpy(), topk.indices.numpy()
else:
lowercase_ : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=lowerCAmelCase__ ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
lowercase_ : List[str] = outputs[0, masked_index, :]
lowercase_ : Optional[Any] = logits.softmax(dim=-1 )
if target_ids is not None:
lowercase_ : List[str] = probs[..., target_ids]
lowercase_ : List[Any] = probs.topk(lowerCAmelCase__ )
lowercase_ : Tuple = []
lowercase_ : Any = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ):
lowercase_ : Union[str, Any] = []
for v, p in zip(_values ,_predictions ):
# Copy is important since we're going to modify this array in place
lowercase_ : Union[str, Any] = input_ids.numpy().copy()
if target_ids is not None:
lowercase_ : Union[str, Any] = target_ids[p].tolist()
lowercase_ : Optional[Any] = p
# Filter padding out:
lowercase_ : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
lowercase_ : Tuple = self.tokenizer.decode(lowerCAmelCase__ ,skip_special_tokens=lowerCAmelCase__ )
lowercase_ : List[Any] = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence}
row.append(lowerCAmelCase__ )
result.append(lowerCAmelCase__ )
if single_mask:
return result[0]
return result
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> Dict:
'''simple docstring'''
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowercase_ : List[Any] = [targets]
try:
lowercase_ : int = self.tokenizer.get_vocab()
except Exception:
lowercase_ : int = {}
lowercase_ : Optional[int] = []
for target in targets:
lowercase_ : Tuple = vocab.get(lowerCAmelCase__ ,lowerCAmelCase__ )
if id_ is None:
lowercase_ : Optional[int] = self.tokenizer(
lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,return_token_type_ids=lowerCAmelCase__ ,max_length=1 ,truncation=lowerCAmelCase__ ,)["input_ids"]
if len(lowerCAmelCase__ ) == 0:
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
'We cannot replace it with anything meaningful, ignoring it' )
continue
lowercase_ : Union[str, Any] = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' )
target_ids.append(id_ )
lowercase_ : List[Any] = list(set(lowerCAmelCase__ ) )
if len(lowerCAmelCase__ ) == 0:
raise ValueError('At least one target must be provided when passed.' )
lowercase_ : Union[str, Any] = np.array(lowerCAmelCase__ )
return target_ids
def _UpperCAmelCase ( self ,__UpperCamelCase=None ,__UpperCamelCase=None ) -> int:
'''simple docstring'''
lowercase_ : List[Any] = {}
if targets is not None:
lowercase_ : Optional[int] = self.get_target_ids(lowerCAmelCase__ ,lowerCAmelCase__ )
lowercase_ : Any = target_ids
if top_k is not None:
lowercase_ : int = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
'fill-mask' ,self.model.base_model_prefix ,'The tokenizer does not define a `mask_token`.' )
return {}, {}, postprocess_params
def __call__( self ,__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase ) -> str:
'''simple docstring'''
lowercase_ : List[str] = super().__call__(lowerCAmelCase__ ,**lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and len(lowerCAmelCase__ ) == 1:
return outputs[0]
return outputs
| 363
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[Any] = tempfile.mkdtemp()
# fmt: off
lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) )
lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
lowercase_ : Tuple = {'unk_token': '<unk>'}
lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + '\n' )
with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp:
fp.write('\n'.join(__UpperCamelCase ) )
lowercase_ : Any = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073],
'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase )
with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp:
json.dump(__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )]
lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_tokenizer()
lowercase_ : List[Any] = self.get_rust_tokenizer()
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase )
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase )
self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase )
self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' )
lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 )
lowercase_ : Any = CLIPSegProcessor.from_pretrained(
self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,__UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[str] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = self.prepare_image_inputs()
lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' )
lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[Any] = self.get_tokenizer()
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Dict = 'lower newer'
lowercase_ : Any = processor(text=__UpperCamelCase )
lowercase_ : int = tokenizer(__UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.get_image_processor()
lowercase_ : str = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = 'lower newer'
lowercase_ : str = self.prepare_image_inputs()
lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = self.prepare_image_inputs()
lowercase_ : Optional[Any] = self.prepare_image_inputs()
lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase )
lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ):
lowercase_ : Tuple = os.path.join(args.tf_model_dir , 'parameters.json' )
lowercase_ : int = json.loads(open(__SCREAMING_SNAKE_CASE ).read() )
if not params:
raise ValueError(
F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' )
if not args.output.endswith('.pt' ):
lowercase_ : Dict = args.output + '.pt'
lowercase_ : Any = OrderedDict()
with tf.device('/CPU:0' ):
lowercase_ : List[str] = tf.train.load_checkpoint(args.tf_model_dir )
lowercase_ : List[str] = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
lowercase_ : str = reader.get_tensor(__SCREAMING_SNAKE_CASE ).astype(np.floataa )
if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ):
continue
if key_name.startswith('pasts/' ):
if key_name.startswith('pasts/mlp' ):
lowercase_ : int = int(key_name[9] )
elif key_name.startswith('pasts/out' ):
lowercase_ : List[Any] = 8
lowercase_ : Any = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
lowercase_ : Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase_ : Tuple = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.startswith('model/moe' ):
lowercase_ : List[Any] = int(key_name[9:].split('/' )[0] )
if key_name.endswith('/switch_gating/kernel' ):
lowercase_ : Tuple = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player
lowercase_ : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase_ : str = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.endswith('/softmlp/kernel' ):
lowercase_ : Tuple = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player
lowercase_ : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase_ : str = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ):
lowercase_ : str = key_name[-9:-7]
for i in range(16 ):
lowercase_ : Optional[Any] = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer)
lowercase_ : Any = (
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
lowercase_ : Optional[Any] = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.startswith('model/mlp' ):
lowercase_ : List[str] = int(key_name[9:].split('/' )[0] )
if key_name.endswith('/p1/kernel' ):
lowercase_ : Tuple = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player
lowercase_ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase_ : Optional[int] = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.endswith('/p1/bias' ):
lowercase_ : Dict = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player
lowercase_ : Any = vnp.copy() # same because it is one dimensional
lowercase_ : Optional[int] = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.endswith('/p2/kernel' ):
lowercase_ : str = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player
lowercase_ : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase_ : Union[str, Any] = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.endswith('/p2/bias' ):
lowercase_ : List[str] = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player
lowercase_ : int = vnp.copy() # same because it is one dimensional
lowercase_ : int = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.startswith('model/ln' ):
lowercase_ : Any = int(key_name[8:].split('/' )[0] )
if key_name.endswith('/b' ):
lowercase_ : Tuple = 'model.blocks.%d.feed_forward.norm.bias' % player
lowercase_ : Union[str, Any] = vnp.copy() # same because it is one dimensional
lowercase_ : Union[str, Any] = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.endswith('/g' ):
lowercase_ : Tuple = 'model.blocks.%d.feed_forward.norm.weight' % player
lowercase_ : str = vnp.copy() # same because it is one dimensional
lowercase_ : Any = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.startswith('model/att' ):
lowercase_ : int = int(key_name[9:].split('/' )[0] )
if key_name.endswith('/qkv/kernel' ):
lowercase_ : Optional[Any] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
lowercase_ : Any = state[:, 0, :, :]
lowercase_ : List[Any] = state[:, 1, :, :]
lowercase_ : Optional[int] = state[:, 2, :, :]
lowercase_ : Optional[Any] = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowercase_ : Dict = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowercase_ : List[str] = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowercase_ : Optional[Any] = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player
lowercase_ : Optional[int] = torch.tensor(__SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player
lowercase_ : List[str] = torch.tensor(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player
lowercase_ : Any = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.endswith('/o/kernel' ):
lowercase_ : Dict = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player
lowercase_ : Optional[int] = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
lowercase_ : Optional[int] = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.startswith('model/an' ):
lowercase_ : Any = int(key_name[8:].split('/' )[0] )
if key_name.endswith('/b' ):
lowercase_ : Tuple = 'model.blocks.%d.self_attn.norm.bias' % player
lowercase_ : int = vnp.copy() # same because it is one dimensional
lowercase_ : int = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.endswith('/g' ):
lowercase_ : Dict = 'model.blocks.%d.self_attn.norm.weight' % player
lowercase_ : Optional[int] = vnp.copy() # same because it is one dimensional
lowercase_ : Dict = torch.tensor(__SCREAMING_SNAKE_CASE )
elif (
key_name.startswith('model/wte' )
or key_name.startswith('model/wpe' )
or key_name.startswith('model/ete' )
):
lowercase_ : int = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[
key_name[-3:]
]
lowercase_ : str = 'model.%s.weight' % nlayer
lowercase_ : int = vnp.copy() # same in embedded
lowercase_ : Optional[Any] = torch.tensor(__SCREAMING_SNAKE_CASE )
if key_name.startswith('model/wte' ):
lowercase_ : str = 'lm_head.weight'
lowercase_ : List[str] = vnp.copy() # same in embedded
lowercase_ : Optional[int] = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name.startswith('model/wob' ):
lowercase_ : Union[str, Any] = 'final_logits_bias'
lowercase_ : Tuple = vnp.copy() # same in embedded
lowercase_ : List[Any] = state.reshape((1, -1) )
lowercase_ : Optional[Any] = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name == "model/dense/kernel":
lowercase_ : Optional[int] = 'model.last_project.weight'
lowercase_ : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase_ : List[str] = torch.tensor(__SCREAMING_SNAKE_CASE )
elif key_name == "model/dense_1/bias":
lowercase_ : int = 'model.last_project.bias'
lowercase_ : List[Any] = vnp.copy() # same because it is one dimensional
lowercase_ : Optional[int] = torch.tensor(__SCREAMING_SNAKE_CASE )
torch.save(__SCREAMING_SNAKE_CASE , args.output )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser(
description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model")
parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model")
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 364
|
"""simple docstring"""
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 321
| 0
|
"""simple docstring"""
from __future__ import annotations
class __lowerCamelCase :
def __init__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : Dict = data
lowercase_ : Tuple = None
lowercase_ : List[str] = None
def lowercase__( __SCREAMING_SNAKE_CASE : Node | None ): # In Order traversal of the tree
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def lowercase__( __SCREAMING_SNAKE_CASE : Node | None ):
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def lowercase__( __SCREAMING_SNAKE_CASE : Node ):
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def lowercase__( ): # Main function for testing.
lowercase_ : List[str] = Node(1 )
lowercase_ : List[str] = Node(2 )
lowercase_ : Optional[Any] = Node(3 )
lowercase_ : Any = Node(4 )
lowercase_ : List[Any] = Node(5 )
lowercase_ : Optional[Any] = Node(6 )
lowercase_ : str = Node(7 )
lowercase_ : Tuple = Node(8 )
lowercase_ : Optional[int] = Node(9 )
print(is_full_binary_tree(snake_case__ ) )
print(depth_of_tree(snake_case__ ) )
print('Tree is: ' )
display(snake_case__ )
if __name__ == "__main__":
main()
| 365
|
"""simple docstring"""
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = parent
lowercase_ : Tuple = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Optional[Any] = is_training
lowercase_ : Any = use_input_mask
lowercase_ : Optional[Any] = vocab_size
lowercase_ : str = hidden_size
lowercase_ : Any = num_hidden_layers
lowercase_ : Dict = num_attention_heads
lowercase_ : Optional[int] = intermediate_size
lowercase_ : Any = hidden_act
lowercase_ : Optional[Any] = hidden_dropout_prob
lowercase_ : str = attention_probs_dropout_prob
lowercase_ : Any = max_position_embeddings
lowercase_ : Optional[Any] = initializer_range
lowercase_ : Union[str, Any] = use_labels
lowercase_ : Union[str, Any] = scope
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : List[str] = None
if self.use_input_mask:
lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Any = self.get_config()
return config, input_ids, input_mask, token_labels
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return BertGenerationConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : str = self.prepare_config_and_inputs()
lowercase_ : int = True
lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Optional[Any] = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = True
lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Union[str, Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,)
lowercase_ : Dict = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,)
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int:
'''simple docstring'''
lowercase_ : List[str] = True
lowercase_ : Union[str, Any] = True
lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval()
# first forward pass
lowercase_ : str = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,)
lowercase_ : Dict = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size )
lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 )
# append to next input_ids and
lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 )
lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 )
lowercase_ : int = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
lowercase_ : List[Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
# select random slice
lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
lowercase_ : int = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
lowercase = (BertGenerationDecoder,) if is_torch_available() else ()
lowercase = (
{'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder}
if is_torch_available()
else {}
)
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoderTester(self )
lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs()
lowercase_ : Optional[int] = 'bert'
self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
lowercase_ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,)
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
self.assertIsNotNone(__UpperCamelCase )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Tuple = model(__UpperCamelCase )[0]
lowercase_ : Dict = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : str = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Dict = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : Dict = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
__SCREAMING_SNAKE_CASE ='\\n\n'
__SCREAMING_SNAKE_CASE ='\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n'
__SCREAMING_SNAKE_CASE ='\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase ( datasets.Metric ):
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'input_texts': datasets.Value('string' ),
} ) ,reference_urls=['https://huggingface.co/docs/transformers/perplexity'] ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = 16 ,__UpperCamelCase = True ,__UpperCamelCase=None ) -> Tuple:
'''simple docstring'''
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
lowercase_ : Optional[Any] = """cuda"""
else:
lowercase_ : Union[str, Any] = """cuda""" if torch.cuda.is_available() else """cpu"""
lowercase_ : int = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE_ )
lowercase_ : Optional[Any] = model.to(SCREAMING_SNAKE_CASE_ )
lowercase_ : List[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
lowercase_ : int = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(SCREAMING_SNAKE_CASE_ ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
lowercase_ : Any = model.config.max_length - 1
else:
lowercase_ : int = model.config.max_length
lowercase_ : List[Any] = tokenizer(
SCREAMING_SNAKE_CASE_ ,add_special_tokens=SCREAMING_SNAKE_CASE_ ,padding=SCREAMING_SNAKE_CASE_ ,truncation=SCREAMING_SNAKE_CASE_ ,max_length=SCREAMING_SNAKE_CASE_ ,return_tensors='pt' ,return_attention_mask=SCREAMING_SNAKE_CASE_ ,).to(SCREAMING_SNAKE_CASE_ )
lowercase_ : int = encodings["""input_ids"""]
lowercase_ : Optional[int] = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) ,1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) ,2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
lowercase_ : Union[str, Any] = []
lowercase_ : int = CrossEntropyLoss(reduction='none' )
for start_index in logging.tqdm(range(0 ,len(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ ) ):
lowercase_ : str = min(start_index + batch_size ,len(SCREAMING_SNAKE_CASE_ ) )
lowercase_ : Any = encoded_texts[start_index:end_index]
lowercase_ : str = attn_masks[start_index:end_index]
if add_start_token:
lowercase_ : Tuple = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(SCREAMING_SNAKE_CASE_ )
lowercase_ : Dict = torch.cat([bos_tokens_tensor, encoded_batch] ,dim=1 )
lowercase_ : Optional[int] = torch.cat(
[torch.ones(bos_tokens_tensor.size() ,dtype=torch.intaa ).to(SCREAMING_SNAKE_CASE_ ), attn_mask] ,dim=1 )
lowercase_ : Dict = encoded_batch
with torch.no_grad():
lowercase_ : Tuple = model(SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ).logits
lowercase_ : Optional[int] = out_logits[..., :-1, :].contiguous()
lowercase_ : Any = labels[..., 1:].contiguous()
lowercase_ : List[str] = attn_mask[..., 1:].contiguous()
lowercase_ : List[Any] = torch.expa(
(loss_fct(shift_logits.transpose(1 ,2 ) ,SCREAMING_SNAKE_CASE_ ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(SCREAMING_SNAKE_CASE_ )}
| 366
|
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
return None
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
return None
class UpperCamelCase ( unittest.TestCase ):
lowercase = [
# (model_name, model_kwargs)
('bert-base-cased', {}),
('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
from transformers import BertModel
lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words']
with NamedTemporaryFile(mode='w+t' ) as vocab_file:
vocab_file.write('\n'.join(__UpperCamelCase ) )
vocab_file.flush()
lowercase_ : List[str] = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) )
model.save_pretrained(__UpperCamelCase )
self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase )
@require_tf
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
lowercase_ : int = quantize(Path(__UpperCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
lowercase_ : Tuple = quantize(__UpperCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
try:
# Compute path
with TemporaryDirectory() as tempdir:
lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase )
return path
except Exception as e:
self.fail(__UpperCamelCase )
@require_torch
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
from transformers import BertModel
lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' )
@require_tf
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
from transformers import TFBertModel
lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1']
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase )
# Assert all variables are present
self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase )
self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} )
self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids']
lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]}
lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__UpperCamelCase ) ,3 )
# Should have exactly the same input names
self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__UpperCamelCase ) ,1 )
self.assertEqual(len(__UpperCamelCase ) ,1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] ,tokens['input_ids'] )
self.assertEqual(ordered_input_names[0] ,'input_ids' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' )
self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
| 321
| 0
|
"""simple docstring"""
from __future__ import annotations
import math
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] ) -> int:
if depth < 0:
raise ValueError('Depth cannot be less than 0' )
if len(SCREAMING_SNAKE_CASE__ ) == 0:
raise ValueError('Scores cannot be empty' )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , )
return min(
minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , )
def lowercase__( ) -> None:
lowercase_ : List[str] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23]
lowercase_ : Optional[Any] = math.log(len(SCREAMING_SNAKE_CASE__ ) , 2 )
print('Optimal value : ' , end='' )
print(minimax(0 , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 367
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]]
lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase )
self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(__UpperCamelCase ) # fails here
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 )
lowercase_ : str = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 )
lowercase_ : Any = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 )
lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 321
| 0
|
"""simple docstring"""
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__SCREAMING_SNAKE_CASE =get_tests_dir("fixtures/test_sentencepiece_no_bos.model")
@require_sentencepiece
@require_tokenizers
class UpperCamelCase ( _a , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase_ : Tuple = PegasusTokenizer(__UpperCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return PegasusTokenizer.from_pretrained('google/pegasus-large' )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> PegasusTokenizer:
'''simple docstring'''
return PegasusTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str:
'''simple docstring'''
return ("This is a test", "This is a test")
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = '</s>'
lowercase_ : Tuple = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,'<pad>' )
self.assertEqual(vocab_keys[1] ,'</s>' )
self.assertEqual(vocab_keys[-1] ,'v' )
self.assertEqual(len(__UpperCamelCase ) ,1103 )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size ,1103 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowercase_ : int = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowercase_ : Any = (
'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'
' </s> <pad> <pad> <pad>'
)
lowercase_ : List[str] = rust_tokenizer([raw_input_str] ,return_tensors=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ).input_ids[0]
lowercase_ : Dict = py_tokenizer([raw_input_str] ,return_tensors=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ).input_ids[0]
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : int = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowercase_ : int = '<mask_1> To ensure a <mask_2> flow of bank resolutions.'
lowercase_ : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1]
lowercase_ : str = tokenizer([raw_input_str] ,return_tensors=__UpperCamelCase ).input_ids[0]
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : int = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
lowercase_ : str = 'To ensure a smooth flow of bank resolutions.'
lowercase_ : int = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1]
lowercase_ : Dict = tokenizer([raw_input_str] ,return_tensors=__UpperCamelCase ).input_ids[0]
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : List[Any] = ['This is going to be way too long.' * 150, 'short example']
lowercase_ : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny']
lowercase_ : Optional[int] = self._large_tokenizer(__UpperCamelCase ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ,return_tensors='pt' )
lowercase_ : int = self._large_tokenizer(
text_target=__UpperCamelCase ,max_length=5 ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ,return_tensors='pt' )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(__UpperCamelCase ) == 2 # input_ids, attention_mask.
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : str = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__UpperCamelCase ,model_name='google/bigbird-pegasus-large-arxiv' ,revision='ba85d0851d708441f91440d509690f1ab6353415' ,)
@require_sentencepiece
@require_tokenizers
class UpperCamelCase ( _a , unittest.TestCase ):
lowercase = PegasusTokenizer
lowercase = PegasusTokenizerFast
lowercase = True
lowercase = True
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase_ : List[str] = PegasusTokenizer(__UpperCamelCase ,offset=0 ,mask_token_sent=__UpperCamelCase ,mask_token='[MASK]' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> PegasusTokenizer:
'''simple docstring'''
return PegasusTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str:
'''simple docstring'''
return ("This is a test", "This is a test")
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowercase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowercase_ : Any = (
'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'
' <pad> <pad> <pad>'
)
lowercase_ : Any = rust_tokenizer([raw_input_str] ,return_tensors=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ).input_ids[0]
lowercase_ : Union[str, Any] = py_tokenizer([raw_input_str] ,return_tensors=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ).input_ids[0]
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[int] = ['This is going to be way too long.' * 1000, 'short example']
lowercase_ : Optional[Any] = ['not super long but more than 5 tokens', 'tiny']
lowercase_ : int = self._large_tokenizer(__UpperCamelCase ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ,return_tensors='pt' )
lowercase_ : Optional[Any] = self._large_tokenizer(
text_target=__UpperCamelCase ,max_length=5 ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ,return_tensors='pt' )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(__UpperCamelCase ) == 2 # input_ids, attention_mask.
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Union[str, Any] = (
'This is an example string that is used to test the original TF implementation against the HF'
' implementation'
)
lowercase_ : List[Any] = self._large_tokenizer(__UpperCamelCase ).input_ids
self.assertListEqual(
__UpperCamelCase ,[182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] ,)
| 368
|
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[Any] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : Tuple = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
print(F'''Loading model based on config from {config_path}...''' )
lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
lowercase_ : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
lowercase_ : BertSelfAttention = layer.attention.self
lowercase_ : str = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape )
lowercase_ : int = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape )
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape )
lowercase_ : List[Any] = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape )
# Self-attention Output
lowercase_ : BertSelfOutput = layer.attention.output
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape )
lowercase_ : Any = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape )
lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' )
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' )
# Intermediate
lowercase_ : BertIntermediate = layer.intermediate
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' )
lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' )
# Output
lowercase_ : BertOutput = layer.output
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' )
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' )
lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' )
lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' )
# Embeddings
lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' )
lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' )
lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' )
lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' )
# LM Head
lowercase_ : int = model.cls.predictions.transform
lowercase_ : str = get_masked_lm_array('dense/kernel' )
lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' )
lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' )
lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' )
lowercase_ : List[str] = get_masked_lm_array('embedding_table' )
# Pooling
lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' )
# Export final model
model.save_pretrained(__SCREAMING_SNAKE_CASE )
# Integration test - should load without any errors ;)
lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE )
print(new_model.eval() )
print('Model conversion was done sucessfully!' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 321
| 0
|
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class UpperCamelCase ( unittest.TestCase , __a ):
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Union[str, Any] = load_tool('text-classification' )
self.tool.setup()
lowercase_ : Dict = load_tool('text-classification' ,remote=UpperCamelCase__ )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : List[str] = self.tool('That\'s quite cool' ,['positive', 'negative'] )
self.assertEqual(UpperCamelCase__ ,'positive' )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Tuple = self.remote_tool('That\'s quite cool' ,['positive', 'negative'] )
self.assertEqual(UpperCamelCase__ ,'positive' )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[Any] = self.tool(text='That\'s quite cool' ,labels=['positive', 'negative'] )
self.assertEqual(UpperCamelCase__ ,'positive' )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : str = self.remote_tool(text='That\'s quite cool' ,labels=['positive', 'negative'] )
self.assertEqual(UpperCamelCase__ ,'positive' )
| 369
|
"""simple docstring"""
from collections import namedtuple
import requests
from lxml import html # type: ignore
__SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered")
def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ):
lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) )
__SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 321
| 0
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class UpperCamelCase ( metaclass=_lowerCAmelCase ):
lowercase = ["keras_nlp"]
def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self ,['keras_nlp'] )
| 370
|
"""simple docstring"""
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 321
| 0
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : dict ):
lowercase_ : int = set()
# edges = list of graph's edges
lowercase_ : List[Any] = get_edges(a__ )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
lowercase_ , lowercase_ : Tuple = edges.pop()
chosen_vertices.add(a__ )
chosen_vertices.add(a__ )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(a__ )
return chosen_vertices
def lowercase__( __SCREAMING_SNAKE_CASE : dict ):
lowercase_ : Tuple = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 371
|
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = parent
lowercase_ : str = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Dict = is_training
lowercase_ : Tuple = use_input_mask
lowercase_ : Optional[Any] = use_token_type_ids
lowercase_ : List[str] = use_labels
lowercase_ : Any = vocab_size
lowercase_ : List[str] = hidden_size
lowercase_ : Optional[int] = num_hidden_layers
lowercase_ : int = num_attention_heads
lowercase_ : int = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : Optional[int] = hidden_dropout_prob
lowercase_ : Tuple = attention_probs_dropout_prob
lowercase_ : Tuple = max_position_embeddings
lowercase_ : Optional[int] = type_vocab_size
lowercase_ : Optional[int] = type_sequence_label_size
lowercase_ : Dict = initializer_range
lowercase_ : int = num_labels
lowercase_ : Any = num_choices
lowercase_ : int = scope
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Dict = None
if self.use_input_mask:
lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase_ : Tuple = None
lowercase_ : Tuple = None
lowercase_ : Tuple = None
if self.use_labels:
lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices )
lowercase_ : str = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return EsmConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Union[str, Any] = model(__UpperCamelCase )
lowercase_ : int = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.num_labels
lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Any = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Optional[int] = config_and_inputs
lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = False
lowercase = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase = ()
lowercase = (
{
'feature-extraction': EsmModel,
'fill-mask': EsmForMaskedLM,
'text-classification': EsmForSequenceClassification,
'token-classification': EsmForTokenClassification,
'zero-shot': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = True
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = EsmModelTester(self )
lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowercase_ : Optional[Any] = type
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
lowercase_ : List[Any] = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : List[Any] = torch.empty(2 ,4 ,30 )
lowercase_ : List[str] = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] )
lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@require_torch
class UpperCamelCase ( lowercase_ ):
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowercase_ : List[str] = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = 33
lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : List[str] = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowercase_ : Dict = model(__UpperCamelCase )[0]
# compare the actual values for a slice.
lowercase_ : Any = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
__SCREAMING_SNAKE_CASE =subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
__SCREAMING_SNAKE_CASE =(
subprocess.check_output(f"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode("utf-8").split()
)
__SCREAMING_SNAKE_CASE ="|".join(sys.argv[1:])
__SCREAMING_SNAKE_CASE =re.compile(rf"^({joined_dirs}).*?\.py$")
__SCREAMING_SNAKE_CASE =[x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| 350
|
"""simple docstring"""
import pickle
import numpy as np
from matplotlib import pyplot as plt
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[int] = bp_numa
lowercase_ : Dict = bp_numa
lowercase_ : Tuple = bp_numa
lowercase_ : List[Any] = conva_get[:2]
lowercase_ : int = conva_get[2]
lowercase_ : Dict = size_pa
lowercase_ : int = rate_w
lowercase_ : Union[str, Any] = rate_t
lowercase_ : Dict = [
np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1
lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1
lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : int = {
'num_bp1': self.num_bpa,
'num_bp2': self.num_bpa,
'num_bp3': self.num_bpa,
'conv1': self.conva,
'step_conv1': self.step_conva,
'size_pooling1': self.size_poolinga,
'rate_weight': self.rate_weight,
'rate_thre': self.rate_thre,
'w_conv1': self.w_conva,
'wkj': self.wkj,
'vji': self.vji,
'thre_conv1': self.thre_conva,
'thre_bp2': self.thre_bpa,
'thre_bp3': self.thre_bpa,
}
with open(__UpperCamelCase ,'wb' ) as f:
pickle.dump(__UpperCamelCase ,__UpperCamelCase )
print(f'''Model saved: {save_path}''' )
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
with open(__UpperCamelCase ,'rb' ) as f:
lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301
lowercase_ : str = model_dic.get('conv1' )
conv_get.append(model_dic.get('step_conv1' ) )
lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' )
lowercase_ : Optional[Any] = model_dic.get('num_bp1' )
lowercase_ : str = model_dic.get('num_bp2' )
lowercase_ : Optional[Any] = model_dic.get('num_bp3' )
lowercase_ : Union[str, Any] = model_dic.get('rate_weight' )
lowercase_ : Optional[int] = model_dic.get('rate_thre' )
# create model instance
lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# modify model parameter
lowercase_ : Optional[Any] = model_dic.get('w_conv1' )
lowercase_ : Tuple = model_dic.get('wkj' )
lowercase_ : Union[str, Any] = model_dic.get('vji' )
lowercase_ : Optional[Any] = model_dic.get('thre_conv1' )
lowercase_ : Dict = model_dic.get('thre_bp2' )
lowercase_ : Optional[int] = model_dic.get('thre_bp3' )
return conv_ins
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
return 1 / (1 + np.exp(-1 * x ))
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return round(__UpperCamelCase ,3 )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Dict = convs[0]
lowercase_ : Any = convs[1]
lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0]
# get the data slice of original image data, data_focus
lowercase_ : Tuple = []
for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
lowercase_ : List[Any] = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(__UpperCamelCase )
# calculate the feature map of every single kernel, and saved as list of matrix
lowercase_ : Dict = []
lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(__UpperCamelCase ):
lowercase_ : Tuple = []
for i_focus in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[int] = (
np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(__UpperCamelCase ) )
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape(
__UpperCamelCase ,__UpperCamelCase )
data_featuremap.append(__UpperCamelCase )
# expanding the data slice to One dimenssion
lowercase_ : Optional[int] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) )
lowercase_ : str = np.asarray(__UpperCamelCase )
return focus_list, data_featuremap
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple:
'''simple docstring'''
lowercase_ : Union[str, Any] = len(featuremaps[0] )
lowercase_ : str = int(size_map / size_pooling )
lowercase_ : Optional[int] = []
for i_map in range(len(__UpperCamelCase ) ):
lowercase_ : int = featuremaps[i_map]
lowercase_ : List[str] = []
for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[str] = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(__UpperCamelCase ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(__UpperCamelCase ) )
lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase )
featuremap_pooled.append(__UpperCamelCase )
return featuremap_pooled
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
lowercase_ : Tuple = []
for i in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[Any] = np.shape(data[i] )
lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] )
lowercase_ : List[str] = data_listed.getA().tolist()[0]
data_expanded.extend(__UpperCamelCase )
lowercase_ : int = np.asarray(__UpperCamelCase )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Any = np.asarray(__UpperCamelCase )
lowercase_ : Any = np.shape(__UpperCamelCase )
lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
lowercase_ : Any = []
lowercase_ : List[Any] = 0
for i_map in range(__UpperCamelCase ):
lowercase_ : List[str] = np.ones((size_map, size_map) )
for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[Any] = pd_pool[
i_pool
]
lowercase_ : Any = i_pool + 1
lowercase_ : Optional[int] = np.multiply(
__UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) )
pd_all.append(__UpperCamelCase )
return pd_all
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]:
'''simple docstring'''
print('----------------------Start Training-------------------------' )
print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) )
print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) )
lowercase_ : int = 0
lowercase_ : Tuple = []
lowercase_ : Tuple = 1_0000
while rp < n_repeat and mse >= error_accuracy:
lowercase_ : List[str] = 0
print(f'''-------------Learning Time {rp}--------------''' )
for p in range(len(__UpperCamelCase ) ):
# print('------------Learning Image: %d--------------'%p)
lowercase_ : int = np.asmatrix(datas_train[p] )
lowercase_ : Any = np.asarray(datas_teach[p] )
lowercase_ , lowercase_ : Tuple = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : Optional[int] = np.shape(__UpperCamelCase )
lowercase_ : Optional[int] = self._expand(__UpperCamelCase )
lowercase_ : int = data_bp_input
lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa
lowercase_ : Dict = self.sig(__UpperCamelCase )
lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa
lowercase_ : int = self.sig(__UpperCamelCase )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
lowercase_ : str = np.multiply(
(data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Optional[int] = np.multiply(
np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji )
lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga)
lowercase_ : Dict = pd_conva_pooled.T.getA().tolist()
lowercase_ : List[Any] = self._calculate_gradient_from_pool(
__UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,)
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] )
lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
lowercase_ : Dict = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight
lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre
lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
lowercase_ : int = rp + 1
lowercase_ : Union[str, Any] = error_count / patterns
all_mse.append(__UpperCamelCase )
def draw_error():
lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(__UpperCamelCase ,'+-' )
plt.plot(__UpperCamelCase ,'r--' )
plt.xlabel('Learning Times' )
plt.ylabel('All_mse' )
plt.grid(__UpperCamelCase ,alpha=0.5 )
plt.show()
print('------------------Training Complished---------------------' )
print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') )
if draw_e:
draw_error()
return mse
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Union[str, Any] = []
print('-------------------Start Testing-------------------------' )
print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) )
for p in range(len(__UpperCamelCase ) ):
lowercase_ : List[Any] = np.asmatrix(datas_test[p] )
lowercase_ , lowercase_ : Optional[Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : List[str] = self._expand(__UpperCamelCase )
lowercase_ : Any = data_bp_input
lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa
lowercase_ : str = self.sig(__UpperCamelCase )
lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa
lowercase_ : Optional[int] = self.sig(__UpperCamelCase )
produce_out.extend(bp_outa.getA().tolist() )
lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out]
return np.asarray(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase )
lowercase_ , lowercase_ : Union[str, Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 321
| 0
|
"""simple docstring"""
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : Any ):
lowercase_ : Optional[int] = MobileNetVaConfig(layer_norm_eps=0.001 )
if "_quant" in model_name:
raise ValueError('Quantized models are not supported.' )
lowercase_ : List[Any] = re.match(R'^mobilenet_v1_([^_]*)_([^_]*)$' , A__ )
if matches:
lowercase_ : List[str] = float(matches[1] )
lowercase_ : List[str] = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
lowercase_ : int = 10_01
lowercase_ : Optional[Any] = """imagenet-1k-id2label.json"""
lowercase_ : Optional[int] = """huggingface/label-files"""
lowercase_ : Tuple = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) )
lowercase_ : int = {int(A__ ) + 1: v for k, v in idalabel.items()}
lowercase_ : str = """background"""
lowercase_ : Optional[int] = idalabel
lowercase_ : int = {v: k for k, v in idalabel.items()}
return config
def lowercase__( ):
lowercase_ : str = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase_ : str = Image.open(requests.get(A__ , stream=A__ ).raw )
return im
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=False ):
lowercase_ : Optional[int] = get_mobilenet_va_config(A__ )
# Load 🤗 model
lowercase_ : Optional[int] = MobileNetVaForImageClassification(A__ ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(A__ , A__ , A__ )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
lowercase_ : Dict = MobileNetVaImageProcessor(
crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , )
lowercase_ : List[str] = image_processor(images=prepare_img() , return_tensors='pt' )
lowercase_ : Tuple = model(**A__ )
lowercase_ : Union[str, Any] = outputs.logits
assert logits.shape == (1, 10_01)
if model_name == "mobilenet_v1_1.0_224":
lowercase_ : Any = torch.tensor([-4.1739, -1.1233, 3.1205] )
elif model_name == "mobilenet_v1_0.75_192":
lowercase_ : str = torch.tensor([-3.9440, -2.3141, -0.3333] )
else:
lowercase_ : Optional[int] = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , A__ , atol=1E-4 )
Path(A__ ).mkdir(exist_ok=A__ )
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(A__ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(A__ )
if push_to_hub:
print('Pushing to the hub...' )
lowercase_ : List[str] = """google/""" + model_name
image_processor.push_to_hub(A__ )
model.push_to_hub(A__ )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="mobilenet_v1_1.0_224",
type=str,
help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.",
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 351
|
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ):
lowercase_ : Dict = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification'
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Dict = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : str = 'patrickvonplaten/t5-tiny-random'
lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[int] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] )
lowercase_ : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2'
lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__UpperCamelCase ):
self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'current' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Any = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
| 321
| 0
|
"""simple docstring"""
from __future__ import annotations
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : list[str] | None = None , __SCREAMING_SNAKE_CASE : dict[str, float] | None = None , __SCREAMING_SNAKE_CASE : bool = False , ):
"""simple docstring"""
lowercase_ : Tuple = cipher_alphabet or [chr(lowerCAmelCase__ ) for i in range(97 , 1_23 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
lowercase_ : int = {
'''a''': 0.0_8497,
'''b''': 0.0_1492,
'''c''': 0.0_2202,
'''d''': 0.0_4253,
'''e''': 0.1_1162,
'''f''': 0.0_2228,
'''g''': 0.0_2015,
'''h''': 0.0_6094,
'''i''': 0.0_7546,
'''j''': 0.0_0153,
'''k''': 0.0_1292,
'''l''': 0.0_4025,
'''m''': 0.0_2406,
'''n''': 0.0_6749,
'''o''': 0.0_7507,
'''p''': 0.0_1929,
'''q''': 0.0_0095,
'''r''': 0.0_7587,
'''s''': 0.0_6327,
'''t''': 0.0_9356,
'''u''': 0.0_2758,
'''v''': 0.0_0978,
'''w''': 0.0_2560,
'''x''': 0.0_0150,
'''y''': 0.0_1994,
'''z''': 0.0_0077,
}
else:
# Custom frequencies dictionary
lowercase_ : Union[str, Any] = frequencies_dict
if not case_sensitive:
lowercase_ : Any = ciphertext.lower()
# Chi squared statistic values
lowercase_ : dict[int, tuple[float, str]] = {}
# cycle through all of the shifts
for shift in range(len(lowerCAmelCase__ ) ):
lowercase_ : Tuple = ''''''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
lowercase_ : Optional[int] = (alphabet_letters.index(letter.lower() ) - shift) % len(
lowerCAmelCase__ )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
lowercase_ : str = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
lowercase_ : Optional[int] = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
lowercase_ : Tuple = decrypted_with_shift.lower().count(lowerCAmelCase__ )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowercase_ : Any = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowercase_ : Optional[int] = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
lowercase_ : Optional[Any] = decrypted_with_shift.count(lowerCAmelCase__ )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowercase_ : Dict = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowercase_ : int = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
lowercase_ : Optional[int] = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(__SCREAMING_SNAKE_CASE : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
lowercase_ : int = min(
lowerCAmelCase__ , key=lowerCAmelCase__ , )
# Get all the data from the most likely cipher (key, decoded message)
(
lowercase_
) : int = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 352
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
class UpperCamelCase ( lowercase_ ):
lowercase = ['input_values', 'padding_mask']
def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : List[str] = chunk_length_s
lowercase_ : Tuple = overlap
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
f''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if padding and truncation:
raise ValueError('Both padding and truncation were set. Make sure you only set one.' )
elif padding is None:
# by default let's pad the inputs
lowercase_ : Optional[int] = True
lowercase_ : Optional[int] = bool(
isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) )
if is_batched:
lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ):
lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa )
elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
lowercase_ : List[str] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T]
# verify inputs are valid
for idx, example in enumerate(__UpperCamelCase ):
if example.ndim > 2:
raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' )
lowercase_ : Optional[int] = None
lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio )
lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) )
lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio )
lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) )
lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length
lowercase_ : Union[str, Any] = 'max_length'
else:
lowercase_ : int = input_values
# normal padding on batch
if padded_inputs is None:
lowercase_ : int = self.pad(
__UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,)
if padding:
lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' )
lowercase_ : Dict = []
for example in padded_inputs.pop('input_values' ):
if self.feature_size == 1:
lowercase_ : Optional[int] = example[..., None]
input_values.append(example.T )
lowercase_ : str = input_values
if return_tensors is not None:
lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase )
return padded_inputs
| 321
| 0
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class UpperCamelCase ( lowercase_ ):
"""simple docstring"""
lowercase = "WhisperFeatureExtractor"
lowercase = "WhisperTokenizer"
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
super().__init__(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : List[str] = self.feature_extractor
lowercase_ : Optional[int] = False
def _UpperCAmelCase ( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=True ) -> List[Any]:
'''simple docstring'''
return self.tokenizer.get_decoder_prompt_ids(task=__UpperCamelCase ,language=__UpperCamelCase ,no_timestamps=__UpperCamelCase )
def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : Optional[int] = kwargs.pop('audio' ,__UpperCamelCase )
lowercase_ : List[Any] = kwargs.pop('sampling_rate' ,__UpperCamelCase )
lowercase_ : Dict = kwargs.pop('text' ,__UpperCamelCase )
if len(__UpperCamelCase ) > 0:
lowercase_ : str = args[0]
lowercase_ : Dict = args[1:]
if audio is None and text is None:
raise ValueError('You need to specify either an `audio` or `text` input to process.' )
if audio is not None:
lowercase_ : Union[str, Any] = self.feature_extractor(__UpperCamelCase ,*__UpperCamelCase ,sampling_rate=__UpperCamelCase ,**__UpperCamelCase )
if text is not None:
lowercase_ : List[Any] = self.tokenizer(__UpperCamelCase ,**__UpperCamelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
lowercase_ : List[Any] = encodings['input_ids']
return inputs
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Any:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase="np" ) -> Any:
'''simple docstring'''
return self.tokenizer.get_prompt_ids(__UpperCamelCase ,return_tensors=__UpperCamelCase )
| 353
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"MRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"MraForMaskedLM",
"MraForMultipleChoice",
"MraForQuestionAnswering",
"MraForSequenceClassification",
"MraForTokenClassification",
"MraLayer",
"MraModel",
"MraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 321
| 0
|
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
__SCREAMING_SNAKE_CASE =datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class UpperCamelCase ( datasets.BuilderConfig ):
lowercase = None
def lowercase__( __SCREAMING_SNAKE_CASE : "pyspark.sql.DataFrame" , __SCREAMING_SNAKE_CASE : List[int] , ):
import pyspark
def generate_fn():
lowercase_ : Tuple = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) )
for partition_id in partition_order:
lowercase_ : Optional[Any] = df_with_partition_id.select('*' ).where(F'''part_id = {partition_id}''' ).drop('part_id' )
lowercase_ : List[str] = partition_df.collect()
lowercase_ : Optional[int] = 0
for row in rows:
yield F'''{partition_id}_{row_id}''', row.asDict()
row_id += 1
return generate_fn
class UpperCamelCase ( _BaseExamplesIterable ):
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=None ,) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = df
lowercase_ : str = partition_order or range(self.df.rdd.getNumPartitions() )
lowercase_ : Optional[Any] = _generate_iterable_examples(self.df ,self.partition_order )
def __iter__( self ) -> int:
'''simple docstring'''
yield from self.generate_examples_fn()
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> "SparkExamplesIterable":
'''simple docstring'''
lowercase_ : List[Any] = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(a__ )
return SparkExamplesIterable(self.df ,partition_order=a__ )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> "SparkExamplesIterable":
'''simple docstring'''
lowercase_ : List[str] = self.split_shard_indices_by_worker(a__ ,a__ )
return SparkExamplesIterable(self.df ,partition_order=a__ )
@property
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return len(self.partition_order )
class UpperCamelCase ( datasets.DatasetBuilder ):
lowercase = SparkConfig
def __init__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Optional[Any]:
'''simple docstring'''
import pyspark
lowercase_ : Optional[int] = pyspark.sql.SparkSession.builder.getOrCreate()
lowercase_ : int = df
lowercase_ : Tuple = working_dir
super().__init__(
cache_dir=a__ ,config_name=str(self.df.semanticHash() ) ,**a__ ,)
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
def create_cache_and_write_probe(__UpperCamelCase ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir ,exist_ok=a__ )
lowercase_ : List[Any] = os.path.join(self._cache_dir ,'fs_test' + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(a__ ,'a' )
return [probe_file]
if self._spark.conf.get('spark.master' ,'' ).startswith('local' ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
lowercase_ : Optional[int] = (
self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(a__ ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
import pyspark
def get_arrow_batch_size(__UpperCamelCase ):
for batch in it:
yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} )
lowercase_ : List[str] = self.df.count()
lowercase_ : Any = df_num_rows if df_num_rows <= 100 else 100
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
lowercase_ : List[Any] = (
self.df.limit(a__ )
.repartition(1 )
.mapInArrow(a__ ,'batch_bytes: long' )
.agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
lowercase_ : List[str] = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
lowercase_ : Union[str, Any] = min(a__ ,int(approx_total_size / max_shard_size ) )
lowercase_ : int = self.df.repartition(a__ )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
'''simple docstring'''
import pyspark
lowercase_ : str = ParquetWriter if file_format == 'parquet' else ArrowWriter
lowercase_ : List[str] = os.path.join(self._working_dir ,os.path.basename(a__ ) ) if self._working_dir else fpath
lowercase_ : List[str] = file_format == 'parquet'
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
lowercase_ : Optional[int] = self.config.features
lowercase_ : int = self._writer_batch_size
lowercase_ : int = self._fs.storage_options
def write_arrow(__UpperCamelCase ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
lowercase_ : Tuple = pyspark.TaskContext().taskAttemptId()
lowercase_ : Any = next(a__ ,a__ )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] ,names=['task_id', 'num_examples', 'num_bytes'] ,)
lowercase_ : Union[str, Any] = 0
lowercase_ : Tuple = writer_class(
features=a__ ,path=working_fpath.replace('SSSSS' ,f'''{shard_id:05d}''' ).replace('TTTTT' ,f'''{task_id:05d}''' ) ,writer_batch_size=a__ ,storage_options=a__ ,embed_local_files=a__ ,)
lowercase_ : Union[str, Any] = pa.Table.from_batches([first_batch] )
writer.write_table(a__ )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
lowercase_ , lowercase_ : str = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] ,names=['task_id', 'num_examples', 'num_bytes'] ,)
shard_id += 1
lowercase_ : List[str] = writer_class(
features=writer._features ,path=working_fpath.replace('SSSSS' ,f'''{shard_id:05d}''' ).replace('TTTTT' ,f'''{task_id:05d}''' ) ,writer_batch_size=a__ ,storage_options=a__ ,embed_local_files=a__ ,)
lowercase_ : Any = pa.Table.from_batches([batch] )
writer.write_table(a__ )
if writer._num_bytes > 0:
lowercase_ , lowercase_ : List[str] = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] ,names=['task_id', 'num_examples', 'num_bytes'] ,)
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(a__ ) ):
lowercase_ : Optional[int] = os.path.join(os.path.dirname(a__ ) ,os.path.basename(a__ ) )
shutil.move(a__ ,a__ )
lowercase_ : List[str] = (
self.df.mapInArrow(a__ ,'task_id: long, num_examples: long, num_bytes: long' )
.groupBy('task_id' )
.agg(
pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) ,pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) ,pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) ,pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) ,)
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = "arrow" ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Dict:
'''simple docstring'''
self._validate_cache_dir()
lowercase_ : Dict = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(a__ )
lowercase_ : Optional[Any] = not is_remote_filesystem(self._fs )
lowercase_ : Optional[Any] = os.path.join if is_local else posixpath.join
lowercase_ : List[Any] = '-TTTTT-SSSSS-of-NNNNN'
lowercase_ : Any = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}'''
lowercase_ : int = path_join(self._output_dir ,a__ )
lowercase_ : List[Any] = 0
lowercase_ : int = 0
lowercase_ : Optional[Any] = 0
lowercase_ : Union[str, Any] = []
lowercase_ : Union[str, Any] = []
for task_id, content in self._prepare_split_single(a__ ,a__ ,a__ ):
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : List[Any] = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(a__ )
lowercase_ : Optional[Any] = total_num_examples
lowercase_ : int = total_num_bytes
# should rename everything at the end
logger.debug(f'''Renaming {total_shards} shards.''' )
if total_shards > 1:
lowercase_ : Optional[int] = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
lowercase_ : str = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,):
rename(
a__ ,fpath.replace('SSSSS' ,f'''{shard_id:05d}''' ).replace('TTTTT' ,f'''{task_id:05d}''' ) ,fpath.replace('TTTTT-SSSSS' ,f'''{global_shard_id:05d}''' ).replace('NNNNN' ,f'''{total_shards:05d}''' ) ,)
lowercase_ : Dict = []
lowercase_ : Union[str, Any] = 0
for i in range(len(a__ ) ):
lowercase_ , lowercase_ : Any = task_id_and_num_shards[i]
for shard_id in range(a__ ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(a__ ,len(a__ ) ).map(lambda __UpperCamelCase : _rename_shard(*a__ ) ).collect()
else:
# don't use any pattern
lowercase_ : List[str] = 0
lowercase_ : Tuple = task_id_and_num_shards[0][0]
self._rename(
fpath.replace('SSSSS' ,f'''{shard_id:05d}''' ).replace('TTTTT' ,f'''{task_id:05d}''' ) ,fpath.replace(a__ ,'' ) ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,) -> SparkExamplesIterable:
'''simple docstring'''
return SparkExamplesIterable(self.df )
| 354
|
"""simple docstring"""
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("dataclasses")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("importlib_metadata")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ):
require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
| 321
| 0
|
"""simple docstring"""
import unittest
import numpy as np
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] = None , ):
lowercase_ : Optional[int] = np.shape(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = np.shape(__SCREAMING_SNAKE_CASE )
lowercase_ : str = np.shape(__SCREAMING_SNAKE_CASE )
if shape_a[0] != shape_b[0]:
lowercase_ : Union[str, Any] = (
'Expected the same number of rows for A and B. '
F'''Instead found A of size {shape_a} and B of size {shape_b}'''
)
raise ValueError(__SCREAMING_SNAKE_CASE )
if shape_b[1] != shape_c[1]:
lowercase_ : int = (
'Expected the same number of columns for B and C. '
F'''Instead found B of size {shape_b} and C of size {shape_c}'''
)
raise ValueError(__SCREAMING_SNAKE_CASE )
lowercase_ : int = pseudo_inv
if a_inv is None:
try:
lowercase_ : str = np.linalg.inv(__SCREAMING_SNAKE_CASE )
except np.linalg.LinAlgError:
raise ValueError(
'Input matrix A is not invertible. Cannot compute Schur complement.' )
return mat_c - mat_b.T @ a_inv @ mat_b
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> None:
'''simple docstring'''
lowercase_ : Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowercase_ : int = np.array([[0, 3], [3, 0], [2, 3]] )
lowercase_ : Dict = np.array([[2, 1], [6, 3]] )
lowercase_ : Optional[int] = schur_complement(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ )
lowercase_ : Dict = np.block([[a, b], [b.T, c]] )
lowercase_ : str = np.linalg.det(UpperCamelCase_ )
lowercase_ : Optional[Any] = np.linalg.det(UpperCamelCase_ )
lowercase_ : int = np.linalg.det(UpperCamelCase_ )
self.assertAlmostEqual(UpperCamelCase_ ,det_a * det_s )
def _UpperCAmelCase ( self ) -> None:
'''simple docstring'''
lowercase_ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowercase_ : Tuple = np.array([[0, 3], [3, 0], [2, 3]] )
lowercase_ : Tuple = np.array([[2, 1], [6, 3]] )
with self.assertRaises(UpperCamelCase_ ):
schur_complement(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ )
def _UpperCAmelCase ( self ) -> None:
'''simple docstring'''
lowercase_ : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowercase_ : Dict = np.array([[0, 3], [3, 0], [2, 3]] )
lowercase_ : Any = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(UpperCamelCase_ ):
schur_complement(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 355
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ):
lowercase_ : int = 'backbone.' if is_semantic else ''
lowercase_ : List[str] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(F'''{prefix}cls_token''', 'beit.embeddings.cls_token'),
(F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'),
(F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'),
(F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('mask_token', 'beit.embeddings.mask_token'),
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('fc_norm.weight', 'beit.pooler.layernorm.weight'),
('fc_norm.bias', 'beit.pooler.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ):
for i in range(config.num_hidden_layers ):
lowercase_ : Any = 'backbone.' if is_semantic else ''
# queries, keys and values
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' )
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' )
lowercase_ : List[str] = in_proj_weight[
: config.hidden_size, :
]
lowercase_ : List[str] = q_bias
lowercase_ : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ : Any = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ : Any = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' )
lowercase_ : Tuple = gamma_a
lowercase_ : List[Any] = gamma_a
def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = val
def lowercase__( ):
lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ):
lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True
lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
lowercase_ : Any = 10_24
lowercase_ : List[str] = 40_96
lowercase_ : Tuple = 24
lowercase_ : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
lowercase_ : Optional[Any] = 16
lowercase_ : Any = 'huggingface/label-files'
lowercase_ : int = 'rvlcdip-id2label.json'
lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowercase_ : str = idalabel
lowercase_ : str = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
# load HuggingFace model
lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(__SCREAMING_SNAKE_CASE )
# Check outputs on an image
lowercase_ : List[Any] = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE )
lowercase_ : str = prepare_img()
lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' )
lowercase_ : int = encoding['pixel_values']
lowercase_ : Any = model(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = outputs.logits
# verify logits
lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92]
assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected"
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
if has_lm_head:
lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large'
else:
lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip'
image_processor.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
model.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 321
| 0
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] ):
lowercase_ : Any = b.T
lowercase_ : List[Any] = np.sum(np.square(lowerCamelCase_ ) , axis=1 )
lowercase_ : Dict = np.sum(np.square(lowerCamelCase_ ) , axis=0 )
lowercase_ : Optional[int] = np.matmul(lowerCamelCase_ , lowerCamelCase_ )
lowercase_ : Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :]
return d
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any ):
lowercase_ : Tuple = x.reshape(-1 , 3 )
lowercase_ : str = squared_euclidean_distance(lowerCamelCase_ , lowerCamelCase_ )
return np.argmin(lowerCamelCase_ , axis=1 )
class UpperCamelCase ( lowerCamelCase__ ):
lowercase = ['pixel_values']
def __init__( self ,__UpperCamelCase = None ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = PILImageResampling.BILINEAR ,__UpperCamelCase = True ,__UpperCamelCase = True ,**__UpperCamelCase ,) -> None:
'''simple docstring'''
super().__init__(**__lowerCamelCase )
lowercase_ : Optional[Any] = size if size is not None else {'''height''': 256, '''width''': 256}
lowercase_ : Optional[Any] = get_size_dict(__lowerCamelCase )
lowercase_ : List[str] = np.array(__lowerCamelCase ) if clusters is not None else None
lowercase_ : Any = do_resize
lowercase_ : List[str] = size
lowercase_ : str = resample
lowercase_ : List[str] = do_normalize
lowercase_ : Union[str, Any] = do_color_quantize
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = PILImageResampling.BILINEAR ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray:
'''simple docstring'''
lowercase_ : Union[str, Any] = get_size_dict(__lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' )
return resize(
__lowerCamelCase ,size=(size['height'], size['width']) ,resample=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,) -> np.ndarray:
'''simple docstring'''
lowercase_ : int = rescale(image=__lowerCamelCase ,scale=1 / 127.5 ,data_format=__lowerCamelCase )
lowercase_ : Union[str, Any] = image - 1
return image
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = ChannelDimension.FIRST ,**__UpperCamelCase ,) -> PIL.Image.Image:
'''simple docstring'''
lowercase_ : Any = do_resize if do_resize is not None else self.do_resize
lowercase_ : int = size if size is not None else self.size
lowercase_ : str = get_size_dict(__lowerCamelCase )
lowercase_ : Dict = resample if resample is not None else self.resample
lowercase_ : Dict = do_normalize if do_normalize is not None else self.do_normalize
lowercase_ : str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
lowercase_ : Any = clusters if clusters is not None else self.clusters
lowercase_ : Tuple = np.array(__lowerCamelCase )
lowercase_ : str = make_list_of_images(__lowerCamelCase )
if not valid_images(__lowerCamelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_color_quantize and clusters is None:
raise ValueError('Clusters must be specified if do_color_quantize is True.' )
# All transformations expect numpy arrays.
lowercase_ : int = [to_numpy_array(__lowerCamelCase ) for image in images]
if do_resize:
lowercase_ : Optional[int] = [self.resize(image=__lowerCamelCase ,size=__lowerCamelCase ,resample=__lowerCamelCase ) for image in images]
if do_normalize:
lowercase_ : Optional[Any] = [self.normalize(image=__lowerCamelCase ) for image in images]
if do_color_quantize:
lowercase_ : Optional[Any] = [to_channel_dimension_format(__lowerCamelCase ,ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
lowercase_ : Union[str, Any] = np.array(__lowerCamelCase )
lowercase_ : Optional[int] = color_quantize(__lowerCamelCase ,__lowerCamelCase ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
lowercase_ : Optional[Any] = images.shape[0]
lowercase_ : List[str] = images.reshape(__lowerCamelCase ,-1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
lowercase_ : Union[str, Any] = list(__lowerCamelCase )
else:
lowercase_ : List[Any] = [to_channel_dimension_format(__lowerCamelCase ,__lowerCamelCase ) for image in images]
lowercase_ : Tuple = {'''input_ids''': images}
return BatchFeature(data=__lowerCamelCase ,tensor_type=__lowerCamelCase )
| 356
|
"""simple docstring"""
__SCREAMING_SNAKE_CASE ={
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
__SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()}
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Union[str, Any] = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
lowercase_ : Dict = ''
for word in coded.split():
while len(__SCREAMING_SNAKE_CASE ) != 0:
decoded += decode_dict[word[:5]]
lowercase_ : Any = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 321
| 0
|
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={"vocab_file": "vocab.json"}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
__SCREAMING_SNAKE_CASE ={"mgp-str": 27}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self ,__UpperCamelCase ,__UpperCamelCase="[GO]" ,__UpperCamelCase="[GO]" ,__UpperCamelCase="[s]" ,__UpperCamelCase="[GO]" ,**__UpperCamelCase ) -> str:
'''simple docstring'''
super().__init__(
unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,**_A ,)
with open(_A ,encoding='utf-8' ) as vocab_handle:
lowercase_ : Optional[int] = json.load(_A )
lowercase_ : Union[str, Any] = {v: k for k, v in self.vocab.items()}
@property
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
return len(self.vocab )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return dict(self.vocab ,**self.added_tokens_encoder )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = []
for s in text:
char_tokens.extend(_A )
return char_tokens
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return self.vocab.get(_A ,self.vocab.get(self.unk_token ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str:
'''simple docstring'''
return self.decoder.get(_A )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error('Vocabulary path ({}) should be a directory'.format(_A ) )
return
lowercase_ : Optional[Any] = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
with open(_A ,'w' ,encoding='utf-8' ) as f:
f.write(json.dumps(self.vocab ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' )
return (vocab_file,)
| 357
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations_with_dp_array(
__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
lowercase_ : str = sum(
count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE )
for item in array )
lowercase_ : Tuple = answer
return answer
lowercase_ : Optional[Any] = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Dict = [0] * (target + 1)
lowercase_ : Dict = 1
for i in range(1 , target + 1 ):
for j in range(__SCREAMING_SNAKE_CASE ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE =3
__SCREAMING_SNAKE_CASE =5
__SCREAMING_SNAKE_CASE =[1, 2, 5]
print(combination_sum_iv(n, array, target))
| 321
| 0
|
"""simple docstring"""
import logging
from transformers import PretrainedConfig
__SCREAMING_SNAKE_CASE =logging.getLogger(__name__)
__SCREAMING_SNAKE_CASE ={
'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json',
}
class UpperCamelCase ( lowerCamelCase__ ):
lowercase = 'bertabs'
def __init__( self ,__UpperCamelCase=3_0522 ,__UpperCamelCase=512 ,__UpperCamelCase=6 ,__UpperCamelCase=512 ,__UpperCamelCase=8 ,__UpperCamelCase=512 ,__UpperCamelCase=0.2 ,__UpperCamelCase=6 ,__UpperCamelCase=768 ,__UpperCamelCase=8 ,__UpperCamelCase=2048 ,__UpperCamelCase=0.2 ,**__UpperCamelCase ,) -> Dict:
'''simple docstring'''
super().__init__(**__snake_case )
lowercase_ : List[str] = vocab_size
lowercase_ : List[str] = max_pos
lowercase_ : str = enc_layers
lowercase_ : Optional[int] = enc_hidden_size
lowercase_ : Optional[int] = enc_heads
lowercase_ : List[str] = enc_ff_size
lowercase_ : Optional[Any] = enc_dropout
lowercase_ : Dict = dec_layers
lowercase_ : List[str] = dec_hidden_size
lowercase_ : str = dec_heads
lowercase_ : str = dec_ff_size
lowercase_ : Any = dec_dropout
| 358
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : int = set_counts
lowercase_ : List[Any] = max(__UpperCamelCase )
lowercase_ : Union[str, Any] = len(__UpperCamelCase )
lowercase_ : Dict = [1] * num_sets
lowercase_ : Optional[int] = list(range(__UpperCamelCase ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase )
lowercase_ : int = self.get_parent(__UpperCamelCase )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : Tuple = 0
lowercase_ : str = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : str = 0
lowercase_ : Tuple = src_parent
lowercase_ : int = self.set_counts[src_parent]
lowercase_ : str = max(self.max_set ,__UpperCamelCase )
return True
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 321
| 0
|
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json",
}
class UpperCamelCase ( SCREAMING_SNAKE_CASE__ ):
lowercase = '''xlnet'''
lowercase = ['''mems''']
lowercase = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self ,__UpperCamelCase=3_2000 ,__UpperCamelCase=1024 ,__UpperCamelCase=24 ,__UpperCamelCase=16 ,__UpperCamelCase=4096 ,__UpperCamelCase="gelu" ,__UpperCamelCase=True ,__UpperCamelCase="bi" ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=False ,__UpperCamelCase=-1 ,__UpperCamelCase=False ,__UpperCamelCase="last" ,__UpperCamelCase=True ,__UpperCamelCase="tanh" ,__UpperCamelCase=0.1 ,__UpperCamelCase=5 ,__UpperCamelCase=5 ,__UpperCamelCase=5 ,__UpperCamelCase=1 ,__UpperCamelCase=2 ,**__UpperCamelCase ,) -> Dict:
'''simple docstring'''
lowercase_ : Optional[int] = vocab_size
lowercase_ : int = d_model
lowercase_ : Dict = n_layer
lowercase_ : List[str] = n_head
if d_model % n_head != 0:
raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
f'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
lowercase_ : Optional[int] = d_model // n_head
lowercase_ : Union[str, Any] = ff_activation
lowercase_ : Optional[int] = d_inner
lowercase_ : str = untie_r
lowercase_ : Optional[Any] = attn_type
lowercase_ : int = initializer_range
lowercase_ : Optional[Any] = layer_norm_eps
lowercase_ : Optional[int] = dropout
lowercase_ : str = mem_len
lowercase_ : Optional[Any] = reuse_len
lowercase_ : Tuple = bi_data
lowercase_ : Tuple = clamp_len
lowercase_ : Any = same_length
lowercase_ : Union[str, Any] = summary_type
lowercase_ : Optional[int] = summary_use_proj
lowercase_ : int = summary_activation
lowercase_ : str = summary_last_dropout
lowercase_ : Optional[Any] = start_n_top
lowercase_ : Union[str, Any] = end_n_top
lowercase_ : Tuple = bos_token_id
lowercase_ : Optional[Any] = pad_token_id
lowercase_ : Union[str, Any] = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'
' instead.' ,A__ ,)
lowercase_ : Optional[int] = kwargs['use_cache']
lowercase_ : Dict = use_mems_eval
lowercase_ : Tuple = use_mems_train
super().__init__(pad_token_id=A__ ,bos_token_id=A__ ,eos_token_id=A__ ,**A__ )
@property
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
raise NotImplementedError(
f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 359
|
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
__SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BlenderbotTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) )
lowercase_ : Any = add_prefix_space
lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase )
lowercase_ : int = add_prefix_space
lowercase_ : Any = 'post_processor'
lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
if tokenizer_component_instance:
lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ : str = tuple(state['sep'] )
if "cls" in state:
lowercase_ : Union[str, Any] = tuple(state['cls'] )
lowercase_ : str = False
if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Dict = add_prefix_space
lowercase_ : int = True
if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets:
lowercase_ : Optional[Any] = trim_offsets
lowercase_ : Tuple = True
if changes_to_apply:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) )
lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase )
setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value
lowercase_ : str = value
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : int = [self.sep_token_id]
lowercase_ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any:
'''simple docstring'''
return token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]:
'''simple docstring'''
lowercase_ : Optional[Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(__UpperCamelCase )
lowercase_ : Dict = ' '.join(__UpperCamelCase )
lowercase_ : str = self.encode(__UpperCamelCase )
if len(__UpperCamelCase ) > self.model_max_length:
lowercase_ : List[str] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 321
| 0
|
"""simple docstring"""
import warnings
from typing import List
from unittest.mock import Mock
import torch
from torch.utils.data import DataLoader, IterableDataset, TensorDataset
from accelerate.accelerator import Accelerator
from accelerate.utils.dataclasses import DistributedType
class UpperCamelCase ( __a ):
def __init__( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : List[str] = data
def __iter__( self ) -> List[Any]:
'''simple docstring'''
for element in self.data:
yield element
def lowercase__( __SCREAMING_SNAKE_CASE : Any=True ):
lowercase_ : Tuple = Accelerator(even_batches=__SCREAMING_SNAKE_CASE )
assert accelerator.num_processes == 2, "this script expects that two GPUs are available"
return accelerator
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any = False ):
if iterable:
lowercase_ : Tuple = DummyIterableDataset(torch.as_tensor(range(__SCREAMING_SNAKE_CASE ) ) )
else:
lowercase_ : Tuple = TensorDataset(torch.as_tensor(range(__SCREAMING_SNAKE_CASE ) ) )
lowercase_ : Union[str, Any] = DataLoader(__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = accelerator.prepare(__SCREAMING_SNAKE_CASE )
return dl
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , ):
lowercase_ : Dict = create_dataloader(accelerator=__SCREAMING_SNAKE_CASE , dataset_size=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = [len(batch[0] ) for batch in dl]
if accelerator.process_index == 0:
assert batch_sizes == process_0_expected_batch_sizes
elif accelerator.process_index == 1:
assert batch_sizes == process_1_expected_batch_sizes
def lowercase__( ):
lowercase_ : Optional[int] = create_accelerator()
# without padding, we would expect a different number of batches
verify_dataloader_batch_sizes(
__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , )
# without padding, we would expect the same number of batches, but different sizes
verify_dataloader_batch_sizes(
__SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , )
def lowercase__( ):
lowercase_ : List[Any] = create_accelerator(even_batches=__SCREAMING_SNAKE_CASE )
verify_dataloader_batch_sizes(
__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , )
verify_dataloader_batch_sizes(
__SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , )
def lowercase__( ):
lowercase_ : Dict = create_accelerator(even_batches=__SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = torch.nn.Linear(1 , 1 )
lowercase_ : Union[str, Any] = accelerator.prepare(__SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 )
lowercase_ : List[str] = []
with accelerator.join_uneven_inputs([ddp_model] ):
for batch_idx, batch in enumerate(__SCREAMING_SNAKE_CASE ):
lowercase_ : Dict = ddp_model(batch[0].float() )
lowercase_ : int = output.sum()
loss.backward()
batch_idxs.append(__SCREAMING_SNAKE_CASE )
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
assert batch_idxs == [0, 1]
elif accelerator.process_index == 1:
assert batch_idxs == [0]
def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ):
with warnings.catch_warnings(record=__SCREAMING_SNAKE_CASE ) as w:
with accelerator.join_uneven_inputs([Mock()] ):
pass
assert issubclass(w[-1].category , __SCREAMING_SNAKE_CASE )
assert "only supported for multi-GPU" in str(w[-1].message )
def lowercase__( ):
lowercase_ : List[Any] = True
lowercase_ : Optional[int] = False
lowercase_ : Tuple = create_accelerator(even_batches=__SCREAMING_SNAKE_CASE )
lowercase_ : Union[str, Any] = torch.nn.Linear(1 , 1 )
lowercase_ : str = accelerator.prepare(__SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 )
lowercase_ : List[Any] = create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 )
with accelerator.join_uneven_inputs([ddp_model] , even_batches=__SCREAMING_SNAKE_CASE ):
lowercase_ : Dict = train_dl.batch_sampler.even_batches
lowercase_ : Optional[int] = valid_dl.batch_sampler.even_batches
assert train_dl_overridden_value == overridden_even_batches
assert valid_dl_overridden_value == overridden_even_batches
assert train_dl.batch_sampler.even_batches == default_even_batches
assert valid_dl.batch_sampler.even_batches == default_even_batches
def lowercase__( ):
lowercase_ : int = True
lowercase_ : Union[str, Any] = False
lowercase_ : List[str] = create_accelerator(even_batches=__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = torch.nn.Linear(1 , 1 )
lowercase_ : Optional[int] = accelerator.prepare(__SCREAMING_SNAKE_CASE )
create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 )
with warnings.catch_warnings():
warnings.filterwarnings('ignore' )
try:
with accelerator.join_uneven_inputs([ddp_model] , even_batches=__SCREAMING_SNAKE_CASE ):
lowercase_ : int = batch_dl.batch_sampler.even_batches
except AttributeError:
# ensure attribute error is not raised when processing iterable dl
raise AssertionError
assert batch_dl_overridden_value == overridden_even_batches
assert batch_dl.batch_sampler.even_batches == default_even_batches
def lowercase__( ):
lowercase_ : List[str] = create_accelerator()
lowercase_ : Optional[int] = torch.nn.Linear(1 , 1 )
lowercase_ : int = accelerator.prepare(__SCREAMING_SNAKE_CASE )
create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=__SCREAMING_SNAKE_CASE )
with warnings.catch_warnings(record=__SCREAMING_SNAKE_CASE ) as w:
with accelerator.join_uneven_inputs([ddp_model] , even_batches=__SCREAMING_SNAKE_CASE ):
pass
assert issubclass(w[-1].category , __SCREAMING_SNAKE_CASE )
assert "only supported for map-style datasets" in str(w[-1].message )
def lowercase__( ):
lowercase_ : Optional[int] = create_accelerator()
accelerator.print('Test that even_batches variable ensures uniform batches across processes' )
test_default_ensures_even_batch_sizes()
accelerator.print('Run tests with even_batches disabled' )
test_can_disable_even_batches()
accelerator.print('Test joining uneven inputs' )
test_can_join_uneven_inputs()
accelerator.print('Test overriding even_batches when joining uneven inputs' )
test_join_can_override_even_batches()
accelerator.print('Test overriding even_batches for mixed dataloader types' )
test_join_can_override_for_mixed_type_dataloaders()
accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders' )
test_join_raises_warning_for_iterable_when_overriding_even_batches()
accelerator.print('Test join with non DDP distributed raises warning' )
lowercase_ : int = accelerator.state.distributed_type
lowercase_ : Optional[Any] = DistributedType.FSDP
test_join_raises_warning_for_non_ddp_distributed(__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = original_state
if __name__ == "__main__":
main()
| 360
|
"""simple docstring"""
import os
import sys
import unittest
__SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py")
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py")
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'}
lowercase_ : Union[str, Any] = {
'BlipModelTest': 'BlipModelTester',
'BlipTextImageModelTest': 'BlipTextImageModelsModelTester',
'BlipTextModelTest': 'BlipTextModelTester',
'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester',
'BlipVQAModelTest': 'BlipVQAModelTester',
'BlipVisionModelTest': 'BlipVisionModelTester',
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : Any = {
'BertForMaskedLM': ['BertModelTest'],
'BertForMultipleChoice': ['BertModelTest'],
'BertForNextSentencePrediction': ['BertModelTest'],
'BertForPreTraining': ['BertModelTest'],
'BertForQuestionAnswering': ['BertModelTest'],
'BertForSequenceClassification': ['BertModelTest'],
'BertForTokenClassification': ['BertModelTest'],
'BertLMHeadModel': ['BertModelTest'],
'BertModel': ['BertModelTest'],
}
lowercase_ : Any = {
'BlipForConditionalGeneration': ['BlipTextImageModelTest'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'],
'BlipForQuestionAnswering': ['BlipVQAModelTest'],
'BlipModel': ['BlipModelTest'],
'BlipTextModel': ['BlipTextModelTest'],
'BlipVisionModel': ['BlipVisionModelTest'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Tuple = {
'BertForMaskedLM': ['BertModelTester'],
'BertForMultipleChoice': ['BertModelTester'],
'BertForNextSentencePrediction': ['BertModelTester'],
'BertForPreTraining': ['BertModelTester'],
'BertForQuestionAnswering': ['BertModelTester'],
'BertForSequenceClassification': ['BertModelTester'],
'BertForTokenClassification': ['BertModelTester'],
'BertLMHeadModel': ['BertModelTester'],
'BertModel': ['BertModelTester'],
}
lowercase_ : Optional[Any] = {
'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'],
'BlipForQuestionAnswering': ['BlipVQAModelTester'],
'BlipModel': ['BlipModelTester'],
'BlipTextModel': ['BlipTextModelTester'],
'BlipVisionModel': ['BlipVisionModelTester'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
from __future__ import annotations
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict ): # noqa: E741
while r - l > 1:
lowercase_ : Optional[Any] = (l + r) // 2
if v[m] >= key:
lowercase_ : int = m
else:
lowercase_ : str = m # noqa: E741
return r
def lowercase__( __SCREAMING_SNAKE_CASE : list[int] ):
if len(__SCREAMING_SNAKE_CASE ) == 0:
return 0
lowercase_ : Optional[int] = [0] * len(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = 1
lowercase_ : Any = v[0]
for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ):
if v[i] < tail[0]:
lowercase_ : str = v[i]
elif v[i] > tail[length - 1]:
lowercase_ : str = v[i]
length += 1
else:
lowercase_ : Optional[Any] = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361
|
"""simple docstring"""
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ):
with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX )
try:
print(*__SCREAMING_SNAKE_CASE )
finally:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN )
__SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
__SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank)
__SCREAMING_SNAKE_CASE =socket.gethostname()
__SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]"
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__SCREAMING_SNAKE_CASE =dist.get_rank()
__SCREAMING_SNAKE_CASE =dist.get_world_size()
printflock(F"{gpu} is OK (global rank: {rank}/{world_size})")
dist.barrier()
if rank == 0:
printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
except Exception:
printflock(F"{gpu} is broken")
raise
| 321
| 0
|
from math import pi
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] ):
return 2 * pi * radius * (angle / 3_60)
if __name__ == "__main__":
print(arc_length(90, 10))
| 362
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : List[Any] = name
lowercase_ : int = val
def __str__( self ) -> Tuple:
'''simple docstring'''
return f'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return self.val < other.val
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Optional[int] = {}
lowercase_ : Tuple = {}
lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase )
def __getitem__( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
return self.get_value(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return (idx - 1) // 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return idx * 2 + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return idx * 2 + 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
return self.heap_dict[key]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1
lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase )
for idx, i in enumerate(__UpperCamelCase ):
lowercase_ : Any = idx
lowercase_ : str = i.val
for i in range(__UpperCamelCase ,-1 ,-1 ):
self.sift_down(__UpperCamelCase ,__UpperCamelCase )
return array
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
while True:
lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741
lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase )
lowercase_ : List[str] = idx
if l < len(__UpperCamelCase ) and array[l] < array[idx]:
lowercase_ : List[str] = l
if r < len(__UpperCamelCase ) and array[r] < array[smallest]:
lowercase_ : Dict = r
if smallest != idx:
lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx]
(
(
lowercase_
) , (
lowercase_
) ,
) : str = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
lowercase_ : Any = smallest
else:
break
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase )
while p >= 0 and self.heap[p] > self.heap[idx]:
lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
lowercase_ : int = p
lowercase_ : str = self.get_parent_idx(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return self.heap[0]
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
lowercase_ : Tuple = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 ,self.heap )
return x
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
self.heap.append(__UpperCamelCase )
lowercase_ : Tuple = len(self.heap ) - 1
lowercase_ : Optional[int] = node.val
self.sift_up(len(self.heap ) - 1 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return len(self.heap ) == 0
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
lowercase_ : Any = new_value
lowercase_ : List[str] = new_value
self.sift_up(self.idx_of_element[node] )
__SCREAMING_SNAKE_CASE =Node("R", -1)
__SCREAMING_SNAKE_CASE =Node("B", 6)
__SCREAMING_SNAKE_CASE =Node("A", 3)
__SCREAMING_SNAKE_CASE =Node("X", 1)
__SCREAMING_SNAKE_CASE =Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
__SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 321
| 0
|
"""simple docstring"""
import heapq
def lowercase__( __SCREAMING_SNAKE_CASE : Dict ):
lowercase_ : List[str] = []
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(UpperCAmelCase__ , [-1 * len(UpperCAmelCase__ ), (key, value)] )
# chosen_vertices = set of chosen vertices
lowercase_ : Dict = set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
lowercase_ : Any = heapq.heappop(UpperCAmelCase__ )[1][0]
chosen_vertices.add(UpperCAmelCase__ )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
lowercase_ : Any = elem[1][1].index(UpperCAmelCase__ )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(UpperCAmelCase__ )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(F"Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}")
| 363
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[Any] = tempfile.mkdtemp()
# fmt: off
lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) )
lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
lowercase_ : Tuple = {'unk_token': '<unk>'}
lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + '\n' )
with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp:
fp.write('\n'.join(__UpperCamelCase ) )
lowercase_ : Any = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073],
'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase )
with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp:
json.dump(__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )]
lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_tokenizer()
lowercase_ : List[Any] = self.get_rust_tokenizer()
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase )
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase )
self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase )
self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' )
lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 )
lowercase_ : Any = CLIPSegProcessor.from_pretrained(
self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,__UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[str] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = self.prepare_image_inputs()
lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' )
lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[Any] = self.get_tokenizer()
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Dict = 'lower newer'
lowercase_ : Any = processor(text=__UpperCamelCase )
lowercase_ : int = tokenizer(__UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.get_image_processor()
lowercase_ : str = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = 'lower newer'
lowercase_ : str = self.prepare_image_inputs()
lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = self.prepare_image_inputs()
lowercase_ : Optional[Any] = self.prepare_image_inputs()
lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase )
lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=2 ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=10 ,__UpperCamelCase=3 ,__UpperCamelCase=32 * 4 ,__UpperCamelCase=32 * 6 ,__UpperCamelCase=4 ,__UpperCamelCase=32 ,) -> str:
'''simple docstring'''
lowercase_ : Dict = parent
lowercase_ : Any = batch_size
lowercase_ : Any = is_training
lowercase_ : Tuple = use_auxiliary_loss
lowercase_ : int = num_queries
lowercase_ : Optional[Any] = num_channels
lowercase_ : Optional[int] = min_size
lowercase_ : Optional[int] = max_size
lowercase_ : List[str] = num_labels
lowercase_ : Optional[Any] = mask_feature_size
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
_A )
lowercase_ : List[str] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=_A )
lowercase_ : List[str] = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=_A ) > 0.5
).float()
lowercase_ : Optional[int] = (torch.rand((self.batch_size, self.num_labels) ,device=_A ) > 0.5).long()
lowercase_ : Dict = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] ,) ,decoder_config=DetrConfig(
decoder_ffn_dim=128 ,num_queries=self.num_queries ,decoder_attention_heads=2 ,d_model=self.mask_feature_size ,) ,mask_feature_size=self.mask_feature_size ,fpn_feature_size=self.mask_feature_size ,num_channels=self.num_channels ,num_labels=self.num_labels ,)
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[int] = self.prepare_config_and_inputs()
lowercase_ : Any = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask}
return config, inputs_dict
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
lowercase_ : Any = output.encoder_hidden_states
lowercase_ : List[Any] = output.pixel_decoder_hidden_states
lowercase_ : Optional[int] = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(_A ) ,len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_A ) ,len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_A ) ,config.decoder_config.decoder_layers )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=False ) -> int:
'''simple docstring'''
with torch.no_grad():
lowercase_ : Optional[Any] = MaskFormerModel(config=_A )
model.to(_A )
model.eval()
lowercase_ : str = model(pixel_values=_A ,pixel_mask=_A )
lowercase_ : Tuple = model(_A ,output_hidden_states=_A )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.mask_feature_size) ,)
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(_A ,_A )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = MaskFormerForInstanceSegmentation(config=_A )
model.to(_A )
model.eval()
def comm_check_on_output(__UpperCamelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,)
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
lowercase_ : Union[str, Any] = model(pixel_values=_A ,pixel_mask=_A )
lowercase_ : Tuple = model(_A )
comm_check_on_output(_A )
lowercase_ : List[str] = model(
pixel_values=_A ,pixel_mask=_A ,mask_labels=_A ,class_labels=_A )
comm_check_on_output(_A )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) )
@require_torch
class UpperCamelCase ( snake_case__ , snake_case__ , unittest.TestCase ):
lowercase = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
lowercase = (
{"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Tuple = MaskFormerModelTester(self )
lowercase_ : Any = ConfigTester(self ,config_class=_A ,has_text_modality=_A )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(_A ,**_A ,output_hidden_states=_A )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_A )
@unittest.skip(reason='MaskFormer does not use inputs_embeds' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip(reason='MaskFormer is not a generative model' )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='MaskFormer does not use token embeddings' )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
pass
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ , lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : List[Any] = model_class(_A )
lowercase_ : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ : Optional[int] = [*signature.parameters.keys()]
lowercase_ : Optional[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] ,_A )
@slow
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
for model_name in ["facebook/maskformer-swin-small-coco"]:
lowercase_ : Optional[Any] = MaskFormerModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[Any] = (self.model_tester.min_size,) * 2
lowercase_ : Optional[Any] = {
'pixel_values': torch.randn((2, 3, *size) ,device=_A ),
'mask_labels': torch.randn((2, 10, *size) ,device=_A ),
'class_labels': torch.zeros(2 ,10 ,device=_A ).long(),
}
lowercase_ : List[str] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_A )
lowercase_ : List[str] = model(**_A )
self.assertTrue(outputs.loss is not None )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(_A ,**_A ,output_hidden_states=_A )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ , lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Optional[int] = model_class(_A ).to(_A )
lowercase_ : Dict = model(**_A ,output_attentions=_A )
self.assertTrue(outputs.attentions is not None )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
lowercase_ : Optional[int] = self.all_model_classes[1]
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs()
lowercase_ : Dict = model_class(_A )
model.to(_A )
model.train()
lowercase_ : Any = model(_A ,mask_labels=_A ,class_labels=_A ).loss
loss.backward()
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Tuple = self.all_model_classes[1]
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
lowercase_ : List[Any] = True
lowercase_ : List[Any] = True
lowercase_ : List[Any] = model_class(_A )
model.to(_A )
model.train()
lowercase_ : List[str] = model(_A ,mask_labels=_A ,class_labels=_A )
lowercase_ : Dict = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
lowercase_ : Optional[int] = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
lowercase_ : List[str] = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
lowercase_ : Tuple = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=_A )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__SCREAMING_SNAKE_CASE =1E-4
def lowercase__( ):
lowercase_ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@slow
class UpperCamelCase ( unittest.TestCase ):
@cached_property
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
return (
MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' )
if is_vision_available()
else None
)
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : List[str] = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(_A )
lowercase_ : List[Any] = self.default_image_processor
lowercase_ : int = prepare_img()
lowercase_ : List[Any] = image_processor(_A ,return_tensors='pt' ).to(_A )
lowercase_ : Optional[int] = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_A ,(1, 3, 800, 1088) )
with torch.no_grad():
lowercase_ : List[Any] = model(**_A )
lowercase_ : Any = torch.tensor(
[[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_A )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] ,_A ,atol=_A ) )
lowercase_ : Tuple = torch.tensor(
[[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_A )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,_A ,atol=_A ) )
lowercase_ : Optional[int] = torch.tensor(
[[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_A )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,_A ,atol=_A ) )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = (
MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' )
.to(_A )
.eval()
)
lowercase_ : Optional[int] = self.default_image_processor
lowercase_ : int = prepare_img()
lowercase_ : Dict = image_processor(_A ,return_tensors='pt' ).to(_A )
lowercase_ : Optional[Any] = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_A ,(1, 3, 800, 1088) )
with torch.no_grad():
lowercase_ : int = model(**_A )
# masks_queries_logits
lowercase_ : List[str] = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,)
lowercase_ : Union[str, Any] = [
[-1.373_7124, -1.772_4937, -1.936_4233],
[-1.597_7281, -1.986_7939, -2.152_3695],
[-1.579_5398, -1.926_9832, -2.09_3942],
]
lowercase_ : Optional[int] = torch.tensor(_A ).to(_A )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,_A ,atol=_A ) )
# class_queries_logits
lowercase_ : str = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
lowercase_ : Any = torch.tensor(
[
[1.6512e00, -5.2572e00, -3.3519e00],
[3.6169e-02, -5.9025e00, -2.9313e00],
[1.0766e-04, -7.7630e00, -5.1263e00],
] ).to(_A )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,_A ,atol=_A ) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : int = (
MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' )
.to(_A )
.eval()
)
lowercase_ : List[str] = self.default_image_processor
lowercase_ : str = prepare_img()
lowercase_ : Dict = image_processor(_A ,return_tensors='pt' ).to(_A )
lowercase_ : Optional[int] = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_A ,(1, 3, 800, 1088) )
with torch.no_grad():
lowercase_ : str = model(**_A )
# masks_queries_logits
lowercase_ : Tuple = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,)
lowercase_ : Optional[int] = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]]
lowercase_ : List[str] = torch.tensor(_A ).to(_A )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,_A ,atol=_A ) )
# class_queries_logits
lowercase_ : Dict = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
lowercase_ : Tuple = torch.tensor(
[[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_A )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,_A ,atol=_A ) )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : List[Any] = (
MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' )
.to(_A )
.eval()
)
lowercase_ : List[str] = self.default_image_processor
lowercase_ : Any = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,)
lowercase_ : int = inputs['pixel_values'].to(_A )
lowercase_ : Tuple = [el.to(_A ) for el in inputs['mask_labels']]
lowercase_ : List[Any] = [el.to(_A ) for el in inputs['class_labels']]
with torch.no_grad():
lowercase_ : Union[str, Any] = model(**_A )
self.assertTrue(outputs.loss is not None )
| 364
|
"""simple docstring"""
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 321
| 0
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list ):
_enforce_args(snake_case__ , snake_case__ )
if n == 0:
return 0
lowercase_ : Dict = float('-inf' )
for i in range(1 , n + 1 ):
lowercase_ : List[str] = max(
snake_case__ , prices[i - 1] + naive_cut_rod_recursive(n - i , snake_case__ ) )
return max_revue
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list ):
_enforce_args(snake_case__ , snake_case__ )
lowercase_ : Union[str, Any] = [float('-inf' ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(snake_case__ , snake_case__ , snake_case__ )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list ):
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
lowercase_ : Union[str, Any] = float('-inf' )
for i in range(1 , n + 1 ):
lowercase_ : int = max(
snake_case__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , snake_case__ , snake_case__ ) , )
lowercase_ : Optional[int] = max_revenue
return max_rev[n]
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list ):
_enforce_args(snake_case__ , snake_case__ )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
lowercase_ : Dict = [float('-inf' ) for _ in range(n + 1 )]
lowercase_ : Optional[int] = 0
for i in range(1 , n + 1 ):
lowercase_ : Any = max_rev[i]
for j in range(1 , i + 1 ):
lowercase_ : int = max(snake_case__ , prices[j - 1] + max_rev[i - j] )
lowercase_ : Optional[Any] = max_revenue_i
return max_rev[n]
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list ):
if n < 0:
lowercase_ : Dict = F'''n must be greater than or equal to 0. Got n = {n}'''
raise ValueError(snake_case__ )
if n > len(snake_case__ ):
lowercase_ : Optional[int] = (
'Each integral piece of rod must have a corresponding price. '
F'''Got n = {n} but length of prices = {len(snake_case__ )}'''
)
raise ValueError(snake_case__ )
def lowercase__( ):
lowercase_ : List[Any] = [6, 10, 12, 15, 20, 23]
lowercase_ : Dict = len(snake_case__ )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
lowercase_ : Tuple = 36
lowercase_ : List[str] = top_down_cut_rod(snake_case__ , snake_case__ )
lowercase_ : Any = bottom_up_cut_rod(snake_case__ , snake_case__ )
lowercase_ : int = naive_cut_rod_recursive(snake_case__ , snake_case__ )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 365
|
"""simple docstring"""
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = parent
lowercase_ : Tuple = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Optional[Any] = is_training
lowercase_ : Any = use_input_mask
lowercase_ : Optional[Any] = vocab_size
lowercase_ : str = hidden_size
lowercase_ : Any = num_hidden_layers
lowercase_ : Dict = num_attention_heads
lowercase_ : Optional[int] = intermediate_size
lowercase_ : Any = hidden_act
lowercase_ : Optional[Any] = hidden_dropout_prob
lowercase_ : str = attention_probs_dropout_prob
lowercase_ : Any = max_position_embeddings
lowercase_ : Optional[Any] = initializer_range
lowercase_ : Union[str, Any] = use_labels
lowercase_ : Union[str, Any] = scope
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : List[str] = None
if self.use_input_mask:
lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Any = self.get_config()
return config, input_ids, input_mask, token_labels
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return BertGenerationConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : str = self.prepare_config_and_inputs()
lowercase_ : int = True
lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Optional[Any] = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = True
lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Union[str, Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,)
lowercase_ : Dict = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,)
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int:
'''simple docstring'''
lowercase_ : List[str] = True
lowercase_ : Union[str, Any] = True
lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval()
# first forward pass
lowercase_ : str = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,)
lowercase_ : Dict = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size )
lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 )
# append to next input_ids and
lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 )
lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 )
lowercase_ : int = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
lowercase_ : List[Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
# select random slice
lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
lowercase_ : int = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
lowercase = (BertGenerationDecoder,) if is_torch_available() else ()
lowercase = (
{'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder}
if is_torch_available()
else {}
)
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoderTester(self )
lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs()
lowercase_ : Optional[int] = 'bert'
self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
lowercase_ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,)
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
self.assertIsNotNone(__UpperCamelCase )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Tuple = model(__UpperCamelCase )[0]
lowercase_ : Dict = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : str = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Dict = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : Dict = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__SCREAMING_SNAKE_CASE ={
"configuration_chinese_clip": [
"CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ChineseCLIPConfig",
"ChineseCLIPOnnxConfig",
"ChineseCLIPTextConfig",
"ChineseCLIPVisionConfig",
],
"processing_chinese_clip": ["ChineseCLIPProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =["ChineseCLIPFeatureExtractor"]
__SCREAMING_SNAKE_CASE =["ChineseCLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ChineseCLIPModel",
"ChineseCLIPPreTrainedModel",
"ChineseCLIPTextModel",
"ChineseCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 366
|
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
return None
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
return None
class UpperCamelCase ( unittest.TestCase ):
lowercase = [
# (model_name, model_kwargs)
('bert-base-cased', {}),
('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
from transformers import BertModel
lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words']
with NamedTemporaryFile(mode='w+t' ) as vocab_file:
vocab_file.write('\n'.join(__UpperCamelCase ) )
vocab_file.flush()
lowercase_ : List[str] = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) )
model.save_pretrained(__UpperCamelCase )
self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase )
@require_tf
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
lowercase_ : int = quantize(Path(__UpperCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
lowercase_ : Tuple = quantize(__UpperCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
try:
# Compute path
with TemporaryDirectory() as tempdir:
lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase )
return path
except Exception as e:
self.fail(__UpperCamelCase )
@require_torch
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
from transformers import BertModel
lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' )
@require_tf
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
from transformers import TFBertModel
lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1']
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase )
# Assert all variables are present
self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase )
self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} )
self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids']
lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]}
lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__UpperCamelCase ) ,3 )
# Should have exactly the same input names
self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__UpperCamelCase ) ,1 )
self.assertEqual(len(__UpperCamelCase ) ,1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] ,tokens['input_ids'] )
self.assertEqual(ordered_input_names[0] ,'input_ids' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' )
self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
| 321
| 0
|
"""simple docstring"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ) -> Tuple:
lowercase_ : Union[str, Any] = SwinConfig.from_pretrained(
'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] )
lowercase_ : Optional[Any] = MaskFormerConfig(backbone_config=__SCREAMING_SNAKE_CASE )
lowercase_ : Any = '''huggingface/label-files'''
if "ade20k-full" in model_name:
# this should be ok
lowercase_ : List[Any] = 8_47
lowercase_ : str = '''maskformer-ade20k-full-id2label.json'''
elif "ade" in model_name:
# this should be ok
lowercase_ : List[str] = 1_50
lowercase_ : int = '''ade20k-id2label.json'''
elif "coco-stuff" in model_name:
# this should be ok
lowercase_ : Any = 1_71
lowercase_ : int = '''maskformer-coco-stuff-id2label.json'''
elif "coco" in model_name:
# TODO
lowercase_ : List[str] = 1_33
lowercase_ : List[str] = '''coco-panoptic-id2label.json'''
elif "cityscapes" in model_name:
# this should be ok
lowercase_ : Optional[Any] = 19
lowercase_ : Optional[int] = '''cityscapes-id2label.json'''
elif "vistas" in model_name:
# this should be ok
lowercase_ : Dict = 65
lowercase_ : Optional[Any] = '''mapillary-vistas-id2label.json'''
lowercase_ : List[Any] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
lowercase_ : List[Any] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
return config
def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]:
lowercase_ : int = []
# stem
# fmt: off
rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') )
rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') )
rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') )
rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') )
# FPN
rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') )
rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') )
rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') )
rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') )
rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') )
# cross-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') )
# MLP 1
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') )
# MLP 2
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') )
# layernorm 3 (final layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') )
rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') )
rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') )
# heads on top
rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') )
rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') )
rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') )
rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') )
rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') )
for i in range(3 ):
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') )
# fmt: on
return rename_keys
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ) -> Any:
lowercase_ : Tuple = dct.pop(__SCREAMING_SNAKE_CASE )
lowercase_ : str = val
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int:
lowercase_ : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
lowercase_ : Any = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
lowercase_ : str = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' )
lowercase_ : Any = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowercase_ : Union[str, Any] = in_proj_weight[:dim, :]
lowercase_ : Optional[Any] = in_proj_bias[: dim]
lowercase_ : Union[str, Any] = in_proj_weight[
dim : dim * 2, :
]
lowercase_ : Any = in_proj_bias[
dim : dim * 2
]
lowercase_ : Union[str, Any] = in_proj_weight[
-dim :, :
]
lowercase_ : Union[str, Any] = in_proj_bias[-dim :]
# fmt: on
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> str:
lowercase_ : Optional[int] = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
lowercase_ : List[str] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' )
lowercase_ : Optional[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
lowercase_ : int = in_proj_weight[: hidden_size, :]
lowercase_ : List[str] = in_proj_bias[:config.hidden_size]
lowercase_ : Optional[Any] = in_proj_weight[hidden_size : hidden_size * 2, :]
lowercase_ : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2]
lowercase_ : Tuple = in_proj_weight[-hidden_size :, :]
lowercase_ : List[Any] = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
lowercase_ : int = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' )
lowercase_ : Any = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
lowercase_ : List[str] = in_proj_weight[: hidden_size, :]
lowercase_ : List[Any] = in_proj_bias[:config.hidden_size]
lowercase_ : Optional[Any] = in_proj_weight[hidden_size : hidden_size * 2, :]
lowercase_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2]
lowercase_ : str = in_proj_weight[-hidden_size :, :]
lowercase_ : List[str] = in_proj_bias[-hidden_size :]
# fmt: on
def lowercase__( ) -> Dict:
lowercase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int = False ) -> Optional[int]:
lowercase_ : Optional[int] = get_maskformer_config(__SCREAMING_SNAKE_CASE )
# load original state_dict
with open(__SCREAMING_SNAKE_CASE , 'rb' ) as f:
lowercase_ : Optional[int] = pickle.load(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = data['''model''']
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
lowercase_ : Optional[int] = create_rename_keys(__SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
read_in_swin_q_k_v(__SCREAMING_SNAKE_CASE , config.backbone_config )
read_in_decoder_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# update to torch tensors
for key, value in state_dict.items():
lowercase_ : int = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# load 🤗 model
lowercase_ : Union[str, Any] = MaskFormerForInstanceSegmentation(__SCREAMING_SNAKE_CASE )
model.eval()
for name, param in model.named_parameters():
print(__SCREAMING_SNAKE_CASE , param.shape )
lowercase_ : List[str] = model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(__SCREAMING_SNAKE_CASE ) == 0, F'''Unexpected keys: {unexpected_keys}'''
# verify results
lowercase_ : Tuple = prepare_img()
if "vistas" in model_name:
lowercase_ : Dict = 65
elif "cityscapes" in model_name:
lowercase_ : Dict = 6_55_35
else:
lowercase_ : Tuple = 2_55
lowercase_ : str = True if '''ade''' in model_name else False
lowercase_ : Dict = MaskFormerImageProcessor(ignore_index=__SCREAMING_SNAKE_CASE , reduce_labels=__SCREAMING_SNAKE_CASE )
lowercase_ : Any = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='pt' )
lowercase_ : List[Any] = model(**__SCREAMING_SNAKE_CASE )
print('Logits:' , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
lowercase_ : List[str] = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' )
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
print('Pushing model and image processor to the hub...' )
model.push_to_hub(F'''nielsr/{model_name}''' )
image_processor.push_to_hub(F'''nielsr/{model_name}''' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="maskformer-swin-tiny-ade",
type=str,
help=("Name of the MaskFormer model you\'d like to convert",),
)
parser.add_argument(
"--checkpoint_path",
default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl",
type=str,
help="Path to the original state dict (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 367
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]]
lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase )
self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(__UpperCamelCase ) # fails here
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 )
lowercase_ : str = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 )
lowercase_ : Any = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 )
lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 321
| 0
|
"""simple docstring"""
import argparse
import torch
from transformers import (
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForAudioFrameClassification,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
logging,
)
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] ):
lowercase_ : Optional[Any] = WavaVecaForSequenceClassification.from_pretrained(snake_case_ , config=snake_case_ )
lowercase_ : int = downstream_dict['projector.weight']
lowercase_ : Optional[int] = downstream_dict['projector.bias']
lowercase_ : Any = downstream_dict['model.post_net.linear.weight']
lowercase_ : Tuple = downstream_dict['model.post_net.linear.bias']
return model
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ):
lowercase_ : str = WavaVecaForAudioFrameClassification.from_pretrained(snake_case_ , config=snake_case_ )
lowercase_ : List[str] = downstream_dict['model.linear.weight']
lowercase_ : Union[str, Any] = downstream_dict['model.linear.bias']
return model
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple ):
lowercase_ : Optional[Any] = WavaVecaForXVector.from_pretrained(snake_case_ , config=snake_case_ )
lowercase_ : str = downstream_dict['connector.weight']
lowercase_ : Dict = downstream_dict['connector.bias']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
lowercase_ : Optional[int] = downstream_dict[
F'''model.framelevel_feature_extractor.module.{i}.kernel.weight'''
]
lowercase_ : List[str] = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias''']
lowercase_ : List[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight']
lowercase_ : Dict = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias']
lowercase_ : int = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight']
lowercase_ : int = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias']
lowercase_ : Optional[int] = downstream_dict['objective.W']
return model
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
lowercase_ : str = torch.load(snake_case_ , map_location='cpu' )
lowercase_ : Tuple = checkpoint['Downstream']
lowercase_ : Tuple = WavaVecaConfig.from_pretrained(snake_case_ )
lowercase_ : int = WavaVecaFeatureExtractor.from_pretrained(
snake_case_ , return_attention_mask=snake_case_ , do_normalize=snake_case_ )
lowercase_ : Tuple = hf_config.architectures[0]
if arch.endswith('ForSequenceClassification' ):
lowercase_ : Any = convert_classification(snake_case_ , snake_case_ , snake_case_ )
elif arch.endswith('ForAudioFrameClassification' ):
lowercase_ : Optional[Any] = convert_diarization(snake_case_ , snake_case_ , snake_case_ )
elif arch.endswith('ForXVector' ):
lowercase_ : int = convert_xvector(snake_case_ , snake_case_ , snake_case_ )
else:
raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' )
if hf_config.use_weighted_layer_sum:
lowercase_ : Optional[int] = checkpoint['Featurizer']['weights']
hf_feature_extractor.save_pretrained(snake_case_ )
hf_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 368
|
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[Any] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : Tuple = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
print(F'''Loading model based on config from {config_path}...''' )
lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
lowercase_ : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
lowercase_ : BertSelfAttention = layer.attention.self
lowercase_ : str = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape )
lowercase_ : int = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape )
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape )
lowercase_ : List[Any] = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape )
# Self-attention Output
lowercase_ : BertSelfOutput = layer.attention.output
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape )
lowercase_ : Any = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape )
lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' )
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' )
# Intermediate
lowercase_ : BertIntermediate = layer.intermediate
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' )
lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' )
# Output
lowercase_ : BertOutput = layer.output
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' )
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' )
lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' )
lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' )
# Embeddings
lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' )
lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' )
lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' )
lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' )
# LM Head
lowercase_ : int = model.cls.predictions.transform
lowercase_ : str = get_masked_lm_array('dense/kernel' )
lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' )
lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' )
lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' )
lowercase_ : List[str] = get_masked_lm_array('embedding_table' )
# Pooling
lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' )
# Export final model
model.save_pretrained(__SCREAMING_SNAKE_CASE )
# Integration test - should load without any errors ;)
lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE )
print(new_model.eval() )
print('Model conversion was done sucessfully!' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 321
| 0
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] ):
if density <= 0:
raise ValueError('Impossible fluid density' )
if bulk_modulus <= 0:
raise ValueError('Impossible bulk modulus' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 369
|
"""simple docstring"""
from collections import namedtuple
import requests
from lxml import html # type: ignore
__SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered")
def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ):
lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) )
__SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 321
| 0
|
"""simple docstring"""
import qiskit
def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] ):
"""simple docstring"""
lowercase_ : Tuple = qiskit.Aer.get_backend('aer_simulator' )
lowercase_ : Union[str, Any] = qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
lowercase_ : Any = qiskit.execute(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , shots=10_00 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =half_adder(1, 1)
print(F"Half Adder Output Qubit Counts: {counts}")
| 370
|
"""simple docstring"""
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 321
| 0
|
"""simple docstring"""
from math import pi, sqrt, tan
def lowercase__( __SCREAMING_SNAKE_CASE : float ):
if side_length < 0:
raise ValueError('surface_area_cube() only accepts non-negative values' )
return 6 * side_length**2
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if length < 0 or breadth < 0 or height < 0:
raise ValueError('surface_area_cuboid() only accepts non-negative values' )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def lowercase__( __SCREAMING_SNAKE_CASE : float ):
if radius < 0:
raise ValueError('surface_area_sphere() only accepts non-negative values' )
return 4 * pi * radius**2
def lowercase__( __SCREAMING_SNAKE_CASE : float ):
if radius < 0:
raise ValueError('surface_area_hemisphere() only accepts non-negative values' )
return 3 * pi * radius**2
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if radius < 0 or height < 0:
raise ValueError('surface_area_cone() only accepts non-negative values' )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
'surface_area_conical_frustum() only accepts non-negative values' )
lowercase_ : int = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if radius < 0 or height < 0:
raise ValueError('surface_area_cylinder() only accepts non-negative values' )
return 2 * pi * radius * (height + radius)
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if torus_radius < 0 or tube_radius < 0:
raise ValueError('surface_area_torus() only accepts non-negative values' )
if torus_radius < tube_radius:
raise ValueError(
'surface_area_torus() does not support spindle or self intersecting tori' )
return 4 * pow(__lowerCAmelCase , 2 ) * torus_radius * tube_radius
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if length < 0 or width < 0:
raise ValueError('area_rectangle() only accepts non-negative values' )
return length * width
def lowercase__( __SCREAMING_SNAKE_CASE : float ):
if side_length < 0:
raise ValueError('area_square() only accepts non-negative values' )
return side_length**2
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if base < 0 or height < 0:
raise ValueError('area_triangle() only accepts non-negative values' )
return (base * height) / 2
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError('area_triangle_three_sides() only accepts non-negative values' )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError('Given three sides do not form a triangle' )
lowercase_ : Optional[int] = (sidea + sidea + sidea) / 2
lowercase_ : Any = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if base < 0 or height < 0:
raise ValueError('area_parallelogram() only accepts non-negative values' )
return base * height
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if basea < 0 or basea < 0 or height < 0:
raise ValueError('area_trapezium() only accepts non-negative values' )
return 1 / 2 * (basea + basea) * height
def lowercase__( __SCREAMING_SNAKE_CASE : float ):
if radius < 0:
raise ValueError('area_circle() only accepts non-negative values' )
return pi * radius**2
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if radius_x < 0 or radius_y < 0:
raise ValueError('area_ellipse() only accepts non-negative values' )
return pi * radius_x * radius_y
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError('area_rhombus() only accepts non-negative values' )
return 1 / 2 * diagonal_a * diagonal_a
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or sides < 3:
raise ValueError(
'area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides' )
elif length < 0:
raise ValueError(
'area_reg_polygon() only accepts non-negative values as \
length of a side' )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print("[DEMO] Areas of various geometric shapes: \n")
print(F"Rectangle: {area_rectangle(10, 20) = }")
print(F"Square: {area_square(10) = }")
print(F"Triangle: {area_triangle(10, 10) = }")
print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }")
print(F"Parallelogram: {area_parallelogram(10, 20) = }")
print(F"Rhombus: {area_rhombus(10, 20) = }")
print(F"Trapezium: {area_trapezium(10, 20, 30) = }")
print(F"Circle: {area_circle(20) = }")
print(F"Ellipse: {area_ellipse(10, 20) = }")
print("\nSurface Areas of various geometric shapes: \n")
print(F"Cube: {surface_area_cube(20) = }")
print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }")
print(F"Sphere: {surface_area_sphere(20) = }")
print(F"Hemisphere: {surface_area_hemisphere(20) = }")
print(F"Cone: {surface_area_cone(10, 20) = }")
print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }")
print(F"Cylinder: {surface_area_cylinder(10, 20) = }")
print(F"Torus: {surface_area_torus(20, 10) = }")
print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }")
print(F"Square: {area_reg_polygon(4, 10) = }")
print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
| 371
|
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = parent
lowercase_ : str = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Dict = is_training
lowercase_ : Tuple = use_input_mask
lowercase_ : Optional[Any] = use_token_type_ids
lowercase_ : List[str] = use_labels
lowercase_ : Any = vocab_size
lowercase_ : List[str] = hidden_size
lowercase_ : Optional[int] = num_hidden_layers
lowercase_ : int = num_attention_heads
lowercase_ : int = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : Optional[int] = hidden_dropout_prob
lowercase_ : Tuple = attention_probs_dropout_prob
lowercase_ : Tuple = max_position_embeddings
lowercase_ : Optional[int] = type_vocab_size
lowercase_ : Optional[int] = type_sequence_label_size
lowercase_ : Dict = initializer_range
lowercase_ : int = num_labels
lowercase_ : Any = num_choices
lowercase_ : int = scope
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Dict = None
if self.use_input_mask:
lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase_ : Tuple = None
lowercase_ : Tuple = None
lowercase_ : Tuple = None
if self.use_labels:
lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices )
lowercase_ : str = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return EsmConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Union[str, Any] = model(__UpperCamelCase )
lowercase_ : int = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.num_labels
lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Any = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Optional[int] = config_and_inputs
lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = False
lowercase = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase = ()
lowercase = (
{
'feature-extraction': EsmModel,
'fill-mask': EsmForMaskedLM,
'text-classification': EsmForSequenceClassification,
'token-classification': EsmForTokenClassification,
'zero-shot': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = True
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = EsmModelTester(self )
lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowercase_ : Optional[Any] = type
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
lowercase_ : List[Any] = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : List[Any] = torch.empty(2 ,4 ,30 )
lowercase_ : List[str] = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] )
lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@require_torch
class UpperCamelCase ( lowercase_ ):
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowercase_ : List[str] = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = 33
lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : List[str] = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowercase_ : Dict = model(__UpperCamelCase )[0]
# compare the actual values for a slice.
lowercase_ : Any = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class UpperCamelCase ( unittest.TestCase ):
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=7 ,__UpperCamelCase=3 ,__UpperCamelCase=10 ,__UpperCamelCase=18 ,__UpperCamelCase=30 ,__UpperCamelCase=400 ,__UpperCamelCase=True ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=None ,) -> Optional[int]:
'''simple docstring'''
lowercase_ : Any = size if size is not None else {'shortest_edge': 18}
lowercase_ : Optional[Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18}
lowercase_ : List[str] = parent
lowercase_ : List[str] = batch_size
lowercase_ : Optional[int] = num_channels
lowercase_ : Union[str, Any] = num_frames
lowercase_ : Union[str, Any] = image_size
lowercase_ : List[str] = min_resolution
lowercase_ : int = max_resolution
lowercase_ : Union[str, Any] = do_resize
lowercase_ : Optional[int] = size
lowercase_ : str = do_normalize
lowercase_ : Tuple = image_mean
lowercase_ : Any = image_std
lowercase_ : Tuple = crop_size
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCamelCase ( lowercase_ , unittest.TestCase ):
lowercase = VivitImageProcessor if is_vision_available() else None
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = VivitImageProcessingTester(self )
@property
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__UpperCamelCase ,'image_mean' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'image_std' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'do_normalize' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'do_resize' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'do_center_crop' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'size' ) )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{'shortest_edge': 18} )
self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} )
lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
lowercase_ : Any = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase )
for video in video_inputs:
self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase )
self.assertIsInstance(video[0] ,Image.Image )
# Test not batched input
lowercase_ : Any = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
# Test batched
lowercase_ : List[Any] = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase_ : Optional[int] = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ,numpify=__UpperCamelCase )
for video in video_inputs:
self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase )
self.assertIsInstance(video[0] ,np.ndarray )
# Test not batched input
lowercase_ : Tuple = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
# Test batched
lowercase_ : List[str] = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase_ : Optional[int] = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ,torchify=__UpperCamelCase )
for video in video_inputs:
self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase )
self.assertIsInstance(video[0] ,torch.Tensor )
# Test not batched input
lowercase_ : Optional[int] = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
# Test batched
lowercase_ : Tuple = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
| 350
|
"""simple docstring"""
import pickle
import numpy as np
from matplotlib import pyplot as plt
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[int] = bp_numa
lowercase_ : Dict = bp_numa
lowercase_ : Tuple = bp_numa
lowercase_ : List[Any] = conva_get[:2]
lowercase_ : int = conva_get[2]
lowercase_ : Dict = size_pa
lowercase_ : int = rate_w
lowercase_ : Union[str, Any] = rate_t
lowercase_ : Dict = [
np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1
lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1
lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : int = {
'num_bp1': self.num_bpa,
'num_bp2': self.num_bpa,
'num_bp3': self.num_bpa,
'conv1': self.conva,
'step_conv1': self.step_conva,
'size_pooling1': self.size_poolinga,
'rate_weight': self.rate_weight,
'rate_thre': self.rate_thre,
'w_conv1': self.w_conva,
'wkj': self.wkj,
'vji': self.vji,
'thre_conv1': self.thre_conva,
'thre_bp2': self.thre_bpa,
'thre_bp3': self.thre_bpa,
}
with open(__UpperCamelCase ,'wb' ) as f:
pickle.dump(__UpperCamelCase ,__UpperCamelCase )
print(f'''Model saved: {save_path}''' )
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
with open(__UpperCamelCase ,'rb' ) as f:
lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301
lowercase_ : str = model_dic.get('conv1' )
conv_get.append(model_dic.get('step_conv1' ) )
lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' )
lowercase_ : Optional[Any] = model_dic.get('num_bp1' )
lowercase_ : str = model_dic.get('num_bp2' )
lowercase_ : Optional[Any] = model_dic.get('num_bp3' )
lowercase_ : Union[str, Any] = model_dic.get('rate_weight' )
lowercase_ : Optional[int] = model_dic.get('rate_thre' )
# create model instance
lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# modify model parameter
lowercase_ : Optional[Any] = model_dic.get('w_conv1' )
lowercase_ : Tuple = model_dic.get('wkj' )
lowercase_ : Union[str, Any] = model_dic.get('vji' )
lowercase_ : Optional[Any] = model_dic.get('thre_conv1' )
lowercase_ : Dict = model_dic.get('thre_bp2' )
lowercase_ : Optional[int] = model_dic.get('thre_bp3' )
return conv_ins
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
return 1 / (1 + np.exp(-1 * x ))
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return round(__UpperCamelCase ,3 )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Dict = convs[0]
lowercase_ : Any = convs[1]
lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0]
# get the data slice of original image data, data_focus
lowercase_ : Tuple = []
for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
lowercase_ : List[Any] = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(__UpperCamelCase )
# calculate the feature map of every single kernel, and saved as list of matrix
lowercase_ : Dict = []
lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(__UpperCamelCase ):
lowercase_ : Tuple = []
for i_focus in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[int] = (
np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(__UpperCamelCase ) )
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape(
__UpperCamelCase ,__UpperCamelCase )
data_featuremap.append(__UpperCamelCase )
# expanding the data slice to One dimenssion
lowercase_ : Optional[int] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) )
lowercase_ : str = np.asarray(__UpperCamelCase )
return focus_list, data_featuremap
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple:
'''simple docstring'''
lowercase_ : Union[str, Any] = len(featuremaps[0] )
lowercase_ : str = int(size_map / size_pooling )
lowercase_ : Optional[int] = []
for i_map in range(len(__UpperCamelCase ) ):
lowercase_ : int = featuremaps[i_map]
lowercase_ : List[str] = []
for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[str] = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(__UpperCamelCase ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(__UpperCamelCase ) )
lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase )
featuremap_pooled.append(__UpperCamelCase )
return featuremap_pooled
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
lowercase_ : Tuple = []
for i in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[Any] = np.shape(data[i] )
lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] )
lowercase_ : List[str] = data_listed.getA().tolist()[0]
data_expanded.extend(__UpperCamelCase )
lowercase_ : int = np.asarray(__UpperCamelCase )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Any = np.asarray(__UpperCamelCase )
lowercase_ : Any = np.shape(__UpperCamelCase )
lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
lowercase_ : Any = []
lowercase_ : List[Any] = 0
for i_map in range(__UpperCamelCase ):
lowercase_ : List[str] = np.ones((size_map, size_map) )
for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[Any] = pd_pool[
i_pool
]
lowercase_ : Any = i_pool + 1
lowercase_ : Optional[int] = np.multiply(
__UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) )
pd_all.append(__UpperCamelCase )
return pd_all
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]:
'''simple docstring'''
print('----------------------Start Training-------------------------' )
print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) )
print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) )
lowercase_ : int = 0
lowercase_ : Tuple = []
lowercase_ : Tuple = 1_0000
while rp < n_repeat and mse >= error_accuracy:
lowercase_ : List[str] = 0
print(f'''-------------Learning Time {rp}--------------''' )
for p in range(len(__UpperCamelCase ) ):
# print('------------Learning Image: %d--------------'%p)
lowercase_ : int = np.asmatrix(datas_train[p] )
lowercase_ : Any = np.asarray(datas_teach[p] )
lowercase_ , lowercase_ : Tuple = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : Optional[int] = np.shape(__UpperCamelCase )
lowercase_ : Optional[int] = self._expand(__UpperCamelCase )
lowercase_ : int = data_bp_input
lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa
lowercase_ : Dict = self.sig(__UpperCamelCase )
lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa
lowercase_ : int = self.sig(__UpperCamelCase )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
lowercase_ : str = np.multiply(
(data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Optional[int] = np.multiply(
np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji )
lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga)
lowercase_ : Dict = pd_conva_pooled.T.getA().tolist()
lowercase_ : List[Any] = self._calculate_gradient_from_pool(
__UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,)
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] )
lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
lowercase_ : Dict = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight
lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre
lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
lowercase_ : int = rp + 1
lowercase_ : Union[str, Any] = error_count / patterns
all_mse.append(__UpperCamelCase )
def draw_error():
lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(__UpperCamelCase ,'+-' )
plt.plot(__UpperCamelCase ,'r--' )
plt.xlabel('Learning Times' )
plt.ylabel('All_mse' )
plt.grid(__UpperCamelCase ,alpha=0.5 )
plt.show()
print('------------------Training Complished---------------------' )
print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') )
if draw_e:
draw_error()
return mse
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Union[str, Any] = []
print('-------------------Start Testing-------------------------' )
print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) )
for p in range(len(__UpperCamelCase ) ):
lowercase_ : List[Any] = np.asmatrix(datas_test[p] )
lowercase_ , lowercase_ : Optional[Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : List[str] = self._expand(__UpperCamelCase )
lowercase_ : Any = data_bp_input
lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa
lowercase_ : str = self.sig(__UpperCamelCase )
lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa
lowercase_ : Optional[int] = self.sig(__UpperCamelCase )
produce_out.extend(bp_outa.getA().tolist() )
lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out]
return np.asarray(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase )
lowercase_ , lowercase_ : Union[str, Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 321
| 0
|
"""simple docstring"""
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ):
with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX )
try:
print(*__SCREAMING_SNAKE_CASE )
finally:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN )
__SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
__SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank)
__SCREAMING_SNAKE_CASE =socket.gethostname()
__SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]"
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__SCREAMING_SNAKE_CASE =dist.get_rank()
__SCREAMING_SNAKE_CASE =dist.get_world_size()
printflock(F"{gpu} is OK (global rank: {rank}/{world_size})")
dist.barrier()
if rank == 0:
printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
except Exception:
printflock(F"{gpu} is broken")
raise
| 351
|
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ):
lowercase_ : Dict = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification'
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Dict = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : str = 'patrickvonplaten/t5-tiny-random'
lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[int] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] )
lowercase_ : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2'
lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__UpperCamelCase ):
self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'current' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Any = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
| 321
| 0
|
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus" ):
"""simple docstring"""
lowercase_ : int = BeautifulSoup(requests.get(__SCREAMING_SNAKE_CASE ).text , 'html.parser' )
lowercase_ : List[str] = soup.findAll('h1' )
lowercase_ : List[str] = soup.findAll('div' , {'class': 'maincounter-number'} )
keys += soup.findAll('span' , {'class': 'panel-title'} )
values += soup.findAll('div' , {'class': 'number-table-main'} )
return {key.text.strip(): value.text.strip() for key, value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}
if __name__ == "__main__":
print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n")
for key, value in world_covidaa_stats().items():
print(F"{key}\n{value}\n")
| 352
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
class UpperCamelCase ( lowercase_ ):
lowercase = ['input_values', 'padding_mask']
def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : List[str] = chunk_length_s
lowercase_ : Tuple = overlap
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
f''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if padding and truncation:
raise ValueError('Both padding and truncation were set. Make sure you only set one.' )
elif padding is None:
# by default let's pad the inputs
lowercase_ : Optional[int] = True
lowercase_ : Optional[int] = bool(
isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) )
if is_batched:
lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ):
lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa )
elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
lowercase_ : List[str] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T]
# verify inputs are valid
for idx, example in enumerate(__UpperCamelCase ):
if example.ndim > 2:
raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' )
lowercase_ : Optional[int] = None
lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio )
lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) )
lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio )
lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) )
lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length
lowercase_ : Union[str, Any] = 'max_length'
else:
lowercase_ : int = input_values
# normal padding on batch
if padded_inputs is None:
lowercase_ : int = self.pad(
__UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,)
if padding:
lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' )
lowercase_ : Dict = []
for example in padded_inputs.pop('input_values' ):
if self.feature_size == 1:
lowercase_ : Optional[int] = example[..., None]
input_values.append(example.T )
lowercase_ : str = input_values
if return_tensors is not None:
lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase )
return padded_inputs
| 321
| 0
|
"""simple docstring"""
from bisect import bisect
from itertools import accumulate
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] ):
lowercase_ : Optional[int] = sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : x[0] / x[1] , reverse=__SCREAMING_SNAKE_CASE )
lowercase_ : int = [i[0] for i in r], [i[1] for i in r]
lowercase_ : str = list(accumulate(__SCREAMING_SNAKE_CASE ) )
lowercase_ : Union[str, Any] = bisect(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return (
0
if k == 0
else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k] )
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 353
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"MRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"MraForMaskedLM",
"MraForMultipleChoice",
"MraForQuestionAnswering",
"MraForSequenceClassification",
"MraForTokenClassification",
"MraLayer",
"MraModel",
"MraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 321
| 0
|
def lowercase__( __SCREAMING_SNAKE_CASE : int | float | str ):
try:
lowercase_ : List[str] = float(__SCREAMING_SNAKE_CASE )
except ValueError:
raise ValueError('Please enter a valid number' )
lowercase_ : List[str] = decimal - int(__SCREAMING_SNAKE_CASE )
if fractional_part == 0:
return int(__SCREAMING_SNAKE_CASE ), 1
else:
lowercase_ : int = len(str(__SCREAMING_SNAKE_CASE ).split('.' )[1] )
lowercase_ : Any = int(decimal * (10**number_of_frac_digits) )
lowercase_ : int = 10**number_of_frac_digits
lowercase_ : str = denominator, numerator
while True:
lowercase_ : List[str] = dividend % divisor
if remainder == 0:
break
lowercase_ : Tuple = divisor, remainder
lowercase_ : Dict = numerator / divisor, denominator / divisor
return int(__SCREAMING_SNAKE_CASE ), int(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F"{decimal_to_fraction(2) = }")
print(F"{decimal_to_fraction(89.0) = }")
print(F"{decimal_to_fraction('67') = }")
print(F"{decimal_to_fraction('45.0') = }")
print(F"{decimal_to_fraction(1.5) = }")
print(F"{decimal_to_fraction('6.25') = }")
print(F"{decimal_to_fraction('78td') = }")
| 354
|
"""simple docstring"""
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("dataclasses")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("importlib_metadata")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ):
require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
| 321
| 0
|
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"Visual-Attention-Network/van-base": (
"https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json"
),
}
class UpperCamelCase ( lowercase_ ):
lowercase = 'van'
def __init__( self ,__UpperCamelCase=224 ,__UpperCamelCase=3 ,__UpperCamelCase=[7, 3, 3, 3] ,__UpperCamelCase=[4, 2, 2, 2] ,__UpperCamelCase=[64, 128, 320, 512] ,__UpperCamelCase=[3, 3, 12, 3] ,__UpperCamelCase=[8, 8, 4, 4] ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-6 ,__UpperCamelCase=1e-2 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,**__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
super().__init__(**__UpperCamelCase )
lowercase_ : List[str] = image_size
lowercase_ : Any = num_channels
lowercase_ : Dict = patch_sizes
lowercase_ : Optional[int] = strides
lowercase_ : Any = hidden_sizes
lowercase_ : List[str] = depths
lowercase_ : Any = mlp_ratios
lowercase_ : List[str] = hidden_act
lowercase_ : Tuple = initializer_range
lowercase_ : Tuple = layer_norm_eps
lowercase_ : int = layer_scale_init_value
lowercase_ : List[Any] = drop_path_rate
lowercase_ : Any = dropout_rate
| 355
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ):
lowercase_ : int = 'backbone.' if is_semantic else ''
lowercase_ : List[str] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(F'''{prefix}cls_token''', 'beit.embeddings.cls_token'),
(F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'),
(F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'),
(F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('mask_token', 'beit.embeddings.mask_token'),
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('fc_norm.weight', 'beit.pooler.layernorm.weight'),
('fc_norm.bias', 'beit.pooler.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ):
for i in range(config.num_hidden_layers ):
lowercase_ : Any = 'backbone.' if is_semantic else ''
# queries, keys and values
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' )
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' )
lowercase_ : List[str] = in_proj_weight[
: config.hidden_size, :
]
lowercase_ : List[str] = q_bias
lowercase_ : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ : Any = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ : Any = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' )
lowercase_ : Tuple = gamma_a
lowercase_ : List[Any] = gamma_a
def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = val
def lowercase__( ):
lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ):
lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True
lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
lowercase_ : Any = 10_24
lowercase_ : List[str] = 40_96
lowercase_ : Tuple = 24
lowercase_ : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
lowercase_ : Optional[Any] = 16
lowercase_ : Any = 'huggingface/label-files'
lowercase_ : int = 'rvlcdip-id2label.json'
lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowercase_ : str = idalabel
lowercase_ : str = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
# load HuggingFace model
lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(__SCREAMING_SNAKE_CASE )
# Check outputs on an image
lowercase_ : List[Any] = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE )
lowercase_ : str = prepare_img()
lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' )
lowercase_ : int = encoding['pixel_values']
lowercase_ : Any = model(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = outputs.logits
# verify logits
lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92]
assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected"
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
if has_lm_head:
lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large'
else:
lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip'
image_processor.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
model.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 321
| 0
|
"""simple docstring"""
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
__SCREAMING_SNAKE_CASE = "."
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
__SCREAMING_SNAKE_CASE = [
"Assert",
"AssignVariableOp",
"EmptyTensorList",
"MergeV2Checkpoints",
"ReadVariableOp",
"ResourceGather",
"RestoreV2",
"SaveV2",
"ShardedFilename",
"StatefulPartitionedCall",
"StaticRegexFullMatch",
"VarHandleOp",
]
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple ):
lowercase_ : int = SavedModel()
lowercase_ : Union[str, Any] = []
with open(os.path.join(__SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f:
lowercase_ : List[str] = json.load(__SCREAMING_SNAKE_CASE )['opsets']
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(__SCREAMING_SNAKE_CASE )] )
with open(__SCREAMING_SNAKE_CASE , 'rb' ) as f:
saved_model.ParseFromString(f.read() )
lowercase_ : Any = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
lowercase_ : int = sorted(__SCREAMING_SNAKE_CASE )
lowercase_ : str = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(__SCREAMING_SNAKE_CASE )
if strict and len(__SCREAMING_SNAKE_CASE ) > 0:
raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops )
elif len(__SCREAMING_SNAKE_CASE ) > 0:
print(F'''Found the following incompatible ops for the opset {opset}:''' )
print(*__SCREAMING_SNAKE_CASE , sep='\n' )
else:
print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).")
parser.add_argument(
"--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested."
)
parser.add_argument(
"--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model."
)
parser.add_argument(
"--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)"
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 356
|
"""simple docstring"""
__SCREAMING_SNAKE_CASE ={
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
__SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()}
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Union[str, Any] = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
lowercase_ : Dict = ''
for word in coded.split():
while len(__SCREAMING_SNAKE_CASE ) != 0:
decoded += decode_dict[word[:5]]
lowercase_ : Any = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 321
| 0
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Union[str, Any] = min(__SCREAMING_SNAKE_CASE ) # min() finds the minimum value
lowercase_ : List[str] = max(__SCREAMING_SNAKE_CASE ) # max() finds the maximum value
lowercase_ : Union[str, Any] = max_val - min_val + 1 # size is difference of max and min values plus one
# list of pigeonholes of size equal to the variable size
lowercase_ : Optional[int] = [0] * size
# Populate the pigeonholes.
for x in a:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "integers only please"
holes[x - min_val] += 1
# Putting the elements back into the array in an order.
lowercase_ : Optional[Any] = 0
for count in range(__SCREAMING_SNAKE_CASE ):
while holes[count] > 0:
holes[count] -= 1
lowercase_ : Union[str, Any] = count + min_val
i += 1
def lowercase__( ):
lowercase_ : Optional[Any] = [8, 3, 2, 7, 4, 6, 8]
pigeonhole_sort(__SCREAMING_SNAKE_CASE )
print('Sorted order is:' , ' '.join(__SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
main()
| 357
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations_with_dp_array(
__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
lowercase_ : str = sum(
count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE )
for item in array )
lowercase_ : Tuple = answer
return answer
lowercase_ : Optional[Any] = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Dict = [0] * (target + 1)
lowercase_ : Dict = 1
for i in range(1 , target + 1 ):
for j in range(__SCREAMING_SNAKE_CASE ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE =3
__SCREAMING_SNAKE_CASE =5
__SCREAMING_SNAKE_CASE =[1, 2, 5]
print(combination_sum_iv(n, array, target))
| 321
| 0
|
"""simple docstring"""
import random
def lowercase__( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : List[Any] ):
lowercase_ : List[Any] = [], [], []
for element in data:
if element < pivot:
less.append(__SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(__SCREAMING_SNAKE_CASE )
else:
equal.append(__SCREAMING_SNAKE_CASE )
return less, equal, greater
def lowercase__( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ):
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0:
return None
lowercase_ : Any = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )]
lowercase_ : List[Any] = 0
lowercase_ : int = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = len(__SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = len(__SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
| 358
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : int = set_counts
lowercase_ : List[Any] = max(__UpperCamelCase )
lowercase_ : Union[str, Any] = len(__UpperCamelCase )
lowercase_ : Dict = [1] * num_sets
lowercase_ : Optional[int] = list(range(__UpperCamelCase ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase )
lowercase_ : int = self.get_parent(__UpperCamelCase )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : Tuple = 0
lowercase_ : str = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : str = 0
lowercase_ : Tuple = src_parent
lowercase_ : int = self.set_counts[src_parent]
lowercase_ : str = max(self.max_set ,__UpperCamelCase )
return True
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 321
| 0
|
"""simple docstring"""
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
__SCREAMING_SNAKE_CASE =TypeVar("KEY")
__SCREAMING_SNAKE_CASE =TypeVar("VAL")
@dataclass(frozen=lowercase_ , slots=lowercase_ )
class UpperCamelCase ( Generic[KEY, VAL] ):
lowercase = 4_2
lowercase = 4_2
class UpperCamelCase ( _Item ):
def __init__( self ) -> None:
'''simple docstring'''
super().__init__(__UpperCamelCase ,__UpperCamelCase )
def __bool__( self ) -> bool:
'''simple docstring'''
return False
__SCREAMING_SNAKE_CASE =_DeletedItem()
class UpperCamelCase ( MutableMapping[KEY, VAL] ):
def __init__( self ,__UpperCamelCase = 8 ,__UpperCamelCase = 0.75 ) -> None:
'''simple docstring'''
lowercase_ : Optional[Any] = initial_block_size
lowercase_ : list[_Item | None] = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
lowercase_ : Tuple = capacity_factor
lowercase_ : Optional[int] = 0
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
return hash(__UpperCamelCase ) % len(self._buckets )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
return (ind + 1) % len(self._buckets )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> bool:
'''simple docstring'''
lowercase_ : Tuple = self._buckets[ind]
if not stored:
lowercase_ : List[str] = _Item(__UpperCamelCase ,__UpperCamelCase )
self._len += 1
return True
elif stored.key == key:
lowercase_ : Tuple = _Item(__UpperCamelCase ,__UpperCamelCase )
return True
else:
return False
def _UpperCAmelCase ( self ) -> bool:
'''simple docstring'''
lowercase_ : Any = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> bool:
'''simple docstring'''
if len(self._buckets ) <= self._initial_block_size:
return False
lowercase_ : Union[str, Any] = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : int = self._buckets
lowercase_ : Tuple = [None] * new_size
lowercase_ : Union[str, Any] = 0
for item in old_buckets:
if item:
self._add_item(item.key ,item.val )
def _UpperCAmelCase ( self ) -> None:
'''simple docstring'''
self._resize(len(self._buckets ) * 2 )
def _UpperCAmelCase ( self ) -> None:
'''simple docstring'''
self._resize(len(self._buckets ) // 2 )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Iterator[int]:
'''simple docstring'''
lowercase_ : str = self._get_bucket_index(__UpperCamelCase )
for _ in range(len(self._buckets ) ):
yield ind
lowercase_ : List[str] = self._get_next_ind(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> None:
'''simple docstring'''
for ind in self._iterate_buckets(__UpperCamelCase ):
if self._try_set(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ):
break
def __setitem__( self ,__UpperCamelCase ,__UpperCamelCase ) -> None:
'''simple docstring'''
if self._is_full():
self._size_up()
self._add_item(__UpperCamelCase ,__UpperCamelCase )
def __delitem__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
for ind in self._iterate_buckets(__UpperCamelCase ):
lowercase_ : Dict = self._buckets[ind]
if item is None:
raise KeyError(__UpperCamelCase )
if item is _deleted:
continue
if item.key == key:
lowercase_ : str = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self ,__UpperCamelCase ) -> VAL:
'''simple docstring'''
for ind in self._iterate_buckets(__UpperCamelCase ):
lowercase_ : List[Any] = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(__UpperCamelCase )
def __len__( self ) -> int:
'''simple docstring'''
return self._len
def __iter__( self ) -> Iterator[KEY]:
'''simple docstring'''
yield from (item.key for item in self._buckets if item)
def __repr__( self ) -> str:
'''simple docstring'''
lowercase_ : str = ' ,'.join(
f'''{item.key}: {item.val}''' for item in self._buckets if item )
return f'''HashMap({val_string})'''
| 359
|
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
__SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BlenderbotTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) )
lowercase_ : Any = add_prefix_space
lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase )
lowercase_ : int = add_prefix_space
lowercase_ : Any = 'post_processor'
lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
if tokenizer_component_instance:
lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ : str = tuple(state['sep'] )
if "cls" in state:
lowercase_ : Union[str, Any] = tuple(state['cls'] )
lowercase_ : str = False
if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Dict = add_prefix_space
lowercase_ : int = True
if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets:
lowercase_ : Optional[Any] = trim_offsets
lowercase_ : Tuple = True
if changes_to_apply:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) )
lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase )
setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value
lowercase_ : str = value
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : int = [self.sep_token_id]
lowercase_ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any:
'''simple docstring'''
return token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]:
'''simple docstring'''
lowercase_ : Optional[Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(__UpperCamelCase )
lowercase_ : Dict = ' '.join(__UpperCamelCase )
lowercase_ : str = self.encode(__UpperCamelCase )
if len(__UpperCamelCase ) > self.model_max_length:
lowercase_ : List[str] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 321
| 0
|
"""simple docstring"""
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
__SCREAMING_SNAKE_CASE =Lock()
def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ):
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(__SCREAMING_SNAKE_CASE )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
lowercase_ : Union[str, Any] = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
lowercase_ : Dict = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(__SCREAMING_SNAKE_CASE )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
lowercase_ : Optional[Any] = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
lowercase_ : Optional[Any] = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# after all swaps are performed, send the values back to main
result_pipe[1].send(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ):
lowercase_ : Optional[int] = []
lowercase_ : List[Any] = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
lowercase_ : Union[str, Any] = Pipe()
lowercase_ : int = Pipe()
process_array_.append(
Process(
target=__SCREAMING_SNAKE_CASE , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
lowercase_ : Any = temp_rs
lowercase_ : Union[str, Any] = temp_rr
for i in range(1 , len(__SCREAMING_SNAKE_CASE ) - 1 ):
lowercase_ : Dict = Pipe()
lowercase_ : Tuple = Pipe()
process_array_.append(
Process(
target=__SCREAMING_SNAKE_CASE , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
lowercase_ : str = temp_rs
lowercase_ : int = temp_rr
process_array_.append(
Process(
target=__SCREAMING_SNAKE_CASE , args=(
len(__SCREAMING_SNAKE_CASE ) - 1,
arr[len(__SCREAMING_SNAKE_CASE ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(__SCREAMING_SNAKE_CASE ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(__SCREAMING_SNAKE_CASE ) ):
lowercase_ : Any = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def lowercase__( ):
lowercase_ : Optional[int] = list(range(10 , 0 , -1 ) )
print('Initial List' )
print(*__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = odd_even_transposition(__SCREAMING_SNAKE_CASE )
print('Sorted List\n' )
print(*__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 360
|
"""simple docstring"""
import os
import sys
import unittest
__SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py")
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py")
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'}
lowercase_ : Union[str, Any] = {
'BlipModelTest': 'BlipModelTester',
'BlipTextImageModelTest': 'BlipTextImageModelsModelTester',
'BlipTextModelTest': 'BlipTextModelTester',
'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester',
'BlipVQAModelTest': 'BlipVQAModelTester',
'BlipVisionModelTest': 'BlipVisionModelTester',
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : Any = {
'BertForMaskedLM': ['BertModelTest'],
'BertForMultipleChoice': ['BertModelTest'],
'BertForNextSentencePrediction': ['BertModelTest'],
'BertForPreTraining': ['BertModelTest'],
'BertForQuestionAnswering': ['BertModelTest'],
'BertForSequenceClassification': ['BertModelTest'],
'BertForTokenClassification': ['BertModelTest'],
'BertLMHeadModel': ['BertModelTest'],
'BertModel': ['BertModelTest'],
}
lowercase_ : Any = {
'BlipForConditionalGeneration': ['BlipTextImageModelTest'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'],
'BlipForQuestionAnswering': ['BlipVQAModelTest'],
'BlipModel': ['BlipModelTest'],
'BlipTextModel': ['BlipTextModelTest'],
'BlipVisionModel': ['BlipVisionModelTest'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Tuple = {
'BertForMaskedLM': ['BertModelTester'],
'BertForMultipleChoice': ['BertModelTester'],
'BertForNextSentencePrediction': ['BertModelTester'],
'BertForPreTraining': ['BertModelTester'],
'BertForQuestionAnswering': ['BertModelTester'],
'BertForSequenceClassification': ['BertModelTester'],
'BertForTokenClassification': ['BertModelTester'],
'BertLMHeadModel': ['BertModelTester'],
'BertModel': ['BertModelTester'],
}
lowercase_ : Optional[Any] = {
'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'],
'BlipForQuestionAnswering': ['BlipVQAModelTester'],
'BlipModel': ['BlipModelTester'],
'BlipTextModel': ['BlipTextModelTester'],
'BlipVisionModel': ['BlipVisionModelTester'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__SCREAMING_SNAKE_CASE =[
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
__SCREAMING_SNAKE_CASE ={
"vocab_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json",
"funnel-transformer/small-base": (
"https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json"
),
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json",
"funnel-transformer/large-base": (
"https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json"
),
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json"
),
},
}
__SCREAMING_SNAKE_CASE ={F"funnel-transformer/{name}": 512 for name in _model_names}
__SCREAMING_SNAKE_CASE ={F"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_INIT_CONFIGURATION
lowercase = FunnelTokenizer
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = 2
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<sep>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<cls>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=None ,__UpperCamelCase="##" ,**__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,do_lower_case=__UpperCamelCase ,unk_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,clean_text=__UpperCamelCase ,tokenize_chinese_chars=__UpperCamelCase ,strip_accents=__UpperCamelCase ,wordpieces_prefix=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' ,__UpperCamelCase ) != do_lower_case
or normalizer_state.get('strip_accents' ,__UpperCamelCase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' ,__UpperCamelCase ) != tokenize_chinese_chars
):
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,normalizer_state.pop('type' ) )
lowercase_ : Any = do_lower_case
lowercase_ : List[Any] = strip_accents
lowercase_ : Optional[int] = tokenize_chinese_chars
lowercase_ : List[str] = normalizer_class(**__UpperCamelCase )
lowercase_ : Dict = do_lower_case
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : Dict = [self.sep_token_id]
lowercase_ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Optional[Any] = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
| 361
|
"""simple docstring"""
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ):
with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX )
try:
print(*__SCREAMING_SNAKE_CASE )
finally:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN )
__SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
__SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank)
__SCREAMING_SNAKE_CASE =socket.gethostname()
__SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]"
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__SCREAMING_SNAKE_CASE =dist.get_rank()
__SCREAMING_SNAKE_CASE =dist.get_world_size()
printflock(F"{gpu} is OK (global rank: {rank}/{world_size})")
dist.barrier()
if rank == 0:
printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
except Exception:
printflock(F"{gpu} is broken")
raise
| 321
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__SCREAMING_SNAKE_CASE ={
"configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"]
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =["RemBertTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =["RemBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RemBertForCausalLM",
"RemBertForMaskedLM",
"RemBertForMultipleChoice",
"RemBertForQuestionAnswering",
"RemBertForSequenceClassification",
"RemBertForTokenClassification",
"RemBertLayer",
"RemBertModel",
"RemBertPreTrainedModel",
"load_tf_weights_in_rembert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRemBertForCausalLM",
"TFRemBertForMaskedLM",
"TFRemBertForMultipleChoice",
"TFRemBertForQuestionAnswering",
"TFRemBertForSequenceClassification",
"TFRemBertForTokenClassification",
"TFRemBertLayer",
"TFRemBertModel",
"TFRemBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 362
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : List[Any] = name
lowercase_ : int = val
def __str__( self ) -> Tuple:
'''simple docstring'''
return f'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return self.val < other.val
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Optional[int] = {}
lowercase_ : Tuple = {}
lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase )
def __getitem__( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
return self.get_value(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return (idx - 1) // 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return idx * 2 + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return idx * 2 + 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
return self.heap_dict[key]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1
lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase )
for idx, i in enumerate(__UpperCamelCase ):
lowercase_ : Any = idx
lowercase_ : str = i.val
for i in range(__UpperCamelCase ,-1 ,-1 ):
self.sift_down(__UpperCamelCase ,__UpperCamelCase )
return array
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
while True:
lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741
lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase )
lowercase_ : List[str] = idx
if l < len(__UpperCamelCase ) and array[l] < array[idx]:
lowercase_ : List[str] = l
if r < len(__UpperCamelCase ) and array[r] < array[smallest]:
lowercase_ : Dict = r
if smallest != idx:
lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx]
(
(
lowercase_
) , (
lowercase_
) ,
) : str = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
lowercase_ : Any = smallest
else:
break
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase )
while p >= 0 and self.heap[p] > self.heap[idx]:
lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
lowercase_ : int = p
lowercase_ : str = self.get_parent_idx(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return self.heap[0]
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
lowercase_ : Tuple = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 ,self.heap )
return x
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
self.heap.append(__UpperCamelCase )
lowercase_ : Tuple = len(self.heap ) - 1
lowercase_ : Optional[int] = node.val
self.sift_up(len(self.heap ) - 1 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return len(self.heap ) == 0
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
lowercase_ : Any = new_value
lowercase_ : List[str] = new_value
self.sift_up(self.idx_of_element[node] )
__SCREAMING_SNAKE_CASE =Node("R", -1)
__SCREAMING_SNAKE_CASE =Node("B", 6)
__SCREAMING_SNAKE_CASE =Node("A", 3)
__SCREAMING_SNAKE_CASE =Node("X", 1)
__SCREAMING_SNAKE_CASE =Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
__SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 321
| 0
|
"""simple docstring"""
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
__SCREAMING_SNAKE_CASE ="base_with_context"
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ):
lowercase_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) )
lowercase_ : Optional[Any] = nn.Parameter(
torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__SCREAMING_SNAKE_CASE )
for lyr_num, lyr in enumerate(model.encoders ):
lowercase_ : Dict = weights[F'''layers_{lyr_num}''']
lowercase_ : Optional[int] = nn.Parameter(
torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) )
lowercase_ : Any = ly_weight['attention']
lowercase_ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
lowercase_ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
lowercase_ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
lowercase_ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
lowercase_ : Dict = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) )
lowercase_ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) )
lowercase_ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) )
lowercase_ : str = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) )
lowercase_ : List[Any] = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) )
return model
def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Dict = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) )
lowercase_ : Tuple = nn.Parameter(
torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__SCREAMING_SNAKE_CASE )
for lyr_num, lyr in enumerate(model.encoders ):
lowercase_ : Any = weights[F'''layers_{lyr_num}''']
lowercase_ : List[str] = ly_weight['attention']
lowercase_ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
lowercase_ : Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
lowercase_ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
lowercase_ : str = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
lowercase_ : Dict = nn.Parameter(
torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) )
lowercase_ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) )
lowercase_ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) )
lowercase_ : Any = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) )
lowercase_ : str = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) )
lowercase_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) )
return model
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ):
lowercase_ : Any = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) )
lowercase_ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) )
lowercase_ : str = nn.Parameter(
torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__SCREAMING_SNAKE_CASE )
lowercase_ : str = nn.Parameter(
torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
lowercase_ : Optional[int] = weights[F'''layers_{lyr_num}''']
lowercase_ : Union[str, Any] = nn.Parameter(
torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) )
lowercase_ : Tuple = nn.Parameter(
torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) )
lowercase_ : int = ly_weight['self_attention']
lowercase_ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
lowercase_ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
lowercase_ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
lowercase_ : str = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
lowercase_ : List[str] = ly_weight['MultiHeadDotProductAttention_0']
lowercase_ : int = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
lowercase_ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
lowercase_ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
lowercase_ : Any = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
lowercase_ : int = nn.Parameter(
torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) )
lowercase_ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) )
lowercase_ : str = nn.Parameter(
torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) )
lowercase_ : str = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) )
lowercase_ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) )
lowercase_ : Any = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) )
lowercase_ : List[str] = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) )
lowercase_ : List[str] = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) )
return model
def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ):
lowercase_ : int = checkpoints.load_tax_checkpoint(args.checkpoint_path )
lowercase_ : Union[str, Any] = jnp.tree_util.tree_map(onp.array , __SCREAMING_SNAKE_CASE )
lowercase_ : Union[str, Any] = [
'from __gin__ import dynamic_registration',
'from music_spectrogram_diffusion.models.diffusion import diffusion_utils',
'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0',
'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()',
]
lowercase_ : str = os.path.join(args.checkpoint_path , '..' , 'config.gin' )
lowercase_ : Union[str, Any] = inference.parse_training_gin_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Dict = inference.InferenceModel(args.checkpoint_path , __SCREAMING_SNAKE_CASE )
lowercase_ : str = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' )
lowercase_ : str = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , )
lowercase_ : Optional[Any] = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , )
lowercase_ : List[str] = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , )
lowercase_ : Dict = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , __SCREAMING_SNAKE_CASE )
lowercase_ : Dict = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , __SCREAMING_SNAKE_CASE )
lowercase_ : Any = load_decoder(ta_checkpoint['target']['decoder'] , __SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' )
lowercase_ : Dict = SpectrogramDiffusionPipeline(
notes_encoder=__SCREAMING_SNAKE_CASE , continuous_encoder=__SCREAMING_SNAKE_CASE , decoder=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , melgan=__SCREAMING_SNAKE_CASE , )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.")
parser.add_argument(
"--save", default=True, type=bool, required=False, help="Whether to save the converted model or not."
)
parser.add_argument(
"--checkpoint_path",
default=F"{MODEL}/checkpoint_500000",
type=str,
required=False,
help="Path to the original jax model checkpoint.",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
main(args)
| 363
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[Any] = tempfile.mkdtemp()
# fmt: off
lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) )
lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
lowercase_ : Tuple = {'unk_token': '<unk>'}
lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + '\n' )
with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp:
fp.write('\n'.join(__UpperCamelCase ) )
lowercase_ : Any = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073],
'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase )
with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp:
json.dump(__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )]
lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_tokenizer()
lowercase_ : List[Any] = self.get_rust_tokenizer()
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase )
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase )
self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase )
self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' )
lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 )
lowercase_ : Any = CLIPSegProcessor.from_pretrained(
self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,__UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[str] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = self.prepare_image_inputs()
lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' )
lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[Any] = self.get_tokenizer()
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Dict = 'lower newer'
lowercase_ : Any = processor(text=__UpperCamelCase )
lowercase_ : int = tokenizer(__UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.get_image_processor()
lowercase_ : str = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = 'lower newer'
lowercase_ : str = self.prepare_image_inputs()
lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = self.prepare_image_inputs()
lowercase_ : Optional[Any] = self.prepare_image_inputs()
lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase )
lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def lowercase__( __SCREAMING_SNAKE_CASE : Dict ):
lowercase_ : str = args.pruning_method
lowercase_ : Dict = args.threshold
lowercase_ : Tuple = args.model_name_or_path.rstrip('/' )
lowercase_ : Union[str, Any] = args.target_model_path
print(F'''Load fine-pruned model from {model_name_or_path}''' )
lowercase_ : Any = torch.load(os.path.join(__SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) )
lowercase_ : str = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
lowercase_ : int = tensor
print(F'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
lowercase_ : List[str] = tensor
print(F'''Copied layer {name}''' )
elif "bias" in name:
lowercase_ : int = tensor
print(F'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
lowercase_ : List[str] = MagnitudeBinarizer.apply(inputs=__SCREAMING_SNAKE_CASE , threshold=__SCREAMING_SNAKE_CASE )
lowercase_ : str = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
lowercase_ : Tuple = name[:-6]
lowercase_ : Any = model[F'''{prefix_}mask_scores''']
lowercase_ : int = TopKBinarizer.apply(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : int = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
lowercase_ : List[Any] = name[:-6]
lowercase_ : Union[str, Any] = model[F'''{prefix_}mask_scores''']
lowercase_ : List[str] = ThresholdBinarizer.apply(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : int = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
lowercase_ : List[str] = name[:-6]
lowercase_ : Dict = model[F'''{prefix_}mask_scores''']
lowercase_ : str = -0.1, 1.1
lowercase_ : Any = torch.sigmoid(__SCREAMING_SNAKE_CASE )
lowercase_ : Dict = s * (r - l) + l
lowercase_ : Union[str, Any] = s_bar.clamp(min=0.0 , max=1.0 )
lowercase_ : List[Any] = tensor * mask
print(F'''Pruned layer {name}''' )
else:
raise ValueError('Unknown pruning method' )
if target_model_path is None:
lowercase_ : Dict = os.path.join(
os.path.dirname(__SCREAMING_SNAKE_CASE ) , F'''bertarized_{os.path.basename(__SCREAMING_SNAKE_CASE )}''' )
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
shutil.copytree(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
print(F'''\nCreated folder {target_model_path}''' )
torch.save(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) )
print('\nPruned model saved! See you later!' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--pruning_method",
choices=["l0", "magnitude", "topK", "sigmoied_threshold"],
type=str,
required=True,
help=(
"Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"
" sigmoied_threshold = Soft movement pruning)"
),
)
parser.add_argument(
"--threshold",
type=float,
required=False,
help=(
"For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."
"For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."
"Not needed for `l0`"
),
)
parser.add_argument(
"--model_name_or_path",
type=str,
required=True,
help="Folder containing the model that was previously fine-pruned",
)
parser.add_argument(
"--target_model_path",
default=None,
type=str,
required=False,
help="Folder containing the model that was previously fine-pruned",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
main(args)
| 364
|
"""simple docstring"""
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 321
| 0
|
"""simple docstring"""
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Dict = filter(lambda __SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() )
lowercase_ : Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] )
return params
__SCREAMING_SNAKE_CASE =logging.getLogger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ):
if metric == "rouge2":
lowercase_ : Union[str, Any] = '{val_avg_rouge2:.4f}-{step_count}'
elif metric == "bleu":
lowercase_ : List[str] = '{val_avg_bleu:.4f}-{step_count}'
elif metric == "em":
lowercase_ : Dict = '{val_avg_em:.4f}-{step_count}'
else:
raise NotImplementedError(
F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
' function.' )
lowercase_ : Dict = ModelCheckpoint(
dirpath=__SCREAMING_SNAKE_CASE , filename=__SCREAMING_SNAKE_CASE , monitor=F'''val_{metric}''' , mode='max' , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] ):
return EarlyStopping(
monitor=F'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=__SCREAMING_SNAKE_CASE , verbose=__SCREAMING_SNAKE_CASE , )
class __lowerCamelCase ( pl.Callback ):
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Any:
'''simple docstring'''
lowercase_ : Dict = {f'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__UpperCamelCase )
@rank_zero_only
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=True ) -> None:
'''simple docstring'''
logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
lowercase_ : str = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} )
# Log results
lowercase_ : Optional[int] = Path(pl_module.hparams.output_dir )
if type_path == "test":
lowercase_ : List[Any] = od / 'test_results.txt'
lowercase_ : int = od / 'test_generations.txt'
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
lowercase_ : int = od / f'''{type_path}_results/{trainer.global_step:05d}.txt'''
lowercase_ : Any = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=__UpperCamelCase )
generations_file.parent.mkdir(exist_ok=__UpperCamelCase )
with open(__UpperCamelCase ,'a+' ) as writer:
for key in sorted(__UpperCamelCase ):
if key in ["log", "progress_bar", "preds"]:
continue
lowercase_ : Tuple = metrics[key]
if isinstance(__UpperCamelCase ,torch.Tensor ):
lowercase_ : Union[str, Any] = val.item()
lowercase_ : Tuple = f'''{key}: {val:.6f}\n'''
writer.write(__UpperCamelCase )
if not save_generations:
return
if "preds" in metrics:
lowercase_ : Any = '\n'.join(metrics['preds'] )
generations_file.open('w+' ).write(__UpperCamelCase )
@rank_zero_only
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
try:
lowercase_ : Any = pl_module.model.model.num_parameters()
except AttributeError:
lowercase_ : str = pl_module.model.num_parameters()
lowercase_ : List[Any] = count_trainable_parameters(__UpperCamelCase )
# mp stands for million parameters
trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} )
@rank_zero_only
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
save_json(pl_module.metrics ,pl_module.metrics_save_path )
return self._write_logs(__UpperCamelCase ,__UpperCamelCase ,'test' )
@rank_zero_only
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
save_json(pl_module.metrics ,pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 365
|
"""simple docstring"""
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = parent
lowercase_ : Tuple = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Optional[Any] = is_training
lowercase_ : Any = use_input_mask
lowercase_ : Optional[Any] = vocab_size
lowercase_ : str = hidden_size
lowercase_ : Any = num_hidden_layers
lowercase_ : Dict = num_attention_heads
lowercase_ : Optional[int] = intermediate_size
lowercase_ : Any = hidden_act
lowercase_ : Optional[Any] = hidden_dropout_prob
lowercase_ : str = attention_probs_dropout_prob
lowercase_ : Any = max_position_embeddings
lowercase_ : Optional[Any] = initializer_range
lowercase_ : Union[str, Any] = use_labels
lowercase_ : Union[str, Any] = scope
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : List[str] = None
if self.use_input_mask:
lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Any = self.get_config()
return config, input_ids, input_mask, token_labels
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return BertGenerationConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : str = self.prepare_config_and_inputs()
lowercase_ : int = True
lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Optional[Any] = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = True
lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Union[str, Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,)
lowercase_ : Dict = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,)
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int:
'''simple docstring'''
lowercase_ : List[str] = True
lowercase_ : Union[str, Any] = True
lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval()
# first forward pass
lowercase_ : str = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,)
lowercase_ : Dict = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size )
lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 )
# append to next input_ids and
lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 )
lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 )
lowercase_ : int = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
lowercase_ : List[Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
# select random slice
lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
lowercase_ : int = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
lowercase = (BertGenerationDecoder,) if is_torch_available() else ()
lowercase = (
{'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder}
if is_torch_available()
else {}
)
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoderTester(self )
lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs()
lowercase_ : Optional[int] = 'bert'
self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
lowercase_ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,)
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
self.assertIsNotNone(__UpperCamelCase )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Tuple = model(__UpperCamelCase )[0]
lowercase_ : Dict = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : str = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Dict = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : Dict = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"
),
"squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt",
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli": (
"https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"
),
},
}
__SCREAMING_SNAKE_CASE ={
"squeezebert/squeezebert-uncased": 512,
"squeezebert/squeezebert-mnli": 512,
"squeezebert/squeezebert-mnli-headless": 512,
}
__SCREAMING_SNAKE_CASE ={
"squeezebert/squeezebert-uncased": {"do_lower_case": True},
"squeezebert/squeezebert-mnli": {"do_lower_case": True},
"squeezebert/squeezebert-mnli-headless": {"do_lower_case": True},
}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_INIT_CONFIGURATION
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = SqueezeBertTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase="[UNK]" ,__UpperCamelCase="[SEP]" ,__UpperCamelCase="[PAD]" ,__UpperCamelCase="[CLS]" ,__UpperCamelCase="[MASK]" ,__UpperCamelCase=True ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> int:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,do_lower_case=__UpperCamelCase ,unk_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,tokenize_chinese_chars=__UpperCamelCase ,strip_accents=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' ,__UpperCamelCase ) != do_lower_case
or normalizer_state.get('strip_accents' ,__UpperCamelCase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' ,__UpperCamelCase ) != tokenize_chinese_chars
):
lowercase_ : List[str] = getattr(__UpperCamelCase ,normalizer_state.pop('type' ) )
lowercase_ : List[str] = do_lower_case
lowercase_ : str = strip_accents
lowercase_ : Optional[Any] = tokenize_chinese_chars
lowercase_ : Optional[Any] = normalizer_class(**__UpperCamelCase )
lowercase_ : Any = do_lower_case
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> int:
'''simple docstring'''
lowercase_ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : List[str] = [self.sep_token_id]
lowercase_ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Optional[int] = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
| 366
|
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
return None
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
return None
class UpperCamelCase ( unittest.TestCase ):
lowercase = [
# (model_name, model_kwargs)
('bert-base-cased', {}),
('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
from transformers import BertModel
lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words']
with NamedTemporaryFile(mode='w+t' ) as vocab_file:
vocab_file.write('\n'.join(__UpperCamelCase ) )
vocab_file.flush()
lowercase_ : List[str] = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) )
model.save_pretrained(__UpperCamelCase )
self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase )
@require_tf
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
lowercase_ : int = quantize(Path(__UpperCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
lowercase_ : Tuple = quantize(__UpperCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
try:
# Compute path
with TemporaryDirectory() as tempdir:
lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase )
return path
except Exception as e:
self.fail(__UpperCamelCase )
@require_torch
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
from transformers import BertModel
lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' )
@require_tf
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
from transformers import TFBertModel
lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1']
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase )
# Assert all variables are present
self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase )
self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} )
self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids']
lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]}
lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__UpperCamelCase ) ,3 )
# Should have exactly the same input names
self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__UpperCamelCase ) ,1 )
self.assertEqual(len(__UpperCamelCase ) ,1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] ,tokens['input_ids'] )
self.assertEqual(ordered_input_names[0] ,'input_ids' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' )
self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
| 321
| 0
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCamelCase ( lowercase_ , unittest.TestCase ):
lowercase = XLMTokenizer
lowercase = False
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase_ : Dict = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
lowercase_ : Dict = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) )
lowercase_ : Union[str, Any] = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file ,'w' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) )
with open(self.merges_file ,'w' ) as fp:
fp.write('\n'.join(__UpperCamelCase ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Any = 'lower newer'
lowercase_ : Any = 'lower newer'
return input_text, output_text
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = XLMTokenizer(self.vocab_file ,self.merges_file )
lowercase_ : str = 'lower'
lowercase_ : Union[str, Any] = ['low', 'er</w>']
lowercase_ : List[str] = tokenizer.tokenize(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : Tuple = tokens + ['<unk>']
lowercase_ : str = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) ,__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' )
lowercase_ : Union[str, Any] = tokenizer.encode('sequence builders' ,add_special_tokens=__UpperCamelCase )
lowercase_ : Tuple = tokenizer.encode('multi-sequence build' ,add_special_tokens=__UpperCamelCase )
lowercase_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase )
lowercase_ : str = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ,__UpperCamelCase )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 367
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]]
lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase )
self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(__UpperCamelCase ) # fails here
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 )
lowercase_ : str = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 )
lowercase_ : Any = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 )
lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 321
| 0
|
"""simple docstring"""
from PIL import Image
def lowercase__( __SCREAMING_SNAKE_CASE : Image , __SCREAMING_SNAKE_CASE : float ):
def brightness(__SCREAMING_SNAKE_CASE : int ) -> float:
return 1_28 + level + (c - 1_28)
if not -255.0 <= level <= 255.0:
raise ValueError('level must be between -255.0 (black) and 255.0 (white)' )
return img.point(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
# Load image
with Image.open("image_data/lena.jpg") as img:
# Change brightness to 100
__SCREAMING_SNAKE_CASE =change_brightness(img, 100)
brigt_img.save("image_data/lena_brightness.png", format="png")
| 368
|
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[Any] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : Tuple = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
print(F'''Loading model based on config from {config_path}...''' )
lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
lowercase_ : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
lowercase_ : BertSelfAttention = layer.attention.self
lowercase_ : str = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape )
lowercase_ : int = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape )
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape )
lowercase_ : List[Any] = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape )
# Self-attention Output
lowercase_ : BertSelfOutput = layer.attention.output
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape )
lowercase_ : Any = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape )
lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' )
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' )
# Intermediate
lowercase_ : BertIntermediate = layer.intermediate
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' )
lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' )
# Output
lowercase_ : BertOutput = layer.output
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' )
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' )
lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' )
lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' )
# Embeddings
lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' )
lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' )
lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' )
lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' )
# LM Head
lowercase_ : int = model.cls.predictions.transform
lowercase_ : str = get_masked_lm_array('dense/kernel' )
lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' )
lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' )
lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' )
lowercase_ : List[str] = get_masked_lm_array('embedding_table' )
# Pooling
lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' )
# Export final model
model.save_pretrained(__SCREAMING_SNAKE_CASE )
# Integration test - should load without any errors ;)
lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE )
print(new_model.eval() )
print('Model conversion was done sucessfully!' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 321
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json",
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
}
class UpperCamelCase ( lowercase_ ):
lowercase = 'poolformer'
def __init__( self ,__UpperCamelCase=3 ,__UpperCamelCase=16 ,__UpperCamelCase=16 ,__UpperCamelCase=3 ,__UpperCamelCase=4.0 ,__UpperCamelCase=[2, 2, 6, 2] ,__UpperCamelCase=[64, 128, 320, 512] ,__UpperCamelCase=[7, 3, 3, 3] ,__UpperCamelCase=[4, 2, 2, 2] ,__UpperCamelCase=[2, 1, 1, 1] ,__UpperCamelCase=4 ,__UpperCamelCase=0.0 ,__UpperCamelCase="gelu" ,__UpperCamelCase=True ,__UpperCamelCase=1e-5 ,__UpperCamelCase=0.02 ,**__UpperCamelCase ,) -> List[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = num_channels
lowercase_ : Dict = patch_size
lowercase_ : Union[str, Any] = stride
lowercase_ : List[Any] = padding
lowercase_ : List[str] = pool_size
lowercase_ : Any = hidden_sizes
lowercase_ : str = mlp_ratio
lowercase_ : str = depths
lowercase_ : List[str] = patch_sizes
lowercase_ : Tuple = strides
lowercase_ : str = num_encoder_blocks
lowercase_ : Optional[Any] = drop_path_rate
lowercase_ : List[Any] = hidden_act
lowercase_ : Any = use_layer_scale
lowercase_ : Tuple = layer_scale_init_value
lowercase_ : int = initializer_range
super().__init__(**__UpperCamelCase )
class UpperCamelCase ( lowercase_ ):
lowercase = version.parse('1.11' )
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def _UpperCAmelCase ( self ) -> float:
'''simple docstring'''
return 2e-3
| 369
|
"""simple docstring"""
from collections import namedtuple
import requests
from lxml import html # type: ignore
__SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered")
def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ):
lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) )
__SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 321
| 0
|
"""simple docstring"""
import argparse
import fairseq
import torch
from torch import nn
from transformers import (
MBartaaTokenizer,
MBartConfig,
MBartForCausalLM,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
__SCREAMING_SNAKE_CASE =[
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple ):
"""simple docstring"""
for attribute in key.split('.' ):
lowercase_ : Tuple = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if weight_type is not None:
lowercase_ : str = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).shape
else:
lowercase_ : int = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
lowercase_ : Tuple = value
elif weight_type == "weight_g":
lowercase_ : Union[str, Any] = value
elif weight_type == "weight_v":
lowercase_ : List[Any] = value
elif weight_type == "bias":
lowercase_ : Tuple = value
else:
lowercase_ : Dict = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
"""simple docstring"""
lowercase_ : Any = []
lowercase_ : Any = fairseq_model.state_dict()
lowercase_ : List[str] = hf_model.feature_extractor
lowercase_ : Optional[int] = hf_model.adapter
for name, value in fairseq_dict.items():
lowercase_ : int = False
if "conv_layers" in name:
load_conv_layer(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
lowercase_ : Optional[Any] = True
elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ):
load_adapter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Any = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
lowercase_ : Optional[int] = True
if "*" in mapped_key:
lowercase_ : List[str] = name.split(__SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
lowercase_ : Union[str, Any] = mapped_key.replace('*' , __SCREAMING_SNAKE_CASE )
if "weight_g" in name:
lowercase_ : Union[str, Any] = 'weight_g'
elif "weight_v" in name:
lowercase_ : Dict = 'weight_v'
elif "bias" in name:
lowercase_ : Optional[int] = 'bias'
elif "weight" in name:
lowercase_ : List[Any] = 'weight'
else:
lowercase_ : List[Any] = None
set_recursively(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(__SCREAMING_SNAKE_CASE )
logger.warning(F'''Unused weights: {unused_weights}''' )
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
"""simple docstring"""
lowercase_ : Any = full_name.split('conv_layers.' )[-1]
lowercase_ : Optional[Any] = name.split('.' )
lowercase_ : str = int(items[0] )
lowercase_ : Optional[int] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
lowercase_ : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
lowercase_ : Optional[Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
lowercase_ : Optional[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
lowercase_ : Any = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
"""simple docstring"""
lowercase_ : Tuple = full_name.split('adaptor.' )[-1]
lowercase_ : Any = name.split('.' )
if items[1].isdigit():
lowercase_ : int = int(items[1] )
else:
lowercase_ : Any = None
if "adaptor" not in full_name:
if "proj_ln" in full_name:
# has to be layer norm
if "bias" in name:
assert (
value.shape == adapter.proj_layer_norm.bias.data.shape
), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.'''
lowercase_ : Optional[Any] = value
logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' )
if "weight" in name:
assert (
value.shape == adapter.proj_layer_norm.weight.data.shape
), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.'''
lowercase_ : Optional[Any] = value
else:
# has to be projection layer
if "bias" in name:
assert (
value.shape == adapter.proj.bias.data.shape
), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.'''
lowercase_ : Union[str, Any] = value
logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' )
if "weight" in name:
assert (
value.shape == adapter.proj.weight.data.shape
), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.'''
lowercase_ : Dict = value
logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' )
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if "bias" in name:
assert (
value.shape == adapter.layers[layer_id].conv.bias.data.shape
), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.'''
lowercase_ : int = value
logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' )
elif "weight" in name:
assert (
value.shape == adapter.layers[layer_id].conv.weight.data.shape
), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.'''
lowercase_ : str = value
logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' )
else:
unused_weights.append(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
lowercase_ : Union[str, Any] = emb.weight.shape
lowercase_ : Dict = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = emb.weight.data
return lin_layer
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , ):
"""simple docstring"""
lowercase_ : List[Any] = WavaVecaConfig.from_pretrained(
__SCREAMING_SNAKE_CASE , add_adapter=__SCREAMING_SNAKE_CASE , adapter_stride=__SCREAMING_SNAKE_CASE , adapter_kernel_size=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , output_hidden_size=__SCREAMING_SNAKE_CASE , )
lowercase_ : Dict = MBartConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
# load model
lowercase_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={
'config_yaml': config_yaml_path,
'data': '/'.join(dict_path.split('/' )[:-1] ),
'w2v_path': checkpoint_path,
'load_pretrained_decoder_from': None,
} , )
lowercase_ : int = model[0].eval()
# load feature extractor
lowercase_ : Any = WavaVecaFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE )
# set weights for wav2vec2 encoder
lowercase_ : Tuple = WavaVecaModel(__SCREAMING_SNAKE_CASE )
recursively_load_weights_wavaveca(model.encoder , __SCREAMING_SNAKE_CASE )
# load decoder weights
lowercase_ : int = MBartForCausalLM(__SCREAMING_SNAKE_CASE )
lowercase_ : int = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__SCREAMING_SNAKE_CASE )
logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' )
logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' )
lowercase_ : List[str] = SpeechEncoderDecoderModel(encoder=__SCREAMING_SNAKE_CASE , decoder=__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = False
lowercase_ : List[str] = MBartaaTokenizer(__SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = hf_wavavec.config.to_dict()
lowercase_ : Dict = tokenizer.pad_token_id
lowercase_ : List[str] = tokenizer.bos_token_id
lowercase_ : Any = tokenizer.eos_token_id
lowercase_ : Optional[int] = 'mbart50'
lowercase_ : List[str] = 'wav2vec2'
lowercase_ : str = tokenizer.eos_token_id
lowercase_ : Any = 25_00_04
lowercase_ : Union[str, Any] = tokenizer.eos_token_id
lowercase_ : Dict = SpeechEncoderDecoderConfig.from_dict(__SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(__SCREAMING_SNAKE_CASE )
feature_extractor.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model")
parser.add_argument(
"--encoder_config_path",
default="facebook/wav2vec2-xls-r-1b",
type=str,
help="Path to hf encoder wav2vec2 checkpoint config",
)
parser.add_argument(
"--decoder_config_path",
default="facebook/mbart-large-50-one-to-many-mmt",
type=str,
help="Path to hf decoder checkpoint config",
)
parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers")
parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers")
parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers")
parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim")
parser.add_argument("--start_token_id", default=25_0004, type=int, help="`decoder_start_token_id` of model config")
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
args.config_yaml_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
add_adapter=args.add_adapter,
adapter_kernel_size=args.adapter_kernel_size,
adapter_stride=args.adapter_stride,
decoder_start_token_id=args.start_token_id,
encoder_output_dim=args.encoder_output_dim,
)
| 370
|
"""simple docstring"""
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 321
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class UpperCamelCase ( lowercase_ ):
lowercase = 'Salesforce/blip-image-captioning-base'
lowercase = (
'This is a tool that generates a description of an image. It takes an input named `image` which should be the '
'image to caption, and returns a text that contains the description in English.'
)
lowercase = 'image_captioner'
lowercase = AutoModelForVisionaSeq
lowercase = ['image']
lowercase = ['text']
def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self ,['vision'] )
super().__init__(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
return self.pre_processor(images=__UpperCamelCase ,return_tensors='pt' )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return self.model.generate(**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return self.pre_processor.batch_decode(__UpperCamelCase ,skip_special_tokens=__UpperCamelCase )[0].strip()
| 371
|
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = parent
lowercase_ : str = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Dict = is_training
lowercase_ : Tuple = use_input_mask
lowercase_ : Optional[Any] = use_token_type_ids
lowercase_ : List[str] = use_labels
lowercase_ : Any = vocab_size
lowercase_ : List[str] = hidden_size
lowercase_ : Optional[int] = num_hidden_layers
lowercase_ : int = num_attention_heads
lowercase_ : int = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : Optional[int] = hidden_dropout_prob
lowercase_ : Tuple = attention_probs_dropout_prob
lowercase_ : Tuple = max_position_embeddings
lowercase_ : Optional[int] = type_vocab_size
lowercase_ : Optional[int] = type_sequence_label_size
lowercase_ : Dict = initializer_range
lowercase_ : int = num_labels
lowercase_ : Any = num_choices
lowercase_ : int = scope
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Dict = None
if self.use_input_mask:
lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase_ : Tuple = None
lowercase_ : Tuple = None
lowercase_ : Tuple = None
if self.use_labels:
lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices )
lowercase_ : str = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return EsmConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Union[str, Any] = model(__UpperCamelCase )
lowercase_ : int = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.num_labels
lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Any = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Optional[int] = config_and_inputs
lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = False
lowercase = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase = ()
lowercase = (
{
'feature-extraction': EsmModel,
'fill-mask': EsmForMaskedLM,
'text-classification': EsmForSequenceClassification,
'token-classification': EsmForTokenClassification,
'zero-shot': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = True
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = EsmModelTester(self )
lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowercase_ : Optional[Any] = type
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
lowercase_ : List[Any] = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : List[Any] = torch.empty(2 ,4 ,30 )
lowercase_ : List[str] = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] )
lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@require_torch
class UpperCamelCase ( lowercase_ ):
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowercase_ : List[str] = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = 33
lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : List[str] = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowercase_ : Dict = model(__UpperCamelCase )[0]
# compare the actual values for a slice.
lowercase_ : Any = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__SCREAMING_SNAKE_CASE ={
"configuration_efficientnet": [
"EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EfficientNetConfig",
"EfficientNetOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =["EfficientNetImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"EfficientNetForImageClassification",
"EfficientNetModel",
"EfficientNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 350
|
"""simple docstring"""
import pickle
import numpy as np
from matplotlib import pyplot as plt
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[int] = bp_numa
lowercase_ : Dict = bp_numa
lowercase_ : Tuple = bp_numa
lowercase_ : List[Any] = conva_get[:2]
lowercase_ : int = conva_get[2]
lowercase_ : Dict = size_pa
lowercase_ : int = rate_w
lowercase_ : Union[str, Any] = rate_t
lowercase_ : Dict = [
np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1
lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1
lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : int = {
'num_bp1': self.num_bpa,
'num_bp2': self.num_bpa,
'num_bp3': self.num_bpa,
'conv1': self.conva,
'step_conv1': self.step_conva,
'size_pooling1': self.size_poolinga,
'rate_weight': self.rate_weight,
'rate_thre': self.rate_thre,
'w_conv1': self.w_conva,
'wkj': self.wkj,
'vji': self.vji,
'thre_conv1': self.thre_conva,
'thre_bp2': self.thre_bpa,
'thre_bp3': self.thre_bpa,
}
with open(__UpperCamelCase ,'wb' ) as f:
pickle.dump(__UpperCamelCase ,__UpperCamelCase )
print(f'''Model saved: {save_path}''' )
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
with open(__UpperCamelCase ,'rb' ) as f:
lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301
lowercase_ : str = model_dic.get('conv1' )
conv_get.append(model_dic.get('step_conv1' ) )
lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' )
lowercase_ : Optional[Any] = model_dic.get('num_bp1' )
lowercase_ : str = model_dic.get('num_bp2' )
lowercase_ : Optional[Any] = model_dic.get('num_bp3' )
lowercase_ : Union[str, Any] = model_dic.get('rate_weight' )
lowercase_ : Optional[int] = model_dic.get('rate_thre' )
# create model instance
lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# modify model parameter
lowercase_ : Optional[Any] = model_dic.get('w_conv1' )
lowercase_ : Tuple = model_dic.get('wkj' )
lowercase_ : Union[str, Any] = model_dic.get('vji' )
lowercase_ : Optional[Any] = model_dic.get('thre_conv1' )
lowercase_ : Dict = model_dic.get('thre_bp2' )
lowercase_ : Optional[int] = model_dic.get('thre_bp3' )
return conv_ins
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
return 1 / (1 + np.exp(-1 * x ))
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return round(__UpperCamelCase ,3 )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Dict = convs[0]
lowercase_ : Any = convs[1]
lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0]
# get the data slice of original image data, data_focus
lowercase_ : Tuple = []
for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
lowercase_ : List[Any] = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(__UpperCamelCase )
# calculate the feature map of every single kernel, and saved as list of matrix
lowercase_ : Dict = []
lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(__UpperCamelCase ):
lowercase_ : Tuple = []
for i_focus in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[int] = (
np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(__UpperCamelCase ) )
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape(
__UpperCamelCase ,__UpperCamelCase )
data_featuremap.append(__UpperCamelCase )
# expanding the data slice to One dimenssion
lowercase_ : Optional[int] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) )
lowercase_ : str = np.asarray(__UpperCamelCase )
return focus_list, data_featuremap
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple:
'''simple docstring'''
lowercase_ : Union[str, Any] = len(featuremaps[0] )
lowercase_ : str = int(size_map / size_pooling )
lowercase_ : Optional[int] = []
for i_map in range(len(__UpperCamelCase ) ):
lowercase_ : int = featuremaps[i_map]
lowercase_ : List[str] = []
for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[str] = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(__UpperCamelCase ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(__UpperCamelCase ) )
lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase )
featuremap_pooled.append(__UpperCamelCase )
return featuremap_pooled
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
lowercase_ : Tuple = []
for i in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[Any] = np.shape(data[i] )
lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] )
lowercase_ : List[str] = data_listed.getA().tolist()[0]
data_expanded.extend(__UpperCamelCase )
lowercase_ : int = np.asarray(__UpperCamelCase )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Any = np.asarray(__UpperCamelCase )
lowercase_ : Any = np.shape(__UpperCamelCase )
lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
lowercase_ : Any = []
lowercase_ : List[Any] = 0
for i_map in range(__UpperCamelCase ):
lowercase_ : List[str] = np.ones((size_map, size_map) )
for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[Any] = pd_pool[
i_pool
]
lowercase_ : Any = i_pool + 1
lowercase_ : Optional[int] = np.multiply(
__UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) )
pd_all.append(__UpperCamelCase )
return pd_all
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]:
'''simple docstring'''
print('----------------------Start Training-------------------------' )
print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) )
print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) )
lowercase_ : int = 0
lowercase_ : Tuple = []
lowercase_ : Tuple = 1_0000
while rp < n_repeat and mse >= error_accuracy:
lowercase_ : List[str] = 0
print(f'''-------------Learning Time {rp}--------------''' )
for p in range(len(__UpperCamelCase ) ):
# print('------------Learning Image: %d--------------'%p)
lowercase_ : int = np.asmatrix(datas_train[p] )
lowercase_ : Any = np.asarray(datas_teach[p] )
lowercase_ , lowercase_ : Tuple = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : Optional[int] = np.shape(__UpperCamelCase )
lowercase_ : Optional[int] = self._expand(__UpperCamelCase )
lowercase_ : int = data_bp_input
lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa
lowercase_ : Dict = self.sig(__UpperCamelCase )
lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa
lowercase_ : int = self.sig(__UpperCamelCase )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
lowercase_ : str = np.multiply(
(data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Optional[int] = np.multiply(
np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji )
lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga)
lowercase_ : Dict = pd_conva_pooled.T.getA().tolist()
lowercase_ : List[Any] = self._calculate_gradient_from_pool(
__UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,)
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] )
lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
lowercase_ : Dict = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight
lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre
lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
lowercase_ : int = rp + 1
lowercase_ : Union[str, Any] = error_count / patterns
all_mse.append(__UpperCamelCase )
def draw_error():
lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(__UpperCamelCase ,'+-' )
plt.plot(__UpperCamelCase ,'r--' )
plt.xlabel('Learning Times' )
plt.ylabel('All_mse' )
plt.grid(__UpperCamelCase ,alpha=0.5 )
plt.show()
print('------------------Training Complished---------------------' )
print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') )
if draw_e:
draw_error()
return mse
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Union[str, Any] = []
print('-------------------Start Testing-------------------------' )
print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) )
for p in range(len(__UpperCamelCase ) ):
lowercase_ : List[Any] = np.asmatrix(datas_test[p] )
lowercase_ , lowercase_ : Optional[Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : List[str] = self._expand(__UpperCamelCase )
lowercase_ : Any = data_bp_input
lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa
lowercase_ : str = self.sig(__UpperCamelCase )
lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa
lowercase_ : Optional[int] = self.sig(__UpperCamelCase )
produce_out.extend(bp_outa.getA().tolist() )
lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out]
return np.asarray(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase )
lowercase_ , lowercase_ : Union[str, Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 321
| 0
|
"""simple docstring"""
from math import ceil
def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple ):
lowercase_ : List[Any] = list(range(0 , __SCREAMING_SNAKE_CASE ) )
lowercase_ : List[Any] = [item for sublist in list(device_map.values() ) for item in sublist]
# Duplicate check
lowercase_ : Optional[int] = []
for i in device_map_blocks:
if device_map_blocks.count(__SCREAMING_SNAKE_CASE ) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(__SCREAMING_SNAKE_CASE )
# Missing blocks
lowercase_ : List[Any] = [i for i in blocks if i not in device_map_blocks]
lowercase_ : Optional[int] = [i for i in device_map_blocks if i not in blocks]
if len(__SCREAMING_SNAKE_CASE ) != 0:
raise ValueError(
'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.'
' These attention blocks were specified more than once: ' + str(__SCREAMING_SNAKE_CASE ) )
if len(__SCREAMING_SNAKE_CASE ) != 0:
raise ValueError(
'There are attention blocks for this model that are not specified in the device_map. Add these attention '
'blocks to a device on the device_map: ' + str(__SCREAMING_SNAKE_CASE ) )
if len(__SCREAMING_SNAKE_CASE ) != 0:
raise ValueError(
'The device_map contains more attention blocks than this model has. Remove these from the device_map:'
+ str(__SCREAMING_SNAKE_CASE ) )
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
lowercase_ : Optional[Any] = list(range(__SCREAMING_SNAKE_CASE ) )
lowercase_ : List[str] = int(ceil(n_layers / len(__SCREAMING_SNAKE_CASE ) ) )
lowercase_ : Optional[Any] = [layers[i : i + n_blocks] for i in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )]
return dict(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
| 351
|
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ):
lowercase_ : Dict = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification'
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Dict = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : str = 'patrickvonplaten/t5-tiny-random'
lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[int] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] )
lowercase_ : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2'
lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__UpperCamelCase ):
self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'current' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Any = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
| 321
| 0
|
"""simple docstring"""
from sklearn.metrics import fa_score
import datasets
__SCREAMING_SNAKE_CASE ="\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n"
__SCREAMING_SNAKE_CASE ="\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n"
__SCREAMING_SNAKE_CASE ="\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase ( datasets.Metric ):
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('int32' ) ),
'references': datasets.Sequence(datasets.Value('int32' ) ),
}
if self.config_name == 'multilabel'
else {
'predictions': datasets.Value('int32' ),
'references': datasets.Value('int32' ),
} ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,__UpperCamelCase=1 ,__UpperCamelCase="binary" ,__UpperCamelCase=None ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = fa_score(
__UpperCamelCase ,__UpperCamelCase ,labels=__UpperCamelCase ,pos_label=__UpperCamelCase ,average=__UpperCamelCase ,sample_weight=__UpperCamelCase )
return {"f1": float(__UpperCamelCase ) if score.size == 1 else score}
| 352
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
class UpperCamelCase ( lowercase_ ):
lowercase = ['input_values', 'padding_mask']
def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : List[str] = chunk_length_s
lowercase_ : Tuple = overlap
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
f''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if padding and truncation:
raise ValueError('Both padding and truncation were set. Make sure you only set one.' )
elif padding is None:
# by default let's pad the inputs
lowercase_ : Optional[int] = True
lowercase_ : Optional[int] = bool(
isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) )
if is_batched:
lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ):
lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa )
elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
lowercase_ : List[str] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T]
# verify inputs are valid
for idx, example in enumerate(__UpperCamelCase ):
if example.ndim > 2:
raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' )
lowercase_ : Optional[int] = None
lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio )
lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) )
lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio )
lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) )
lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length
lowercase_ : Union[str, Any] = 'max_length'
else:
lowercase_ : int = input_values
# normal padding on batch
if padded_inputs is None:
lowercase_ : int = self.pad(
__UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,)
if padding:
lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' )
lowercase_ : Dict = []
for example in padded_inputs.pop('input_values' ):
if self.feature_size == 1:
lowercase_ : Optional[int] = example[..., None]
input_values.append(example.T )
lowercase_ : str = input_values
if return_tensors is not None:
lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase )
return padded_inputs
| 321
| 0
|
"""simple docstring"""
import collections
import importlib.util
import os
import re
from pathlib import Path
__SCREAMING_SNAKE_CASE ="src/transformers"
# Matches is_xxx_available()
__SCREAMING_SNAKE_CASE =re.compile(r"is\_([a-z_]*)_available()")
# Catches a one-line _import_struct = {xxx}
__SCREAMING_SNAKE_CASE =re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
__SCREAMING_SNAKE_CASE =re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]")
# Catches a line if not is_foo_available
__SCREAMING_SNAKE_CASE =re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)")
# Catches a line _import_struct["bla"].append("foo")
__SCREAMING_SNAKE_CASE =re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
__SCREAMING_SNAKE_CASE =re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]")
# Catches a line with an object between quotes and a comma: "MyModel",
__SCREAMING_SNAKE_CASE =re.compile("^\s+\"([^\"]+)\",")
# Catches a line with objects between brackets only: ["foo", "bar"],
__SCREAMING_SNAKE_CASE =re.compile("^\s+\[([^\]]+)\]")
# Catches a line with from foo import bar, bla, boo
__SCREAMING_SNAKE_CASE =re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
# Catches a line with try:
__SCREAMING_SNAKE_CASE =re.compile(r"^\s*try:")
# Catches a line with else:
__SCREAMING_SNAKE_CASE =re.compile(r"^\s*else:")
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ):
if _re_test_backend.search(__SCREAMING_SNAKE_CASE ) is None:
return None
lowercase_ : Tuple = [b[0] for b in _re_backend.findall(__SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ):
with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
lowercase_ : str = f.readlines()
lowercase_ : Any = 0
while line_index < len(__SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(__SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
lowercase_ : Optional[Any] = []
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
lowercase_ : Union[str, Any] = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ):
lowercase_ : Optional[int] = _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ).groups()[0]
lowercase_ : List[Any] = re.findall('\[([^\]]+)\]' , __SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
lowercase_ : Optional[Any] = _re_import_struct_key_value.search(__SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
lowercase_ : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(__SCREAMING_SNAKE_CASE ) > 0]
objects.extend(__SCREAMING_SNAKE_CASE )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
lowercase_ : int = {'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowercase_ : Dict = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowercase_ : Tuple = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowercase_ : Any = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
lowercase_ : str = lines[line_index]
if _re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ) is not None:
lowercase_ : Dict = _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
lowercase_ : Tuple = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0]
objects.extend(__SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(__SCREAMING_SNAKE_CASE ) is not None:
lowercase_ : Dict = _re_between_brackets.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
lowercase_ : Optional[int] = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0]
objects.extend(__SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(__SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(__SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
lowercase_ : List[Any] = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowercase_ : int = []
while (
line_index < len(__SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
lowercase_ : List[Any] = lines[line_index]
lowercase_ : List[str] = _re_import.search(__SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowercase_ : Dict = {'none': objects}
# Let's continue with backend-specific objects
while line_index < len(__SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
lowercase_ : Optional[Any] = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowercase_ : Dict = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowercase_ : int = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
lowercase_ : str = lines[line_index]
lowercase_ : Dict = _re_import.search(__SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowercase_ : List[Any] = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
def find_duplicates(__SCREAMING_SNAKE_CASE : Union[str, Any] ):
return [k for k, v in collections.Counter(__SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowercase_ : int = []
for key in import_dict_objects.keys():
lowercase_ : int = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
lowercase_ : List[str] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowercase_ : Any = 'base imports' if key == 'none' else F'''{key} backend'''
errors.append(F'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def lowercase__( ):
lowercase_ : Union[str, Any] = []
for root, _, files in os.walk(__SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
lowercase_ : Union[str, Any] = os.path.join(__SCREAMING_SNAKE_CASE , '__init__.py' )
lowercase_ : Optional[int] = parse_init(__SCREAMING_SNAKE_CASE )
if objects is not None:
lowercase_ : Optional[Any] = analyze_results(*__SCREAMING_SNAKE_CASE )
if len(__SCREAMING_SNAKE_CASE ) > 0:
lowercase_ : Dict = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append('\n'.join(__SCREAMING_SNAKE_CASE ) )
if len(__SCREAMING_SNAKE_CASE ) > 0:
raise ValueError('\n\n'.join(__SCREAMING_SNAKE_CASE ) )
def lowercase__( ):
lowercase_ : Any = []
for path, directories, files in os.walk(__SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(__SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(__SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0:
continue
lowercase_ : Dict = str((Path(__SCREAMING_SNAKE_CASE ) / folder).relative_to(__SCREAMING_SNAKE_CASE ) )
lowercase_ : Optional[int] = short_path.replace(os.path.sep , '.' )
submodules.append(__SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
lowercase_ : Dict = str((Path(__SCREAMING_SNAKE_CASE ) / fname).relative_to(__SCREAMING_SNAKE_CASE ) )
lowercase_ : Tuple = short_path.replace('.py' , '' ).replace(os.path.sep , '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(__SCREAMING_SNAKE_CASE )
return submodules
__SCREAMING_SNAKE_CASE =[
"convert_pytorch_checkpoint_to_tf2",
"modeling_flax_pytorch_utils",
]
def lowercase__( ):
# This is to make sure the transformers module imported is the one in the repo.
lowercase_ : List[str] = importlib.util.spec_from_file_location(
'transformers' , os.path.join(__SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
lowercase_ : List[str] = spec.loader.load_module()
lowercase_ : str = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(__SCREAMING_SNAKE_CASE ) > 0:
lowercase_ : Any = '\n'.join(F'''- {module}''' for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F'''{list_of_modules}\n'''
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 353
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"MRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"MraForMaskedLM",
"MraForMultipleChoice",
"MraForQuestionAnswering",
"MraForSequenceClassification",
"MraForTokenClassification",
"MraLayer",
"MraModel",
"MraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 321
| 0
|
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"nielsr/canine-s": 2048,
}
# Unicode defines 1,114,112 total “codepoints”
__SCREAMING_SNAKE_CASE =111_4112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
__SCREAMING_SNAKE_CASE =0
__SCREAMING_SNAKE_CASE =0XE0_00
__SCREAMING_SNAKE_CASE =0XE0_01
__SCREAMING_SNAKE_CASE =0XE0_02
__SCREAMING_SNAKE_CASE =0XE0_03
__SCREAMING_SNAKE_CASE =0XE0_04
# Maps special codepoints to human-readable names.
__SCREAMING_SNAKE_CASE ={
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
__SCREAMING_SNAKE_CASE ={name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class UpperCamelCase ( lowercase_ ):
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self ,__UpperCamelCase=chr(__UpperCamelCase ) ,__UpperCamelCase=chr(__UpperCamelCase ) ,__UpperCamelCase=chr(__UpperCamelCase ) ,__UpperCamelCase=chr(__UpperCamelCase ) ,__UpperCamelCase=chr(__UpperCamelCase ) ,__UpperCamelCase=chr(__UpperCamelCase ) ,__UpperCamelCase=False ,__UpperCamelCase=2048 ,**__UpperCamelCase ,) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else bos_token
lowercase_ : Optional[Any] = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else eos_token
lowercase_ : List[str] = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else sep_token
lowercase_ : str = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else cls_token
lowercase_ : int = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowercase_ : str = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else mask_token
super().__init__(
bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,model_max_length=__UpperCamelCase ,**__UpperCamelCase ,)
# Creates a mapping for looking up the IDs of special symbols.
lowercase_ : Dict[str, int] = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
lowercase_ : Tuple = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
lowercase_ : Dict[int, str] = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
lowercase_ : Any = UNICODE_VOCAB_SIZE
lowercase_ : Optional[Any] = len(self._special_codepoints )
@property
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return self._unicode_vocab_size
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return list(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
try:
return ord(__UpperCamelCase )
except TypeError:
raise ValueError(f'''invalid token: \'{token}\'''' )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str:
'''simple docstring'''
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(__UpperCamelCase )
except TypeError:
raise ValueError(f'''invalid id: {index}''' )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str:
'''simple docstring'''
return "".join(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : str = [self.sep_token_id]
lowercase_ : Tuple = [self.cls_token_id]
lowercase_ : str = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCamelCase ,token_ids_a=__UpperCamelCase ,already_has_special_tokens=__UpperCamelCase )
lowercase_ : int = [1] + ([0] * len(__UpperCamelCase )) + [1]
if token_ids_a is not None:
result += ([0] * len(__UpperCamelCase )) + [1]
return result
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : int = [self.sep_token_id]
lowercase_ : List[str] = [self.cls_token_id]
lowercase_ : List[Any] = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> str:
'''simple docstring'''
return ()
| 354
|
"""simple docstring"""
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("dataclasses")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("importlib_metadata")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ):
require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
| 321
| 0
|
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class UpperCamelCase ( lowercase_ ):
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__UpperCamelCase ,'width_multiplier' ) )
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=64 ,__UpperCamelCase=2 ,__UpperCamelCase=3 ,__UpperCamelCase="swish" ,__UpperCamelCase=3 ,__UpperCamelCase=32 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=10 ,__UpperCamelCase=None ,__UpperCamelCase=0.25 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,) -> Tuple:
'''simple docstring'''
lowercase_ : str = parent
lowercase_ : Tuple = batch_size
lowercase_ : Dict = image_size
lowercase_ : Optional[int] = patch_size
lowercase_ : int = num_channels
lowercase_ : Optional[Any] = make_divisible(512 * width_multiplier ,divisor=8 )
lowercase_ : List[str] = hidden_act
lowercase_ : List[Any] = conv_kernel_size
lowercase_ : Dict = output_stride
lowercase_ : List[Any] = classifier_dropout_prob
lowercase_ : List[Any] = use_labels
lowercase_ : Union[str, Any] = is_training
lowercase_ : List[Any] = num_labels
lowercase_ : Optional[Any] = initializer_range
lowercase_ : Union[str, Any] = scope
lowercase_ : Tuple = width_multiplier
lowercase_ : Optional[Any] = ffn_dropout
lowercase_ : List[str] = attn_dropout
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase_ : Optional[Any] = None
lowercase_ : List[Any] = None
if self.use_labels:
lowercase_ : Any = ids_tensor([self.batch_size] ,self.num_labels )
lowercase_ : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
lowercase_ : Optional[int] = self.get_config()
return config, pixel_values, labels, pixel_labels
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
return MobileViTVaConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,width_multiplier=self.width_multiplier ,ffn_dropout=self.ffn_dropout_prob ,attn_dropout=self.attn_dropout_prob ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any:
'''simple docstring'''
lowercase_ : Any = MobileViTVaModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : str = model(__UpperCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Any = self.num_labels
lowercase_ : Tuple = MobileViTVaForImageClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : str = model(__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = self.num_labels
lowercase_ : List[Any] = MobileViTVaForSemanticSegmentation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Optional[int] = model(__UpperCamelCase )
self.parent.assertEqual(
result.logits.shape ,(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
lowercase_ : Any = model(__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(
result.logits.shape ,(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : str = self.prepare_config_and_inputs()
lowercase_ : Tuple = config_and_inputs
lowercase_ : Tuple = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
lowercase = (
{
'feature-extraction': MobileViTVaModel,
'image-classification': MobileViTVaForImageClassification,
'image-segmentation': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = MobileViTVaModelTester(self )
lowercase_ : Union[str, Any] = MobileViTVaConfigTester(self ,config_class=__UpperCamelCase ,has_text_modality=__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViTV2 does not use inputs_embeds' )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='MobileViTV2 does not support input and output embeddings' )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='MobileViTV2 does not output attentions' )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
pass
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Any = model_class(__UpperCamelCase )
lowercase_ : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ : int = [*signature.parameters.keys()]
lowercase_ : str = ['pixel_values']
self.assertListEqual(arg_names[:1] ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
def check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[str] = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
lowercase_ : Tuple = model(**self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) )
lowercase_ : List[str] = outputs.hidden_states
lowercase_ : str = 5
self.assertEqual(len(__UpperCamelCase ) ,__UpperCamelCase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
lowercase_ : Dict = 2
for i in range(len(__UpperCamelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,)
divisor *= 2
self.assertEqual(self.model_tester.output_stride ,divisor // 2 )
lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : int = True
check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase_ : Optional[int] = True
check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : Union[str, Any] = MobileViTVaModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def lowercase__( ):
lowercase_ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class UpperCamelCase ( unittest.TestCase ):
@cached_property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
return (
MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' )
if is_vision_available()
else None
)
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Optional[Any] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to(
__UpperCamelCase )
lowercase_ : List[str] = self.default_image_processor
lowercase_ : Tuple = prepare_img()
lowercase_ : List[str] = image_processor(images=__UpperCamelCase ,return_tensors='pt' ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
lowercase_ : int = model(**__UpperCamelCase )
# verify the logits
lowercase_ : Any = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape ,__UpperCamelCase )
lowercase_ : Dict = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Union[str, Any] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
lowercase_ : Dict = model.to(__UpperCamelCase )
lowercase_ : List[str] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
lowercase_ : Tuple = prepare_img()
lowercase_ : Dict = image_processor(images=__UpperCamelCase ,return_tensors='pt' ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
lowercase_ : str = model(**__UpperCamelCase )
lowercase_ : Optional[Any] = outputs.logits
# verify the logits
lowercase_ : Union[str, Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape ,__UpperCamelCase )
lowercase_ : str = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] ,device=__UpperCamelCase ,)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
lowercase_ : Optional[int] = model.to(__UpperCamelCase )
lowercase_ : Dict = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
lowercase_ : List[str] = prepare_img()
lowercase_ : List[Any] = image_processor(images=__UpperCamelCase ,return_tensors='pt' ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
lowercase_ : str = model(**__UpperCamelCase )
lowercase_ : Optional[Any] = outputs.logits.detach().cpu()
lowercase_ : Any = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase ,target_sizes=[(50, 60)] )
lowercase_ : Optional[int] = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape ,__UpperCamelCase )
lowercase_ : str = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase )
lowercase_ : Optional[int] = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape ,__UpperCamelCase )
| 355
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ):
lowercase_ : int = 'backbone.' if is_semantic else ''
lowercase_ : List[str] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(F'''{prefix}cls_token''', 'beit.embeddings.cls_token'),
(F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'),
(F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'),
(F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('mask_token', 'beit.embeddings.mask_token'),
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('fc_norm.weight', 'beit.pooler.layernorm.weight'),
('fc_norm.bias', 'beit.pooler.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ):
for i in range(config.num_hidden_layers ):
lowercase_ : Any = 'backbone.' if is_semantic else ''
# queries, keys and values
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' )
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' )
lowercase_ : List[str] = in_proj_weight[
: config.hidden_size, :
]
lowercase_ : List[str] = q_bias
lowercase_ : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ : Any = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ : Any = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' )
lowercase_ : Tuple = gamma_a
lowercase_ : List[Any] = gamma_a
def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = val
def lowercase__( ):
lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ):
lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True
lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
lowercase_ : Any = 10_24
lowercase_ : List[str] = 40_96
lowercase_ : Tuple = 24
lowercase_ : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
lowercase_ : Optional[Any] = 16
lowercase_ : Any = 'huggingface/label-files'
lowercase_ : int = 'rvlcdip-id2label.json'
lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowercase_ : str = idalabel
lowercase_ : str = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
# load HuggingFace model
lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(__SCREAMING_SNAKE_CASE )
# Check outputs on an image
lowercase_ : List[Any] = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE )
lowercase_ : str = prepare_img()
lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' )
lowercase_ : int = encoding['pixel_values']
lowercase_ : Any = model(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = outputs.logits
# verify logits
lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92]
assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected"
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
if has_lm_head:
lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large'
else:
lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip'
image_processor.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
model.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 321
| 0
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class UpperCamelCase ( lowercase_ ):
lowercase = ['image_processor', 'feature_extractor']
lowercase = 'TvltImageProcessor'
lowercase = 'TvltFeatureExtractor'
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
super().__init__(image_processor=__UpperCamelCase ,feature_extractor=__UpperCamelCase )
lowercase_ : int = image_processor
lowercase_ : str = feature_extractor
def __call__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=False ,__UpperCamelCase=False ,*__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]:
'''simple docstring'''
if images is None and audio is None:
raise ValueError('You need to specify either an `images` or `audio` input to process.' )
lowercase_ : Dict = None
if images is not None:
lowercase_ : int = self.image_processor(__UpperCamelCase ,mask_pixel=__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase )
if images_mixed is not None:
lowercase_ : str = self.image_processor(__UpperCamelCase ,is_mixed=__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase )
if audio is not None:
lowercase_ : Optional[Any] = self.feature_extractor(
__UpperCamelCase ,*__UpperCamelCase ,sampling_rate=__UpperCamelCase ,mask_audio=__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : Union[str, Any] = {}
if audio is not None:
output_dict.update(__UpperCamelCase )
if images is not None:
output_dict.update(__UpperCamelCase )
if images_mixed_dict is not None:
output_dict.update(__UpperCamelCase )
return output_dict
@property
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : str = self.image_processor.model_input_names
lowercase_ : str = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 356
|
"""simple docstring"""
__SCREAMING_SNAKE_CASE ={
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
__SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()}
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Union[str, Any] = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
lowercase_ : Dict = ''
for word in coded.split():
while len(__SCREAMING_SNAKE_CASE ) != 0:
decoded += decode_dict[word[:5]]
lowercase_ : Any = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 321
| 0
|
"""simple docstring"""
import os
import sys
import unittest
__SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py")
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py")
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'}
lowercase_ : Union[str, Any] = {
'BlipModelTest': 'BlipModelTester',
'BlipTextImageModelTest': 'BlipTextImageModelsModelTester',
'BlipTextModelTest': 'BlipTextModelTester',
'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester',
'BlipVQAModelTest': 'BlipVQAModelTester',
'BlipVisionModelTest': 'BlipVisionModelTester',
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : Any = {
'BertForMaskedLM': ['BertModelTest'],
'BertForMultipleChoice': ['BertModelTest'],
'BertForNextSentencePrediction': ['BertModelTest'],
'BertForPreTraining': ['BertModelTest'],
'BertForQuestionAnswering': ['BertModelTest'],
'BertForSequenceClassification': ['BertModelTest'],
'BertForTokenClassification': ['BertModelTest'],
'BertLMHeadModel': ['BertModelTest'],
'BertModel': ['BertModelTest'],
}
lowercase_ : Any = {
'BlipForConditionalGeneration': ['BlipTextImageModelTest'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'],
'BlipForQuestionAnswering': ['BlipVQAModelTest'],
'BlipModel': ['BlipModelTest'],
'BlipTextModel': ['BlipTextModelTest'],
'BlipVisionModel': ['BlipVisionModelTest'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Tuple = {
'BertForMaskedLM': ['BertModelTester'],
'BertForMultipleChoice': ['BertModelTester'],
'BertForNextSentencePrediction': ['BertModelTester'],
'BertForPreTraining': ['BertModelTester'],
'BertForQuestionAnswering': ['BertModelTester'],
'BertForSequenceClassification': ['BertModelTester'],
'BertForTokenClassification': ['BertModelTester'],
'BertLMHeadModel': ['BertModelTester'],
'BertModel': ['BertModelTester'],
}
lowercase_ : Optional[Any] = {
'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'],
'BlipForQuestionAnswering': ['BlipVQAModelTester'],
'BlipModel': ['BlipModelTester'],
'BlipTextModel': ['BlipTextModelTester'],
'BlipVisionModel': ['BlipVisionModelTester'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
| 357
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations_with_dp_array(
__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
lowercase_ : str = sum(
count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE )
for item in array )
lowercase_ : Tuple = answer
return answer
lowercase_ : Optional[Any] = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Dict = [0] * (target + 1)
lowercase_ : Dict = 1
for i in range(1 , target + 1 ):
for j in range(__SCREAMING_SNAKE_CASE ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE =3
__SCREAMING_SNAKE_CASE =5
__SCREAMING_SNAKE_CASE =[1, 2, 5]
print(combination_sum_iv(n, array, target))
| 321
| 0
|
"""simple docstring"""
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class UpperCamelCase ( lowercase_ ):
lowercase = 'M-CLIP'
def __init__( self ,__UpperCamelCase=1024 ,__UpperCamelCase=768 ,**__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = transformerDimSize
lowercase_ : List[Any] = imageDimSize
super().__init__(**__UpperCamelCase )
class UpperCamelCase ( lowercase_ ):
lowercase = MCLIPConfig
def __init__( self ,__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
super().__init__(__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : str = XLMRobertaModel(__UpperCamelCase )
lowercase_ : Tuple = torch.nn.Linear(
in_features=config.transformerDimensions ,out_features=config.numDims )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : List[str] = self.transformer(input_ids=__UpperCamelCase ,attention_mask=__UpperCamelCase )[0]
lowercase_ : str = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(__UpperCamelCase ), embs
| 358
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : int = set_counts
lowercase_ : List[Any] = max(__UpperCamelCase )
lowercase_ : Union[str, Any] = len(__UpperCamelCase )
lowercase_ : Dict = [1] * num_sets
lowercase_ : Optional[int] = list(range(__UpperCamelCase ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase )
lowercase_ : int = self.get_parent(__UpperCamelCase )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : Tuple = 0
lowercase_ : str = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : str = 0
lowercase_ : Tuple = src_parent
lowercase_ : int = self.set_counts[src_parent]
lowercase_ : str = max(self.max_set ,__UpperCamelCase )
return True
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 321
| 0
|
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json",
}
class UpperCamelCase ( lowercase_ ):
lowercase = 'instructblip_vision_model'
def __init__( self ,__UpperCamelCase=1408 ,__UpperCamelCase=6144 ,__UpperCamelCase=39 ,__UpperCamelCase=16 ,__UpperCamelCase=224 ,__UpperCamelCase=14 ,__UpperCamelCase="gelu" ,__UpperCamelCase=1e-6 ,__UpperCamelCase=0.0 ,__UpperCamelCase=1e-10 ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Dict:
'''simple docstring'''
super().__init__(**__UpperCamelCase )
lowercase_ : Union[str, Any] = hidden_size
lowercase_ : Optional[Any] = intermediate_size
lowercase_ : Optional[Any] = num_hidden_layers
lowercase_ : List[Any] = num_attention_heads
lowercase_ : int = patch_size
lowercase_ : List[Any] = image_size
lowercase_ : Optional[int] = initializer_range
lowercase_ : List[Any] = attention_dropout
lowercase_ : Dict = layer_norm_eps
lowercase_ : List[str] = hidden_act
lowercase_ : Optional[int] = qkv_bias
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ,**__UpperCamelCase ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__UpperCamelCase )
lowercase_ : str = cls.get_config_dict(__UpperCamelCase ,**__UpperCamelCase )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
lowercase_ : Any = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__UpperCamelCase ,**__UpperCamelCase )
class UpperCamelCase ( lowercase_ ):
lowercase = 'instructblip_qformer'
def __init__( self ,__UpperCamelCase=3_0522 ,__UpperCamelCase=768 ,__UpperCamelCase=12 ,__UpperCamelCase=12 ,__UpperCamelCase=3072 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=0 ,__UpperCamelCase="absolute" ,__UpperCamelCase=2 ,__UpperCamelCase=1408 ,**__UpperCamelCase ,) -> Tuple:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : str = vocab_size
lowercase_ : int = hidden_size
lowercase_ : List[str] = num_hidden_layers
lowercase_ : Optional[Any] = num_attention_heads
lowercase_ : Any = hidden_act
lowercase_ : Optional[Any] = intermediate_size
lowercase_ : Union[str, Any] = hidden_dropout_prob
lowercase_ : int = attention_probs_dropout_prob
lowercase_ : Optional[Any] = max_position_embeddings
lowercase_ : List[Any] = initializer_range
lowercase_ : Any = layer_norm_eps
lowercase_ : Tuple = position_embedding_type
lowercase_ : Optional[Any] = cross_attention_frequency
lowercase_ : Union[str, Any] = encoder_hidden_size
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ,**__UpperCamelCase ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__UpperCamelCase )
lowercase_ : List[str] = cls.get_config_dict(__UpperCamelCase ,**__UpperCamelCase )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
lowercase_ : Union[str, Any] = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__UpperCamelCase ,**__UpperCamelCase )
class UpperCamelCase ( lowercase_ ):
lowercase = 'instructblip'
lowercase = True
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=32 ,**__UpperCamelCase ) -> Tuple:
'''simple docstring'''
super().__init__(**__UpperCamelCase )
if vision_config is None:
lowercase_ : Optional[Any] = {}
logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' )
if qformer_config is None:
lowercase_ : List[str] = {}
logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' )
if text_config is None:
lowercase_ : Union[str, Any] = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
lowercase_ : Union[str, Any] = InstructBlipVisionConfig(**__UpperCamelCase )
lowercase_ : Any = InstructBlipQFormerConfig(**__UpperCamelCase )
lowercase_ : Dict = text_config['model_type'] if 'model_type' in text_config else 'opt'
lowercase_ : Any = CONFIG_MAPPING[text_model_type](**__UpperCamelCase )
lowercase_ : List[Any] = self.text_config.tie_word_embeddings
lowercase_ : Optional[int] = self.text_config.is_encoder_decoder
lowercase_ : Tuple = num_query_tokens
lowercase_ : Any = self.vision_config.hidden_size
lowercase_ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
lowercase_ : List[Any] = 1.0
lowercase_ : List[Any] = 0.02
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> List[str]:
'''simple docstring'''
return cls(
vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**__UpperCamelCase ,)
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Union[str, Any] = copy.deepcopy(self.__dict__ )
lowercase_ : Union[str, Any] = self.vision_config.to_dict()
lowercase_ : Tuple = self.qformer_config.to_dict()
lowercase_ : str = self.text_config.to_dict()
lowercase_ : List[Any] = self.__class__.model_type
return output
| 359
|
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
__SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BlenderbotTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) )
lowercase_ : Any = add_prefix_space
lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase )
lowercase_ : int = add_prefix_space
lowercase_ : Any = 'post_processor'
lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
if tokenizer_component_instance:
lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ : str = tuple(state['sep'] )
if "cls" in state:
lowercase_ : Union[str, Any] = tuple(state['cls'] )
lowercase_ : str = False
if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Dict = add_prefix_space
lowercase_ : int = True
if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets:
lowercase_ : Optional[Any] = trim_offsets
lowercase_ : Tuple = True
if changes_to_apply:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) )
lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase )
setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value
lowercase_ : str = value
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : int = [self.sep_token_id]
lowercase_ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any:
'''simple docstring'''
return token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]:
'''simple docstring'''
lowercase_ : Optional[Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(__UpperCamelCase )
lowercase_ : Dict = ' '.join(__UpperCamelCase )
lowercase_ : str = self.encode(__UpperCamelCase )
if len(__UpperCamelCase ) > self.model_max_length:
lowercase_ : List[str] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 321
| 0
|
"""simple docstring"""
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def lowercase__( __SCREAMING_SNAKE_CASE : str = "laptop" ):
lowercase_ : int = F'''https://www.amazon.in/laptop/s?k={product}'''
lowercase_ : str = {
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36',
'Accept-Language': 'en-US, en;q=0.5',
}
lowercase_ : str = BeautifulSoup(requests.get(__SCREAMING_SNAKE_CASE , headers=__SCREAMING_SNAKE_CASE ).text )
# Initialize a Pandas dataframe with the column titles
lowercase_ : List[str] = DataFrame(
columns=[
'Product Title',
'Product Link',
'Current Price of the product',
'Product Rating',
'MRP of the product',
'Discount',
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ):
try:
lowercase_ : Dict = item.ha.text
lowercase_ : Union[str, Any] = 'https://www.amazon.in/' + item.ha.a['href']
lowercase_ : Optional[int] = item.find('span' , attrs={'class': 'a-offscreen'} ).text
try:
lowercase_ : Tuple = item.find('span' , attrs={'class': 'a-icon-alt'} ).text
except AttributeError:
lowercase_ : Dict = 'Not available'
try:
lowercase_ : Dict = (
'₹'
+ item.find(
'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1]
)
except AttributeError:
lowercase_ : Optional[int] = ''
try:
lowercase_ : Dict = float(
(
(
float(product_mrp.strip('₹' ).replace(',' , '' ) )
- float(product_price.strip('₹' ).replace(',' , '' ) )
)
/ float(product_mrp.strip('₹' ).replace(',' , '' ) )
)
* 1_00 )
except ValueError:
lowercase_ : Any = float('nan' )
except AttributeError:
pass
lowercase_ : Optional[int] = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
lowercase_ : List[Any] = ' '
lowercase_ : Tuple = ' '
data_frame.index += 1
return data_frame
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE ="headphones"
get_amazon_product_data(product).to_csv(F"Amazon Product Data for {product}.csv")
| 360
|
"""simple docstring"""
import os
import sys
import unittest
__SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py")
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py")
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'}
lowercase_ : Union[str, Any] = {
'BlipModelTest': 'BlipModelTester',
'BlipTextImageModelTest': 'BlipTextImageModelsModelTester',
'BlipTextModelTest': 'BlipTextModelTester',
'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester',
'BlipVQAModelTest': 'BlipVQAModelTester',
'BlipVisionModelTest': 'BlipVisionModelTester',
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : Any = {
'BertForMaskedLM': ['BertModelTest'],
'BertForMultipleChoice': ['BertModelTest'],
'BertForNextSentencePrediction': ['BertModelTest'],
'BertForPreTraining': ['BertModelTest'],
'BertForQuestionAnswering': ['BertModelTest'],
'BertForSequenceClassification': ['BertModelTest'],
'BertForTokenClassification': ['BertModelTest'],
'BertLMHeadModel': ['BertModelTest'],
'BertModel': ['BertModelTest'],
}
lowercase_ : Any = {
'BlipForConditionalGeneration': ['BlipTextImageModelTest'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'],
'BlipForQuestionAnswering': ['BlipVQAModelTest'],
'BlipModel': ['BlipModelTest'],
'BlipTextModel': ['BlipTextModelTest'],
'BlipVisionModel': ['BlipVisionModelTest'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Tuple = {
'BertForMaskedLM': ['BertModelTester'],
'BertForMultipleChoice': ['BertModelTester'],
'BertForNextSentencePrediction': ['BertModelTester'],
'BertForPreTraining': ['BertModelTester'],
'BertForQuestionAnswering': ['BertModelTester'],
'BertForSequenceClassification': ['BertModelTester'],
'BertForTokenClassification': ['BertModelTester'],
'BertLMHeadModel': ['BertModelTester'],
'BertModel': ['BertModelTester'],
}
lowercase_ : Optional[Any] = {
'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'],
'BlipForQuestionAnswering': ['BlipVQAModelTester'],
'BlipModel': ['BlipModelTester'],
'BlipTextModel': ['BlipTextModelTester'],
'BlipVisionModel': ['BlipVisionModelTester'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
import unittest
from transformers import MobileBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertModel,
)
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=64 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[str]:
'''simple docstring'''
lowercase_ : List[Any] = parent
lowercase_ : List[str] = batch_size
lowercase_ : Union[str, Any] = seq_length
lowercase_ : str = is_training
lowercase_ : Optional[Any] = use_input_mask
lowercase_ : List[Any] = use_token_type_ids
lowercase_ : Dict = use_labels
lowercase_ : Optional[Any] = vocab_size
lowercase_ : Optional[int] = hidden_size
lowercase_ : List[str] = embedding_size
lowercase_ : Optional[Any] = num_hidden_layers
lowercase_ : Tuple = num_attention_heads
lowercase_ : Any = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : List[str] = hidden_dropout_prob
lowercase_ : Optional[int] = attention_probs_dropout_prob
lowercase_ : str = max_position_embeddings
lowercase_ : Optional[Any] = type_vocab_size
lowercase_ : Dict = type_sequence_label_size
lowercase_ : int = initializer_range
lowercase_ : Any = num_labels
lowercase_ : int = num_choices
lowercase_ : str = scope
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : List[str] = None
if self.use_input_mask:
lowercase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase_ : Union[str, Any] = None
if self.use_token_type_ids:
lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
lowercase_ : Tuple = None
lowercase_ : Dict = None
lowercase_ : List[str] = None
if self.use_labels:
lowercase_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowercase_ : Optional[int] = ids_tensor([self.batch_size] ,self.num_choices )
lowercase_ : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return MobileBertConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[int] = MobileBertModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Optional[int] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase )
lowercase_ : int = model(__UpperCamelCase ,token_type_ids=__UpperCamelCase )
lowercase_ : List[str] = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Tuple = MobileBertForMaskedLM(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Any = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Optional[int] = MobileBertForNextSentencePrediction(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,labels=__UpperCamelCase ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Tuple = MobileBertForPreTraining(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Optional[int] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,labels=__UpperCamelCase ,next_sentence_label=__UpperCamelCase ,)
self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Tuple = MobileBertForQuestionAnswering(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Any = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,start_positions=__UpperCamelCase ,end_positions=__UpperCamelCase ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = self.num_labels
lowercase_ : Optional[int] = MobileBertForSequenceClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Union[str, Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : List[Any] = self.num_labels
lowercase_ : Optional[int] = MobileBertForTokenClassification(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Any = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : int = self.num_choices
lowercase_ : Tuple = MobileBertForMultipleChoice(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
lowercase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
lowercase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
lowercase_ : int = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,labels=__UpperCamelCase ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.prepare_config_and_inputs()
(
lowercase_
) : List[str] = config_and_inputs
lowercase_ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (
(
MobileBertModel,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase = (
{
'feature-extraction': MobileBertModel,
'fill-mask': MobileBertForMaskedLM,
'question-answering': MobileBertForQuestionAnswering,
'text-classification': MobileBertForSequenceClassification,
'token-classification': MobileBertForTokenClassification,
'zero-shot': MobileBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = True
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=False ) -> Dict:
'''simple docstring'''
lowercase_ : int = super()._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ,return_labels=__UpperCamelCase )
if return_labels:
if model_class in get_values(__UpperCamelCase ):
lowercase_ : Tuple = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=__UpperCamelCase )
lowercase_ : Optional[int] = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=__UpperCamelCase )
return inputs_dict
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Dict = MobileBertModelTester(self )
lowercase_ : Any = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase )
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ):
return torch.tensor(
__SCREAMING_SNAKE_CASE , dtype=torch.long , device=__SCREAMING_SNAKE_CASE , )
__SCREAMING_SNAKE_CASE =1E-3
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Any = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(__UpperCamelCase )
lowercase_ : int = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] )
with torch.no_grad():
lowercase_ : List[Any] = model(__UpperCamelCase )[0]
lowercase_ : Union[str, Any] = torch.Size((1, 9, 512) )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : List[str] = torch.tensor(
[
[
[-2.4736526e07, 8.2691656e04, 1.6521838e05],
[-5.7541704e-01, 3.9056022e00, 4.4011507e00],
[2.6047359e00, 1.5677652e00, -1.7324188e-01],
]
] ,device=__UpperCamelCase ,)
# MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
# ~1 difference, it's therefore not a good idea to measure using addition.
# Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
# result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
lowercase_ : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE )
lowercase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE )
self.assertTrue(lower_bound and upper_bound )
| 361
|
"""simple docstring"""
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ):
with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX )
try:
print(*__SCREAMING_SNAKE_CASE )
finally:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN )
__SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
__SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank)
__SCREAMING_SNAKE_CASE =socket.gethostname()
__SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]"
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__SCREAMING_SNAKE_CASE =dist.get_rank()
__SCREAMING_SNAKE_CASE =dist.get_world_size()
printflock(F"{gpu} is OK (global rank: {rank}/{world_size})")
dist.barrier()
if rank == 0:
printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
except Exception:
printflock(F"{gpu} is broken")
raise
| 321
| 0
|
import importlib
import shutil
import threading
import warnings
from typing import List
import fsspec
import fsspec.asyn
from . import compression
from .hffilesystem import HfFileSystem
__SCREAMING_SNAKE_CASE =importlib.util.find_spec("s3fs") is not None
if _has_safs:
from .safilesystem import SaFileSystem # noqa: F401
__SCREAMING_SNAKE_CASE =[
compression.BzaFileSystem,
compression.GzipFileSystem,
compression.LzaFileSystem,
compression.XzFileSystem,
compression.ZstdFileSystem,
]
# Register custom filesystems
for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]:
if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class:
warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.")
fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True)
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
if "://" in dataset_path:
lowercase_ : List[Any] = dataset_path.split('://' )[1]
return dataset_path
def lowercase__( __SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem ):
if fs is not None and fs.protocol != "file":
return True
else:
return False
def lowercase__( __SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Optional[int] = not is_remote_filesystem(__SCREAMING_SNAKE_CASE )
if is_local:
# LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory
shutil.move(fs._strip_protocol(__SCREAMING_SNAKE_CASE ) , fs._strip_protocol(__SCREAMING_SNAKE_CASE ) )
else:
fs.mv(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , recursive=__SCREAMING_SNAKE_CASE )
def lowercase__( ):
if hasattr(fsspec.asyn , 'reset_lock' ):
# for future fsspec>2022.05.0
fsspec.asyn.reset_lock()
else:
lowercase_ : str = None
lowercase_ : Dict = None
lowercase_ : Optional[Any] = threading.Lock()
| 362
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : List[Any] = name
lowercase_ : int = val
def __str__( self ) -> Tuple:
'''simple docstring'''
return f'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return self.val < other.val
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Optional[int] = {}
lowercase_ : Tuple = {}
lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase )
def __getitem__( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
return self.get_value(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return (idx - 1) // 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return idx * 2 + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return idx * 2 + 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
return self.heap_dict[key]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1
lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase )
for idx, i in enumerate(__UpperCamelCase ):
lowercase_ : Any = idx
lowercase_ : str = i.val
for i in range(__UpperCamelCase ,-1 ,-1 ):
self.sift_down(__UpperCamelCase ,__UpperCamelCase )
return array
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
while True:
lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741
lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase )
lowercase_ : List[str] = idx
if l < len(__UpperCamelCase ) and array[l] < array[idx]:
lowercase_ : List[str] = l
if r < len(__UpperCamelCase ) and array[r] < array[smallest]:
lowercase_ : Dict = r
if smallest != idx:
lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx]
(
(
lowercase_
) , (
lowercase_
) ,
) : str = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
lowercase_ : Any = smallest
else:
break
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase )
while p >= 0 and self.heap[p] > self.heap[idx]:
lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
lowercase_ : int = p
lowercase_ : str = self.get_parent_idx(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return self.heap[0]
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
lowercase_ : Tuple = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 ,self.heap )
return x
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
self.heap.append(__UpperCamelCase )
lowercase_ : Tuple = len(self.heap ) - 1
lowercase_ : Optional[int] = node.val
self.sift_up(len(self.heap ) - 1 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return len(self.heap ) == 0
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
lowercase_ : Any = new_value
lowercase_ : List[str] = new_value
self.sift_up(self.idx_of_element[node] )
__SCREAMING_SNAKE_CASE =Node("R", -1)
__SCREAMING_SNAKE_CASE =Node("B", 6)
__SCREAMING_SNAKE_CASE =Node("A", 3)
__SCREAMING_SNAKE_CASE =Node("X", 1)
__SCREAMING_SNAKE_CASE =Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
__SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 321
| 0
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json"
),
},
}
__SCREAMING_SNAKE_CASE ={
"yjernite/retribert-base-uncased": 512,
}
__SCREAMING_SNAKE_CASE ={
"yjernite/retribert-base-uncased": {"do_lower_case": True},
}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = PRETRAINED_INIT_CONFIGURATION
lowercase = RetriBertTokenizer
lowercase = ['input_ids', 'attention_mask']
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase="[UNK]" ,__UpperCamelCase="[SEP]" ,__UpperCamelCase="[PAD]" ,__UpperCamelCase="[CLS]" ,__UpperCamelCase="[MASK]" ,__UpperCamelCase=True ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> Dict:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,do_lower_case=__UpperCamelCase ,unk_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,tokenize_chinese_chars=__UpperCamelCase ,strip_accents=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' ,__UpperCamelCase ) != do_lower_case
or normalizer_state.get('strip_accents' ,__UpperCamelCase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' ,__UpperCamelCase ) != tokenize_chinese_chars
):
lowercase_ : List[str] = getattr(__UpperCamelCase ,normalizer_state.pop('type' ) )
lowercase_ : Tuple = do_lower_case
lowercase_ : List[Any] = strip_accents
lowercase_ : Dict = tokenize_chinese_chars
lowercase_ : Any = normalizer_class(**__UpperCamelCase )
lowercase_ : str = do_lower_case
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> int:
'''simple docstring'''
lowercase_ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : Dict = [self.sep_token_id]
lowercase_ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : str = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
| 363
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[Any] = tempfile.mkdtemp()
# fmt: off
lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) )
lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
lowercase_ : Tuple = {'unk_token': '<unk>'}
lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + '\n' )
with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp:
fp.write('\n'.join(__UpperCamelCase ) )
lowercase_ : Any = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073],
'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase )
with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp:
json.dump(__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )]
lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_tokenizer()
lowercase_ : List[Any] = self.get_rust_tokenizer()
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase )
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase )
self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase )
self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' )
lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 )
lowercase_ : Any = CLIPSegProcessor.from_pretrained(
self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,__UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[str] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = self.prepare_image_inputs()
lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' )
lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[Any] = self.get_tokenizer()
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Dict = 'lower newer'
lowercase_ : Any = processor(text=__UpperCamelCase )
lowercase_ : int = tokenizer(__UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.get_image_processor()
lowercase_ : str = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = 'lower newer'
lowercase_ : str = self.prepare_image_inputs()
lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = self.prepare_image_inputs()
lowercase_ : Optional[Any] = self.prepare_image_inputs()
lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase )
lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : list ):
if not grid or not grid[0]:
raise TypeError('The grid does not contain the appropriate information' )
for cell_n in range(1 , len(grid[0] ) ):
grid[0][cell_n] += grid[0][cell_n - 1]
lowercase_ : int = grid[0]
for row_n in range(1 , len(__SCREAMING_SNAKE_CASE ) ):
lowercase_ : Any = grid[row_n]
lowercase_ : Dict = fill_row(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = grid[row_n]
return grid[-1][-1]
def lowercase__( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list ):
current_row[0] += row_above[0]
for cell_n in range(1 , len(__SCREAMING_SNAKE_CASE ) ):
current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] )
return current_row
if __name__ == "__main__":
import doctest
doctest.testmod()
| 364
|
"""simple docstring"""
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 321
| 0
|
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
__SCREAMING_SNAKE_CASE =logging.getLogger(__name__)
@dataclass
class __lowerCamelCase ( lowercase_ ):
lowercase = field(
default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} )
lowercase = field(default=lowercase_ , metadata={'help': 'Whether to SortishSamler or not.'} )
lowercase = field(
default=lowercase_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
lowercase = field(default=lowercase_ , metadata={'help': 'whether to use adafactor'} )
lowercase = field(
default=lowercase_ , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} )
lowercase = field(
default=lowercase_ , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} )
lowercase = field(default=lowercase_ , metadata={'help': 'Dropout probability. Goes into model.config.'} )
lowercase = field(
default=lowercase_ , metadata={'help': 'Attention dropout probability. Goes into model.config.'} )
lowercase = field(
default='linear' , metadata={'help': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
| 365
|
"""simple docstring"""
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = parent
lowercase_ : Tuple = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Optional[Any] = is_training
lowercase_ : Any = use_input_mask
lowercase_ : Optional[Any] = vocab_size
lowercase_ : str = hidden_size
lowercase_ : Any = num_hidden_layers
lowercase_ : Dict = num_attention_heads
lowercase_ : Optional[int] = intermediate_size
lowercase_ : Any = hidden_act
lowercase_ : Optional[Any] = hidden_dropout_prob
lowercase_ : str = attention_probs_dropout_prob
lowercase_ : Any = max_position_embeddings
lowercase_ : Optional[Any] = initializer_range
lowercase_ : Union[str, Any] = use_labels
lowercase_ : Union[str, Any] = scope
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : List[str] = None
if self.use_input_mask:
lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Any = self.get_config()
return config, input_ids, input_mask, token_labels
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return BertGenerationConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : str = self.prepare_config_and_inputs()
lowercase_ : int = True
lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Optional[Any] = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = True
lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Union[str, Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,)
lowercase_ : Dict = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,)
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int:
'''simple docstring'''
lowercase_ : List[str] = True
lowercase_ : Union[str, Any] = True
lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval()
# first forward pass
lowercase_ : str = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,)
lowercase_ : Dict = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size )
lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 )
# append to next input_ids and
lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 )
lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 )
lowercase_ : int = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
lowercase_ : List[Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
# select random slice
lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
lowercase_ : int = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
lowercase = (BertGenerationDecoder,) if is_torch_available() else ()
lowercase = (
{'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder}
if is_torch_available()
else {}
)
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoderTester(self )
lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs()
lowercase_ : Optional[int] = 'bert'
self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
lowercase_ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,)
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
self.assertIsNotNone(__UpperCamelCase )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Tuple = model(__UpperCamelCase )[0]
lowercase_ : Dict = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : str = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Dict = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : Dict = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("dataclasses")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("importlib_metadata")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ):
require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
| 366
|
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
return None
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
return None
class UpperCamelCase ( unittest.TestCase ):
lowercase = [
# (model_name, model_kwargs)
('bert-base-cased', {}),
('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
from transformers import BertModel
lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words']
with NamedTemporaryFile(mode='w+t' ) as vocab_file:
vocab_file.write('\n'.join(__UpperCamelCase ) )
vocab_file.flush()
lowercase_ : List[str] = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) )
model.save_pretrained(__UpperCamelCase )
self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase )
@require_tf
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
lowercase_ : int = quantize(Path(__UpperCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
lowercase_ : Tuple = quantize(__UpperCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
try:
# Compute path
with TemporaryDirectory() as tempdir:
lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase )
return path
except Exception as e:
self.fail(__UpperCamelCase )
@require_torch
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
from transformers import BertModel
lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' )
@require_tf
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
from transformers import TFBertModel
lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1']
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase )
# Assert all variables are present
self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase )
self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} )
self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids']
lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]}
lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__UpperCamelCase ) ,3 )
# Should have exactly the same input names
self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__UpperCamelCase ) ,1 )
self.assertEqual(len(__UpperCamelCase ) ,1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] ,tokens['input_ids'] )
self.assertEqual(ordered_input_names[0] ,'input_ids' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' )
self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
| 321
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.