code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : list ): if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowercase_ : int = grid[0] for row_n in range(1 , len(__SCREAMING_SNAKE_CASE ) ): lowercase_ : Any = grid[row_n] lowercase_ : Dict = fill_row(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = grid[row_n] return grid[-1][-1] def lowercase__( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list ): current_row[0] += row_above[0] for cell_n in range(1 , len(__SCREAMING_SNAKE_CASE ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
321
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]: '''simple docstring''' lowercase_ : Dict = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = use_labels lowercase_ : Union[str, Any] = scope def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[str] = None if self.use_input_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Any = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.prepare_config_and_inputs() lowercase_ : int = True lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = True lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Union[str, Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,) lowercase_ : Dict = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int: '''simple docstring''' lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() # first forward pass lowercase_ : str = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,) lowercase_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase_ : int = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] lowercase_ : List[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] # select random slice lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoderTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = 'bert' self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Tuple = model(__UpperCamelCase )[0] lowercase_ : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : bool = False ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : int = F'''Expected string as input, found {type(__SCREAMING_SNAKE_CASE )}''' raise ValueError(__SCREAMING_SNAKE_CASE ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Tuple = F'''Expected boolean as use_pascal parameter, found {type(__SCREAMING_SNAKE_CASE )}''' raise ValueError(__SCREAMING_SNAKE_CASE ) lowercase_ : str = input_str.split('_' ) lowercase_ : Optional[Any] = 0 if use_pascal else 1 lowercase_ : Any = words[start_index:] lowercase_ : Union[str, Any] = [word[0].upper() + word[1:] for word in words_to_capitalize] lowercase_ : List[str] = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
321
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return None class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' return None class UpperCamelCase ( unittest.TestCase ): lowercase = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from transformers import BertModel lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCamelCase ) ) vocab_file.flush() lowercase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) lowercase_ : int = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) lowercase_ : Tuple = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from transformers import BertModel lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' from transformers import TFBertModel lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) ,1 ) self.assertEqual(len(__UpperCamelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
321
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCamelCase ( lowercase_ ): lowercase = 'xlnet' lowercase = ['mems'] lowercase = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,__UpperCamelCase=3_2000 ,__UpperCamelCase=1024 ,__UpperCamelCase=24 ,__UpperCamelCase=16 ,__UpperCamelCase=4096 ,__UpperCamelCase="gelu" ,__UpperCamelCase=True ,__UpperCamelCase="bi" ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=False ,__UpperCamelCase=-1 ,__UpperCamelCase=False ,__UpperCamelCase="last" ,__UpperCamelCase=True ,__UpperCamelCase="tanh" ,__UpperCamelCase=0.1 ,__UpperCamelCase=5 ,__UpperCamelCase=5 ,__UpperCamelCase=5 ,__UpperCamelCase=1 ,__UpperCamelCase=2 ,**__UpperCamelCase ,) -> int: '''simple docstring''' lowercase_ : List[str] = vocab_size lowercase_ : Optional[int] = d_model lowercase_ : List[str] = n_layer lowercase_ : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) lowercase_ : Optional[int] = d_model // n_head lowercase_ : str = ff_activation lowercase_ : Tuple = d_inner lowercase_ : int = untie_r lowercase_ : List[Any] = attn_type lowercase_ : Any = initializer_range lowercase_ : Dict = layer_norm_eps lowercase_ : int = dropout lowercase_ : Optional[Any] = mem_len lowercase_ : int = reuse_len lowercase_ : Any = bi_data lowercase_ : Union[str, Any] = clamp_len lowercase_ : Tuple = same_length lowercase_ : str = summary_type lowercase_ : Optional[int] = summary_use_proj lowercase_ : Optional[int] = summary_activation lowercase_ : Optional[int] = summary_last_dropout lowercase_ : List[Any] = start_n_top lowercase_ : Union[str, Any] = end_n_top lowercase_ : Tuple = bos_token_id lowercase_ : Tuple = pad_token_id lowercase_ : Optional[int] = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' ,__UpperCamelCase ,) lowercase_ : int = kwargs['use_cache'] lowercase_ : Tuple = use_mems_eval lowercase_ : str = use_mems_train super().__init__(pad_token_id=__UpperCamelCase ,bos_token_id=__UpperCamelCase ,eos_token_id=__UpperCamelCase ,**__UpperCamelCase ) @property def _UpperCAmelCase ( self ) -> int: '''simple docstring''' logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
321
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = tempfile.mkdtemp() lowercase_ : Any = BlipImageProcessor() lowercase_ : Dict = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowercase_ : Optional[int] = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) lowercase_ : Optional[Any] = InstructBlipProcessor(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase ).tokenizer def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase ).image_processor def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase ).qformer_tokenizer def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase_ : List[Any] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Tuple = InstructBlipProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ,qformer_tokenizer=self.get_qformer_tokenizer() ,) processor.save_pretrained(self.tmpdirname ) lowercase_ : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) lowercase_ : int = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 ) lowercase_ : Optional[Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCamelCase ) self.assertIsInstance(processor.qformer_tokenizer ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[str] = self.get_image_processor() lowercase_ : int = self.get_tokenizer() lowercase_ : Optional[Any] = self.get_qformer_tokenizer() lowercase_ : Dict = InstructBlipProcessor( tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ,qformer_tokenizer=__UpperCamelCase ) lowercase_ : Any = self.prepare_image_inputs() lowercase_ : Union[str, Any] = image_processor(__UpperCamelCase ,return_tensors='np' ) lowercase_ : int = processor(images=__UpperCamelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = self.get_image_processor() lowercase_ : Any = self.get_tokenizer() lowercase_ : Union[str, Any] = self.get_qformer_tokenizer() lowercase_ : Optional[Any] = InstructBlipProcessor( tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ,qformer_tokenizer=__UpperCamelCase ) lowercase_ : List[Any] = 'lower newer' lowercase_ : int = processor(text=__UpperCamelCase ) lowercase_ : int = tokenizer(__UpperCamelCase ,return_token_type_ids=__UpperCamelCase ) lowercase_ : List[str] = qformer_tokenizer(__UpperCamelCase ,return_token_type_ids=__UpperCamelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] ,encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] ,encoded_processor['qformer_' + key] ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Any = self.get_image_processor() lowercase_ : Union[str, Any] = self.get_tokenizer() lowercase_ : List[str] = self.get_qformer_tokenizer() lowercase_ : Union[str, Any] = InstructBlipProcessor( tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ,qformer_tokenizer=__UpperCamelCase ) lowercase_ : int = 'lower newer' lowercase_ : List[str] = self.prepare_image_inputs() lowercase_ : int = processor(text=__UpperCamelCase ,images=__UpperCamelCase ) self.assertListEqual( list(inputs.keys() ) ,['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] ,) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Tuple = self.get_image_processor() lowercase_ : int = self.get_tokenizer() lowercase_ : int = self.get_qformer_tokenizer() lowercase_ : Optional[Any] = InstructBlipProcessor( tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ,qformer_tokenizer=__UpperCamelCase ) lowercase_ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : int = processor.batch_decode(__UpperCamelCase ) lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : str = self.get_image_processor() lowercase_ : str = self.get_tokenizer() lowercase_ : Dict = self.get_qformer_tokenizer() lowercase_ : Optional[Any] = InstructBlipProcessor( tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ,qformer_tokenizer=__UpperCamelCase ) lowercase_ : str = 'lower newer' lowercase_ : Tuple = self.prepare_image_inputs() lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase ) self.assertListEqual( list(inputs.keys() ) ,['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] ,)
321
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[Any] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : Tuple = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) print(F'''Loading model based on config from {config_path}...''' ) lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowercase_ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention lowercase_ : BertSelfAttention = layer.attention.self lowercase_ : str = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape ) lowercase_ : int = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape ) lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape ) lowercase_ : List[Any] = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output lowercase_ : BertSelfOutput = layer.attention.output lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape ) lowercase_ : Any = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape ) lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' ) lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' ) # Intermediate lowercase_ : BertIntermediate = layer.intermediate lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' ) lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' ) # Output lowercase_ : BertOutput = layer.output lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' ) lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' ) lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' ) lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' ) # Embeddings lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' ) lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' ) lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' ) lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head lowercase_ : int = model.cls.predictions.transform lowercase_ : str = get_masked_lm_array('dense/kernel' ) lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' ) lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' ) lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' ) lowercase_ : List[str] = get_masked_lm_array('embedding_table' ) # Pooling lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(__SCREAMING_SNAKE_CASE ) # Integration test - should load without any errors ;) lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
321
1
"""simple docstring""" import argparse from collections import defaultdict import yaml __SCREAMING_SNAKE_CASE ="docs/source/en/_toctree.yml" def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : Optional[int] = defaultdict(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = [] lowercase_ : Tuple = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(__SCREAMING_SNAKE_CASE ) lowercase_ : str = new_doc_list lowercase_ : List[Any] = [key for key, value in counts.items() if value > 1] lowercase_ : Tuple = [] for duplicate_key in duplicates: lowercase_ : str = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(__SCREAMING_SNAKE_CASE ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) lowercase_ : Optional[Any] = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__SCREAMING_SNAKE_CASE ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(__SCREAMING_SNAKE_CASE ) # Sort return overview_doc def lowercase__( __SCREAMING_SNAKE_CASE : Dict=False ): with open(__SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: lowercase_ : Optional[int] = yaml.safe_load(f.read() ) # Get to the API doc lowercase_ : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase_ : int = content[api_idx]['sections'] # Then to the model doc lowercase_ : str = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowercase_ : Union[str, Any] = api_doc[scheduler_idx]['sections'] lowercase_ : str = clean_doc_toc(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = False if new_scheduler_doc != scheduler_doc: lowercase_ : List[Any] = True if overwrite: lowercase_ : Optional[Any] = new_scheduler_doc if diff: if overwrite: lowercase_ : Tuple = api_doc with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__SCREAMING_SNAKE_CASE , allow_unicode=__SCREAMING_SNAKE_CASE ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def lowercase__( __SCREAMING_SNAKE_CASE : str=False ): with open(__SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: lowercase_ : str = yaml.safe_load(f.read() ) # Get to the API doc lowercase_ : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase_ : Optional[int] = content[api_idx]['sections'] # Then to the model doc lowercase_ : str = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowercase_ : List[Any] = False lowercase_ : List[str] = api_doc[pipeline_idx]['sections'] lowercase_ : Optional[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowercase_ : int = pipeline_doc['section'] lowercase_ : str = clean_doc_toc(__SCREAMING_SNAKE_CASE ) if overwrite: lowercase_ : Any = new_sub_pipeline_doc new_pipeline_docs.append(__SCREAMING_SNAKE_CASE ) # sort overall pipeline doc lowercase_ : Optional[Any] = clean_doc_toc(__SCREAMING_SNAKE_CASE ) if new_pipeline_docs != pipeline_docs: lowercase_ : int = True if overwrite: lowercase_ : List[Any] = new_pipeline_docs if diff: if overwrite: lowercase_ : Union[str, Any] = api_doc with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__SCREAMING_SNAKE_CASE , allow_unicode=__SCREAMING_SNAKE_CASE ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __SCREAMING_SNAKE_CASE =parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
321
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore __SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered") def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ): lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
321
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int = 4_00_00_00 ): lowercase_ : str = [] lowercase_ , lowercase_ : List[Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : List[str] = b, a + b return sum(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"{solution() = }")
321
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
321
1
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class UpperCamelCase : lowercase = 42 # [batch_size x 3] lowercase = 42 # [batch_size x 3] lowercase = 42 # [batch_size x 3] lowercase = 42 # [batch_size x 3] lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] ,dtype=np.floataa ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] ,dtype=np.floataa ) ) def _UpperCAmelCase ( self ) -> torch.Tensor: '''simple docstring''' lowercase_ : Dict = torch.arange(self.height * self.width ) lowercase_ : str = torch.stack( [ pixel_indices % self.width, torch.div(__UpperCamelCase ,self.width ,rounding_mode='trunc' ), ] ,axis=1 ,) return coords @property def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ , *lowercase_ : List[Any] = self.shape lowercase_ : List[Any] = int(np.prod(__UpperCamelCase ) ) lowercase_ : Dict = self.get_image_coords() lowercase_ : Tuple = torch.broadcast_to(coords.unsqueeze(0 ) ,[batch_size * inner_batch_size, *coords.shape] ) lowercase_ : List[Any] = self.get_camera_rays(__UpperCamelCase ) lowercase_ : Tuple = rays.view(__UpperCamelCase ,inner_batch_size * self.height * self.width ,2 ,3 ) return rays def _UpperCAmelCase ( self ,__UpperCamelCase ) -> torch.Tensor: '''simple docstring''' lowercase_ , *lowercase_ , lowercase_ : Tuple = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowercase_ : Dict = coords.view(__UpperCamelCase ,-1 ,2 ) lowercase_ : int = self.resolution() lowercase_ : List[Any] = self.fov() lowercase_ : Tuple = (flat.float() / (res - 1)) * 2 - 1 lowercase_ : Tuple = fracs * torch.tan(fov / 2 ) lowercase_ : str = fracs.view(__UpperCamelCase ,-1 ,2 ) lowercase_ : Optional[Any] = ( self.z.view(__UpperCamelCase ,1 ,3 ) + self.x.view(__UpperCamelCase ,1 ,3 ) * fracs[:, :, :1] + self.y.view(__UpperCamelCase ,1 ,3 ) * fracs[:, :, 1:] ) lowercase_ : Tuple = directions / directions.norm(dim=-1 ,keepdim=__UpperCamelCase ) lowercase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(__UpperCamelCase ,1 ,3 ) ,[batch_size, directions.shape[1], 3] ), directions, ] ,dim=2 ,) return rays.view(__UpperCamelCase ,*__UpperCamelCase ,2 ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> "DifferentiableProjectiveCamera": '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin ,x=self.x ,y=self.y ,z=self.z ,width=__UpperCamelCase ,height=__UpperCamelCase ,x_fov=self.x_fov ,y_fov=self.y_fov ,) def lowercase__( __SCREAMING_SNAKE_CASE : int ): lowercase_ : Optional[Any] = [] lowercase_ : Dict = [] lowercase_ : Tuple = [] lowercase_ : List[Any] = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): lowercase_ : Tuple = np.array([np.sin(__SCREAMING_SNAKE_CASE ), np.cos(__SCREAMING_SNAKE_CASE ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowercase_ : Optional[int] = -z * 4 lowercase_ : List[str] = np.array([np.cos(__SCREAMING_SNAKE_CASE ), -np.sin(__SCREAMING_SNAKE_CASE ), 0.0] ) lowercase_ : Tuple = np.cross(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) origins.append(__SCREAMING_SNAKE_CASE ) xs.append(__SCREAMING_SNAKE_CASE ) ys.append(__SCREAMING_SNAKE_CASE ) zs.append(__SCREAMING_SNAKE_CASE ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__SCREAMING_SNAKE_CASE , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__SCREAMING_SNAKE_CASE , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__SCREAMING_SNAKE_CASE , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__SCREAMING_SNAKE_CASE , axis=0 ) ).float() , width=__SCREAMING_SNAKE_CASE , height=__SCREAMING_SNAKE_CASE , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__SCREAMING_SNAKE_CASE )) , )
321
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]: '''simple docstring''' lowercase_ : Any = parent lowercase_ : str = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Dict = is_training lowercase_ : Tuple = use_input_mask lowercase_ : Optional[Any] = use_token_type_ids lowercase_ : List[str] = use_labels lowercase_ : Any = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : Tuple = max_position_embeddings lowercase_ : Optional[int] = type_vocab_size lowercase_ : Optional[int] = type_sequence_label_size lowercase_ : Dict = initializer_range lowercase_ : int = num_labels lowercase_ : Any = num_choices lowercase_ : int = scope def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Dict = None if self.use_input_mask: lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Tuple = None lowercase_ : Tuple = None lowercase_ : Tuple = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) lowercase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Union[str, Any] = model(__UpperCamelCase ) lowercase_ : int = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.num_labels lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Any = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = config_and_inputs lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = False lowercase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowercase = () lowercase = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = EsmModelTester(self ) lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Optional[Any] = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowercase_ : List[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : List[Any] = torch.empty(2 ,4 ,30 ) lowercase_ : List[str] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch class UpperCamelCase ( lowercase_ ): @slow def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : List[str] = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = 33 lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : List[str] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase_ : Dict = model(__UpperCamelCase )[0] # compare the actual values for a slice. lowercase_ : Any = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int | float | str ): try: lowercase_ : List[str] = float(__SCREAMING_SNAKE_CASE ) except ValueError: raise ValueError('Please enter a valid number' ) lowercase_ : List[str] = decimal - int(__SCREAMING_SNAKE_CASE ) if fractional_part == 0: return int(__SCREAMING_SNAKE_CASE ), 1 else: lowercase_ : int = len(str(__SCREAMING_SNAKE_CASE ).split('.' )[1] ) lowercase_ : Any = int(decimal * (10**number_of_frac_digits) ) lowercase_ : int = 10**number_of_frac_digits lowercase_ , lowercase_ : str = denominator, numerator while True: lowercase_ : List[str] = dividend % divisor if remainder == 0: break lowercase_ , lowercase_ : Tuple = divisor, remainder lowercase_ , lowercase_ : Dict = numerator / divisor, denominator / divisor return int(__SCREAMING_SNAKE_CASE ), int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"{decimal_to_fraction(2) = }") print(F"{decimal_to_fraction(89.0) = }") print(F"{decimal_to_fraction('67') = }") print(F"{decimal_to_fraction('45.0') = }") print(F"{decimal_to_fraction(1.5) = }") print(F"{decimal_to_fraction('6.25') = }") print(F"{decimal_to_fraction('78td') = }")
321
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
1
"""simple docstring""" import math def lowercase__( __SCREAMING_SNAKE_CASE : int ): lowercase_ : List[str] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : float = 1 / 1_23_45 ): lowercase_ : Optional[Any] = 0 lowercase_ : Optional[int] = 0 lowercase_ : List[Any] = 3 while True: lowercase_ : Dict = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__SCREAMING_SNAKE_CASE ): lowercase_ : Any = int(__SCREAMING_SNAKE_CASE ) total_partitions += 1 if check_partition_perfect(__SCREAMING_SNAKE_CASE ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__SCREAMING_SNAKE_CASE ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
321
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): lowercase_ : Dict = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = 'patrickvonplaten/t5-tiny-random' lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] ) lowercase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'current' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
321
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase_ : List[str] = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) lowercase_ : Any = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) lowercase_ : Union[str, Any] = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) lowercase_ : Optional[int] = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) lowercase_ : str = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) lowercase_ : Any = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) lowercase_ : List[str] = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) lowercase_ : List[Any] = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) lowercase_ : str = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) lowercase_ : Optional[Any] = key.replace('image_encoder.module' , 'flava.image_model' ) lowercase_ : Optional[int] = key.replace('text_encoder.module' , 'flava.text_model' ) lowercase_ : Any = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) lowercase_ : Tuple = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) lowercase_ : Any = key.replace('text_projection' , 'flava.text_projection' ) lowercase_ : Optional[int] = key.replace('image_projection' , 'flava.image_projection' ) lowercase_ : Union[str, Any] = value.float() for key, value in codebook_state_dict.items(): lowercase_ : Optional[Any] = value return upgrade @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None ): if config_path is not None: lowercase_ : Union[str, Any] = FlavaConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: lowercase_ : Dict = FlavaConfig() lowercase_ : int = FlavaForPreTraining(__SCREAMING_SNAKE_CASE ).eval() lowercase_ : Dict = convert_dalle_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , save_checkpoint=__SCREAMING_SNAKE_CASE ) if os.path.exists(__SCREAMING_SNAKE_CASE ): lowercase_ : Dict = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' ) else: lowercase_ : List[str] = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' ) lowercase_ : Any = upgrade_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = hf_model.state_dict() lowercase_ : Optional[Any] = count_parameters(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = count_parameters(__SCREAMING_SNAKE_CASE ) + count_parameters(__SCREAMING_SNAKE_CASE ) assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __SCREAMING_SNAKE_CASE =parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
321
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['input_values', 'padding_mask'] def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = chunk_length_s lowercase_ : Tuple = overlap @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowercase_ : Optional[int] = True lowercase_ : Optional[int] = bool( isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ): lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa ) elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) lowercase_ : Optional[int] = None lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio ) lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) ) lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio ) lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase_ : Union[str, Any] = 'max_length' else: lowercase_ : int = input_values # normal padding on batch if padded_inputs is None: lowercase_ : int = self.pad( __UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) if padding: lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' ) lowercase_ : Dict = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowercase_ : Optional[int] = example[..., None] input_values.append(example.T ) lowercase_ : str = input_values if return_tensors is not None: lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
321
1
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): lowercase_ , lowercase_ : Dict = array[indexa], array[indexa] def lowercase__( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): if length > 1: lowercase_ : List[str] = int(length / 2 ) for i in range(__SCREAMING_SNAKE_CASE , low + middle ): comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): if length > 1: lowercase_ : Optional[Any] = int(length / 2 ) bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =input("Enter numbers separated by a comma:\n").strip() __SCREAMING_SNAKE_CASE =[int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
321
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
321
1
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str]=0 ): lowercase_ : Dict = [] for old_item in old_list: lowercase_ : Union[str, Any] = old_item.replace('in_layers.0' , 'norm1' ) lowercase_ : Any = new_item.replace('in_layers.2' , 'conv1' ) lowercase_ : Union[str, Any] = new_item.replace('out_layers.0' , 'norm2' ) lowercase_ : Any = new_item.replace('out_layers.3' , 'conv2' ) lowercase_ : Tuple = new_item.replace('emb_layers.1' , 'time_emb_proj' ) lowercase_ : Any = new_item.replace('skip_connection' , 'conv_shortcut' ) lowercase_ : List[Any] = shave_segments(__SCREAMING_SNAKE_CASE , n_shave_prefix_segments=__SCREAMING_SNAKE_CASE ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=0 ): lowercase_ : List[Any] = [] for old_item in old_list: lowercase_ : Dict = old_item lowercase_ : Any = new_item.replace('norm.weight' , 'group_norm.weight' ) lowercase_ : List[str] = new_item.replace('norm.bias' , 'group_norm.bias' ) lowercase_ : str = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) lowercase_ : Optional[int] = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) lowercase_ : Tuple = shave_segments(__SCREAMING_SNAKE_CASE , n_shave_prefix_segments=__SCREAMING_SNAKE_CASE ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Any=None ): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowercase_ : int = old_checkpoint[path] lowercase_ : str = old_tensor.shape[0] // 3 lowercase_ : Union[str, Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowercase_ : List[Any] = old_tensor.shape[0] // config['num_head_channels'] // 3 lowercase_ : List[str] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowercase_ , lowercase_ , lowercase_ : List[str] = old_tensor.split(channels // num_heads , dim=1 ) lowercase_ : str = query.reshape(__SCREAMING_SNAKE_CASE ) lowercase_ : int = key.reshape(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = value.reshape(__SCREAMING_SNAKE_CASE ) for path in paths: lowercase_ : Dict = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowercase_ : Union[str, Any] = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) lowercase_ : Optional[Any] = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) lowercase_ : Optional[int] = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: lowercase_ : List[str] = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowercase_ : Optional[Any] = old_checkpoint[path['old']][:, :, 0] else: lowercase_ : List[str] = old_checkpoint[path['old']] def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : Tuple = {} lowercase_ : List[Any] = checkpoint['time_embed.0.weight'] lowercase_ : int = checkpoint['time_embed.0.bias'] lowercase_ : List[str] = checkpoint['time_embed.2.weight'] lowercase_ : int = checkpoint['time_embed.2.bias'] lowercase_ : Optional[Any] = checkpoint['input_blocks.0.0.weight'] lowercase_ : Tuple = checkpoint['input_blocks.0.0.bias'] lowercase_ : List[Any] = checkpoint['out.0.weight'] lowercase_ : Dict = checkpoint['out.0.bias'] lowercase_ : Any = checkpoint['out.2.weight'] lowercase_ : List[str] = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only lowercase_ : List[Any] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) lowercase_ : Union[str, Any] = { layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(__SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the middle blocks only lowercase_ : Optional[Any] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) lowercase_ : Tuple = { layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(__SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the output blocks only lowercase_ : List[str] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) lowercase_ : Any = { layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(__SCREAMING_SNAKE_CASE ) } for i in range(1 , __SCREAMING_SNAKE_CASE ): lowercase_ : Any = (i - 1) // (config['num_res_blocks'] + 1) lowercase_ : Any = (i - 1) % (config['num_res_blocks'] + 1) lowercase_ : Any = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] lowercase_ : int = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: lowercase_ : List[str] = checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] lowercase_ : Optional[int] = checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue lowercase_ : Tuple = renew_resnet_paths(__SCREAMING_SNAKE_CASE ) lowercase_ : int = {'old': F'''input_blocks.{i}.0''', 'new': F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} lowercase_ : List[str] = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path, resnet_op] , config=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ): lowercase_ : Dict = renew_attention_paths(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = { 'old': F'''input_blocks.{i}.1''', 'new': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowercase_ : int = { F'''input_blocks.{i}.1.qkv.bias''': { 'key': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { 'key': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , ) lowercase_ : Tuple = middle_blocks[0] lowercase_ : Optional[int] = middle_blocks[1] lowercase_ : Union[str, Any] = middle_blocks[2] lowercase_ : List[str] = renew_resnet_paths(__SCREAMING_SNAKE_CASE ) assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = renew_resnet_paths(__SCREAMING_SNAKE_CASE ) assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = renew_attention_paths(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , attention_paths_to_split=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = i // (config['num_res_blocks'] + 1) lowercase_ : str = i % (config['num_res_blocks'] + 1) lowercase_ : Optional[int] = [shave_segments(__SCREAMING_SNAKE_CASE , 2 ) for name in output_blocks[i]] lowercase_ : Union[str, Any] = {} for layer in output_block_layers: lowercase_ , lowercase_ : str = layer.split('.' )[0], shave_segments(__SCREAMING_SNAKE_CASE , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__SCREAMING_SNAKE_CASE ) else: lowercase_ : str = [layer_name] if len(__SCREAMING_SNAKE_CASE ) > 1: lowercase_ : Dict = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] lowercase_ : Dict = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] lowercase_ : Optional[int] = renew_resnet_paths(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = renew_resnet_paths(__SCREAMING_SNAKE_CASE ) lowercase_ : int = {'old': F'''output_blocks.{i}.0''', 'new': F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowercase_ : Any = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) lowercase_ : List[Any] = checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] lowercase_ : Optional[int] = checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(__SCREAMING_SNAKE_CASE ) == 2: lowercase_ : Optional[Any] = [] if len(__SCREAMING_SNAKE_CASE ): lowercase_ : Dict = renew_attention_paths(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = { 'old': F'''output_blocks.{i}.1''', 'new': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowercase_ : Optional[Any] = { F'''output_blocks.{i}.1.qkv.bias''': { 'key': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { 'key': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=__SCREAMING_SNAKE_CASE , ) else: lowercase_ : Dict = renew_resnet_paths(__SCREAMING_SNAKE_CASE , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowercase_ : Optional[int] = '.'.join(['output_blocks', str(__SCREAMING_SNAKE_CASE ), path['old']] ) lowercase_ : Union[str, Any] = '.'.join(['up_blocks', str(__SCREAMING_SNAKE_CASE ), 'resnets', str(__SCREAMING_SNAKE_CASE ), path['new']] ) lowercase_ : List[str] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __SCREAMING_SNAKE_CASE =parser.parse_args() __SCREAMING_SNAKE_CASE =torch.load(args.checkpoint_path) with open(args.config_file) as f: __SCREAMING_SNAKE_CASE =json.loads(f.read()) __SCREAMING_SNAKE_CASE =convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __SCREAMING_SNAKE_CASE =UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __SCREAMING_SNAKE_CASE =DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) __SCREAMING_SNAKE_CASE =VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) __SCREAMING_SNAKE_CASE =LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
321
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
321
1
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __SCREAMING_SNAKE_CASE =TypeVar("KEY") __SCREAMING_SNAKE_CASE =TypeVar("VAL") @dataclass(frozen=lowercase_ , slots=lowercase_ ) class UpperCamelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class UpperCamelCase ( _Item ): def __init__( self ) -> None: '''simple docstring''' super().__init__(__UpperCamelCase ,__UpperCamelCase ) def __bool__( self ) -> bool: '''simple docstring''' return False __SCREAMING_SNAKE_CASE =_DeletedItem() class UpperCamelCase ( MutableMapping[KEY, VAL] ): def __init__( self ,__UpperCamelCase = 8 ,__UpperCamelCase = 0.75 ) -> None: '''simple docstring''' lowercase_ : Optional[Any] = initial_block_size lowercase_ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowercase_ : Tuple = capacity_factor lowercase_ : Optional[int] = 0 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' return hash(__UpperCamelCase ) % len(self._buckets ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' lowercase_ : Tuple = self._buckets[ind] if not stored: lowercase_ : List[str] = _Item(__UpperCamelCase ,__UpperCamelCase ) self._len += 1 return True elif stored.key == key: lowercase_ : Tuple = _Item(__UpperCamelCase ,__UpperCamelCase ) return True else: return False def _UpperCAmelCase ( self ) -> bool: '''simple docstring''' lowercase_ : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowercase_ : Union[str, Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : int = self._buckets lowercase_ : Tuple = [None] * new_size lowercase_ : Union[str, Any] = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def _UpperCAmelCase ( self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def _UpperCAmelCase ( self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Iterator[int]: '''simple docstring''' lowercase_ : str = self._get_bucket_index(__UpperCamelCase ) for _ in range(len(self._buckets ) ): yield ind lowercase_ : List[str] = self._get_next_ind(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> None: '''simple docstring''' for ind in self._iterate_buckets(__UpperCamelCase ): if self._try_set(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): break def __setitem__( self ,__UpperCamelCase ,__UpperCamelCase ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCamelCase ,__UpperCamelCase ) def __delitem__( self ,__UpperCamelCase ) -> None: '''simple docstring''' for ind in self._iterate_buckets(__UpperCamelCase ): lowercase_ : Dict = self._buckets[ind] if item is None: raise KeyError(__UpperCamelCase ) if item is _deleted: continue if item.key == key: lowercase_ : str = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self ,__UpperCamelCase ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(__UpperCamelCase ): lowercase_ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCamelCase ) def __len__( self ) -> int: '''simple docstring''' return self._len def __iter__( self ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: '''simple docstring''' lowercase_ : str = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
321
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ): lowercase_ : int = 'backbone.' if is_semantic else '' lowercase_ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ): for i in range(config.num_hidden_layers ): lowercase_ : Any = 'backbone.' if is_semantic else '' # queries, keys and values lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) lowercase_ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = q_bias lowercase_ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) lowercase_ : Tuple = gamma_a lowercase_ : List[Any] = gamma_a def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = val def lowercase__( ): lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ): lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowercase_ : Any = 10_24 lowercase_ : List[str] = 40_96 lowercase_ : Tuple = 24 lowercase_ : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: lowercase_ : Optional[Any] = 16 lowercase_ : Any = 'huggingface/label-files' lowercase_ : int = 'rvlcdip-id2label.json' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : str = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) # load HuggingFace model lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image lowercase_ : List[Any] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE ) lowercase_ : str = prepare_img() lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) lowercase_ : int = encoding['pixel_values'] lowercase_ : Any = model(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = outputs.logits # verify logits lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected" Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: if has_lm_head: lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) model.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
321
1
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } __SCREAMING_SNAKE_CASE ={ "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : str = EfficientNetConfig() lowercase_ : Optional[int] = CONFIG_MAP[model_name]['hidden_dim'] lowercase_ : Any = CONFIG_MAP[model_name]['width_coef'] lowercase_ : Optional[int] = CONFIG_MAP[model_name]['depth_coef'] lowercase_ : List[Any] = CONFIG_MAP[model_name]['image_size'] lowercase_ : List[str] = CONFIG_MAP[model_name]['dropout_rate'] lowercase_ : List[Any] = CONFIG_MAP[model_name]['dw_padding'] lowercase_ : int = 'huggingface/label-files' lowercase_ : Any = 'imagenet-1k-id2label.json' lowercase_ : Union[str, Any] = 10_00 lowercase_ : str = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : List[str] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : Dict = idalabel lowercase_ : Dict = {v: k for k, v in idalabel.items()} return config def lowercase__( ): lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase_ : Optional[int] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im def lowercase__( __SCREAMING_SNAKE_CASE : int ): lowercase_ : Tuple = CONFIG_MAP[model_name]['image_size'] lowercase_ : Any = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=__SCREAMING_SNAKE_CASE , ) return preprocessor def lowercase__( __SCREAMING_SNAKE_CASE : int ): lowercase_ : List[Any] = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] lowercase_ : str = sorted(set(__SCREAMING_SNAKE_CASE ) ) lowercase_ : int = len(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = {b: str(__SCREAMING_SNAKE_CASE ) for b, i in zip(__SCREAMING_SNAKE_CASE , range(__SCREAMING_SNAKE_CASE ) )} lowercase_ : str = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: lowercase_ : Any = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) lowercase_ : Dict = {} for item in rename_keys: if item[0] in original_param_names: lowercase_ : Union[str, Any] = 'efficientnet.' + item[1] lowercase_ : Any = 'classifier.weight' lowercase_ : Tuple = 'classifier.bias' return key_mapping def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ): for key, value in tf_params.items(): if "normalization" in key: continue lowercase_ : Any = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase_ : int = torch.from_numpy(__SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase_ : str = torch.from_numpy(__SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase_ : List[str] = torch.from_numpy(np.transpose(__SCREAMING_SNAKE_CASE ) ) else: lowercase_ : Union[str, Any] = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple ): lowercase_ : Any = model_classes[model_name]( include_top=__SCREAMING_SNAKE_CASE , weights='imagenet' , input_tensor=__SCREAMING_SNAKE_CASE , input_shape=__SCREAMING_SNAKE_CASE , pooling=__SCREAMING_SNAKE_CASE , classes=10_00 , classifier_activation='softmax' , ) lowercase_ : Tuple = original_model.trainable_variables lowercase_ : str = original_model.non_trainable_variables lowercase_ : Tuple = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase_ : Dict = param.numpy() lowercase_ : str = list(tf_params.keys() ) # Load HuggingFace model lowercase_ : List[str] = get_efficientnet_config(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = EfficientNetForImageClassification(__SCREAMING_SNAKE_CASE ).eval() lowercase_ : List[str] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) lowercase_ : List[str] = rename_keys(__SCREAMING_SNAKE_CASE ) replace_params(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowercase_ : List[Any] = convert_image_processor(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase_ : Dict = hf_model(**__SCREAMING_SNAKE_CASE ) lowercase_ : Any = outputs.logits.detach().numpy() # Original model inference lowercase_ : str = False lowercase_ : List[Any] = CONFIG_MAP[model_name]['image_size'] lowercase_ : List[str] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase_ : int = image.img_to_array(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = np.expand_dims(__SCREAMING_SNAKE_CASE , axis=0 ) lowercase_ : Dict = original_model.predict(__SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(__SCREAMING_SNAKE_CASE ): os.mkdir(__SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) lowercase_ : List[str] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(__SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") __SCREAMING_SNAKE_CASE =parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
321
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()} def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase__( __SCREAMING_SNAKE_CASE : str ): if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowercase_ : Dict = '' for word in coded.split(): while len(__SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase_ : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
321
1
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __SCREAMING_SNAKE_CASE =logging.getLogger(__name__) class UpperCamelCase : def __init__( self ) -> Tuple: '''simple docstring''' lowercase_ : Dict = False def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' if not self.initialized: lowercase_ : Optional[Any] = RagRetriever( __UpperCamelCase ,question_encoder_tokenizer=__UpperCamelCase ,generator_tokenizer=__UpperCamelCase ,index=__UpperCamelCase ,init_retrieval=__UpperCamelCase ,) lowercase_ : Dict = True def _UpperCAmelCase ( self ) -> int: '''simple docstring''' self.retriever.index.init_index() def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ : Any = self.retriever._main_retrieve(__UpperCamelCase ,__UpperCamelCase ) return doc_ids, retrieved_doc_embeds class UpperCamelCase ( lowercase_ ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ) -> Optional[int]: '''simple docstring''' if index is not None and index.is_initialized() and len(__UpperCamelCase ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( __UpperCamelCase ,question_encoder_tokenizer=__UpperCamelCase ,generator_tokenizer=__UpperCamelCase ,index=__UpperCamelCase ,init_retrieval=__UpperCamelCase ,) lowercase_ : List[Any] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) for worker in self.retrieval_workers ] ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowercase_ : Any = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )] lowercase_ , lowercase_ : Optional[int] = ray.get(random_worker.retrieve.remote(__UpperCamelCase ,__UpperCamelCase ) ) else: lowercase_ , lowercase_ : int = self._main_retrieve(__UpperCamelCase ,__UpperCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__UpperCamelCase ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return super(__UpperCamelCase ,cls ).get_tokenizers(__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : Tuple = kwargs.pop('config' ,__UpperCamelCase ) or RagConfig.from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[Any] = RagTokenizer.from_pretrained(__UpperCamelCase ,config=__UpperCamelCase ) lowercase_ : str = rag_tokenizer.question_encoder lowercase_ : Dict = rag_tokenizer.generator if indexed_dataset is not None: lowercase_ : Union[str, Any] = 'custom' lowercase_ : List[Any] = CustomHFIndex(config.retrieval_vector_size ,__UpperCamelCase ) else: lowercase_ : Union[str, Any] = cls._build_index(__UpperCamelCase ) return cls( __UpperCamelCase ,question_encoder_tokenizer=__UpperCamelCase ,generator_tokenizer=__UpperCamelCase ,retrieval_workers=__UpperCamelCase ,index=__UpperCamelCase ,)
321
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations_with_dp_array( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase_ : str = sum( count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE ) for item in array ) lowercase_ : Tuple = answer return answer lowercase_ : Optional[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = [0] * (target + 1) lowercase_ : Dict = 1 for i in range(1 , target + 1 ): for j in range(__SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE =3 __SCREAMING_SNAKE_CASE =5 __SCREAMING_SNAKE_CASE =[1, 2, 5] print(combination_sum_iv(n, array, target))
321
1
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ): try: with open(__SCREAMING_SNAKE_CASE , 'rb' ) as flax_state_f: lowercase_ : List[Any] = from_bytes(__SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(__SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights lowercase_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda __SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , __SCREAMING_SNAKE_CASE ) ).values() if any(__SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) lowercase_ : Optional[Any] = jax.tree_util.tree_map( lambda __SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __SCREAMING_SNAKE_CASE ) lowercase_ : str = '' lowercase_ : List[str] = flatten_dict(__SCREAMING_SNAKE_CASE , sep='.' ) lowercase_ : List[str] = pt_model.state_dict() # keep track of unexpected & missing keys lowercase_ : Dict = [] lowercase_ : List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase_ : str = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowercase_ : Any = flax_key_tuple_array[:-1] + ['weight'] lowercase_ : Any = jnp.transpose(__SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowercase_ : Dict = flax_key_tuple_array[:-1] + ['weight'] lowercase_ : Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowercase_ : int = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ : List[Any] = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) lowercase_ : Dict = '.'.join(__SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict lowercase_ : str = np.asarray(__SCREAMING_SNAKE_CASE ) if not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor lowercase_ : Union[str, Any] = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(__SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(__SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(__SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list lowercase_ : Tuple = list(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(__SCREAMING_SNAKE_CASE ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ' use it for predictions and inference.' ) return pt_model
321
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : int = set_counts lowercase_ : List[Any] = max(__UpperCamelCase ) lowercase_ : Union[str, Any] = len(__UpperCamelCase ) lowercase_ : Dict = [1] * num_sets lowercase_ : Optional[int] = list(range(__UpperCamelCase ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase ) lowercase_ : int = self.get_parent(__UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : Tuple = 0 lowercase_ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : str = 0 lowercase_ : Tuple = src_parent lowercase_ : int = self.set_counts[src_parent] lowercase_ : str = max(self.max_set ,__UpperCamelCase ) return True def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
321
1
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "nielsr/canine-s": 2048, } # Unicode defines 1,114,112 total “codepoints” __SCREAMING_SNAKE_CASE =111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __SCREAMING_SNAKE_CASE =0 __SCREAMING_SNAKE_CASE =0XE0_00 __SCREAMING_SNAKE_CASE =0XE0_01 __SCREAMING_SNAKE_CASE =0XE0_02 __SCREAMING_SNAKE_CASE =0XE0_03 __SCREAMING_SNAKE_CASE =0XE0_04 # Maps special codepoints to human-readable names. __SCREAMING_SNAKE_CASE ={ # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __SCREAMING_SNAKE_CASE ={name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCamelCase ( lowercase_ ): lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,__UpperCamelCase=chr(__UpperCamelCase ) ,__UpperCamelCase=chr(__UpperCamelCase ) ,__UpperCamelCase=chr(__UpperCamelCase ) ,__UpperCamelCase=chr(__UpperCamelCase ) ,__UpperCamelCase=chr(__UpperCamelCase ) ,__UpperCamelCase=chr(__UpperCamelCase ) ,__UpperCamelCase=False ,__UpperCamelCase=2048 ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else bos_token lowercase_ : Optional[Any] = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else eos_token lowercase_ : List[str] = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else sep_token lowercase_ : str = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else cls_token lowercase_ : int = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase_ : str = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else mask_token super().__init__( bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,model_max_length=__UpperCamelCase ,**__UpperCamelCase ,) # Creates a mapping for looking up the IDs of special symbols. lowercase_ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowercase_ : Tuple = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowercase_ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowercase_ : Any = UNICODE_VOCAB_SIZE lowercase_ : Optional[Any] = len(self._special_codepoints ) @property def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return self._unicode_vocab_size def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' return list(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' try: return ord(__UpperCamelCase ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str: '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__UpperCamelCase ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str: '''simple docstring''' return "".join(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : str = [self.sep_token_id] lowercase_ : Tuple = [self.cls_token_id] lowercase_ : str = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase ,token_ids_a=__UpperCamelCase ,already_has_special_tokens=__UpperCamelCase ) lowercase_ : int = [1] + ([0] * len(__UpperCamelCase )) + [1] if token_ids_a is not None: result += ([0] * len(__UpperCamelCase )) + [1] return result def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : int = [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] lowercase_ : List[Any] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> str: '''simple docstring''' return ()
321
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __SCREAMING_SNAKE_CASE ={ "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128} class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BlenderbotTokenizer def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( __UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) ) lowercase_ : Any = add_prefix_space lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase ) lowercase_ : int = add_prefix_space lowercase_ : Any = 'post_processor' lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) if tokenizer_component_instance: lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ : str = tuple(state['sep'] ) if "cls" in state: lowercase_ : Union[str, Any] = tuple(state['cls'] ) lowercase_ : str = False if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Dict = add_prefix_space lowercase_ : int = True if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets: lowercase_ : Optional[Any] = trim_offsets lowercase_ : Tuple = True if changes_to_apply: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) ) lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _UpperCAmelCase ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value lowercase_ : str = value def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : int = [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]: '''simple docstring''' lowercase_ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) lowercase_ : Dict = ' '.join(__UpperCamelCase ) lowercase_ : str = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: lowercase_ : List[str] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
321
1
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path __SCREAMING_SNAKE_CASE ="src/transformers" # Matches is_xxx_available() __SCREAMING_SNAKE_CASE =re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} __SCREAMING_SNAKE_CASE =re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __SCREAMING_SNAKE_CASE =re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available __SCREAMING_SNAKE_CASE =re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") __SCREAMING_SNAKE_CASE =re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __SCREAMING_SNAKE_CASE =re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", __SCREAMING_SNAKE_CASE =re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], __SCREAMING_SNAKE_CASE =re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo __SCREAMING_SNAKE_CASE =re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: __SCREAMING_SNAKE_CASE =re.compile(r"^\s*try:") # Catches a line with else: __SCREAMING_SNAKE_CASE =re.compile(r"^\s*else:") def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ): if _re_test_backend.search(__SCREAMING_SNAKE_CASE ) is None: return None lowercase_ : Tuple = [b[0] for b in _re_backend.findall(__SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase_ : str = f.readlines() lowercase_ : Any = 0 while line_index < len(__SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure lowercase_ : Optional[Any] = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: lowercase_ : Union[str, Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[int] = _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ).groups()[0] lowercase_ : List[Any] = re.findall('\[([^\]]+)\]' , __SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue lowercase_ : Optional[Any] = _re_import_struct_key_value.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: lowercase_ : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 lowercase_ : int = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase_ : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase_ : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase_ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): lowercase_ : str = lines[line_index] if _re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ) is not None: lowercase_ : Dict = _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) lowercase_ : Tuple = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(__SCREAMING_SNAKE_CASE ) is not None: lowercase_ : Dict = _re_between_brackets.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) lowercase_ : Optional[int] = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 lowercase_ : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase_ : int = [] while ( line_index < len(__SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): lowercase_ : List[Any] = lines[line_index] lowercase_ : List[str] = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase_ : Dict = {'none': objects} # Let's continue with backend-specific objects while line_index < len(__SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. lowercase_ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase_ : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase_ : int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): lowercase_ : str = lines[line_index] lowercase_ : Dict = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase_ : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): def find_duplicates(__SCREAMING_SNAKE_CASE : Union[str, Any] ): return [k for k, v in collections.Counter(__SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase_ : int = [] for key in import_dict_objects.keys(): lowercase_ : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowercase_ : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase_ : Any = 'base imports' if key == 'none' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def lowercase__( ): lowercase_ : Union[str, Any] = [] for root, _, files in os.walk(__SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowercase_ : Union[str, Any] = os.path.join(__SCREAMING_SNAKE_CASE , '__init__.py' ) lowercase_ : Optional[int] = parse_init(__SCREAMING_SNAKE_CASE ) if objects is not None: lowercase_ : Optional[Any] = analyze_results(*__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase_ : Dict = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('\n'.join(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(__SCREAMING_SNAKE_CASE ) ) def lowercase__( ): lowercase_ : Any = [] for path, directories, files in os.walk(__SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(__SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue lowercase_ : Dict = str((Path(__SCREAMING_SNAKE_CASE ) / folder).relative_to(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Optional[int] = short_path.replace(os.path.sep , '.' ) submodules.append(__SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue lowercase_ : Dict = str((Path(__SCREAMING_SNAKE_CASE ) / fname).relative_to(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Tuple = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(__SCREAMING_SNAKE_CASE ) return submodules __SCREAMING_SNAKE_CASE =[ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def lowercase__( ): # This is to make sure the transformers module imported is the one in the repo. lowercase_ : List[str] = importlib.util.spec_from_file_location( 'transformers' , os.path.join(__SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowercase_ : List[str] = spec.loader.load_module() lowercase_ : str = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase_ : Any = '\n'.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'''{list_of_modules}\n''' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
321
"""simple docstring""" import os import sys import unittest __SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py") __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'} lowercase_ : Union[str, Any] = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : Any = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowercase_ : Any = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Tuple = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowercase_ : Optional[Any] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
321
1
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str]=5 ): # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('<mask>' ) == 1 lowercase_ : List[Any] = torch.tensor(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) # Batch size 1 lowercase_ : Any = model(__SCREAMING_SNAKE_CASE )[0] # The last hidden-state is the first element of the output tuple lowercase_ : int = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowercase_ : Tuple = logits[0, masked_index, :] lowercase_ : Optional[int] = logits.softmax(dim=0 ) lowercase_ , lowercase_ : str = prob.topk(k=__SCREAMING_SNAKE_CASE , dim=0 ) lowercase_ : Optional[Any] = ' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__SCREAMING_SNAKE_CASE ) )] ) lowercase_ : Tuple = tokenizer.mask_token lowercase_ : List[str] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): lowercase_ : Union[str, Any] = predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(__SCREAMING_SNAKE_CASE ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __SCREAMING_SNAKE_CASE =CamembertTokenizer.from_pretrained("camembert-base") __SCREAMING_SNAKE_CASE =CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() __SCREAMING_SNAKE_CASE ="Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
321
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ): with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX ) try: print(*__SCREAMING_SNAKE_CASE ) finally: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) __SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank) __SCREAMING_SNAKE_CASE =socket.gethostname() __SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __SCREAMING_SNAKE_CASE =dist.get_rank() __SCREAMING_SNAKE_CASE =dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
321
1
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params __SCREAMING_SNAKE_CASE =getLogger(__name__) __SCREAMING_SNAKE_CASE ="cuda" if torch.cuda.is_available() else "cpu" def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 8 , __SCREAMING_SNAKE_CASE : str = DEFAULT_DEVICE , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Union[str, Any]="summarization" , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Dict , ): lowercase_ : List[str] = Path(__SCREAMING_SNAKE_CASE ).open('w' , encoding='utf-8' ) lowercase_ : str = str(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) if fpaa: lowercase_ : List[Any] = model.half() lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. lowercase_ : List[Any] = time.time() # update config with task specific params use_task_specific_params(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if prefix is None: lowercase_ : List[Any] = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) ): lowercase_ : Dict = [prefix + text for text in examples_chunk] lowercase_ : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='pt' , truncation=__SCREAMING_SNAKE_CASE , padding='longest' ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__SCREAMING_SNAKE_CASE , ) lowercase_ : Optional[int] = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() lowercase_ : Optional[int] = int(time.time() - start_time ) # seconds lowercase_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase__( ): return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any]=True ): lowercase_ : Any = argparse.ArgumentParser() parser.add_argument('model_name' , type=__SCREAMING_SNAKE_CASE , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=__SCREAMING_SNAKE_CASE , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=__SCREAMING_SNAKE_CASE , help='where to save summaries' ) parser.add_argument('--reference_path' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=__SCREAMING_SNAKE_CASE , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=__SCREAMING_SNAKE_CASE , default=8 , required=__SCREAMING_SNAKE_CASE , help='batch size' ) parser.add_argument( '--n_obs' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=__SCREAMING_SNAKE_CASE , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate lowercase_ , lowercase_ : str = parser.parse_known_args() lowercase_ : Any = parse_numeric_n_bool_cl_kwargs(__SCREAMING_SNAKE_CASE ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) lowercase_ : Dict = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: lowercase_ : Any = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) lowercase_ : Optional[int] = generate_summaries_or_translations( __SCREAMING_SNAKE_CASE , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__SCREAMING_SNAKE_CASE , ) if args.reference_path is None: return {} # Compute scores lowercase_ : Union[str, Any] = calculate_bleu if 'translation' in args.task else calculate_rouge lowercase_ : Union[str, Any] = [x.rstrip() for x in open(args.save_path ).readlines()] lowercase_ : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(__SCREAMING_SNAKE_CASE )] lowercase_ : dict = score_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) scores.update(__SCREAMING_SNAKE_CASE ) if args.dump_args: scores.update(__SCREAMING_SNAKE_CASE ) if args.info: lowercase_ : int = args.info if verbose: print(__SCREAMING_SNAKE_CASE ) if args.score_path is not None: json.dump(__SCREAMING_SNAKE_CASE , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
321
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : List[Any] = name lowercase_ : int = val def __str__( self ) -> Tuple: '''simple docstring''' return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return self.val < other.val class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = {} lowercase_ : Tuple = {} lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase ) def __getitem__( self ,__UpperCamelCase ) -> int: '''simple docstring''' return self.get_value(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' return (idx - 1) // 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return idx * 2 + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return idx * 2 + 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' return self.heap_dict[key] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1 lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): lowercase_ : Any = idx lowercase_ : str = i.val for i in range(__UpperCamelCase ,-1 ,-1 ): self.sift_down(__UpperCamelCase ,__UpperCamelCase ) return array def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' while True: lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase ) lowercase_ : List[str] = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: lowercase_ : List[str] = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: lowercase_ : Dict = r if smallest != idx: lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx] ( ( lowercase_ ) , ( lowercase_ ) , ) : str = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase_ : Any = smallest else: break def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase_ : int = p lowercase_ : str = self.get_parent_idx(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self.heap[0] def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase_ : Tuple = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 ,self.heap ) return x def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' self.heap.append(__UpperCamelCase ) lowercase_ : Tuple = len(self.heap ) - 1 lowercase_ : Optional[int] = node.val self.sift_up(len(self.heap ) - 1 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return len(self.heap ) == 0 def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase_ : Any = new_value lowercase_ : List[str] = new_value self.sift_up(self.idx_of_element[node] ) __SCREAMING_SNAKE_CASE =Node("R", -1) __SCREAMING_SNAKE_CASE =Node("B", 6) __SCREAMING_SNAKE_CASE =Node("A", 3) __SCREAMING_SNAKE_CASE =Node("X", 1) __SCREAMING_SNAKE_CASE =Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
321
1
"""simple docstring""" from timeit import timeit def lowercase__( __SCREAMING_SNAKE_CASE : int ): if number < 0: raise ValueError('the value of input must not be negative' ) lowercase_ : List[Any] = 0 while number: number &= number - 1 result += 1 return result def lowercase__( __SCREAMING_SNAKE_CASE : int ): if number < 0: raise ValueError('the value of input must not be negative' ) lowercase_ : Optional[Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowercase__( ): def do_benchmark(__SCREAMING_SNAKE_CASE : int ) -> None: lowercase_ : Optional[int] = 'import __main__ as z' print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(__SCREAMING_SNAKE_CASE ) = }''' ) lowercase_ : Union[str, Any] = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__SCREAMING_SNAKE_CASE ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(__SCREAMING_SNAKE_CASE ) = }''' ) lowercase_ : Optional[Any] = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__SCREAMING_SNAKE_CASE , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(__SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
321
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = tempfile.mkdtemp() # fmt: off lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) ) lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowercase_ : Tuple = {'unk_token': '<unk>'} lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCamelCase ) ) lowercase_ : Any = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = self.get_tokenizer() lowercase_ : List[Any] = self.get_rust_tokenizer() lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase ) lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 ) lowercase_ : Any = CLIPSegProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[str] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = self.prepare_image_inputs() lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' ) lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[Any] = self.get_tokenizer() lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Dict = 'lower newer' lowercase_ : Any = processor(text=__UpperCamelCase ) lowercase_ : int = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.get_image_processor() lowercase_ : str = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = 'lower newer' lowercase_ : str = self.prepare_image_inputs() lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = self.prepare_image_inputs() lowercase_ : Optional[Any] = self.prepare_image_inputs() lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase ) lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
321
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class UpperCamelCase : lowercase = 42 lowercase = 42 class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : list[list[Edge]] = [[] for _ in range(__UpperCamelCase )] lowercase_ : Optional[Any] = size def __getitem__( self ,__UpperCamelCase ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return self._size def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(__UpperCamelCase ,__UpperCamelCase ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int | None: '''simple docstring''' lowercase_ : Union[str, Any] = deque([start_vertex] ) lowercase_ : list[int | None] = [None] * self.size lowercase_ : Optional[Any] = 0 while queue: lowercase_ : List[str] = queue.popleft() lowercase_ : Optional[int] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase_ : Optional[Any] = current_distance + edge.weight lowercase_ : List[Any] = distances[edge.destination_vertex] if ( isinstance(__UpperCamelCase ,__UpperCamelCase ) and new_distance >= dest_vertex_distance ): continue lowercase_ : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
321
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
321
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE ={ "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
321
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]: '''simple docstring''' lowercase_ : Dict = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = use_labels lowercase_ : Union[str, Any] = scope def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[str] = None if self.use_input_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Any = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.prepare_config_and_inputs() lowercase_ : int = True lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = True lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Union[str, Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,) lowercase_ : Dict = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int: '''simple docstring''' lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() # first forward pass lowercase_ : str = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,) lowercase_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase_ : int = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] lowercase_ : List[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] # select random slice lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoderTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = 'bert' self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Tuple = model(__UpperCamelCase )[0] lowercase_ : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE ={ "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
321
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return None class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' return None class UpperCamelCase ( unittest.TestCase ): lowercase = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from transformers import BertModel lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCamelCase ) ) vocab_file.flush() lowercase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) lowercase_ : int = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) lowercase_ : Tuple = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from transformers import BertModel lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' from transformers import TFBertModel lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) ,1 ) self.assertEqual(len(__UpperCamelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
321
1
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowercase_ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Tuple = ort.SessionOptions() lowercase_ : str = False return options def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) lowercase_ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) lowercase_ : str = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' ,revision='onnx' ,safety_checker=__UpperCamelCase ,feature_extractor=__UpperCamelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : Tuple = 'A red cat sitting on a park bench' lowercase_ : int = np.random.RandomState(0 ) lowercase_ : Any = pipe( prompt=__UpperCamelCase ,image=__UpperCamelCase ,mask_image=__UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=__UpperCamelCase ,output_type='np' ,) lowercase_ : List[Any] = output.images lowercase_ : int = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase_ : Optional[Any] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) lowercase_ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) lowercase_ : Dict = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' ,subfolder='scheduler' ,revision='onnx' ) lowercase_ : Any = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' ,revision='onnx' ,scheduler=__UpperCamelCase ,safety_checker=__UpperCamelCase ,feature_extractor=__UpperCamelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : Optional[Any] = 'A red cat sitting on a park bench' lowercase_ : Optional[int] = np.random.RandomState(0 ) lowercase_ : Any = pipe( prompt=__UpperCamelCase ,image=__UpperCamelCase ,mask_image=__UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=__UpperCamelCase ,output_type='np' ,) lowercase_ : Optional[Any] = output.images lowercase_ : Optional[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase_ : List[Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
321
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __SCREAMING_SNAKE_CASE =[ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] __SCREAMING_SNAKE_CASE ={ "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } __SCREAMING_SNAKE_CASE ={F"funnel-transformer/{name}": 512 for name in _model_names} __SCREAMING_SNAKE_CASE ={F"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names} class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = FunnelTokenizer lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = 2 def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<sep>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<cls>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=None ,__UpperCamelCase="##" ,**__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' super().__init__( __UpperCamelCase ,tokenizer_file=__UpperCamelCase ,do_lower_case=__UpperCamelCase ,unk_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,clean_text=__UpperCamelCase ,tokenize_chinese_chars=__UpperCamelCase ,strip_accents=__UpperCamelCase ,wordpieces_prefix=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,__UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' ,__UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,__UpperCamelCase ) != tokenize_chinese_chars ): lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,normalizer_state.pop('type' ) ) lowercase_ : Any = do_lower_case lowercase_ : List[Any] = strip_accents lowercase_ : Optional[int] = tokenize_chinese_chars lowercase_ : List[str] = normalizer_class(**__UpperCamelCase ) lowercase_ : Dict = do_lower_case def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> Tuple: '''simple docstring''' lowercase_ : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : Dict = [self.sep_token_id] lowercase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ : Optional[Any] = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase ) return tuple(__UpperCamelCase )
321
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[Any] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : Tuple = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) print(F'''Loading model based on config from {config_path}...''' ) lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowercase_ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention lowercase_ : BertSelfAttention = layer.attention.self lowercase_ : str = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape ) lowercase_ : int = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape ) lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape ) lowercase_ : List[Any] = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output lowercase_ : BertSelfOutput = layer.attention.output lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape ) lowercase_ : Any = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape ) lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' ) lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' ) # Intermediate lowercase_ : BertIntermediate = layer.intermediate lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' ) lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' ) # Output lowercase_ : BertOutput = layer.output lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' ) lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' ) lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' ) lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' ) # Embeddings lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' ) lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' ) lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' ) lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head lowercase_ : int = model.cls.predictions.transform lowercase_ : str = get_masked_lm_array('dense/kernel' ) lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' ) lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' ) lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' ) lowercase_ : List[str] = get_masked_lm_array('embedding_table' ) # Pooling lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(__SCREAMING_SNAKE_CASE ) # Integration test - should load without any errors ;) lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
321
1
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[str] = list(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = list(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = 0 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count += 1 lowercase_ : List[Any] = '_' if count > 1: return False else: return "".join(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : list[str] ): lowercase_ : List[Any] = [] while True: lowercase_ : Optional[Any] = ['$'] * len(__SCREAMING_SNAKE_CASE ) lowercase_ : int = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(__SCREAMING_SNAKE_CASE ) ): lowercase_ : Tuple = compare_string(binary[i] , binary[j] ) if k is False: lowercase_ : List[str] = '*' lowercase_ : Optional[Any] = '*' temp.append('X' ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__SCREAMING_SNAKE_CASE ) == 0: return pi lowercase_ : Optional[Any] = list(set(__SCREAMING_SNAKE_CASE ) ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Sequence[float] ): lowercase_ : Any = [] for minterm in minterms: lowercase_ : Union[str, Any] = '' for _ in range(__SCREAMING_SNAKE_CASE ): lowercase_ : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(__SCREAMING_SNAKE_CASE ) return temp def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = list(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = list(__SCREAMING_SNAKE_CASE ) lowercase_ : str = 0 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : list[str] ): lowercase_ : Tuple = [] lowercase_ : Optional[Any] = [0] * len(__SCREAMING_SNAKE_CASE ) for i in range(len(chart[0] ) ): lowercase_ : int = 0 lowercase_ : Dict = -1 for j in range(len(__SCREAMING_SNAKE_CASE ) ): if chart[j][i] == 1: count += 1 lowercase_ : Union[str, Any] = j if count == 1: lowercase_ : Dict = 1 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__SCREAMING_SNAKE_CASE ) ): lowercase_ : List[str] = 0 temp.append(prime_implicants[i] ) while True: lowercase_ : Optional[Any] = 0 lowercase_ : str = -1 lowercase_ : Any = 0 for i in range(len(__SCREAMING_SNAKE_CASE ) ): lowercase_ : Dict = chart[i].count(1 ) if count_n > max_n: lowercase_ : List[str] = count_n lowercase_ : str = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__SCREAMING_SNAKE_CASE ) ): lowercase_ : List[Any] = 0 def lowercase__( __SCREAMING_SNAKE_CASE : list[str] , __SCREAMING_SNAKE_CASE : list[str] ): lowercase_ : int = [[0 for x in range(len(__SCREAMING_SNAKE_CASE ) )] for x in range(len(__SCREAMING_SNAKE_CASE ) )] for i in range(len(__SCREAMING_SNAKE_CASE ) ): lowercase_ : str = prime_implicants[i].count('_' ) for j in range(len(__SCREAMING_SNAKE_CASE ) ): if is_for_table(prime_implicants[i] , binary[j] , __SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = 1 return chart def lowercase__( ): lowercase_ : List[Any] = int(input('Enter the no. of variables\n' ) ) lowercase_ : Optional[Any] = [ float(__SCREAMING_SNAKE_CASE ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] lowercase_ : Optional[int] = decimal_to_binary(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = check(__SCREAMING_SNAKE_CASE ) print('Prime Implicants are:' ) print(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = prime_implicant_chart(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = selection(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print('Essential Prime Implicants are:' ) print(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
321
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore __SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered") def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ): lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
321
1
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
321
1
"""simple docstring""" __SCREAMING_SNAKE_CASE =[0, 2, 4, 6, 8] __SCREAMING_SNAKE_CASE =[1, 3, 5, 7, 9] def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowercase_ : Optional[int] = 0 for digit in range(10 ): lowercase_ : List[str] = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return result lowercase_ : Dict = 0 for digita in range(10 ): lowercase_ : Tuple = digita if (remainder + digita) % 2 == 0: lowercase_ : Dict = ODD_DIGITS else: lowercase_ : Any = EVEN_DIGITS for digita in other_parity_digits: lowercase_ : Union[str, Any] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) return result def lowercase__( __SCREAMING_SNAKE_CASE : int = 9 ): lowercase_ : List[Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__SCREAMING_SNAKE_CASE , 0 , [0] * length , __SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(F"{solution() = }")
321
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]: '''simple docstring''' lowercase_ : Any = parent lowercase_ : str = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Dict = is_training lowercase_ : Tuple = use_input_mask lowercase_ : Optional[Any] = use_token_type_ids lowercase_ : List[str] = use_labels lowercase_ : Any = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : Tuple = max_position_embeddings lowercase_ : Optional[int] = type_vocab_size lowercase_ : Optional[int] = type_sequence_label_size lowercase_ : Dict = initializer_range lowercase_ : int = num_labels lowercase_ : Any = num_choices lowercase_ : int = scope def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Dict = None if self.use_input_mask: lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Tuple = None lowercase_ : Tuple = None lowercase_ : Tuple = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) lowercase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Union[str, Any] = model(__UpperCamelCase ) lowercase_ : int = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.num_labels lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Any = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = config_and_inputs lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = False lowercase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowercase = () lowercase = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = EsmModelTester(self ) lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Optional[Any] = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowercase_ : List[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : List[Any] = torch.empty(2 ,4 ,30 ) lowercase_ : List[str] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch class UpperCamelCase ( lowercase_ ): @slow def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : List[str] = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = 33 lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : List[str] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase_ : Dict = model(__UpperCamelCase )[0] # compare the actual values for a slice. lowercase_ : Any = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __SCREAMING_SNAKE_CASE ="bert-base-cased" __SCREAMING_SNAKE_CASE ="fp16" __SCREAMING_SNAKE_CASE ="bf16" __SCREAMING_SNAKE_CASE =[FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase ( lowercase_ ): def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowercase_ : str = dict( ACCELERATE_USE_FSDP='true' ,MASTER_ADDR='localhost' ,MASTER_PORT='10999' ,RANK='0' ,LOCAL_RANK='0' ,WORLD_SIZE='1' ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__UpperCamelCase ): lowercase_ : Dict = self.dist_env.copy() lowercase_ : Union[str, Any] = f'''{i + 1}''' lowercase_ : int = strategy with mockenv_context(**__UpperCamelCase ): lowercase_ : int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__UpperCamelCase ): lowercase_ : Optional[Any] = self.dist_env.copy() lowercase_ : List[str] = prefetch_policy with mockenv_context(**__UpperCamelCase ): lowercase_ : List[Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__UpperCamelCase ): lowercase_ : Any = self.dist_env.copy() lowercase_ : List[Any] = state_dict_type with mockenv_context(**__UpperCamelCase ): lowercase_ : Union[str, Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Dict = AutoModel.from_pretrained(__UpperCamelCase ) for policy in FSDP_AUTO_WRAP_POLICY: lowercase_ : List[str] = self.dist_env.copy() lowercase_ : List[str] = policy if policy == "TRANSFORMER_BASED_WRAP": lowercase_ : str = 'BertLayer' elif policy == "SIZE_BASED_WRAP": lowercase_ : List[str] = '2000' with mockenv_context(**__UpperCamelCase ): lowercase_ : Dict = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__UpperCamelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) lowercase_ : Optional[int] = self.dist_env.copy() lowercase_ : Optional[int] = 'TRANSFORMER_BASED_WRAP' lowercase_ : Any = 'T5Layer' with mockenv_context(**__UpperCamelCase ): lowercase_ : Optional[int] = FullyShardedDataParallelPlugin() with self.assertRaises(__UpperCamelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(__UpperCamelCase ) self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) ) lowercase_ : Optional[int] = self.dist_env.copy() lowercase_ : str = 'SIZE_BASED_WRAP' lowercase_ : Union[str, Any] = '0' with mockenv_context(**__UpperCamelCase ): lowercase_ : Union[str, Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__UpperCamelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowercase_ : List[Any] = self.dist_env.copy() lowercase_ : Optional[Any] = mp_dtype with mockenv_context(**__UpperCamelCase ): lowercase_ : Any = Accelerator() if mp_dtype == "fp16": lowercase_ : int = torch.floataa elif mp_dtype == "bf16": lowercase_ : str = torch.bfloataa lowercase_ : Optional[Any] = MixedPrecision(param_dtype=__UpperCamelCase ,reduce_dtype=__UpperCamelCase ,buffer_dtype=__UpperCamelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__UpperCamelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,__UpperCamelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowercase_ : List[str] = self.dist_env.copy() lowercase_ : Optional[Any] = str(__UpperCamelCase ).lower() with mockenv_context(**__UpperCamelCase ): lowercase_ : Optional[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__UpperCamelCase ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase ( lowercase_ ): def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowercase_ : Union[str, Any] = 0.82 lowercase_ : List[str] = [ 'fsdp_shard_grad_op_transformer_based_wrap', 'fsdp_full_shard_transformer_based_wrap', ] lowercase_ : str = { 'multi_gpu_fp16': 3200, 'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2000, 'fsdp_full_shard_transformer_based_wrap_fp16': 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowercase_ : Dict = 160 lowercase_ : Optional[Any] = 160 lowercase_ : str = inspect.getfile(accelerate.test_utils ) lowercase_ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[str] = os.path.join(self.test_scripts_folder ,'test_performance.py' ) lowercase_ : Optional[int] = ['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp'] for config in self.performance_configs: lowercase_ : str = cmd.copy() for i, strategy in enumerate(__UpperCamelCase ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append('--mixed_precision=no' ) else: cmd_config.append('--mixed_precision=fp16' ) if "cpu_offload" in config: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCamelCase ,env=os.environ.copy() ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Dict = os.path.join(self.test_scripts_folder ,'test_checkpointing.py' ) lowercase_ : Optional[int] = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp', '--mixed_precision=fp16', '--fsdp_transformer_layer_cls_to_wrap=BertLayer', ] for i, strategy in enumerate(__UpperCamelCase ): lowercase_ : Any = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue lowercase_ : int = len(__UpperCamelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: lowercase_ : int = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', '--partial_train_epoch=1', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCamelCase ,env=os.environ.copy() ) lowercase_ : int = cmd_config[:-1] lowercase_ : int = os.path.join(self.tmpdir ,'epoch_0' ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCamelCase ,env=os.environ.copy() ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = os.path.join(self.test_scripts_folder ,'test_peak_memory_usage.py' ) lowercase_ : Dict = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowercase_ : List[Any] = cmd.copy() if "fp16" in spec: cmd_config.extend(['--mixed_precision=fp16'] ) else: cmd_config.extend(['--mixed_precision=no'] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['--use_fsdp'] ) for i, strategy in enumerate(__UpperCamelCase ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCamelCase ,env=os.environ.copy() )
321
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
1
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __SCREAMING_SNAKE_CASE =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : tuple , __SCREAMING_SNAKE_CASE : Path , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict=False , ): output_path.parent.mkdir(parents=__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=__SCREAMING_SNAKE_CASE , output_names=__SCREAMING_SNAKE_CASE , dynamic_axes=__SCREAMING_SNAKE_CASE , do_constant_folding=__SCREAMING_SNAKE_CASE , use_external_data_format=__SCREAMING_SNAKE_CASE , enable_onnx_checker=__SCREAMING_SNAKE_CASE , opset_version=__SCREAMING_SNAKE_CASE , ) else: export( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=__SCREAMING_SNAKE_CASE , output_names=__SCREAMING_SNAKE_CASE , dynamic_axes=__SCREAMING_SNAKE_CASE , do_constant_folding=__SCREAMING_SNAKE_CASE , opset_version=__SCREAMING_SNAKE_CASE , ) @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False ): lowercase_ : List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase_ : str = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: lowercase_ : str = 'cpu' lowercase_ : Dict = Path(__SCREAMING_SNAKE_CASE ) # VAE DECODER lowercase_ : Any = AutoencoderKL.from_pretrained(model_path + '/vae' ) lowercase_ : Optional[int] = vae_decoder.config.latent_channels # forward only through the decoder part lowercase_ : int = vae_decoder.decode onnx_export( __SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , __SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=__SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") __SCREAMING_SNAKE_CASE =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
321
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): lowercase_ : Dict = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = 'patrickvonplaten/t5-tiny-random' lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] ) lowercase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'current' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
321
1
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: lowercase_ : str = TOKENIZER_CLASSES else: lowercase_ : int = {tokenizer_name: getattr(__SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: lowercase_ : Dict = TOKENIZER_CLASSES[tokenizer_name] lowercase_ : Union[str, Any] = True if checkpoint_name is None: lowercase_ : Tuple = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowercase_ : List[Any] = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer lowercase_ : List[Any] = tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: lowercase_ , lowercase_ : List[str] = checkpoint.split('/' ) lowercase_ : Dict = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif add_prefix: lowercase_ : List[str] = checkpoint lowercase_ : Optional[Any] = dump_path else: lowercase_ : int = None lowercase_ : str = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowercase_ : int = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowercase_ : List[str] = file_path.split(__SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": lowercase_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) lowercase_ : Optional[int] = tokenizer.save_pretrained( __SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE , filename_prefix=__SCREAMING_SNAKE_CASE ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__SCREAMING_SNAKE_CASE ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
321
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['input_values', 'padding_mask'] def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = chunk_length_s lowercase_ : Tuple = overlap @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowercase_ : Optional[int] = True lowercase_ : Optional[int] = bool( isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ): lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa ) elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) lowercase_ : Optional[int] = None lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio ) lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) ) lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio ) lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase_ : Union[str, Any] = 'max_length' else: lowercase_ : int = input_values # normal padding on batch if padded_inputs is None: lowercase_ : int = self.pad( __UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) if padding: lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' ) lowercase_ : Dict = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowercase_ : Optional[int] = example[..., None] input_values.append(example.T ) lowercase_ : str = input_values if return_tensors is not None: lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
321
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE ={ "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =["ConditionalDetrFeatureExtractor"] __SCREAMING_SNAKE_CASE =["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
321
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
321
1
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=6 ,__UpperCamelCase=17 ,__UpperCamelCase=23 ,__UpperCamelCase=11 ,__UpperCamelCase=True ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = parent lowercase_ : str = batch_size lowercase_ : Any = seq_length lowercase_ : List[str] = act_dim lowercase_ : int = state_dim lowercase_ : Dict = hidden_size lowercase_ : int = max_length lowercase_ : int = is_training def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Any = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ : int = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ : List[str] = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ : Dict = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ : Tuple = ids_tensor((self.batch_size, self.seq_length) ,vocab_size=1000 ) lowercase_ : int = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size ,seq_length=self.seq_length ,act_dim=self.act_dim ,state_dim=self.state_dim ,hidden_size=self.hidden_size ,max_length=self.max_length ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : List[Any] = DecisionTransformerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Tuple = model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) self.parent.assertEqual(result.state_preds.shape ,states.shape ) self.parent.assertEqual(result.action_preds.shape ,actions.shape ) self.parent.assertEqual(result.return_preds.shape ,returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Dict = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[Any] = config_and_inputs lowercase_ : Optional[Any] = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (DecisionTransformerModel,) if is_torch_available() else () lowercase = () lowercase = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowercase = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Dict = DecisionTransformerModelTester(self ) lowercase_ : str = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = DecisionTransformerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Tuple = model_class(__UpperCamelCase ) lowercase_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Optional[Any] = [*signature.parameters.keys()] lowercase_ : Tuple = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(__UpperCamelCase )] ,__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[Any] = 2 # number of steps of autoregressive prediction we will perform lowercase_ : Any = 10 # defined by the RL environment, may be normalized lowercase_ : Union[str, Any] = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) lowercase_ : List[str] = model.to(__UpperCamelCase ) lowercase_ : Any = model.config torch.manual_seed(0 ) lowercase_ : int = torch.randn(1 ,1 ,config.state_dim ).to(device=__UpperCamelCase ,dtype=torch.floataa ) # env.reset() lowercase_ : List[Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] ,device=__UpperCamelCase ) lowercase_ : Any = torch.tensor(__UpperCamelCase ,device=__UpperCamelCase ,dtype=torch.floataa ).reshape(1 ,1 ,1 ) lowercase_ : str = state lowercase_ : Dict = torch.zeros(1 ,0 ,config.act_dim ,device=__UpperCamelCase ,dtype=torch.floataa ) lowercase_ : Any = torch.zeros(1 ,0 ,device=__UpperCamelCase ,dtype=torch.floataa ) lowercase_ : Union[str, Any] = torch.tensor(0 ,device=__UpperCamelCase ,dtype=torch.long ).reshape(1 ,1 ) for step in range(__UpperCamelCase ): lowercase_ : Union[str, Any] = torch.cat([actions, torch.zeros(1 ,1 ,config.act_dim ,device=__UpperCamelCase )] ,dim=1 ) lowercase_ : Tuple = torch.cat([rewards, torch.zeros(1 ,1 ,device=__UpperCamelCase )] ,dim=1 ) lowercase_ : List[Any] = torch.ones(1 ,states.shape[1] ).to(dtype=torch.long ,device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ : Tuple = model( states=__UpperCamelCase ,actions=__UpperCamelCase ,rewards=__UpperCamelCase ,returns_to_go=__UpperCamelCase ,timesteps=__UpperCamelCase ,attention_mask=__UpperCamelCase ,return_dict=__UpperCamelCase ,) self.assertEqual(action_pred.shape ,actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] ,expected_outputs[step] ,atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = ( # env.step(action) torch.randn(1 ,1 ,config.state_dim ).to(device=__UpperCamelCase ,dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ : Optional[int] = action_pred[0, -1] lowercase_ : Optional[Any] = torch.cat([states, state] ,dim=1 ) lowercase_ : str = returns_to_go[0, -1] - reward lowercase_ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 ,1 ,1 )] ,dim=1 ) lowercase_ : int = torch.cat( [timesteps, torch.ones((1, 1) ,device=__UpperCamelCase ,dtype=torch.long ) * (step + 1)] ,dim=1 )
321
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
321
1
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ="▁" __SCREAMING_SNAKE_CASE ={"vocab_file": "prophetnet.tokenizer"} __SCREAMING_SNAKE_CASE ={ "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __SCREAMING_SNAKE_CASE ={ "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __SCREAMING_SNAKE_CASE ={ "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowercase__( __SCREAMING_SNAKE_CASE : Dict ): lowercase_ : str = collections.OrderedDict() with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as reader: lowercase_ : int = reader.readlines() for index, token in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ : List[str] = token.rstrip('\n' ) lowercase_ : str = index return vocab class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self ,__UpperCamelCase ,__UpperCamelCase="[SEP]" ,__UpperCamelCase="[SEP]" ,__UpperCamelCase="[SEP]" ,__UpperCamelCase="[UNK]" ,__UpperCamelCase="[PAD]" ,__UpperCamelCase="[CLS]" ,__UpperCamelCase="[MASK]" ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> None: '''simple docstring''' lowercase_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCamelCase ,) try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise lowercase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) lowercase_ : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowercase_ : Optional[Any] = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(10 ): lowercase_ : List[Any] = f'''[unused{i}]''' lowercase_ : Any = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowercase_ : List[str] = 12 lowercase_ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(__UpperCamelCase ) def __getstate__( self ) -> str: '''simple docstring''' lowercase_ : Optional[Any] = self.__dict__.copy() lowercase_ : List[str] = None return state def __setstate__( self ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[Any] = d try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): lowercase_ : Union[str, Any] = {} lowercase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase ,token_ids_a=__UpperCamelCase ,already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return ([0] * len(__UpperCamelCase )) + [1] return ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : Optional[int] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[Any] = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str: '''simple docstring''' return self.sp_model.encode(__UpperCamelCase ,out_type=__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : int = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Union[str, Any] = ''.join(__UpperCamelCase ).replace(__UpperCamelCase ,' ' ).strip() return out_string def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Union[str, Any] = os.path.join( __UpperCamelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase ,'wb' ) as fi: lowercase_ : Tuple = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowercase_ : List[str] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
321
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ): lowercase_ : int = 'backbone.' if is_semantic else '' lowercase_ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ): for i in range(config.num_hidden_layers ): lowercase_ : Any = 'backbone.' if is_semantic else '' # queries, keys and values lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) lowercase_ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = q_bias lowercase_ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) lowercase_ : Tuple = gamma_a lowercase_ : List[Any] = gamma_a def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = val def lowercase__( ): lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ): lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowercase_ : Any = 10_24 lowercase_ : List[str] = 40_96 lowercase_ : Tuple = 24 lowercase_ : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: lowercase_ : Optional[Any] = 16 lowercase_ : Any = 'huggingface/label-files' lowercase_ : int = 'rvlcdip-id2label.json' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : str = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) # load HuggingFace model lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image lowercase_ : List[Any] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE ) lowercase_ : str = prepare_img() lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) lowercase_ : int = encoding['pixel_values'] lowercase_ : Any = model(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = outputs.logits # verify logits lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected" Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: if has_lm_head: lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) model.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
321
1
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]: '''simple docstring''' lowercase_ : Dict = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = use_labels lowercase_ : Union[str, Any] = scope def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[str] = None if self.use_input_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Any = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.prepare_config_and_inputs() lowercase_ : int = True lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = True lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Union[str, Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,) lowercase_ : Dict = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int: '''simple docstring''' lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() # first forward pass lowercase_ : str = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,) lowercase_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase_ : int = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] lowercase_ : List[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] # select random slice lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoderTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = 'bert' self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Tuple = model(__UpperCamelCase )[0] lowercase_ : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()} def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase__( __SCREAMING_SNAKE_CASE : str ): if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowercase_ : Dict = '' for word in coded.split(): while len(__SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase_ : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
321
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE ={ "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __SCREAMING_SNAKE_CASE =["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
321
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations_with_dp_array( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase_ : str = sum( count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE ) for item in array ) lowercase_ : Tuple = answer return answer lowercase_ : Optional[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = [0] * (target + 1) lowercase_ : Dict = 1 for i in range(1 , target + 1 ): for j in range(__SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE =3 __SCREAMING_SNAKE_CASE =5 __SCREAMING_SNAKE_CASE =[1, 2, 5] print(combination_sum_iv(n, array, target))
321
1
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any]=None ): lowercase_ : Optional[int] = None if token is not None: lowercase_ : List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''} lowercase_ : List[str] = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' lowercase_ : Union[str, Any] = requests.get(__SCREAMING_SNAKE_CASE , headers=__SCREAMING_SNAKE_CASE ).json() lowercase_ : Union[str, Any] = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) lowercase_ : str = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[int] = requests.get(url + F'''&page={i + 2}''' , headers=__SCREAMING_SNAKE_CASE ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=None ): lowercase_ : Optional[int] = None if token is not None: lowercase_ : Tuple = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''} lowercase_ : Union[str, Any] = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' lowercase_ : Tuple = requests.get(__SCREAMING_SNAKE_CASE , headers=__SCREAMING_SNAKE_CASE ).json() lowercase_ : Any = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) lowercase_ : Optional[Any] = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__SCREAMING_SNAKE_CASE ): lowercase_ : List[str] = requests.get(url + F'''&page={i + 2}''' , headers=__SCREAMING_SNAKE_CASE ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : str = None if token is not None: lowercase_ : str = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''} lowercase_ : Dict = requests.get(__SCREAMING_SNAKE_CASE , headers=__SCREAMING_SNAKE_CASE , allow_redirects=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = result.headers['Location'] lowercase_ : str = requests.get(__SCREAMING_SNAKE_CASE , allow_redirects=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = os.path.join(__SCREAMING_SNAKE_CASE , F'''{artifact_name}.zip''' ) with open(__SCREAMING_SNAKE_CASE , 'wb' ) as fp: fp.write(response.content ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=None ): lowercase_ : Tuple = [] lowercase_ : int = [] lowercase_ : str = None with zipfile.ZipFile(__SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__SCREAMING_SNAKE_CASE ) as f: for line in f: lowercase_ : Optional[Any] = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowercase_ : Any = line[: line.index(': ' )] lowercase_ : str = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed lowercase_ : Tuple = line[len('FAILED ' ) :] failed_tests.append(__SCREAMING_SNAKE_CASE ) elif filename == "job_name.txt": lowercase_ : List[str] = line if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(__SCREAMING_SNAKE_CASE )} for `errors` ''' F'''and {len(__SCREAMING_SNAKE_CASE )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' ' problem.' ) lowercase_ : Any = None if job_name and job_links: lowercase_ : str = job_links.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # A list with elements of the form (line of error, error, failed test) lowercase_ : Optional[Any] = [x + [y] + [job_link] for x, y in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] return result def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple=None ): lowercase_ : Union[str, Any] = [] lowercase_ : Dict = [os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for p in os.listdir(__SCREAMING_SNAKE_CASE ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(__SCREAMING_SNAKE_CASE , job_links=__SCREAMING_SNAKE_CASE ) ) return errors def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str=None ): lowercase_ : str = Counter() counter.update([x[1] for x in logs] ) lowercase_ : Any = counter.most_common() lowercase_ : List[str] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowercase_ : Union[str, Any] = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} lowercase_ : int = dict(sorted(r.items() , key=lambda __SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=__SCREAMING_SNAKE_CASE ) ) return r def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : Dict = test.split('::' )[0] if test.startswith('tests/models/' ): lowercase_ : str = test.split('/' )[2] else: lowercase_ : List[str] = None return test def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int=None ): lowercase_ : Optional[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowercase_ : Union[str, Any] = [x for x in logs if x[2] is not None] lowercase_ : List[Any] = {x[2] for x in logs} lowercase_ : List[str] = {} for test in tests: lowercase_ : Any = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowercase_ : Optional[Any] = counter.most_common() lowercase_ : Tuple = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowercase_ : Any = sum(error_counts.values() ) if n_errors > 0: lowercase_ : str = {'count': n_errors, 'errors': error_counts} lowercase_ : Optional[Any] = dict(sorted(r.items() , key=lambda __SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=__SCREAMING_SNAKE_CASE ) ) return r def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = '| no. | error | status |' lowercase_ : int = '|-:|:-|:-|' lowercase_ : List[str] = [header, sep] for error in reduced_by_error: lowercase_ : List[Any] = reduced_by_error[error]['count'] lowercase_ : int = F'''| {count} | {error[:1_00]} | |''' lines.append(__SCREAMING_SNAKE_CASE ) return "\n".join(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase_ : str = '| model | no. of errors | major error | count |' lowercase_ : Optional[int] = '|-:|-:|-:|-:|' lowercase_ : Optional[Any] = [header, sep] for model in reduced_by_model: lowercase_ : Tuple = reduced_by_model[model]['count'] lowercase_ , lowercase_ : Tuple = list(reduced_by_model[model]['errors'].items() )[0] lowercase_ : Optional[Any] = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(__SCREAMING_SNAKE_CASE ) return "\n".join(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") __SCREAMING_SNAKE_CASE =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __SCREAMING_SNAKE_CASE =get_job_links(args.workflow_run_id, token=args.token) __SCREAMING_SNAKE_CASE ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __SCREAMING_SNAKE_CASE =k.find(" / ") __SCREAMING_SNAKE_CASE =k[index + len(" / ") :] __SCREAMING_SNAKE_CASE =v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __SCREAMING_SNAKE_CASE =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __SCREAMING_SNAKE_CASE =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __SCREAMING_SNAKE_CASE =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __SCREAMING_SNAKE_CASE =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __SCREAMING_SNAKE_CASE =reduce_by_error(errors) __SCREAMING_SNAKE_CASE =reduce_by_model(errors) __SCREAMING_SNAKE_CASE =make_github_table(reduced_by_error) __SCREAMING_SNAKE_CASE =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
321
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : int = set_counts lowercase_ : List[Any] = max(__UpperCamelCase ) lowercase_ : Union[str, Any] = len(__UpperCamelCase ) lowercase_ : Dict = [1] * num_sets lowercase_ : Optional[int] = list(range(__UpperCamelCase ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase ) lowercase_ : int = self.get_parent(__UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : Tuple = 0 lowercase_ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : str = 0 lowercase_ : Tuple = src_parent lowercase_ : int = self.set_counts[src_parent] lowercase_ : str = max(self.max_set ,__UpperCamelCase ) return True def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
321
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=3 ,__UpperCamelCase=224 ,__UpperCamelCase=30 ,__UpperCamelCase=400 ,__UpperCamelCase=True ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=[0.5, 0.5, 0.5] ,) -> int: '''simple docstring''' lowercase_ : List[str] = size if size is not None else {'height': 18, 'width': 18} lowercase_ : Optional[int] = parent lowercase_ : Dict = batch_size lowercase_ : Any = num_channels lowercase_ : Optional[int] = image_size lowercase_ : List[str] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Tuple = do_resize lowercase_ : List[str] = size lowercase_ : int = do_normalize lowercase_ : List[str] = image_mean lowercase_ : Any = image_std def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase ( lowercase_ , unittest.TestCase ): lowercase = ViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = EfficientFormerImageProcessorTester(self ) @property def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase ,'image_mean' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'image_std' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'do_normalize' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'do_resize' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'size' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : Any = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase ,Image.Image ) # Test not batched input lowercase_ : Union[str, Any] = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched lowercase_ : Dict = image_processor(__UpperCamelCase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : Any = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__UpperCamelCase ,numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase ,np.ndarray ) # Test not batched input lowercase_ : Any = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched lowercase_ : List[str] = image_processor(__UpperCamelCase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Optional[Any] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__UpperCamelCase ,torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase ,torch.Tensor ) # Test not batched input lowercase_ : Tuple = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched lowercase_ : Any = image_processor(__UpperCamelCase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,)
321
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __SCREAMING_SNAKE_CASE ={ "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128} class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BlenderbotTokenizer def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( __UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) ) lowercase_ : Any = add_prefix_space lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase ) lowercase_ : int = add_prefix_space lowercase_ : Any = 'post_processor' lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) if tokenizer_component_instance: lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ : str = tuple(state['sep'] ) if "cls" in state: lowercase_ : Union[str, Any] = tuple(state['cls'] ) lowercase_ : str = False if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Dict = add_prefix_space lowercase_ : int = True if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets: lowercase_ : Optional[Any] = trim_offsets lowercase_ : Tuple = True if changes_to_apply: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) ) lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _UpperCAmelCase ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value lowercase_ : str = value def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : int = [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]: '''simple docstring''' lowercase_ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) lowercase_ : Dict = ' '.join(__UpperCamelCase ) lowercase_ : str = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: lowercase_ : List[str] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
321
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase_ : List[str] = mf_knapsack(i - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: lowercase_ : Tuple = max( mf_knapsack(i - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , mf_knapsack(i - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , j - wt[i - 1] ) + val[i - 1] , ) lowercase_ : int = val return f[i][j] def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : str = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase_ : Tuple = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase_ : int = dp[i - 1][w_] return dp[n][w_], dp def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list ): if not (isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) lowercase_ : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) if num_items != len(__SCREAMING_SNAKE_CASE ): lowercase_ : List[str] = ( 'The number of weights must be the same as the number of values.\n' F'''But got {num_items} weights and {len(__SCREAMING_SNAKE_CASE )} values''' ) raise ValueError(__SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE ): if not isinstance(wt[i] , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[int] = ( 'All weights must be integers but got weight of ' F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Union[str, Any] = knapsack(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : set = set() _construct_solution(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return optimal_val, example_optional_set def lowercase__( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : set ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: optimal_set.add(__SCREAMING_SNAKE_CASE ) _construct_solution(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i - 1 , j - wt[i - 1] , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =[3, 2, 4, 4] __SCREAMING_SNAKE_CASE =[4, 3, 2, 3] __SCREAMING_SNAKE_CASE =4 __SCREAMING_SNAKE_CASE =6 __SCREAMING_SNAKE_CASE =[[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE =knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE =knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
321
"""simple docstring""" import os import sys import unittest __SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py") __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'} lowercase_ : Union[str, Any] = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : Any = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowercase_ : Any = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Tuple = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowercase_ : Optional[Any] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
321
1
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase ( lowercase_ ): lowercase = (DDPMParallelScheduler,) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**__UpperCamelCase ) return config def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] ,[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__UpperCamelCase ,beta_end=__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' self.check_over_configs(thresholding=__UpperCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__UpperCamelCase ,prediction_type=__UpperCamelCase ,sample_max_value=__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Any = self.scheduler_classes[0] lowercase_ : Optional[int] = self.get_scheduler_config() lowercase_ : int = scheduler_class(**__UpperCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : str = self.scheduler_classes[0] lowercase_ : Tuple = self.get_scheduler_config() lowercase_ : List[str] = scheduler_class(**__UpperCamelCase ) lowercase_ : Union[str, Any] = len(__UpperCamelCase ) lowercase_ : str = self.dummy_model() lowercase_ : Any = self.dummy_sample_deter lowercase_ : int = self.dummy_sample_deter + 0.1 lowercase_ : Any = self.dummy_sample_deter - 0.1 lowercase_ : List[Any] = samplea.shape[0] lowercase_ : Optional[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) lowercase_ : Any = torch.arange(__UpperCamelCase )[0:3, None].repeat(1 ,__UpperCamelCase ) lowercase_ : Tuple = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) lowercase_ : Any = scheduler.batch_step_no_noise(__UpperCamelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ) lowercase_ : int = torch.sum(torch.abs(__UpperCamelCase ) ) lowercase_ : Any = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Tuple = self.scheduler_classes[0] lowercase_ : Optional[int] = self.get_scheduler_config() lowercase_ : Dict = scheduler_class(**__UpperCamelCase ) lowercase_ : Optional[Any] = len(__UpperCamelCase ) lowercase_ : List[Any] = self.dummy_model() lowercase_ : str = self.dummy_sample_deter lowercase_ : str = torch.manual_seed(0 ) for t in reversed(range(__UpperCamelCase ) ): # 1. predict noise residual lowercase_ : Any = model(__UpperCamelCase ,__UpperCamelCase ) # 2. predict previous mean of sample x_t-1 lowercase_ : int = scheduler.step(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,generator=__UpperCamelCase ).prev_sample lowercase_ : Dict = pred_prev_sample lowercase_ : List[Any] = torch.sum(torch.abs(__UpperCamelCase ) ) lowercase_ : List[str] = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = self.scheduler_classes[0] lowercase_ : Any = self.get_scheduler_config(prediction_type='v_prediction' ) lowercase_ : Union[str, Any] = scheduler_class(**__UpperCamelCase ) lowercase_ : List[Any] = len(__UpperCamelCase ) lowercase_ : int = self.dummy_model() lowercase_ : str = self.dummy_sample_deter lowercase_ : Dict = torch.manual_seed(0 ) for t in reversed(range(__UpperCamelCase ) ): # 1. predict noise residual lowercase_ : List[Any] = model(__UpperCamelCase ,__UpperCamelCase ) # 2. predict previous mean of sample x_t-1 lowercase_ : List[str] = scheduler.step(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,generator=__UpperCamelCase ).prev_sample lowercase_ : Tuple = pred_prev_sample lowercase_ : str = torch.sum(torch.abs(__UpperCamelCase ) ) lowercase_ : str = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Dict = self.scheduler_classes[0] lowercase_ : List[Any] = self.get_scheduler_config() lowercase_ : Union[str, Any] = scheduler_class(**__UpperCamelCase ) lowercase_ : int = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__UpperCamelCase ) lowercase_ : List[Any] = scheduler.timesteps for i, timestep in enumerate(__UpperCamelCase ): if i == len(__UpperCamelCase ) - 1: lowercase_ : Any = -1 else: lowercase_ : Tuple = timesteps[i + 1] lowercase_ : List[str] = scheduler.previous_timestep(__UpperCamelCase ) lowercase_ : Tuple = prev_t.item() self.assertEqual(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Dict = self.scheduler_classes[0] lowercase_ : Optional[Any] = self.get_scheduler_config() lowercase_ : Optional[Any] = scheduler_class(**__UpperCamelCase ) lowercase_ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(__UpperCamelCase ,msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = self.scheduler_classes[0] lowercase_ : List[Any] = self.get_scheduler_config() lowercase_ : int = scheduler_class(**__UpperCamelCase ) lowercase_ : List[str] = [100, 87, 50, 1, 0] lowercase_ : List[str] = len(__UpperCamelCase ) with self.assertRaises(__UpperCamelCase ,msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=__UpperCamelCase ,timesteps=__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[Any] = self.scheduler_classes[0] lowercase_ : Optional[Any] = self.get_scheduler_config() lowercase_ : Optional[int] = scheduler_class(**__UpperCamelCase ) lowercase_ : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( __UpperCamelCase ,msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' ,): scheduler.set_timesteps(timesteps=__UpperCamelCase )
321
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ): with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX ) try: print(*__SCREAMING_SNAKE_CASE ) finally: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) __SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank) __SCREAMING_SNAKE_CASE =socket.gethostname() __SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __SCREAMING_SNAKE_CASE =dist.get_rank() __SCREAMING_SNAKE_CASE =dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
321
1
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCamelCase ( lowercase_ ): lowercase = 'M-CLIP' def __init__( self ,__UpperCamelCase=1024 ,__UpperCamelCase=768 ,**__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : List[str] = transformerDimSize lowercase_ : List[Any] = imageDimSize super().__init__(**__UpperCamelCase ) class UpperCamelCase ( lowercase_ ): lowercase = MCLIPConfig def __init__( self ,__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' super().__init__(__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : str = XLMRobertaModel(__UpperCamelCase ) lowercase_ : Tuple = torch.nn.Linear( in_features=config.transformerDimensions ,out_features=config.numDims ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = self.transformer(input_ids=__UpperCamelCase ,attention_mask=__UpperCamelCase )[0] lowercase_ : str = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(__UpperCamelCase ), embs
321
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : List[Any] = name lowercase_ : int = val def __str__( self ) -> Tuple: '''simple docstring''' return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return self.val < other.val class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = {} lowercase_ : Tuple = {} lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase ) def __getitem__( self ,__UpperCamelCase ) -> int: '''simple docstring''' return self.get_value(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' return (idx - 1) // 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return idx * 2 + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return idx * 2 + 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' return self.heap_dict[key] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1 lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): lowercase_ : Any = idx lowercase_ : str = i.val for i in range(__UpperCamelCase ,-1 ,-1 ): self.sift_down(__UpperCamelCase ,__UpperCamelCase ) return array def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' while True: lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase ) lowercase_ : List[str] = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: lowercase_ : List[str] = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: lowercase_ : Dict = r if smallest != idx: lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx] ( ( lowercase_ ) , ( lowercase_ ) , ) : str = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase_ : Any = smallest else: break def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase_ : int = p lowercase_ : str = self.get_parent_idx(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self.heap[0] def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase_ : Tuple = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 ,self.heap ) return x def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' self.heap.append(__UpperCamelCase ) lowercase_ : Tuple = len(self.heap ) - 1 lowercase_ : Optional[int] = node.val self.sift_up(len(self.heap ) - 1 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return len(self.heap ) == 0 def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase_ : Any = new_value lowercase_ : List[str] = new_value self.sift_up(self.idx_of_element[node] ) __SCREAMING_SNAKE_CASE =Node("R", -1) __SCREAMING_SNAKE_CASE =Node("B", 6) __SCREAMING_SNAKE_CASE =Node("A", 3) __SCREAMING_SNAKE_CASE =Node("X", 1) __SCREAMING_SNAKE_CASE =Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
321
1
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __SCREAMING_SNAKE_CASE =False __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ="ybelkada/fonts" def lowercase__( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' 'Pix2StructImageProcessor. Please upgrade torch.' ) def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple ): requires_backends(__SCREAMING_SNAKE_CASE , ['torch'] ) _check_torch_version() lowercase_ : List[Any] = image_tensor.unsqueeze(0 ) lowercase_ : List[str] = torch.nn.functional.unfold(__SCREAMING_SNAKE_CASE , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase_ : List[Any] = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , -1 ) lowercase_ : Union[str, Any] = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 36 , __SCREAMING_SNAKE_CASE : str = "black" , __SCREAMING_SNAKE_CASE : str = "white" , __SCREAMING_SNAKE_CASE : int = 5 , __SCREAMING_SNAKE_CASE : int = 5 , __SCREAMING_SNAKE_CASE : int = 5 , __SCREAMING_SNAKE_CASE : int = 5 , __SCREAMING_SNAKE_CASE : Optional[bytes] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None , ): requires_backends(__SCREAMING_SNAKE_CASE , 'vision' ) # Add new lines so that each line is no more than 80 characters. lowercase_ : List[Any] = textwrap.TextWrapper(width=80 ) lowercase_ : List[str] = wrapper.wrap(text=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = '\n'.join(__SCREAMING_SNAKE_CASE ) if font_bytes is not None and font_path is None: lowercase_ : List[Any] = io.BytesIO(__SCREAMING_SNAKE_CASE ) elif font_path is not None: lowercase_ : Dict = font_path else: lowercase_ : Any = hf_hub_download(__SCREAMING_SNAKE_CASE , 'Arial.TTF' ) lowercase_ : Optional[Any] = ImageFont.truetype(__SCREAMING_SNAKE_CASE , encoding='UTF-8' , size=__SCREAMING_SNAKE_CASE ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase_ : int = ImageDraw.Draw(Image.new('RGB' , (1, 1) , __SCREAMING_SNAKE_CASE ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ : Dict = temp_draw.textbbox((0, 0) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Create the actual image with a bit of padding around the text. lowercase_ : List[Any] = text_width + left_padding + right_padding lowercase_ : List[str] = text_height + top_padding + bottom_padding lowercase_ : Optional[int] = Image.new('RGB' , (image_width, image_height) , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = ImageDraw.Draw(__SCREAMING_SNAKE_CASE ) draw.text(xy=(left_padding, top_padding) , text=__SCREAMING_SNAKE_CASE , fill=__SCREAMING_SNAKE_CASE , font=__SCREAMING_SNAKE_CASE ) return image def lowercase__( __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[Any] ): requires_backends(__SCREAMING_SNAKE_CASE , 'vision' ) # Convert to PIL image if necessary lowercase_ : Optional[Any] = to_pil_image(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = render_text(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = max(header_image.width , image.width ) lowercase_ : Union[str, Any] = int(image.height * (new_width / image.width) ) lowercase_ : List[str] = int(header_image.height * (new_width / header_image.width) ) lowercase_ : Tuple = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase_ : Tuple = to_numpy_array(__SCREAMING_SNAKE_CASE ) if infer_channel_dimension_format(__SCREAMING_SNAKE_CASE ) == ChannelDimension.LAST: lowercase_ : Optional[int] = to_channel_dimension_format(__SCREAMING_SNAKE_CASE , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowercase_ ): lowercase = ['flattened_patches'] def __init__( self ,__UpperCamelCase = True ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = 2048 ,__UpperCamelCase = False ,**__UpperCamelCase ,) -> None: '''simple docstring''' super().__init__(**__UpperCamelCase ) lowercase_ : Optional[int] = patch_size if patch_size is not None else {'height': 16, 'width': 16} lowercase_ : Optional[int] = do_normalize lowercase_ : List[Any] = do_convert_rgb lowercase_ : str = max_patches lowercase_ : str = is_vqa def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) -> np.ndarray: '''simple docstring''' requires_backends(self.extract_flattened_patches ,'torch' ) _check_torch_version() # convert to torch lowercase_ : Tuple = to_channel_dimension_format(__UpperCamelCase ,ChannelDimension.FIRST ) lowercase_ : List[Any] = torch.from_numpy(__UpperCamelCase ) lowercase_ , lowercase_ : int = patch_size['height'], patch_size['width'] lowercase_ , lowercase_ : Optional[Any] = get_image_size(__UpperCamelCase ) # maximize scale s.t. lowercase_ : List[str] = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase_ : str = max(min(math.floor(scale * image_height / patch_height ) ,__UpperCamelCase ) ,1 ) lowercase_ : List[str] = max(min(math.floor(scale * image_width / patch_width ) ,__UpperCamelCase ) ,1 ) lowercase_ : int = max(num_feasible_rows * patch_height ,1 ) lowercase_ : str = max(num_feasible_cols * patch_width ,1 ) lowercase_ : Union[str, Any] = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='bilinear' ,align_corners=__UpperCamelCase ,antialias=__UpperCamelCase ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase_ : Optional[Any] = torch_extract_patches(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Tuple = patches.shape lowercase_ : Tuple = patches_shape[1] lowercase_ : List[str] = patches_shape[2] lowercase_ : Tuple = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase_ : Optional[int] = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase_ : Union[str, Any] = torch.arange(__UpperCamelCase ).reshape([rows, 1] ).repeat(1 ,__UpperCamelCase ).reshape([rows * columns, 1] ) lowercase_ : Optional[int] = torch.arange(__UpperCamelCase ).reshape([1, columns] ).repeat(__UpperCamelCase ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase_ : Any = row_ids.to(torch.floataa ) lowercase_ : Optional[int] = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase_ : List[str] = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase_ : Any = torch.nn.functional.pad(__UpperCamelCase ,[0, 0, 0, max_patches - (rows * columns)] ).float() lowercase_ : List[str] = to_numpy_array(__UpperCamelCase ) return result def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ) -> np.ndarray: '''simple docstring''' if image.dtype == np.uinta: lowercase_ : Optional[int] = image.astype(np.floataa ) # take mean across the whole `image` lowercase_ : Union[str, Any] = np.mean(__UpperCamelCase ) lowercase_ : Optional[int] = np.std(__UpperCamelCase ) lowercase_ : List[Any] = max(__UpperCamelCase ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(__UpperCamelCase ,mean=__UpperCamelCase ,std=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = ChannelDimension.FIRST ,**__UpperCamelCase ,) -> ImageInput: '''simple docstring''' lowercase_ : Any = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ : Optional[Any] = patch_size if patch_size is not None else self.patch_size lowercase_ : Union[str, Any] = max_patches if max_patches is not None else self.max_patches lowercase_ : Dict = self.is_vqa if kwargs.get('data_format' ,__UpperCamelCase ) is not None: raise ValueError('data_format is not an accepted input as the outputs are ' ) lowercase_ : List[Any] = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ : Dict = [convert_to_rgb(__UpperCamelCase ) for image in images] # All transformations expect numpy arrays. lowercase_ : Union[str, Any] = [to_numpy_array(__UpperCamelCase ) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.' ) lowercase_ : Optional[int] = kwargs.pop('font_bytes' ,__UpperCamelCase ) lowercase_ : Union[str, Any] = kwargs.pop('font_path' ,__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Optional[int] = [header_text] * len(__UpperCamelCase ) lowercase_ : Tuple = [ render_header(__UpperCamelCase ,header_text[i] ,font_bytes=__UpperCamelCase ,font_path=__UpperCamelCase ) for i, image in enumerate(__UpperCamelCase ) ] if do_normalize: lowercase_ : Tuple = [self.normalize(image=__UpperCamelCase ) for image in images] # convert to torch tensor and permute lowercase_ : Optional[int] = [ self.extract_flattened_patches(image=__UpperCamelCase ,max_patches=__UpperCamelCase ,patch_size=__UpperCamelCase ) for image in images ] # create attention mask in numpy lowercase_ : List[Any] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase_ : str = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} ,tensor_type=__UpperCamelCase ) return encoded_outputs
321
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = tempfile.mkdtemp() # fmt: off lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) ) lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowercase_ : Tuple = {'unk_token': '<unk>'} lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCamelCase ) ) lowercase_ : Any = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = self.get_tokenizer() lowercase_ : List[Any] = self.get_rust_tokenizer() lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase ) lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 ) lowercase_ : Any = CLIPSegProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[str] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = self.prepare_image_inputs() lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' ) lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[Any] = self.get_tokenizer() lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Dict = 'lower newer' lowercase_ : Any = processor(text=__UpperCamelCase ) lowercase_ : int = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.get_image_processor() lowercase_ : str = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = 'lower newer' lowercase_ : str = self.prepare_image_inputs() lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = self.prepare_image_inputs() lowercase_ : Optional[Any] = self.prepare_image_inputs() lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase ) lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
321
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 lowercase_ : str = 1 lowercase_ : Tuple = 1 while repunit: lowercase_ : Any = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowercase__( __SCREAMING_SNAKE_CASE : int = 1_00_00_00 ): lowercase_ : Any = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__SCREAMING_SNAKE_CASE ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
321
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
321
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __SCREAMING_SNAKE_CASE ={"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
321
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]: '''simple docstring''' lowercase_ : Dict = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = use_labels lowercase_ : Union[str, Any] = scope def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[str] = None if self.use_input_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Any = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.prepare_config_and_inputs() lowercase_ : int = True lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = True lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Union[str, Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,) lowercase_ : Dict = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int: '''simple docstring''' lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() # first forward pass lowercase_ : str = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,) lowercase_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase_ : int = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] lowercase_ : List[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] # select random slice lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoderTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = 'bert' self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Tuple = model(__UpperCamelCase )[0] lowercase_ : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = '' for i in table: res += inp[i - 1] return res def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ): return data[1:] + data[0] def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str ): lowercase_ : Any = '' for i in range(len(__SCREAMING_SNAKE_CASE ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : List[Any] = int('0b' + data[0] + data[-1] , 2 ) lowercase_ : Tuple = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase_ : Optional[int] = message[:4] lowercase_ : List[str] = message[4:] lowercase_ : Optional[Any] = apply_table(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : str = xor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = apply_sbox(__SCREAMING_SNAKE_CASE , temp[:4] ) # noqa: E741 lowercase_ : List[Any] = apply_sbox(__SCREAMING_SNAKE_CASE , temp[4:] ) lowercase_ : str = '0' * (2 - len(__SCREAMING_SNAKE_CASE )) + l # noqa: E741 lowercase_ : Union[str, Any] = '0' * (2 - len(__SCREAMING_SNAKE_CASE )) + r lowercase_ : Any = apply_table(l + r , __SCREAMING_SNAKE_CASE ) lowercase_ : int = xor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return temp + right if __name__ == "__main__": __SCREAMING_SNAKE_CASE =input("Enter 10 bit key: ") __SCREAMING_SNAKE_CASE =input("Enter 8 bit message: ") __SCREAMING_SNAKE_CASE =[6, 3, 7, 4, 8, 5, 10, 9] __SCREAMING_SNAKE_CASE =[3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __SCREAMING_SNAKE_CASE =[2, 4, 3, 1] __SCREAMING_SNAKE_CASE =[2, 6, 3, 1, 4, 8, 5, 7] __SCREAMING_SNAKE_CASE =[4, 1, 3, 5, 7, 2, 8, 6] __SCREAMING_SNAKE_CASE =[4, 1, 2, 3, 2, 3, 4, 1] __SCREAMING_SNAKE_CASE =[[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __SCREAMING_SNAKE_CASE =[[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __SCREAMING_SNAKE_CASE =apply_table(key, paa_table) __SCREAMING_SNAKE_CASE =temp[:5] __SCREAMING_SNAKE_CASE =temp[5:] __SCREAMING_SNAKE_CASE =left_shift(left) __SCREAMING_SNAKE_CASE =left_shift(right) __SCREAMING_SNAKE_CASE =apply_table(left + right, pa_table) __SCREAMING_SNAKE_CASE =left_shift(left) __SCREAMING_SNAKE_CASE =left_shift(right) __SCREAMING_SNAKE_CASE =left_shift(left) __SCREAMING_SNAKE_CASE =left_shift(right) __SCREAMING_SNAKE_CASE =apply_table(left + right, pa_table) # encryption __SCREAMING_SNAKE_CASE =apply_table(message, IP) __SCREAMING_SNAKE_CASE =function(expansion, sa, sa, keya, temp) __SCREAMING_SNAKE_CASE =temp[4:] + temp[:4] __SCREAMING_SNAKE_CASE =function(expansion, sa, sa, keya, temp) __SCREAMING_SNAKE_CASE =apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __SCREAMING_SNAKE_CASE =apply_table(CT, IP) __SCREAMING_SNAKE_CASE =function(expansion, sa, sa, keya, temp) __SCREAMING_SNAKE_CASE =temp[4:] + temp[:4] __SCREAMING_SNAKE_CASE =function(expansion, sa, sa, keya, temp) __SCREAMING_SNAKE_CASE =apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
321
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return None class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' return None class UpperCamelCase ( unittest.TestCase ): lowercase = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from transformers import BertModel lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCamelCase ) ) vocab_file.flush() lowercase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) lowercase_ : int = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) lowercase_ : Tuple = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from transformers import BertModel lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' from transformers import TFBertModel lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) ,1 ) self.assertEqual(len(__UpperCamelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
321
1
"""simple docstring""" import datasets from .evaluate import evaluate __SCREAMING_SNAKE_CASE ="\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" __SCREAMING_SNAKE_CASE ="\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" __SCREAMING_SNAKE_CASE ="\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) ,codebase_urls=['https://www.atticusprojectai.org/cuad'] ,reference_urls=['https://www.atticusprojectai.org/cuad'] ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : str = {prediction['id']: prediction['prediction_text'] for prediction in predictions} lowercase_ : Union[str, Any] = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] lowercase_ : Optional[int] = evaluate(dataset=__UpperCamelCase ,predictions=__UpperCamelCase ) return score
321
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
1
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase ( lowercase_ ): lowercase = ['image_processor', 'tokenizer'] lowercase = 'BlipImageProcessor' lowercase = 'AutoTokenizer' def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' super().__init__(__UpperCamelCase ,__UpperCamelCase ) # add QFormer tokenizer lowercase_ : Any = qformer_tokenizer def __call__( self ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = True ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = 0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = False ,__UpperCamelCase = False ,__UpperCamelCase = False ,__UpperCamelCase = False ,__UpperCamelCase = True ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> BatchFeature: '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) lowercase_ : Union[str, Any] = BatchFeature() if text is not None: lowercase_ : Tuple = self.tokenizer( text=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ,stride=__UpperCamelCase ,pad_to_multiple_of=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,return_overflowing_tokens=__UpperCamelCase ,return_special_tokens_mask=__UpperCamelCase ,return_offsets_mapping=__UpperCamelCase ,return_token_type_ids=__UpperCamelCase ,return_length=__UpperCamelCase ,verbose=__UpperCamelCase ,return_tensors=__UpperCamelCase ,**__UpperCamelCase ,) encoding.update(__UpperCamelCase ) lowercase_ : List[str] = self.qformer_tokenizer( text=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ,stride=__UpperCamelCase ,pad_to_multiple_of=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,return_overflowing_tokens=__UpperCamelCase ,return_special_tokens_mask=__UpperCamelCase ,return_offsets_mapping=__UpperCamelCase ,return_token_type_ids=__UpperCamelCase ,return_length=__UpperCamelCase ,verbose=__UpperCamelCase ,return_tensors=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : Optional[Any] = qformer_text_encoding.pop('input_ids' ) lowercase_ : Union[str, Any] = qformer_text_encoding.pop('attention_mask' ) if images is not None: lowercase_ : str = self.image_processor(__UpperCamelCase ,return_tensors=__UpperCamelCase ) encoding.update(__UpperCamelCase ) return encoding def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' return self.tokenizer.decode(*__UpperCamelCase ,**__UpperCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : str = self.tokenizer.model_input_names lowercase_ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' if os.path.isfile(__UpperCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) lowercase_ : List[Any] = os.path.join(__UpperCamelCase ,'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(__UpperCamelCase ) return super().save_pretrained(__UpperCamelCase ,**__UpperCamelCase ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ,subfolder='qformer_tokenizer' ) lowercase_ : List[str] = cls._get_arguments_from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) args.append(__UpperCamelCase ) return cls(*__UpperCamelCase )
321
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[Any] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : Tuple = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) print(F'''Loading model based on config from {config_path}...''' ) lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowercase_ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention lowercase_ : BertSelfAttention = layer.attention.self lowercase_ : str = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape ) lowercase_ : int = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape ) lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape ) lowercase_ : List[Any] = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output lowercase_ : BertSelfOutput = layer.attention.output lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape ) lowercase_ : Any = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape ) lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' ) lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' ) # Intermediate lowercase_ : BertIntermediate = layer.intermediate lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' ) lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' ) # Output lowercase_ : BertOutput = layer.output lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' ) lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' ) lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' ) lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' ) # Embeddings lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' ) lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' ) lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' ) lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head lowercase_ : int = model.cls.predictions.transform lowercase_ : str = get_masked_lm_array('dense/kernel' ) lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' ) lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' ) lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' ) lowercase_ : List[str] = get_masked_lm_array('embedding_table' ) # Pooling lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(__SCREAMING_SNAKE_CASE ) # Integration test - should load without any errors ;) lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
321
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[Any] = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowercase_ : Dict = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house lowercase_ : Dict = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim lowercase_ : List[str] = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase_ : Union[str, Any] = model(__UpperCamelCase )['last_hidden_state'].detach() self.assertEqual(output.shape ,__UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,__UpperCamelCase ,atol=1e-3 ) ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Any = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowercase_ : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house lowercase_ : Dict = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim lowercase_ : Tuple = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase_ : List[Any] = model(__UpperCamelCase )['last_hidden_state'].detach() self.assertEqual(output.shape ,__UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,__UpperCamelCase ,atol=1e-3 ) )
321
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore __SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered") def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ): lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
321
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ="▁" __SCREAMING_SNAKE_CASE ={"vocab_file": "sentencepiece.bpe.model"} __SCREAMING_SNAKE_CASE ={ "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __SCREAMING_SNAKE_CASE ={ "facebook/nllb-200-distilled-600M": 1024, } # fmt: off __SCREAMING_SNAKE_CASE =["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ['input_ids', 'attention_mask'] lowercase = [] lowercase = [] def __init__( self ,__UpperCamelCase ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase = None ,__UpperCamelCase=None ,__UpperCamelCase=False ,**__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' lowercase_ : Dict = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else mask_token lowercase_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs lowercase_ : Dict = legacy_behaviour super().__init__( bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,src_lang=__UpperCamelCase ,tgt_lang=__UpperCamelCase ,additional_special_tokens=__UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,legacy_behaviour=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) lowercase_ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : List[Any] = 1 lowercase_ : Union[str, Any] = len(self.sp_model ) lowercase_ : str = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCamelCase ) } lowercase_ : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} lowercase_ : Any = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase_ : List[Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase_ : str = src_lang if src_lang is not None else 'eng_Latn' lowercase_ : Dict = self.lang_code_to_id[self._src_lang] lowercase_ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = self.__dict__.copy() lowercase_ : List[str] = None lowercase_ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): lowercase_ : List[str] = {} lowercase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase ,token_ids_a=__UpperCamelCase ,already_has_special_tokens=__UpperCamelCase ) lowercase_ : int = [1] * len(self.prefix_tokens ) lowercase_ : Union[str, Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCamelCase )) + ([0] * len(__UpperCamelCase )) + suffix_ones def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : int = [self.sep_token_id] lowercase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase_ : Any = src_lang lowercase_ : Union[str, Any] = self(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,return_tensors=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : Any = self.convert_tokens_to_ids(__UpperCamelCase ) lowercase_ : int = tgt_lang_id return inputs def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCamelCase ,out_type=__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : int = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Any = ''.join(__UpperCamelCase ).replace(__UpperCamelCase ,' ' ).strip() return out_string def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Optional[Any] = os.path.join( __UpperCamelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase ,'wb' ) as fi: lowercase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = "eng_Latn" ,__UpperCamelCase = None ,__UpperCamelCase = "fra_Latn" ,**__UpperCamelCase ,) -> BatchEncoding: '''simple docstring''' lowercase_ : Dict = src_lang lowercase_ : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : Any = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowercase_ : int = [] lowercase_ : Any = [self.eos_token_id, self.cur_lang_code] else: lowercase_ : int = [self.cur_lang_code] lowercase_ : str = [self.eos_token_id] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: lowercase_ : Optional[int] = [] lowercase_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: lowercase_ : Tuple = [self.cur_lang_code] lowercase_ : str = [self.eos_token_id]
321
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
321
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
321
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]: '''simple docstring''' lowercase_ : Any = parent lowercase_ : str = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Dict = is_training lowercase_ : Tuple = use_input_mask lowercase_ : Optional[Any] = use_token_type_ids lowercase_ : List[str] = use_labels lowercase_ : Any = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : Tuple = max_position_embeddings lowercase_ : Optional[int] = type_vocab_size lowercase_ : Optional[int] = type_sequence_label_size lowercase_ : Dict = initializer_range lowercase_ : int = num_labels lowercase_ : Any = num_choices lowercase_ : int = scope def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Dict = None if self.use_input_mask: lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Tuple = None lowercase_ : Tuple = None lowercase_ : Tuple = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) lowercase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Union[str, Any] = model(__UpperCamelCase ) lowercase_ : int = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.num_labels lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Any = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = config_and_inputs lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = False lowercase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowercase = () lowercase = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = EsmModelTester(self ) lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Optional[Any] = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowercase_ : List[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : List[Any] = torch.empty(2 ,4 ,30 ) lowercase_ : List[str] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch class UpperCamelCase ( lowercase_ ): @slow def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : List[str] = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = 33 lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : List[str] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase_ : Dict = model(__UpperCamelCase )[0] # compare the actual values for a slice. lowercase_ : Any = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase = 't5' lowercase = ['past_key_values'] lowercase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self ,__UpperCamelCase=3_2128 ,__UpperCamelCase=512 ,__UpperCamelCase=64 ,__UpperCamelCase=2048 ,__UpperCamelCase=6 ,__UpperCamelCase=None ,__UpperCamelCase=8 ,__UpperCamelCase=32 ,__UpperCamelCase=128 ,__UpperCamelCase=0.1 ,__UpperCamelCase=1e-6 ,__UpperCamelCase=1.0 ,__UpperCamelCase="relu" ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=0 ,__UpperCamelCase=1 ,**__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = vocab_size lowercase_ : str = d_model lowercase_ : str = d_kv lowercase_ : List[Any] = d_ff lowercase_ : List[str] = num_layers lowercase_ : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase_ : Union[str, Any] = num_heads lowercase_ : Tuple = relative_attention_num_buckets lowercase_ : Optional[int] = relative_attention_max_distance lowercase_ : Optional[Any] = dropout_rate lowercase_ : str = layer_norm_epsilon lowercase_ : List[str] = initializer_factor lowercase_ : int = feed_forward_proj lowercase_ : Optional[Any] = use_cache lowercase_ : Optional[Any] = self.feed_forward_proj.split('-' ) lowercase_ : Dict = act_info[-1] lowercase_ : List[str] = act_info[0] == 'gated' if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase_ : Dict = 'gelu_new' super().__init__( pad_token_id=__a ,eos_token_id=__a ,is_encoder_decoder=__a ,**__a ,) class UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowercase_ : Union[str, Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase_ : Tuple = 'past_encoder_sequence + sequence' lowercase_ : Dict = {0: 'batch'} lowercase_ : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase_ : Tuple = {0: 'batch', 1: 'decoder_sequence'} lowercase_ : int = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__a ,direction='inputs' ) return common_inputs @property def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return 13
350
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
0
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase__( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Optional[Any] = [0] * no_of_processes lowercase_ : str = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowercase__ ): lowercase_ : List[Any] = burst_time[i] lowercase_ : list[int] = [] lowercase_ : Optional[int] = 0 lowercase_ : List[str] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowercase_ : List[str] = [] lowercase_ : Optional[int] = -1 for i in range(lowercase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowercase__ ) if len(lowercase__ ) > 0: lowercase_ : Any = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowercase_ : Any = i total_time += burst_time[target_process] completed += 1 lowercase_ : Union[str, Any] = 0 lowercase_ : Optional[Any] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase__( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ): lowercase_ : str = [0] * no_of_processes for i in range(lowercase__ ): lowercase_ : List[Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __SCREAMING_SNAKE_CASE =4 __SCREAMING_SNAKE_CASE =[2, 5, 3, 7] __SCREAMING_SNAKE_CASE =[0, 0, 0, 0] __SCREAMING_SNAKE_CASE =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __SCREAMING_SNAKE_CASE =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
351
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): lowercase_ : Dict = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = 'patrickvonplaten/t5-tiny-random' lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] ) lowercase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'current' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
321
0
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") __SCREAMING_SNAKE_CASE =int(input("Enter number: ").strip()) print(F"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
352
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['input_values', 'padding_mask'] def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = chunk_length_s lowercase_ : Tuple = overlap @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowercase_ : Optional[int] = True lowercase_ : Optional[int] = bool( isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ): lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa ) elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) lowercase_ : Optional[int] = None lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio ) lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) ) lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio ) lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase_ : Union[str, Any] = 'max_length' else: lowercase_ : int = input_values # normal padding on batch if padded_inputs is None: lowercase_ : int = self.pad( __UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) if padding: lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' ) lowercase_ : Dict = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowercase_ : Optional[int] = example[..., None] input_values.append(example.T ) lowercase_ : str = input_values if return_tensors is not None: lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
321
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE ="\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=8 ): lowercase_ : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any]=5_12 , __SCREAMING_SNAKE_CASE : Optional[int]=5_12 ): lowercase_ : Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : Tuple = np.array(pil_image.convert('RGB' ) ) lowercase_ : Tuple = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ : str = np.transpose(__lowerCAmelCase , [2, 0, 1] ) lowercase_ : str = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 ) return image class UpperCamelCase ( A__ ): """simple docstring""" def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( unet=__snake_case ,scheduler=__snake_case ,movq=__snake_case ,) lowercase_ : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = min(int(num_inference_steps * strength ) ,__snake_case ) lowercase_ : Dict = max(num_inference_steps - init_timestep ,0 ) lowercase_ : Union[str, Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ) -> List[Any]: '''simple docstring''' if not isinstance(__snake_case ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__snake_case )}''' ) lowercase_ : Union[str, Any] = image.to(device=__snake_case ,dtype=__snake_case ) lowercase_ : str = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : Dict = image else: if isinstance(__snake_case ,__snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(__snake_case ,__snake_case ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__snake_case ) ] lowercase_ : Tuple = torch.cat(__snake_case ,dim=0 ) else: lowercase_ : str = self.movq.encode(__snake_case ).latent_dist.sample(__snake_case ) lowercase_ : int = self.movq.config.scaling_factor * init_latents lowercase_ : Optional[int] = torch.cat([init_latents] ,dim=0 ) lowercase_ : List[str] = init_latents.shape lowercase_ : List[str] = randn_tensor(__snake_case ,generator=__snake_case ,device=__snake_case ,dtype=__snake_case ) # get latents lowercase_ : Tuple = self.scheduler.add_noise(__snake_case ,__snake_case ,__snake_case ) lowercase_ : str = init_latents return latents def _UpperCAmelCase ( self ,__UpperCamelCase=0 ) -> Optional[int]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : str = torch.device(f'''cuda:{gpu_id}''' ) lowercase_ : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__snake_case ,__snake_case ) def _UpperCAmelCase ( self ,__UpperCamelCase=0 ) -> List[Any]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('>=' ,'0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : Optional[Any] = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' ,silence_dtype_warnings=__snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : int = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Any = cpu_offload_with_hook(__snake_case ,__snake_case ,prev_module_hook=__snake_case ) # We'll offload the last model manually. lowercase_ : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' if not hasattr(self.unet ,'_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(__snake_case ,'_hf_hook' ) and hasattr(module._hf_hook ,'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__snake_case ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = 512 ,__UpperCamelCase = 512 ,__UpperCamelCase = 100 ,__UpperCamelCase = 4.0 ,__UpperCamelCase = 0.3 ,__UpperCamelCase = 1 ,__UpperCamelCase = None ,__UpperCamelCase = "pil" ,__UpperCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[Any] = self._execution_device lowercase_ : Optional[Any] = guidance_scale > 1.0 if isinstance(__snake_case ,__snake_case ): lowercase_ : Tuple = torch.cat(__snake_case ,dim=0 ) lowercase_ : int = image_embeds.shape[0] if isinstance(__snake_case ,__snake_case ): lowercase_ : Optional[Any] = torch.cat(__snake_case ,dim=0 ) if do_classifier_free_guidance: lowercase_ : Any = image_embeds.repeat_interleave(__snake_case ,dim=0 ) lowercase_ : str = negative_image_embeds.repeat_interleave(__snake_case ,dim=0 ) lowercase_ : List[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__snake_case ) if not isinstance(__snake_case ,__snake_case ): lowercase_ : Optional[Any] = [image] if not all(isinstance(__snake_case ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'''Input is in incorrect format: {[type(__snake_case ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) lowercase_ : Union[str, Any] = torch.cat([prepare_image(__snake_case ,__snake_case ,__snake_case ) for i in image] ,dim=0 ) lowercase_ : Union[str, Any] = image.to(dtype=image_embeds.dtype ,device=__snake_case ) lowercase_ : str = self.movq.encode(__snake_case )['latents'] lowercase_ : Union[str, Any] = latents.repeat_interleave(__snake_case ,dim=0 ) self.scheduler.set_timesteps(__snake_case ,device=__snake_case ) lowercase_ , lowercase_ : Union[str, Any] = self.get_timesteps(__snake_case ,__snake_case ,__snake_case ) lowercase_ : Tuple = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(__snake_case ,__snake_case ,self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( __snake_case ,__snake_case ,__snake_case ,__snake_case ,image_embeds.dtype ,__snake_case ,__snake_case ) for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance lowercase_ : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : List[Any] = self.unet( sample=__snake_case ,timestep=__snake_case ,encoder_hidden_states=__snake_case ,added_cond_kwargs=__snake_case ,return_dict=__snake_case ,)[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] ,dim=1 ) lowercase_ , lowercase_ : str = noise_pred.chunk(2 ) lowercase_ , lowercase_ : str = variance_pred.chunk(2 ) lowercase_ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : int = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : int = self.scheduler.step( __snake_case ,__snake_case ,__snake_case ,generator=__snake_case ,)[0] # post-processing lowercase_ : Optional[int] = self.movq.decode(__snake_case ,force_not_quantize=__snake_case )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowercase_ : str = image * 0.5 + 0.5 lowercase_ : Optional[Any] = image.clamp(0 ,1 ) lowercase_ : Union[str, Any] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": lowercase_ : Union[str, Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
353
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
321
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json", "Salesforce/blip-vqa-capfit-large": ( "https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json" ), "Salesforce/blip-image-captioning-base": ( "https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json" ), "Salesforce/blip-image-captioning-large": ( "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json" ), "Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json", "Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json", "Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json", "Salesforce/blip-itm-large-flikr": ( "https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json" ), } class UpperCamelCase ( a__ ): lowercase = 'blip_text_model' def __init__( self ,__UpperCamelCase=3_0524 ,__UpperCamelCase=768 ,__UpperCamelCase=768 ,__UpperCamelCase=3072 ,__UpperCamelCase=768 ,__UpperCamelCase=12 ,__UpperCamelCase=8 ,__UpperCamelCase=512 ,__UpperCamelCase="gelu" ,__UpperCamelCase=1e-12 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3_0522 ,__UpperCamelCase=2 ,__UpperCamelCase=0 ,__UpperCamelCase=102 ,__UpperCamelCase=True ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,sep_token_id=_lowerCamelCase ,**_lowerCamelCase ,) lowercase_ : List[Any] = vocab_size lowercase_ : Tuple = hidden_size lowercase_ : List[Any] = encoder_hidden_size lowercase_ : Union[str, Any] = intermediate_size lowercase_ : Tuple = projection_dim lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : str = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : str = max_position_embeddings lowercase_ : List[str] = layer_norm_eps lowercase_ : str = hidden_act lowercase_ : List[str] = initializer_range lowercase_ : Union[str, Any] = attention_probs_dropout_prob lowercase_ : List[Any] = is_decoder lowercase_ : Union[str, Any] = use_cache @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) lowercase_ : Dict = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": lowercase_ : str = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) class UpperCamelCase ( a__ ): lowercase = 'blip_vision_model' def __init__( self ,__UpperCamelCase=768 ,__UpperCamelCase=3072 ,__UpperCamelCase=512 ,__UpperCamelCase=12 ,__UpperCamelCase=12 ,__UpperCamelCase=384 ,__UpperCamelCase=16 ,__UpperCamelCase="gelu" ,__UpperCamelCase=1e-5 ,__UpperCamelCase=0.0 ,__UpperCamelCase=1e-10 ,**__UpperCamelCase ,) -> str: '''simple docstring''' super().__init__(**_lowerCamelCase ) lowercase_ : Union[str, Any] = hidden_size lowercase_ : int = intermediate_size lowercase_ : List[Any] = projection_dim lowercase_ : Dict = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : Dict = patch_size lowercase_ : Dict = image_size lowercase_ : List[Any] = initializer_range lowercase_ : int = attention_dropout lowercase_ : Optional[Any] = layer_norm_eps lowercase_ : Optional[int] = hidden_act @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) lowercase_ : Dict = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": lowercase_ : Union[str, Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) class UpperCamelCase ( a__ ): lowercase = 'blip' lowercase = True def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=512 ,__UpperCamelCase=2.6592 ,__UpperCamelCase=256 ,**__UpperCamelCase ,) -> int: '''simple docstring''' super().__init__(**_lowerCamelCase ) if text_config is None: lowercase_ : Union[str, Any] = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: lowercase_ : Optional[int] = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) lowercase_ : Union[str, Any] = BlipTextConfig(**_lowerCamelCase ) lowercase_ : Optional[int] = BlipVisionConfig(**_lowerCamelCase ) lowercase_ : List[str] = self.vision_config.hidden_size lowercase_ : List[str] = projection_dim lowercase_ : Union[str, Any] = logit_scale_init_value lowercase_ : Tuple = 1.0 lowercase_ : Optional[Any] = 0.02 lowercase_ : Union[str, Any] = image_text_hidden_size @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**_lowerCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = copy.deepcopy(self.__dict__ ) lowercase_ : Optional[int] = self.text_config.to_dict() lowercase_ : str = self.vision_config.to_dict() lowercase_ : Optional[Any] = self.__class__.model_type return output
354
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
321
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={"tokenizer_file": "tokenizer.json"} __SCREAMING_SNAKE_CASE ={ "tokenizer_file": { "bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json", "bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json", }, } class UpperCamelCase ( lowercase__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ['''input_ids''', '''attention_mask'''] lowercase = None def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase=False ,__UpperCamelCase=False ,**__UpperCamelCase ,) -> str: '''simple docstring''' super().__init__( _a ,_a ,tokenizer_file=_a ,unk_token=_a ,bos_token=_a ,eos_token=_a ,pad_token=_a ,add_prefix_space=_a ,clean_up_tokenization_spaces=_a ,**_a ,) lowercase_ : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,_a ) != add_prefix_space: lowercase_ : List[Any] = getattr(_a ,pre_tok_state.pop('type' ) ) lowercase_ : Optional[int] = add_prefix_space lowercase_ : Tuple = pre_tok_class(**_a ) lowercase_ : Optional[int] = add_prefix_space def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,_a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ' pretokenized inputs.' ) return super()._batch_encode_plus(*_a ,**_a ) def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : List[Any] = kwargs.get('is_split_into_words' ,_a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ' pretokenized inputs.' ) return super()._encode_plus(*_a ,**_a ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_a ,add_special_tokens=_a ) + [self.eos_token_id] ) if len(_a ) > self.model_max_length: lowercase_ : Any = input_ids[-self.model_max_length :] return input_ids
355
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ): lowercase_ : int = 'backbone.' if is_semantic else '' lowercase_ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ): for i in range(config.num_hidden_layers ): lowercase_ : Any = 'backbone.' if is_semantic else '' # queries, keys and values lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) lowercase_ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = q_bias lowercase_ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) lowercase_ : Tuple = gamma_a lowercase_ : List[Any] = gamma_a def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = val def lowercase__( ): lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ): lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowercase_ : Any = 10_24 lowercase_ : List[str] = 40_96 lowercase_ : Tuple = 24 lowercase_ : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: lowercase_ : Optional[Any] = 16 lowercase_ : Any = 'huggingface/label-files' lowercase_ : int = 'rvlcdip-id2label.json' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : str = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) # load HuggingFace model lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image lowercase_ : List[Any] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE ) lowercase_ : str = prepare_img() lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) lowercase_ : int = encoding['pixel_values'] lowercase_ : Any = model(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = outputs.logits # verify logits lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected" Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: if has_lm_head: lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) model.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
321
0
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __SCREAMING_SNAKE_CASE = datasets.load_iris() __SCREAMING_SNAKE_CASE = np.array(data["data"]) __SCREAMING_SNAKE_CASE = np.array(data["target"]) __SCREAMING_SNAKE_CASE = data["""target_names"""] __SCREAMING_SNAKE_CASE = train_test_split(X, y) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ): return np.linalg.norm(np.array(__snake_case ) - np.array(__snake_case ) ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=5 ): lowercase_ : Any = zip(__snake_case , __snake_case ) # List of distances of all points from the point to be classified lowercase_ : int = [] for data_point in data: lowercase_ : Optional[int] = euclidean_distance(data_point[0] , __snake_case ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowercase_ : int = [i[1] for i in sorted(__snake_case )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowercase_ : Dict = Counter(__snake_case ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
356
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()} def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase__( __SCREAMING_SNAKE_CASE : str ): if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowercase_ : Dict = '' for word in coded.split(): while len(__SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase_ : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
321
0
"""simple docstring""" import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __SCREAMING_SNAKE_CASE =Mapping[str, np.ndarray] __SCREAMING_SNAKE_CASE =Mapping[str, Any] # Is a nested dict. __SCREAMING_SNAKE_CASE =0.01 @dataclasses.dataclass(frozen=lowercase_ ) class UpperCamelCase : lowercase = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowercase = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowercase = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowercase = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowercase = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowercase = None # Optional remark about the protein. Included as a comment in output PDB # files lowercase = None # Templates used to generate this protein (prediction-only) lowercase = None # Chain corresponding to each parent lowercase = None def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Optional[int] = R'(\[[A-Z]+\]\n)' lowercase_ : Optional[Any] = [tag.strip() for tag in re.split(__A , __A ) if len(__A ) > 0] lowercase_ : List[Any] = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) lowercase_ : Union[str, Any] = ['N', 'CA', 'C'] lowercase_ : Optional[int] = None lowercase_ : Dict = None lowercase_ : Optional[int] = None for g in groups: if "[PRIMARY]" == g[0]: lowercase_ : Any = g[1][0].strip() for i in range(len(__A ) ): if seq[i] not in residue_constants.restypes: lowercase_ : Optional[Any] = 'X' # FIXME: strings are immutable lowercase_ : Union[str, Any] = np.array( [residue_constants.restype_order.get(__A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase_ : Dict = [] for axis in range(3 ): tertiary.append(list(map(__A , g[1][axis].split() ) ) ) lowercase_ : List[str] = np.array(__A ) lowercase_ : Optional[Any] = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__A ): lowercase_ : Any = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase_ : Optional[int] = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) lowercase_ : Dict = np.zeros( ( len(__A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__A ): lowercase_ : str = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__A , atom_mask=__A , aatype=__A , residue_index=np.arange(len(__A ) ) , b_factors=__A , ) def lowercase__( __SCREAMING_SNAKE_CASE : Protein , __SCREAMING_SNAKE_CASE : int = 0 ): lowercase_ : int = [] lowercase_ : List[Any] = prot.remark if remark is not None: pdb_headers.append(F'''REMARK {remark}''' ) lowercase_ : Dict = prot.parents lowercase_ : Any = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase_ : Union[str, Any] = [p for i, p in zip(__A , __A ) if i == chain_id] if parents is None or len(__A ) == 0: lowercase_ : Tuple = ['N/A'] pdb_headers.append(F'''PARENT {" ".join(__A )}''' ) return pdb_headers def lowercase__( __SCREAMING_SNAKE_CASE : Protein , __SCREAMING_SNAKE_CASE : str ): lowercase_ : Optional[Any] = [] lowercase_ : Optional[int] = pdb_str.split('\n' ) lowercase_ : Tuple = prot.remark if remark is not None: out_pdb_lines.append(F'''REMARK {remark}''' ) lowercase_ : Union[str, Any] = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase_ : int = [] if prot.parents_chain_index is not None: lowercase_ : Dict = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__A ) , [] ) parent_dict[str(__A )].append(__A ) lowercase_ : int = max([int(__A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase_ : Optional[int] = parent_dict.get(str(__A ) , ['N/A'] ) parents_per_chain.append(__A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase_ : Dict = [['N/A']] def make_parent_line(__SCREAMING_SNAKE_CASE : Sequence[str] ) -> str: return F'''PARENT {" ".join(__A )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase_ : Tuple = 0 for i, l in enumerate(__A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__A ): lowercase_ : List[Any] = parents_per_chain[chain_counter] else: lowercase_ : List[str] = ['N/A'] out_pdb_lines.append(make_parent_line(__A ) ) return "\n".join(__A ) def lowercase__( __SCREAMING_SNAKE_CASE : Protein ): lowercase_ : Dict = residue_constants.restypes + ['X'] def res_atoa(__SCREAMING_SNAKE_CASE : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) lowercase_ : int = residue_constants.atom_types lowercase_ : Optional[int] = [] lowercase_ : Optional[int] = prot.atom_mask lowercase_ : Tuple = prot.aatype lowercase_ : str = prot.atom_positions lowercase_ : Union[str, Any] = prot.residue_index.astype(np.intaa ) lowercase_ : Union[str, Any] = prot.b_factors lowercase_ : Union[str, Any] = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) lowercase_ : List[str] = get_pdb_headers(__A ) if len(__A ) > 0: pdb_lines.extend(__A ) lowercase_ : str = aatype.shape[0] lowercase_ : Union[str, Any] = 1 lowercase_ : Dict = 0 lowercase_ : Any = string.ascii_uppercase lowercase_ : Dict = None # Add all atom sites. for i in range(__A ): lowercase_ : List[str] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase_ : List[Any] = 'ATOM' lowercase_ : Tuple = atom_name if len(__A ) == 4 else F''' {atom_name}''' lowercase_ : Optional[Any] = '' lowercase_ : Any = '' lowercase_ : Tuple = 1.00 lowercase_ : Optional[Any] = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase_ : List[str] = '' lowercase_ : int = 'A' if chain_index is not None: lowercase_ : List[Any] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase_ : Optional[int] = ( F'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' F'''{res_name_a:>3} {chain_tag:>1}''' F'''{residue_index[i]:>4}{insertion_code:>1} ''' F'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' F'''{occupancy:>6.2f}{b_factor:>6.2f} ''' F'''{element:>2}{charge:>2}''' ) pdb_lines.append(__A ) atom_index += 1 lowercase_ : Any = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase_ : Tuple = True lowercase_ : List[Any] = chain_index[i + 1] if should_terminate: # Close the chain. lowercase_ : List[str] = 'TER' lowercase_ : Any = ( F'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(__A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__A , __A ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(__A ) def lowercase__( __SCREAMING_SNAKE_CASE : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowercase__( __SCREAMING_SNAKE_CASE : FeatureDict , __SCREAMING_SNAKE_CASE : ModelOutput , __SCREAMING_SNAKE_CASE : Optional[np.ndarray] = None , __SCREAMING_SNAKE_CASE : Optional[np.ndarray] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[Sequence[str]] = None , __SCREAMING_SNAKE_CASE : Optional[Sequence[int]] = None , ): return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=__A , remark=__A , parents=__A , parents_chain_index=__A , )
357
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations_with_dp_array( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase_ : str = sum( count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE ) for item in array ) lowercase_ : Tuple = answer return answer lowercase_ : Optional[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = [0] * (target + 1) lowercase_ : Dict = 1 for i in range(1 , target + 1 ): for j in range(__SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE =3 __SCREAMING_SNAKE_CASE =5 __SCREAMING_SNAKE_CASE =[1, 2, 5] print(combination_sum_iv(n, array, target))
321
0
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : str ): return [ord(lowerCamelCase_ ) - 96 for elem in plain] def lowercase__( __SCREAMING_SNAKE_CASE : list[int] ): return "".join(chr(elem + 96 ) for elem in encoded ) def lowercase__( ): lowercase_ : Optional[Any] = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , lowerCamelCase_ ) print('Decoded:' , decode(lowerCamelCase_ ) ) if __name__ == "__main__": main()
358
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : int = set_counts lowercase_ : List[Any] = max(__UpperCamelCase ) lowercase_ : Union[str, Any] = len(__UpperCamelCase ) lowercase_ : Dict = [1] * num_sets lowercase_ : Optional[int] = list(range(__UpperCamelCase ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase ) lowercase_ : int = self.get_parent(__UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : Tuple = 0 lowercase_ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : str = 0 lowercase_ : Tuple = src_parent lowercase_ : int = self.set_counts[src_parent] lowercase_ : str = max(self.max_set ,__UpperCamelCase ) return True def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
321
0
"""simple docstring""" from __future__ import annotations import bisect def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] = 0 , __SCREAMING_SNAKE_CASE : int = -1 ) -> str: if hi < 0: lowercase_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) while lo < hi: lowercase_ : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowercase_ : Optional[Any] = mid + 1 else: lowercase_ : Optional[Any] = mid return lo def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] = 0 , __SCREAMING_SNAKE_CASE : Tuple = -1 ) -> List[Any]: if hi < 0: lowercase_ : Optional[int] = len(__SCREAMING_SNAKE_CASE ) while lo < hi: lowercase_ : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowercase_ : Optional[Any] = mid + 1 else: lowercase_ : Any = mid return lo def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : Tuple = -1 ) -> List[Any]: sorted_collection.insert(bisect_left(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple = 0 , __SCREAMING_SNAKE_CASE : Union[str, Any] = -1 ) -> str: sorted_collection.insert(bisect_right(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: lowercase_ : List[Any] = 0 lowercase_ : str = len(__SCREAMING_SNAKE_CASE ) - 1 while left <= right: lowercase_ : Union[str, Any] = left + (right - left) // 2 lowercase_ : Optional[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowercase_ : Dict = midpoint - 1 else: lowercase_ : int = midpoint + 1 return None def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: lowercase_ : Any = bisect.bisect_left(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if index != len(__SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: if right < left: return None lowercase_ : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , midpoint + 1 , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =input("Enter numbers separated by comma:\n").strip() __SCREAMING_SNAKE_CASE =sorted(int(item) for item in user_input.split(",")) __SCREAMING_SNAKE_CASE =int(input("Enter a single number to be found in the list:\n")) __SCREAMING_SNAKE_CASE =binary_search(collection, target) if result is None: print(F"{target} was not found in {collection}.") else: print(F"{target} was found at position {result} in {collection}.")
359
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __SCREAMING_SNAKE_CASE ={ "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128} class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BlenderbotTokenizer def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( __UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) ) lowercase_ : Any = add_prefix_space lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase ) lowercase_ : int = add_prefix_space lowercase_ : Any = 'post_processor' lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) if tokenizer_component_instance: lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ : str = tuple(state['sep'] ) if "cls" in state: lowercase_ : Union[str, Any] = tuple(state['cls'] ) lowercase_ : str = False if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Dict = add_prefix_space lowercase_ : int = True if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets: lowercase_ : Optional[Any] = trim_offsets lowercase_ : Tuple = True if changes_to_apply: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) ) lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _UpperCAmelCase ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value lowercase_ : str = value def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : int = [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]: '''simple docstring''' lowercase_ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) lowercase_ : Dict = ' '.join(__UpperCamelCase ) lowercase_ : str = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: lowercase_ : List[str] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
321
0
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : list ): if len(__lowerCamelCase ) <= 1: return [tuple(__lowerCamelCase )] lowercase_ : str = [] def generate(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , __lowerCamelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowercase_ : Any = arr[k - 1], arr[i] else: # k is odd lowercase_ : Dict = arr[k - 1], arr[0] generate(k - 1 , __lowerCamelCase ) generate(len(__lowerCamelCase ) , __lowerCamelCase ) return res if __name__ == "__main__": __SCREAMING_SNAKE_CASE =input("Enter numbers separated by a comma:\n").strip() __SCREAMING_SNAKE_CASE =[int(item) for item in user_input.split(",")] print(heaps(arr))
360
"""simple docstring""" import os import sys import unittest __SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py") __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'} lowercase_ : Union[str, Any] = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : Any = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowercase_ : Any = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Tuple = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowercase_ : Optional[Any] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
321
0
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Dict: '''simple docstring''' super().__init__() if hasattr(scheduler.config ,'steps_offset' ) and scheduler.config.steps_offset != 1: lowercase_ : Optional[int] = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1' ,'1.0.0' ,_a ,standard_warn=_a ) lowercase_ : List[Any] = dict(scheduler.config ) lowercase_ : Union[str, Any] = 1 lowercase_ : Any = FrozenDict(_a ) if hasattr(scheduler.config ,'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: lowercase_ : Union[str, Any] = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set' ,'1.0.0' ,_a ,standard_warn=_a ) lowercase_ : Any = dict(scheduler.config ) lowercase_ : Union[str, Any] = True lowercase_ : Tuple = FrozenDict(_a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=_a ,segmentation_processor=_a ,vae=_a ,text_encoder=_a ,tokenizer=_a ,unet=_a ,scheduler=_a ,safety_checker=_a ,feature_extractor=_a ,) def _UpperCAmelCase ( self ,__UpperCamelCase = "auto" ) -> Dict: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase_ : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.enable_attention_slicing(_a ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : Optional[Any] = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a ,_a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.device != torch.device('meta' ) or not hasattr(self.unet ,'_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_a ,'_hf_hook' ) and hasattr(module._hf_hook ,'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = 512 ,__UpperCamelCase = 512 ,__UpperCamelCase = 50 ,__UpperCamelCase = 7.5 ,__UpperCamelCase = None ,__UpperCamelCase = 1 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = "pil" ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = 1 ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[int] = self.segmentation_processor( text=[text] ,images=[image] ,padding='max_length' ,return_tensors='pt' ).to(self.device ) lowercase_ : Dict = self.segmentation_model(**_a ) lowercase_ : Optional[int] = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase_ : List[str] = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase_ : str = StableDiffusionInpaintPipeline( vae=self.vae ,text_encoder=self.text_encoder ,tokenizer=self.tokenizer ,unet=self.unet ,scheduler=self.scheduler ,safety_checker=self.safety_checker ,feature_extractor=self.feature_extractor ,) return inpainting_pipeline( prompt=_a ,image=_a ,mask_image=_a ,height=_a ,width=_a ,num_inference_steps=_a ,guidance_scale=_a ,negative_prompt=_a ,num_images_per_prompt=_a ,eta=_a ,generator=_a ,latents=_a ,output_type=_a ,return_dict=_a ,callback=_a ,callback_steps=_a ,)
361
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ): with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX ) try: print(*__SCREAMING_SNAKE_CASE ) finally: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) __SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank) __SCREAMING_SNAKE_CASE =socket.gethostname() __SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __SCREAMING_SNAKE_CASE =dist.get_rank() __SCREAMING_SNAKE_CASE =dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
321
0
class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[Any] = n lowercase_ : Tuple = [None] * self.n lowercase_ : Any = 0 # index of the first element lowercase_ : Any = 0 lowercase_ : Optional[int] = 0 def __len__( self ) -> Any: '''simple docstring''' return self.size def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self.size == 0 def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : str = data lowercase_ : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Union[str, Any] = self.array[self.front] lowercase_ : List[Any] = None lowercase_ : Union[str, Any] = (self.front + 1) % self.n self.size -= 1 return temp
362
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : List[Any] = name lowercase_ : int = val def __str__( self ) -> Tuple: '''simple docstring''' return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return self.val < other.val class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = {} lowercase_ : Tuple = {} lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase ) def __getitem__( self ,__UpperCamelCase ) -> int: '''simple docstring''' return self.get_value(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' return (idx - 1) // 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return idx * 2 + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return idx * 2 + 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' return self.heap_dict[key] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1 lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): lowercase_ : Any = idx lowercase_ : str = i.val for i in range(__UpperCamelCase ,-1 ,-1 ): self.sift_down(__UpperCamelCase ,__UpperCamelCase ) return array def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' while True: lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase ) lowercase_ : List[str] = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: lowercase_ : List[str] = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: lowercase_ : Dict = r if smallest != idx: lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx] ( ( lowercase_ ) , ( lowercase_ ) , ) : str = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase_ : Any = smallest else: break def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase_ : int = p lowercase_ : str = self.get_parent_idx(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self.heap[0] def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase_ : Tuple = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 ,self.heap ) return x def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' self.heap.append(__UpperCamelCase ) lowercase_ : Tuple = len(self.heap ) - 1 lowercase_ : Optional[int] = node.val self.sift_up(len(self.heap ) - 1 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return len(self.heap ) == 0 def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase_ : Any = new_value lowercase_ : List[str] = new_value self.sift_up(self.idx_of_element[node] ) __SCREAMING_SNAKE_CASE =Node("R", -1) __SCREAMING_SNAKE_CASE =Node("B", 6) __SCREAMING_SNAKE_CASE =Node("A", 3) __SCREAMING_SNAKE_CASE =Node("X", 1) __SCREAMING_SNAKE_CASE =Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
321
0
"""simple docstring""" __SCREAMING_SNAKE_CASE =range(2, 20 + 1) __SCREAMING_SNAKE_CASE =[10**k for k in range(ks[-1] + 1)] __SCREAMING_SNAKE_CASE ={} def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase_ : str = sum(a_i[j] for j in range(_lowerCamelCase , len(_lowerCamelCase ) ) ) lowercase_ : Dict = sum(a_i[j] * base[j] for j in range(min(len(_lowerCamelCase ) , _lowerCamelCase ) ) ) lowercase_ : int = 0, 0 lowercase_ : List[str] = n - i lowercase_ : Optional[Any] = memo.get(_lowerCamelCase ) if sub_memo is not None: lowercase_ : int = sub_memo.get(_lowerCamelCase ) if jumps is not None and len(_lowerCamelCase ) > 0: # find and make the largest jump without going over lowercase_ : Optional[int] = -1 for _k in range(len(_lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase_ : Dict = _k break if max_jump >= 0: lowercase_ : Any = jumps[max_jump] # since the difference between jumps is cached, add c lowercase_ : int = diff + c for j in range(min(_lowerCamelCase , len(_lowerCamelCase ) ) ): lowercase_ : int = divmod(_lowerCamelCase , 10 ) if new_c > 0: add(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: lowercase_ : List[str] = [] else: lowercase_ : int = {c: []} lowercase_ : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase_ : str = next_term(_lowerCamelCase , k - 1 , i + dn , _lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase_ : List[str] = compute(_lowerCamelCase , _lowerCamelCase , i + dn , _lowerCamelCase ) diff += _diff dn += terms_jumped lowercase_ : Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped lowercase_ : Union[str, Any] = 0 while j < len(_lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): if i >= n: return 0, i if k > len(_lowerCamelCase ): a_i.extend([0 for _ in range(k - len(_lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase_ : List[Any] = i lowercase_ : str = 0, 0, 0 for j in range(len(_lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase_ : Dict = ds_c + ds_b diff += addend lowercase_ : List[Any] = 0 for j in range(_lowerCamelCase ): lowercase_ : str = a_i[j] + addend lowercase_ : Any = divmod(_lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return diff, i - start_i def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): lowercase_ : Optional[Any] = digits[j] + addend if s >= 10: lowercase_ : List[str] = divmod(_lowerCamelCase , 10 ) lowercase_ : List[Any] = addend // 10 + quotient else: lowercase_ : int = s lowercase_ : Optional[int] = addend // 10 if addend == 0: break while addend > 0: lowercase_ : Union[str, Any] = divmod(_lowerCamelCase , 10 ) digits.append(_lowerCamelCase ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] = 10**15 ): lowercase_ : Dict = [1] lowercase_ : Dict = 1 lowercase_ : List[Any] = 0 while True: lowercase_ : Any = next_term(_lowerCamelCase , 20 , i + dn , _lowerCamelCase ) dn += terms_jumped if dn == n - i: break lowercase_ : Optional[Any] = 0 for j in range(len(_lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"{solution() = }")
363
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = tempfile.mkdtemp() # fmt: off lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) ) lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowercase_ : Tuple = {'unk_token': '<unk>'} lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCamelCase ) ) lowercase_ : Any = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = self.get_tokenizer() lowercase_ : List[Any] = self.get_rust_tokenizer() lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase ) lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 ) lowercase_ : Any = CLIPSegProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[str] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = self.prepare_image_inputs() lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' ) lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[Any] = self.get_tokenizer() lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Dict = 'lower newer' lowercase_ : Any = processor(text=__UpperCamelCase ) lowercase_ : int = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.get_image_processor() lowercase_ : str = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = 'lower newer' lowercase_ : str = self.prepare_image_inputs() lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = self.prepare_image_inputs() lowercase_ : Optional[Any] = self.prepare_image_inputs() lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase ) lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
321
0
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE ={ "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( a_ ): lowercase = '''mask2former''' lowercase = ['''swin'''] lowercase = {'''hidden_size''': '''hidden_dim'''} def __init__( self ,__UpperCamelCase = None ,__UpperCamelCase = 256 ,__UpperCamelCase = 256 ,__UpperCamelCase = 256 ,__UpperCamelCase = 1024 ,__UpperCamelCase = "relu" ,__UpperCamelCase = 6 ,__UpperCamelCase = 10 ,__UpperCamelCase = 8 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = 2048 ,__UpperCamelCase = False ,__UpperCamelCase = False ,__UpperCamelCase = 4 ,__UpperCamelCase = 255 ,__UpperCamelCase = 100 ,__UpperCamelCase = 0.1 ,__UpperCamelCase = 2.0 ,__UpperCamelCase = 5.0 ,__UpperCamelCase = 5.0 ,__UpperCamelCase = 1_2544 ,__UpperCamelCase = 3.0 ,__UpperCamelCase = 0.75 ,__UpperCamelCase = 0.02 ,__UpperCamelCase = 1.0 ,__UpperCamelCase = True ,__UpperCamelCase = [4, 8, 16, 32] ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> str: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) lowercase_ : Optional[int] = CONFIG_MAPPING['swin']( image_size=224 ,in_channels=3 ,patch_size=4 ,embed_dim=96 ,depths=[2, 2, 18, 2] ,num_heads=[3, 6, 12, 24] ,window_size=7 ,drop_path_rate=0.3 ,use_absolute_embeddings=lowercase_ ,out_features=['stage1', 'stage2', 'stage3', 'stage4'] ,) if isinstance(lowercase_ ,lowercase_ ): lowercase_ : Any = backbone_config.pop('model_type' ) lowercase_ : int = CONFIG_MAPPING[backbone_model_type] lowercase_ : str = config_class.from_dict(lowercase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) lowercase_ : Union[str, Any] = backbone_config lowercase_ : Dict = feature_size lowercase_ : Union[str, Any] = mask_feature_size lowercase_ : Optional[Any] = hidden_dim lowercase_ : Optional[Any] = encoder_feedforward_dim lowercase_ : List[str] = activation_function lowercase_ : str = encoder_layers lowercase_ : str = decoder_layers lowercase_ : List[str] = num_attention_heads lowercase_ : Any = dropout lowercase_ : Any = dim_feedforward lowercase_ : Tuple = pre_norm lowercase_ : List[str] = enforce_input_projection lowercase_ : Union[str, Any] = common_stride lowercase_ : List[Any] = ignore_value lowercase_ : Dict = num_queries lowercase_ : Optional[Any] = no_object_weight lowercase_ : int = class_weight lowercase_ : Optional[int] = mask_weight lowercase_ : Optional[int] = dice_weight lowercase_ : Union[str, Any] = train_num_points lowercase_ : Optional[Any] = oversample_ratio lowercase_ : Tuple = importance_sample_ratio lowercase_ : Union[str, Any] = init_std lowercase_ : Optional[int] = init_xavier_std lowercase_ : List[Any] = use_auxiliary_loss lowercase_ : int = feature_strides lowercase_ : Dict = output_auxiliary_logits lowercase_ : Any = decoder_layers super().__init__(**lowercase_ ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' return cls( backbone_config=lowercase_ ,**lowercase_ ,) def _UpperCAmelCase ( self ) -> Dict[str, any]: '''simple docstring''' lowercase_ : List[Any] = copy.deepcopy(self.__dict__ ) lowercase_ : Union[str, Any] = self.backbone_config.to_dict() lowercase_ : int = self.__class__.model_type return output
364
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
321
0
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : List[Any] = [0] * len(__a ) lowercase_ : int = [] lowercase_ : int = [1] * len(__a ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__a ) ): if indegree[i] == 0: queue.append(__a ) while queue: lowercase_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase_ : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__a ) print(max(__a ) ) # Adjacency list of Graph __SCREAMING_SNAKE_CASE ={0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
365
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]: '''simple docstring''' lowercase_ : Dict = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = use_labels lowercase_ : Union[str, Any] = scope def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[str] = None if self.use_input_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Any = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.prepare_config_and_inputs() lowercase_ : int = True lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = True lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Union[str, Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,) lowercase_ : Dict = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int: '''simple docstring''' lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() # first forward pass lowercase_ : str = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,) lowercase_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase_ : int = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] lowercase_ : List[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] # select random slice lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoderTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = 'bert' self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Tuple = model(__UpperCamelCase )[0] lowercase_ : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
0
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
366
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return None class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' return None class UpperCamelCase ( unittest.TestCase ): lowercase = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from transformers import BertModel lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCamelCase ) ) vocab_file.flush() lowercase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) lowercase_ : int = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) lowercase_ : Tuple = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from transformers import BertModel lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' from transformers import TFBertModel lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) ,1 ) self.assertEqual(len(__UpperCamelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
321
0
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : list[int | str] ) -> Optional[Any]: create_state_space_tree(a_ , [] , 0 , [0 for i in range(len(a_ ) )] ) def lowercase__( __SCREAMING_SNAKE_CASE : list[int | str] , __SCREAMING_SNAKE_CASE : list[int | str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , ) -> Dict: if index == len(a_ ): print(a_ ) return for i in range(len(a_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) lowercase_ : str = True create_state_space_tree(a_ , a_ , index + 1 , a_ ) current_sequence.pop() lowercase_ : int = False __SCREAMING_SNAKE_CASE =[3, 1, 2, 4] generate_all_permutations(sequence) __SCREAMING_SNAKE_CASE =["A", "B", "C"] generate_all_permutations(sequence_a)
367
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np __SCREAMING_SNAKE_CASE =re.compile(r"\b(a|an|the)\b", re.UNICODE) __SCREAMING_SNAKE_CASE =None def lowercase__( ): lowercase_ : str = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=_UpperCamelCase , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=_UpperCamelCase , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : Optional[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase_ : Optional[Any] = bool(qa['answers']['text'] ) return qid_to_has_ans def lowercase__( __SCREAMING_SNAKE_CASE : Dict ): def remove_articles(__SCREAMING_SNAKE_CASE : Any ): return ARTICLES_REGEX.sub(' ' , _UpperCamelCase ) def white_space_fix(__SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(__SCREAMING_SNAKE_CASE : Dict ): lowercase_ : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCamelCase ) ) ) ) def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ): if not s: return [] return normalize_answer(_UpperCamelCase ).split() def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ): return int(normalize_answer(_UpperCamelCase ) == normalize_answer(_UpperCamelCase ) ) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : int = get_tokens(_UpperCamelCase ) lowercase_ : str = get_tokens(_UpperCamelCase ) lowercase_ : Optional[Any] = collections.Counter(_UpperCamelCase ) & collections.Counter(_UpperCamelCase ) lowercase_ : List[str] = sum(common.values() ) if len(_UpperCamelCase ) == 0 or len(_UpperCamelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowercase_ : Optional[Any] = 1.0 * num_same / len(_UpperCamelCase ) lowercase_ : int = 1.0 * num_same / len(_UpperCamelCase ) lowercase_ : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ): lowercase_ : int = {} lowercase_ : Union[str, Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase_ : Any = qa['id'] lowercase_ : Tuple = [t for t in qa['answers']['text'] if normalize_answer(_UpperCamelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowercase_ : str = [''] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue lowercase_ : Dict = preds[qid] # Take max over all gold answers lowercase_ : Tuple = max(compute_exact(_UpperCamelCase , _UpperCamelCase ) for a in gold_answers ) lowercase_ : Optional[Any] = max(compute_fa(_UpperCamelCase , _UpperCamelCase ) for a in gold_answers ) return exact_scores, fa_scores def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : List[str] = {} for qid, s in scores.items(): lowercase_ : str = na_probs[qid] > na_prob_thresh if pred_na: lowercase_ : Any = float(not qid_to_has_ans[qid] ) else: lowercase_ : int = s return new_scores def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any=None ): if not qid_list: lowercase_ : Tuple = len(_UpperCamelCase ) return collections.OrderedDict( [ ('exact', 1_00.0 * sum(exact_scores.values() ) / total), ('f1', 1_00.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: lowercase_ : str = len(_UpperCamelCase ) return collections.OrderedDict( [ ('exact', 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int ): for k in new_eval: lowercase_ : Tuple = new_eval[k] def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple ): plt.step(_UpperCamelCase , _UpperCamelCase , color='b' , alpha=0.2 , where='post' ) plt.fill_between(_UpperCamelCase , _UpperCamelCase , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_UpperCamelCase ) plt.savefig(_UpperCamelCase ) plt.clf() def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : int=None ): lowercase_ : str = sorted(_UpperCamelCase , key=lambda __SCREAMING_SNAKE_CASE : na_probs[k] ) lowercase_ : Dict = 0.0 lowercase_ : Optional[int] = 1.0 lowercase_ : Tuple = 0.0 lowercase_ : Optional[int] = [1.0] lowercase_ : Optional[int] = [0.0] lowercase_ : List[Any] = 0.0 for i, qid in enumerate(_UpperCamelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowercase_ : Any = true_pos / float(i + 1 ) lowercase_ : Tuple = true_pos / float(_UpperCamelCase ) if i == len(_UpperCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_UpperCamelCase ) recalls.append(_UpperCamelCase ) if out_image: plot_pr_curve(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return {"ap": 1_00.0 * avg_prec} def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ): if out_image_dir and not os.path.exists(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) lowercase_ : int = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowercase_ : Tuple = make_precision_recall_eval( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , out_image=os.path.join(_UpperCamelCase , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) lowercase_ : str = make_precision_recall_eval( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , out_image=os.path.join(_UpperCamelCase , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) lowercase_ : List[str] = {k: float(_UpperCamelCase ) for k, v in qid_to_has_ans.items()} lowercase_ : str = make_precision_recall_eval( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , out_image=os.path.join(_UpperCamelCase , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(_UpperCamelCase , _UpperCamelCase , 'pr_exact' ) merge_eval(_UpperCamelCase , _UpperCamelCase , 'pr_f1' ) merge_eval(_UpperCamelCase , _UpperCamelCase , 'pr_oracle' ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple ): if not qid_list: return lowercase_ : int = [na_probs[k] for k in qid_list] lowercase_ : Tuple = np.ones_like(_UpperCamelCase ) / float(len(_UpperCamelCase ) ) plt.hist(_UpperCamelCase , weights=_UpperCamelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(_UpperCamelCase , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowercase_ : str = num_no_ans lowercase_ : List[Any] = cur_score lowercase_ : Optional[int] = 0.0 lowercase_ : str = sorted(_UpperCamelCase , key=lambda __SCREAMING_SNAKE_CASE : na_probs[k] ) for i, qid in enumerate(_UpperCamelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: lowercase_ : Tuple = scores[qid] else: if preds[qid]: lowercase_ : Union[str, Any] = -1 else: lowercase_ : Optional[int] = 0 cur_score += diff if cur_score > best_score: lowercase_ : Union[str, Any] = cur_score lowercase_ : Dict = na_probs[qid] return 1_00.0 * best_score / len(_UpperCamelCase ), best_thresh def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple ): lowercase_ , lowercase_ : List[str] = find_best_thresh(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ , lowercase_ : Dict = find_best_thresh(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Union[str, Any] = best_exact lowercase_ : Optional[Any] = exact_thresh lowercase_ : Optional[Any] = best_fa lowercase_ : List[str] = fa_thresh def lowercase__( ): with open(OPTS.data_file ) as f: lowercase_ : List[Any] = json.load(_UpperCamelCase ) lowercase_ : Dict = dataset_json['data'] with open(OPTS.pred_file ) as f: lowercase_ : Tuple = json.load(_UpperCamelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowercase_ : str = json.load(_UpperCamelCase ) else: lowercase_ : str = {k: 0.0 for k in preds} lowercase_ : str = make_qid_to_has_ans(_UpperCamelCase ) # maps qid to True/False lowercase_ : Tuple = [k for k, v in qid_to_has_ans.items() if v] lowercase_ : Tuple = [k for k, v in qid_to_has_ans.items() if not v] lowercase_ , lowercase_ : Optional[Any] = get_raw_scores(_UpperCamelCase , _UpperCamelCase ) lowercase_ : Dict = apply_no_ans_threshold(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , OPTS.na_prob_thresh ) lowercase_ : Tuple = apply_no_ans_threshold(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , OPTS.na_prob_thresh ) lowercase_ : Union[str, Any] = make_eval_dict(_UpperCamelCase , _UpperCamelCase ) if has_ans_qids: lowercase_ : Optional[int] = make_eval_dict(_UpperCamelCase , _UpperCamelCase , qid_list=_UpperCamelCase ) merge_eval(_UpperCamelCase , _UpperCamelCase , 'HasAns' ) if no_ans_qids: lowercase_ : Any = make_eval_dict(_UpperCamelCase , _UpperCamelCase , qid_list=_UpperCamelCase ) merge_eval(_UpperCamelCase , _UpperCamelCase , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , OPTS.out_image_dir ) histogram_na_prob(_UpperCamelCase , _UpperCamelCase , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(_UpperCamelCase , _UpperCamelCase , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) else: print(json.dumps(_UpperCamelCase , indent=2 ) ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
368
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[Any] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : Tuple = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) print(F'''Loading model based on config from {config_path}...''' ) lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowercase_ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention lowercase_ : BertSelfAttention = layer.attention.self lowercase_ : str = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape ) lowercase_ : int = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape ) lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape ) lowercase_ : List[Any] = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output lowercase_ : BertSelfOutput = layer.attention.output lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape ) lowercase_ : Any = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape ) lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' ) lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' ) # Intermediate lowercase_ : BertIntermediate = layer.intermediate lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' ) lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' ) # Output lowercase_ : BertOutput = layer.output lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' ) lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' ) lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' ) lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' ) # Embeddings lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' ) lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' ) lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' ) lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head lowercase_ : int = model.cls.predictions.transform lowercase_ : str = get_masked_lm_array('dense/kernel' ) lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' ) lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' ) lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' ) lowercase_ : List[str] = get_masked_lm_array('embedding_table' ) # Pooling lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(__SCREAMING_SNAKE_CASE ) # Integration test - should load without any errors ;) lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
321
0
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple = None ): lowercase_ : int = word_bank or [] # create a table lowercase_ : int = len(a__ ) + 1 lowercase_ : list[list[list[str]]] = [] for _ in range(a__ ): table.append([] ) # seed value lowercase_ : Tuple = [[]] # because empty string has empty combination # iterate through the indices for i in range(a__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a__ )] == word: lowercase_ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a__ )]: combination.reverse() return table[len(a__ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
369
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore __SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered") def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ): lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
321
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class UpperCamelCase ( __UpperCamelCase ): def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' super().__init__(*_lowerCAmelCase ,**_lowerCAmelCase ) requires_backends(self ,'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _UpperCAmelCase ( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ) -> Dict: '''simple docstring''' lowercase_ : Optional[Any] = {} lowercase_ : int = {} if prompt is not None: lowercase_ : Dict = prompt if generate_kwargs is not None: lowercase_ : List[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase_ : Optional[int] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) lowercase_ : Any = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self ,__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return super().__call__(_lowerCAmelCase ,**_lowerCAmelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. ''' 'Note also that one single text can be provided for conditional image to text generation.' ) lowercase_ : Tuple = self.model.config.model_type if model_type == "git": lowercase_ : Tuple = self.image_processor(images=_lowerCAmelCase ,return_tensors=self.framework ) lowercase_ : Any = self.tokenizer(text=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ).input_ids lowercase_ : Tuple = [self.tokenizer.cls_token_id] + input_ids lowercase_ : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": lowercase_ : Dict = self.image_processor(images=_lowerCAmelCase ,header_text=_lowerCAmelCase ,return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase_ : int = self.image_processor(images=_lowerCAmelCase ,return_tensors=self.framework ) lowercase_ : Optional[Any] = self.tokenizer(_lowerCAmelCase ,return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowercase_ : Tuple = self.image_processor(images=_lowerCAmelCase ,return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase_ : int = None return model_inputs def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> int: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] ,_lowerCAmelCase ) and all(x is None for x in model_inputs['input_ids'] ) ): lowercase_ : List[Any] = None if generate_kwargs is None: lowercase_ : Dict = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase_ : Dict = model_inputs.pop(self.model.main_input_name ) lowercase_ : Optional[int] = self.model.generate(_lowerCAmelCase ,**_lowerCAmelCase ,**_lowerCAmelCase ) return model_outputs def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Union[str, Any] = [] for output_ids in model_outputs: lowercase_ : Union[str, Any] = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase ,skip_special_tokens=_lowerCAmelCase ,) } records.append(_lowerCAmelCase ) return records
370
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
321
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : List[Any] ): requires_backends(UpperCAmelCase__ , ['torch'] ) def lowercase__( *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Union[str, Any] ): requires_backends(UpperCAmelCase__ , ['torch'] ) def lowercase__( *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Any ): requires_backends(UpperCAmelCase__ , ['torch'] ) def lowercase__( *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ): requires_backends(UpperCAmelCase__ , ['torch'] ) def lowercase__( *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : Tuple ): requires_backends(UpperCAmelCase__ , ['torch'] ) def lowercase__( *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Optional[int] ): requires_backends(UpperCAmelCase__ , ['torch'] ) def lowercase__( *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : Optional[Any] ): requires_backends(UpperCAmelCase__ , ['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Any: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=_UpperCAmelCase ): lowercase = ['torch'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] )
371
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]: '''simple docstring''' lowercase_ : Any = parent lowercase_ : str = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Dict = is_training lowercase_ : Tuple = use_input_mask lowercase_ : Optional[Any] = use_token_type_ids lowercase_ : List[str] = use_labels lowercase_ : Any = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : Tuple = max_position_embeddings lowercase_ : Optional[int] = type_vocab_size lowercase_ : Optional[int] = type_sequence_label_size lowercase_ : Dict = initializer_range lowercase_ : int = num_labels lowercase_ : Any = num_choices lowercase_ : int = scope def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Dict = None if self.use_input_mask: lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Tuple = None lowercase_ : Tuple = None lowercase_ : Tuple = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) lowercase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Union[str, Any] = model(__UpperCamelCase ) lowercase_ : int = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.num_labels lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Any = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = config_and_inputs lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = False lowercase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowercase = () lowercase = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = EsmModelTester(self ) lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Optional[Any] = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowercase_ : List[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : List[Any] = torch.empty(2 ,4 ,30 ) lowercase_ : List[str] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch class UpperCamelCase ( lowercase_ ): @slow def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : List[str] = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = 33 lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : List[str] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase_ : Dict = model(__UpperCamelCase )[0] # compare the actual values for a slice. lowercase_ : Any = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
0
"""simple docstring""" import colorsys from PIL import Image # type: ignore def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Optional[int] = x lowercase_ : Tuple = y for step in range(__a ): # noqa: B007 lowercase_ : Optional[Any] = a * a - b * b + x lowercase_ : Optional[int] = 2 * a * b + y lowercase_ : Union[str, Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowercase__( __SCREAMING_SNAKE_CASE : float ): if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def lowercase__( __SCREAMING_SNAKE_CASE : float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(__a , 1 , 1 ) ) def lowercase__( __SCREAMING_SNAKE_CASE : int = 8_00 , __SCREAMING_SNAKE_CASE : int = 6_00 , __SCREAMING_SNAKE_CASE : float = -0.6 , __SCREAMING_SNAKE_CASE : float = 0 , __SCREAMING_SNAKE_CASE : float = 3.2 , __SCREAMING_SNAKE_CASE : int = 50 , __SCREAMING_SNAKE_CASE : bool = True , ): lowercase_ : List[Any] = Image.new('RGB' , (image_width, image_height) ) lowercase_ : List[Any] = img.load() # loop through the image-coordinates for image_x in range(__a ): for image_y in range(__a ): # determine the figure-coordinates based on the image-coordinates lowercase_ : int = figure_width / image_width * image_height lowercase_ : int = figure_center_x + (image_x / image_width - 0.5) * figure_width lowercase_ : Dict = figure_center_y + (image_y / image_height - 0.5) * figure_height lowercase_ : Tuple = get_distance(__a , __a , __a ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowercase_ : int = get_color_coded_rgb(__a ) else: lowercase_ : Any = get_black_and_white_rgb(__a ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __SCREAMING_SNAKE_CASE =get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
350
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
0
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __SCREAMING_SNAKE_CASE ="0.12" # assumed parallelism: 8 @require_flax @is_staging_test class UpperCamelCase ( unittest.TestCase ): @classmethod def _UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' lowercase_ : str = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def _UpperCAmelCase ( cls ) -> Dict: '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) lowercase_ : int = FlaxBertModel(lowercase_ ) model.push_to_hub('test-model-flax' ,use_auth_token=self._token ) lowercase_ : Dict = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowercase_ : List[Any] = flatten_dict(unfreeze(model.params ) ) lowercase_ : Union[str, Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ ,1e-3 ,msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token ,repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_ ,repo_id='test-model-flax' ,push_to_hub=lowercase_ ,use_auth_token=self._token ) lowercase_ : Tuple = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowercase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) lowercase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ ,1e-3 ,msg=f'''{key} not identical''' ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Tuple = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) lowercase_ : Union[str, Any] = FlaxBertModel(lowercase_ ) model.push_to_hub('valid_org/test-model-flax-org' ,use_auth_token=self._token ) lowercase_ : Union[str, Any] = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) lowercase_ : Any = flatten_dict(unfreeze(model.params ) ) lowercase_ : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ : Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ ,1e-3 ,msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowercase_ ,repo_id='valid_org/test-model-flax-org' ,push_to_hub=lowercase_ ,use_auth_token=self._token ) lowercase_ : Any = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) lowercase_ : int = flatten_dict(unfreeze(model.params ) ) lowercase_ : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ ,1e-3 ,msg=f'''{key} not identical''' ) def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : Optional[int] = True lowercase_ : Union[str, Any] = flatten_dict(modela.params ) lowercase_ : Union[str, Any] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: lowercase_ : int = False return models_are_equal @require_flax class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) lowercase_ : Any = FlaxBertModel(lowercase_ ) lowercase_ : Optional[Any] = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ ,lowercase_ ) ) with self.assertRaises(lowercase_ ): lowercase_ : Any = FlaxBertModel.from_pretrained(lowercase_ ) lowercase_ : int = FlaxBertModel.from_pretrained(lowercase_ ,subfolder=lowercase_ ) self.assertTrue(check_models_equal(lowercase_ ,lowercase_ ) ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) lowercase_ : int = FlaxBertModel(lowercase_ ) lowercase_ : Tuple = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ ,lowercase_ ) ,max_shard_size='10KB' ) with self.assertRaises(lowercase_ ): lowercase_ : Optional[Any] = FlaxBertModel.from_pretrained(lowercase_ ) lowercase_ : Tuple = FlaxBertModel.from_pretrained(lowercase_ ,subfolder=lowercase_ ) self.assertTrue(check_models_equal(lowercase_ ,lowercase_ ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[Any] = "bert" lowercase_ : List[str] = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(lowercase_ ): lowercase_ : Optional[Any] = FlaxBertModel.from_pretrained(lowercase_ ) lowercase_ : int = FlaxBertModel.from_pretrained(lowercase_ ,subfolder=lowercase_ ) self.assertIsNotNone(lowercase_ ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = "bert" lowercase_ : str = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(lowercase_ ): lowercase_ : Optional[int] = FlaxBertModel.from_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxBertModel.from_pretrained(lowercase_ ,subfolder=lowercase_ ) self.assertIsNotNone(lowercase_ )
351
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): lowercase_ : Dict = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = 'patrickvonplaten/t5-tiny-random' lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] ) lowercase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'current' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
321
0
"""simple docstring""" import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __SCREAMING_SNAKE_CASE =[ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None ): """simple docstring""" lowercase_ : List[Any] = True while ask_again: lowercase_ : str = input(_snake_case ) try: if default is not None and len(_snake_case ) == 0: return default return convert_value(_snake_case ) if convert_value is not None else result except Exception: if error_message is not None: print(_snake_case ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any]=[] , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Optional[Any]=0 ): """simple docstring""" lowercase_ : Union[str, Any] = BulletMenu(_snake_case , _snake_case ) lowercase_ : List[str] = menu.run(default_choice=_snake_case ) return convert_value(_snake_case ) if convert_value is not None else result def lowercase__( __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" lowercase_ : Union[str, Any] = int(_snake_case ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def lowercase__( __SCREAMING_SNAKE_CASE : Any ): """simple docstring""" lowercase_ : int = int(_snake_case ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : Optional[int] = int(_snake_case ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" lowercase_ : Any = int(_snake_case ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def lowercase__( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Any = int(_snake_case ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = super()._format_usage(a_ ,a_ ,a_ ,a_ ) lowercase_ : Optional[Any] = usage.replace('<command> [<args>] ' ,'' ) return usage
352
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['input_values', 'padding_mask'] def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = chunk_length_s lowercase_ : Tuple = overlap @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowercase_ : Optional[int] = True lowercase_ : Optional[int] = bool( isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ): lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa ) elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) lowercase_ : Optional[int] = None lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio ) lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) ) lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio ) lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase_ : Union[str, Any] = 'max_length' else: lowercase_ : int = input_values # normal padding on batch if padded_inputs is None: lowercase_ : int = self.pad( __UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) if padding: lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' ) lowercase_ : Dict = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowercase_ : Optional[int] = example[..., None] input_values.append(example.T ) lowercase_ : str = input_values if return_tensors is not None: lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
321
0
"""simple docstring""" from __future__ import annotations import queue class UpperCamelCase : """simple docstring""" def __init__( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = data lowercase_ : str = None lowercase_ : Union[str, Any] = None def lowercase__( ): print('\n********Press N to stop entering at any point of time********\n' ) lowercase_ : Union[str, Any] = input('Enter the value of the root node: ' ).strip().lower() lowercase_ : queue.Queue = queue.Queue() lowercase_ : Optional[int] = TreeNode(int(_A ) ) q.put(_A ) while not q.empty(): lowercase_ : str = q.get() lowercase_ : Any = F'''Enter the left node of {node_found.data}: ''' lowercase_ : Optional[Any] = input(_A ).strip().lower() or 'n' if check == "n": return tree_node lowercase_ : Optional[int] = TreeNode(int(_A ) ) lowercase_ : Optional[int] = left_node q.put(_A ) lowercase_ : List[Any] = F'''Enter the right node of {node_found.data}: ''' lowercase_ : int = input(_A ).strip().lower() or 'n' if check == "n": return tree_node lowercase_ : int = TreeNode(int(_A ) ) lowercase_ : Union[str, Any] = right_node q.put(_A ) raise def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): if not isinstance(_A , _A ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): if not isinstance(_A , _A ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowercase__( __SCREAMING_SNAKE_CASE : Any ): if not isinstance(_A , _A ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowercase__( __SCREAMING_SNAKE_CASE : int ): if not isinstance(_A , _A ) or not node: return lowercase_ : queue.Queue = queue.Queue() q.put(_A ) while not q.empty(): lowercase_ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase__( __SCREAMING_SNAKE_CASE : Any ): if not isinstance(_A , _A ) or not node: return lowercase_ : queue.Queue = queue.Queue() q.put(_A ) while not q.empty(): lowercase_ : Dict = [] while not q.empty(): lowercase_ : List[Any] = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_A ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ): if not isinstance(_A , _A ) or not node: return lowercase_ : list[TreeNode] = [] lowercase_ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_A ) lowercase_ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowercase_ : Optional[Any] = stack.pop() # start to traverse its right child lowercase_ : List[Any] = n.right def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ): if not isinstance(_A , _A ) or not node: return lowercase_ : list[TreeNode] = [] lowercase_ : Union[str, Any] = node while n or stack: while n: stack.append(_A ) lowercase_ : Optional[int] = n.left lowercase_ : str = stack.pop() print(n.data , end=',' ) lowercase_ : Union[str, Any] = n.right def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): if not isinstance(_A , _A ) or not node: return lowercase_ : str = [], [] lowercase_ : List[Any] = node stacka.append(_A ) while stacka: # to find the reversed order of post order, store it in stack2 lowercase_ : List[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_A ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowercase__( __SCREAMING_SNAKE_CASE : Dict = "" , __SCREAMING_SNAKE_CASE : Optional[int]=50 , __SCREAMING_SNAKE_CASE : Dict="*" ): if not s: return "\n" + width * char lowercase_ : str = divmod(width - len(_A ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) __SCREAMING_SNAKE_CASE =build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
353
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
321
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ , lowercase_ : Dict = emb.weight.shape lowercase_ : List[Any] = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = emb.weight.data return lin_layer def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int]="facebook/mbart-large-en-ro" , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False ): lowercase_ : Optional[Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] remove_ignore_keys_(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = state_dict['encoder.embed_tokens.weight'].shape[0] lowercase_ : Tuple = MBartConfig.from_pretrained(__SCREAMING_SNAKE_CASE , vocab_size=__SCREAMING_SNAKE_CASE ) if mbart_aa and finetuned: lowercase_ : Union[str, Any] = 'relu' lowercase_ : Dict = state_dict['decoder.embed_tokens.weight'] lowercase_ : str = MBartForConditionalGeneration(__SCREAMING_SNAKE_CASE ) model.model.load_state_dict(__SCREAMING_SNAKE_CASE ) if finetuned: lowercase_ : str = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") __SCREAMING_SNAKE_CASE =parser.parse_args() __SCREAMING_SNAKE_CASE =convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
354
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
321
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE ={ '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =['''ConvNextFeatureExtractor'''] __SCREAMING_SNAKE_CASE =['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
355
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ): lowercase_ : int = 'backbone.' if is_semantic else '' lowercase_ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ): for i in range(config.num_hidden_layers ): lowercase_ : Any = 'backbone.' if is_semantic else '' # queries, keys and values lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) lowercase_ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = q_bias lowercase_ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) lowercase_ : Tuple = gamma_a lowercase_ : List[Any] = gamma_a def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = val def lowercase__( ): lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ): lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowercase_ : Any = 10_24 lowercase_ : List[str] = 40_96 lowercase_ : Tuple = 24 lowercase_ : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: lowercase_ : Optional[Any] = 16 lowercase_ : Any = 'huggingface/label-files' lowercase_ : int = 'rvlcdip-id2label.json' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : str = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) # load HuggingFace model lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image lowercase_ : List[Any] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE ) lowercase_ : str = prepare_img() lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) lowercase_ : int = encoding['pixel_values'] lowercase_ : Any = model(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = outputs.logits # verify logits lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected" Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: if has_lm_head: lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) model.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
321
0
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser( description=( "Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") __SCREAMING_SNAKE_CASE = parser.parse_args() if args.model_type == "roberta": __SCREAMING_SNAKE_CASE = RobertaForMaskedLM.from_pretrained(args.model_name) __SCREAMING_SNAKE_CASE = "roberta" elif args.model_type == "gpt2": __SCREAMING_SNAKE_CASE = GPTaLMHeadModel.from_pretrained(args.model_name) __SCREAMING_SNAKE_CASE = "transformer" __SCREAMING_SNAKE_CASE = model.state_dict() __SCREAMING_SNAKE_CASE = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __SCREAMING_SNAKE_CASE = state_dict[F"{prefix}.{param_name}"] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __SCREAMING_SNAKE_CASE = F"{prefix}.embeddings.{w}.weight" __SCREAMING_SNAKE_CASE = state_dict[param_name] for w in ["weight", "bias"]: __SCREAMING_SNAKE_CASE = F"{prefix}.embeddings.LayerNorm.{w}" __SCREAMING_SNAKE_CASE = state_dict[param_name] # Transformer Blocks # __SCREAMING_SNAKE_CASE = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __SCREAMING_SNAKE_CASE = state_dict[ F"{prefix}.h.{teacher_idx}.{layer}.{w}" ] __SCREAMING_SNAKE_CASE = state_dict[F"{prefix}.h.{teacher_idx}.attn.bias"] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __SCREAMING_SNAKE_CASE = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __SCREAMING_SNAKE_CASE = state_dict[F"{layer}"] if args.vocab_transform: for w in ["weight", "bias"]: __SCREAMING_SNAKE_CASE = state_dict[F"lm_head.dense.{w}"] __SCREAMING_SNAKE_CASE = state_dict[F"lm_head.layer_norm.{w}"] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __SCREAMING_SNAKE_CASE = state_dict[F"{prefix}.ln_f.{w}"] __SCREAMING_SNAKE_CASE = state_dict["lm_head.weight"] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
356
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()} def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase__( __SCREAMING_SNAKE_CASE : str ): if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowercase_ : Dict = '' for word in coded.split(): while len(__SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase_ : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
321
0
"""simple docstring""" import numpy as np def lowercase__( __SCREAMING_SNAKE_CASE : np.array ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations_with_dp_array( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase_ : str = sum( count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE ) for item in array ) lowercase_ : Tuple = answer return answer lowercase_ : Optional[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = [0] * (target + 1) lowercase_ : Dict = 1 for i in range(1 , target + 1 ): for j in range(__SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE =3 __SCREAMING_SNAKE_CASE =5 __SCREAMING_SNAKE_CASE =[1, 2, 5] print(combination_sum_iv(n, array, target))
321
0
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() __SCREAMING_SNAKE_CASE =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __SCREAMING_SNAKE_CASE =CLIPImageProcessor() __SCREAMING_SNAKE_CASE =CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") __SCREAMING_SNAKE_CASE =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
358
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : int = set_counts lowercase_ : List[Any] = max(__UpperCamelCase ) lowercase_ : Union[str, Any] = len(__UpperCamelCase ) lowercase_ : Dict = [1] * num_sets lowercase_ : Optional[int] = list(range(__UpperCamelCase ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase ) lowercase_ : int = self.get_parent(__UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : Tuple = 0 lowercase_ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : str = 0 lowercase_ : Tuple = src_parent lowercase_ : int = self.set_counts[src_parent] lowercase_ : str = max(self.max_set ,__UpperCamelCase ) return True def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
321
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __SCREAMING_SNAKE_CASE =( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __SCREAMING_SNAKE_CASE =[ord(letter) for letter in string.ascii_lowercase] __SCREAMING_SNAKE_CASE ={ord(char) for char in VALID_CHARS} __SCREAMING_SNAKE_CASE =["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : tuple[int, ...] ) -> str | None: lowercase_ : Optional[Any] = '' lowercase_ : Tuple = 42 lowercase_ : Tuple = 42 lowercase_ : Optional[Any] = 42 for keychar, cipherchar in zip(cycle(_UpperCamelCase ) , _UpperCamelCase ): lowercase_ : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_UpperCamelCase ) return decoded def lowercase__( __SCREAMING_SNAKE_CASE : list[int] ) -> list[str]: lowercase_ : str = [] for key in product(_UpperCamelCase , repeat=3 ): lowercase_ : Optional[Any] = try_key(_UpperCamelCase , _UpperCamelCase ) if encoded is not None: possibles.append(_UpperCamelCase ) return possibles def lowercase__( __SCREAMING_SNAKE_CASE : list[str] , __SCREAMING_SNAKE_CASE : str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def lowercase__( __SCREAMING_SNAKE_CASE : str = "p059_cipher.txt" ) -> int: lowercase_ : int = 42 lowercase_ : int = 42 lowercase_ : Dict = 42 lowercase_ : Union[str, Any] = 42 lowercase_ : str = Path(_UpperCamelCase ).parent.joinpath(_UpperCamelCase ).read_text(encoding='utf-8' ) lowercase_ : Union[str, Any] = [int(_UpperCamelCase ) for number in data.strip().split(',' )] lowercase_ : str = filter_valid_chars(_UpperCamelCase ) for common_word in COMMON_WORDS: lowercase_ : List[Any] = filter_common_word(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) == 1: break lowercase_ : Union[str, Any] = possibles[0] return sum(ord(_UpperCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
359
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __SCREAMING_SNAKE_CASE ={ "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128} class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BlenderbotTokenizer def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( __UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) ) lowercase_ : Any = add_prefix_space lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase ) lowercase_ : int = add_prefix_space lowercase_ : Any = 'post_processor' lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) if tokenizer_component_instance: lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ : str = tuple(state['sep'] ) if "cls" in state: lowercase_ : Union[str, Any] = tuple(state['cls'] ) lowercase_ : str = False if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Dict = add_prefix_space lowercase_ : int = True if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets: lowercase_ : Optional[Any] = trim_offsets lowercase_ : Tuple = True if changes_to_apply: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) ) lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _UpperCAmelCase ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value lowercase_ : str = value def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : int = [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]: '''simple docstring''' lowercase_ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) lowercase_ : Dict = ' '.join(__UpperCamelCase ) lowercase_ : str = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: lowercase_ : List[str] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
321
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase_ : Optional[Any] = SwinConfig(image_size=1_92 ) if "base" in model_name: lowercase_ : Tuple = 6 lowercase_ : List[str] = 1_28 lowercase_ : Tuple = (2, 2, 18, 2) lowercase_ : int = (4, 8, 16, 32) elif "large" in model_name: lowercase_ : Optional[int] = 12 lowercase_ : Dict = 1_92 lowercase_ : Optional[Any] = (2, 2, 18, 2) lowercase_ : Dict = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) lowercase_ : Any = window_size lowercase_ : str = embed_dim lowercase_ : Optional[int] = depths lowercase_ : str = num_heads return config def lowercase__( __SCREAMING_SNAKE_CASE : int ): if "encoder.mask_token" in name: lowercase_ : Dict = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: lowercase_ : List[Any] = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: lowercase_ : List[Any] = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: lowercase_ : Any = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowercase_ : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowercase_ : Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowercase_ : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowercase_ : Tuple = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowercase_ : int = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": lowercase_ : Dict = 'layernorm.weight' if name == "encoder.norm.bias": lowercase_ : Tuple = 'layernorm.bias' if "decoder" in name: pass else: lowercase_ : List[str] = 'swin.' + name return name def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple ): for key in orig_state_dict.copy().keys(): lowercase_ : Any = orig_state_dict.pop(lowerCAmelCase__ ) if "attn_mask" in key: pass elif "qkv" in key: lowercase_ : str = key.split('.' ) lowercase_ : List[Any] = int(key_split[2] ) lowercase_ : Tuple = int(key_split[4] ) lowercase_ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase_ : str = val[:dim, :] lowercase_ : int = val[ dim : dim * 2, : ] lowercase_ : Any = val[-dim:, :] else: lowercase_ : Tuple = val[ :dim ] lowercase_ : Optional[int] = val[ dim : dim * 2 ] lowercase_ : Optional[Any] = val[ -dim: ] else: lowercase_ : Any = val return orig_state_dict def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = torch.load(lowerCAmelCase__ , map_location='cpu' )['model'] lowercase_ : Optional[Any] = get_swin_config(lowerCAmelCase__ ) lowercase_ : int = SwinForMaskedImageModeling(lowerCAmelCase__ ) model.eval() lowercase_ : Dict = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) lowercase_ : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase_ : List[str] = ViTImageProcessor(size={'height': 1_92, 'width': 1_92} ) lowercase_ : Union[str, Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) lowercase_ : List[str] = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ) with torch.no_grad(): lowercase_ : str = model(**lowerCAmelCase__ ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
360
"""simple docstring""" import os import sys import unittest __SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py") __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'} lowercase_ : Union[str, Any] = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : Any = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowercase_ : Any = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Tuple = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowercase_ : Optional[Any] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
321
0
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowercase_ : Union[str, Any] = (boundary[1] - boundary[0]) / steps lowercase_ : Any = boundary[0] lowercase_ : Optional[Any] = boundary[1] lowercase_ : Tuple = make_points(a__ , a__ , a__ ) lowercase_ : Union[str, Any] = 0.0 y += (h / 2.0) * f(a__ ) for i in x_i: # print(i) y += h * f(a__ ) y += (h / 2.0) * f(a__ ) return y def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : List[str] = a + h while x < (b - h): yield x lowercase_ : List[str] = x + h def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): # enter your function here lowercase_ : List[str] = (x - 0) * (x - 0) return y def lowercase__( ): lowercase_ : Dict = 0.0 # Lower bound of integration lowercase_ : Dict = 1.0 # Upper bound of integration lowercase_ : int = 10.0 # define number of steps or resolution lowercase_ : Any = [a, b] # define boundary of integration lowercase_ : str = method_a(a__ , a__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
361
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ): with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX ) try: print(*__SCREAMING_SNAKE_CASE ) finally: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) __SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank) __SCREAMING_SNAKE_CASE =socket.gethostname() __SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __SCREAMING_SNAKE_CASE =dist.get_rank() __SCREAMING_SNAKE_CASE =dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
321
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __SCREAMING_SNAKE_CASE ="\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __SCREAMING_SNAKE_CASE ="\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __SCREAMING_SNAKE_CASE ="\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def _UpperCAmelCase ( self ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ,id='token' ) ,id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' ,id='token' ) ,id='sequence' ) ,id='references' ), } ) ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = 1 ,__UpperCamelCase = 4 ,) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__UpperCamelCase ,hypotheses=__UpperCamelCase ,min_len=__UpperCamelCase ,max_len=__UpperCamelCase ) }
362
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : List[Any] = name lowercase_ : int = val def __str__( self ) -> Tuple: '''simple docstring''' return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return self.val < other.val class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = {} lowercase_ : Tuple = {} lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase ) def __getitem__( self ,__UpperCamelCase ) -> int: '''simple docstring''' return self.get_value(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' return (idx - 1) // 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return idx * 2 + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return idx * 2 + 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' return self.heap_dict[key] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1 lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): lowercase_ : Any = idx lowercase_ : str = i.val for i in range(__UpperCamelCase ,-1 ,-1 ): self.sift_down(__UpperCamelCase ,__UpperCamelCase ) return array def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' while True: lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase ) lowercase_ : List[str] = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: lowercase_ : List[str] = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: lowercase_ : Dict = r if smallest != idx: lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx] ( ( lowercase_ ) , ( lowercase_ ) , ) : str = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase_ : Any = smallest else: break def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase_ : int = p lowercase_ : str = self.get_parent_idx(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self.heap[0] def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase_ : Tuple = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 ,self.heap ) return x def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' self.heap.append(__UpperCamelCase ) lowercase_ : Tuple = len(self.heap ) - 1 lowercase_ : Optional[int] = node.val self.sift_up(len(self.heap ) - 1 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return len(self.heap ) == 0 def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase_ : Any = new_value lowercase_ : List[str] = new_value self.sift_up(self.idx_of_element[node] ) __SCREAMING_SNAKE_CASE =Node("R", -1) __SCREAMING_SNAKE_CASE =Node("B", 6) __SCREAMING_SNAKE_CASE =Node("A", 3) __SCREAMING_SNAKE_CASE =Node("X", 1) __SCREAMING_SNAKE_CASE =Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
321
0
"""simple docstring""" import string from math import logaa def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): lowercase_ : Dict = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) lowercase_ : List[str] = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): lowercase_ : Dict = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' lowercase_ : Union[str, Any] = corpus_without_punctuation.split('\n' ) lowercase_ : List[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCamelCase__ )) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str]=False ): if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): return round(tf * idf , 3 )
363
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = tempfile.mkdtemp() # fmt: off lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) ) lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowercase_ : Tuple = {'unk_token': '<unk>'} lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCamelCase ) ) lowercase_ : Any = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = self.get_tokenizer() lowercase_ : List[Any] = self.get_rust_tokenizer() lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase ) lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 ) lowercase_ : Any = CLIPSegProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[str] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = self.prepare_image_inputs() lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' ) lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[Any] = self.get_tokenizer() lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Dict = 'lower newer' lowercase_ : Any = processor(text=__UpperCamelCase ) lowercase_ : int = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.get_image_processor() lowercase_ : str = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = 'lower newer' lowercase_ : str = self.prepare_image_inputs() lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = self.prepare_image_inputs() lowercase_ : Optional[Any] = self.prepare_image_inputs() lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase ) lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
321
0
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'num_attention_heads' ) ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=64 ,__UpperCamelCase=3 ,__UpperCamelCase=3 ,__UpperCamelCase=2 ,__UpperCamelCase=1 ,__UpperCamelCase=16 ,__UpperCamelCase=[128, 256, 384] ,__UpperCamelCase=[4, 6, 8] ,__UpperCamelCase=[2, 3, 4] ,__UpperCamelCase=[16, 16, 16] ,__UpperCamelCase=0 ,__UpperCamelCase=[2, 2, 2] ,__UpperCamelCase=[2, 2, 2] ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=2 ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = parent lowercase_ : Optional[int] = batch_size lowercase_ : Union[str, Any] = image_size lowercase_ : Optional[int] = num_channels lowercase_ : int = kernel_size lowercase_ : Union[str, Any] = stride lowercase_ : Optional[int] = padding lowercase_ : List[str] = hidden_sizes lowercase_ : Optional[int] = num_attention_heads lowercase_ : Optional[int] = depths lowercase_ : Optional[int] = key_dim lowercase_ : Dict = drop_path_rate lowercase_ : Dict = patch_size lowercase_ : Union[str, Any] = attention_ratio lowercase_ : Optional[int] = mlp_ratio lowercase_ : List[str] = initializer_range lowercase_ : int = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase_ : List[Any] = is_training lowercase_ : List[Any] = use_labels lowercase_ : Tuple = num_labels lowercase_ : int = initializer_range def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : int = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) lowercase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' return LevitConfig( image_size=self.image_size ,num_channels=self.num_channels ,kernel_size=self.kernel_size ,stride=self.stride ,padding=self.padding ,patch_size=self.patch_size ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,depths=self.depths ,key_dim=self.key_dim ,drop_path_rate=self.drop_path_rate ,mlp_ratio=self.mlp_ratio ,attention_ratio=self.attention_ratio ,initializer_range=self.initializer_range ,down_ops=self.down_ops ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Dict = LevitModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) lowercase_ : Any = (self.image_size, self.image_size) lowercase_ : List[str] = image_size[0], image_size[1] for _ in range(4 ): lowercase_ : Tuple = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase_ : List[Any] = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Any = self.num_labels lowercase_ : Tuple = LevitForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : str = model(_SCREAMING_SNAKE_CASE ,labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[int] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = config_and_inputs lowercase_ : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': LevitModel, 'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = LevitModelTester(self ) lowercase_ : Optional[int] = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,has_text_modality=_SCREAMING_SNAKE_CASE ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return @unittest.skip(reason='Levit does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason='Levit does not output attentions' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Tuple = [*signature.parameters.keys()] lowercase_ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : int = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase_ : List[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) lowercase_ : str = outputs.hidden_states lowercase_ : Optional[Any] = len(self.model_tester.depths ) + 1 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = (self.model_tester.image_size, self.model_tester.image_size) lowercase_ : str = image_size[0], image_size[1] for _ in range(4 ): lowercase_ : Tuple = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase_ : str = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[ height * width, self.model_tester.hidden_sizes[0], ] ,) lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = True check_hidden_states_output(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Dict = True check_hidden_states_output(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' pass def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=False ) -> Optional[int]: '''simple docstring''' lowercase_ : Tuple = super()._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' if not self.model_tester.is_training: return lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Any = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_SCREAMING_SNAKE_CASE ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase_ : Optional[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() lowercase_ : int = self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,return_labels=_SCREAMING_SNAKE_CASE ) lowercase_ : str = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ : Union[str, Any] = False lowercase_ : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase_ : List[str] = model_class(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.to(_SCREAMING_SNAKE_CASE ) model.train() lowercase_ : int = self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,return_labels=_SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : List[str] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_SCREAMING_SNAKE_CASE ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): lowercase_ : Any = problem_type["title"] lowercase_ : Dict = problem_type["num_labels"] lowercase_ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() lowercase_ : int = self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,return_labels=_SCREAMING_SNAKE_CASE ) if problem_type["num_labels"] > 1: lowercase_ : Dict = inputs["labels"].unsqueeze(1 ).repeat(1 ,problem_type['num_labels'] ) lowercase_ : Optional[int] = inputs["labels"].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_SCREAMING_SNAKE_CASE ) as warning_list: lowercase_ : str = model(**_SCREAMING_SNAKE_CASE ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = LevitModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowercase__( ): lowercase_ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[Any] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = self.default_image_processor lowercase_ : Dict = prepare_img() lowercase_ : List[Any] = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowercase_ : str = model(**_SCREAMING_SNAKE_CASE ) # verify the logits lowercase_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = torch.tensor([1.0448, -0.3745, -1.8317] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) )
364
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
321
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __lowerCamelCase ( snake_case__ ): lowercase = 'wav2vec2' def __init__( self ,__UpperCamelCase=32 ,__UpperCamelCase=768 ,__UpperCamelCase=12 ,__UpperCamelCase=12 ,__UpperCamelCase=3072 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-5 ,__UpperCamelCase="group" ,__UpperCamelCase="gelu" ,__UpperCamelCase=(512, 512, 512, 512, 512, 512, 512) ,__UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) ,__UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) ,__UpperCamelCase=False ,__UpperCamelCase=128 ,__UpperCamelCase=16 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=0.05 ,__UpperCamelCase=10 ,__UpperCamelCase=2 ,__UpperCamelCase=0.0 ,__UpperCamelCase=10 ,__UpperCamelCase=0 ,__UpperCamelCase=320 ,__UpperCamelCase=2 ,__UpperCamelCase=0.1 ,__UpperCamelCase=100 ,__UpperCamelCase=256 ,__UpperCamelCase=256 ,__UpperCamelCase=0.1 ,__UpperCamelCase="sum" ,__UpperCamelCase=False ,__UpperCamelCase=False ,__UpperCamelCase=256 ,__UpperCamelCase=(512, 512, 512, 512, 1500) ,__UpperCamelCase=(5, 3, 3, 1, 1) ,__UpperCamelCase=(1, 2, 3, 1, 1) ,__UpperCamelCase=512 ,__UpperCamelCase=0 ,__UpperCamelCase=1 ,__UpperCamelCase=2 ,__UpperCamelCase=False ,__UpperCamelCase=3 ,__UpperCamelCase=2 ,__UpperCamelCase=3 ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> str: '''simple docstring''' super().__init__(**UpperCAmelCase_ ,pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ) lowercase_ : Tuple = hidden_size lowercase_ : List[str] = feat_extract_norm lowercase_ : Any = feat_extract_activation lowercase_ : List[str] = list(UpperCAmelCase_ ) lowercase_ : Any = list(UpperCAmelCase_ ) lowercase_ : List[str] = list(UpperCAmelCase_ ) lowercase_ : Union[str, Any] = conv_bias lowercase_ : str = num_conv_pos_embeddings lowercase_ : str = num_conv_pos_embedding_groups lowercase_ : Optional[int] = len(self.conv_dim ) lowercase_ : Any = num_hidden_layers lowercase_ : List[str] = intermediate_size lowercase_ : str = hidden_act lowercase_ : int = num_attention_heads lowercase_ : Optional[int] = hidden_dropout lowercase_ : int = attention_dropout lowercase_ : List[Any] = activation_dropout lowercase_ : Tuple = feat_proj_dropout lowercase_ : Union[str, Any] = final_dropout lowercase_ : str = layerdrop lowercase_ : Optional[Any] = layer_norm_eps lowercase_ : Tuple = initializer_range lowercase_ : Any = vocab_size lowercase_ : Tuple = do_stable_layer_norm lowercase_ : List[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase_ : str = apply_spec_augment lowercase_ : List[str] = mask_time_prob lowercase_ : List[Any] = mask_time_length lowercase_ : Dict = mask_time_min_masks lowercase_ : Tuple = mask_feature_prob lowercase_ : Dict = mask_feature_length lowercase_ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase_ : Union[str, Any] = num_codevectors_per_group lowercase_ : Any = num_codevector_groups lowercase_ : List[Any] = contrastive_logits_temperature lowercase_ : int = feat_quantizer_dropout lowercase_ : Union[str, Any] = num_negatives lowercase_ : Optional[Any] = codevector_dim lowercase_ : Any = proj_codevector_dim lowercase_ : str = diversity_loss_weight # ctc loss lowercase_ : Dict = ctc_loss_reduction lowercase_ : Any = ctc_zero_infinity # adapter lowercase_ : Union[str, Any] = add_adapter lowercase_ : int = adapter_kernel_size lowercase_ : Tuple = adapter_stride lowercase_ : Dict = num_adapter_layers lowercase_ : Any = output_hidden_size or hidden_size lowercase_ : Dict = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase_ : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase_ : Tuple = list(UpperCAmelCase_ ) lowercase_ : Union[str, Any] = list(UpperCAmelCase_ ) lowercase_ : Tuple = list(UpperCAmelCase_ ) lowercase_ : List[str] = xvector_output_dim @property def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
365
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]: '''simple docstring''' lowercase_ : Dict = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = use_labels lowercase_ : Union[str, Any] = scope def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[str] = None if self.use_input_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Any = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.prepare_config_and_inputs() lowercase_ : int = True lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = True lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Union[str, Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,) lowercase_ : Dict = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int: '''simple docstring''' lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() # first forward pass lowercase_ : str = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,) lowercase_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase_ : int = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] lowercase_ : List[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] # select random slice lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoderTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = 'bert' self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Tuple = model(__UpperCamelCase )[0] lowercase_ : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
0
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : int = checkpoint lowercase_ : List[Any] = {} lowercase_ : Optional[Any] = vae_state_dict['encoder.conv_in.weight'] lowercase_ : Dict = vae_state_dict['encoder.conv_in.bias'] lowercase_ : Any = vae_state_dict['encoder.conv_out.weight'] lowercase_ : Union[str, Any] = vae_state_dict['encoder.conv_out.bias'] lowercase_ : Optional[int] = vae_state_dict['encoder.norm_out.weight'] lowercase_ : List[str] = vae_state_dict['encoder.norm_out.bias'] lowercase_ : int = vae_state_dict['decoder.conv_in.weight'] lowercase_ : int = vae_state_dict['decoder.conv_in.bias'] lowercase_ : List[Any] = vae_state_dict['decoder.conv_out.weight'] lowercase_ : Dict = vae_state_dict['decoder.conv_out.bias'] lowercase_ : Optional[int] = vae_state_dict['decoder.norm_out.weight'] lowercase_ : Dict = vae_state_dict['decoder.norm_out.bias'] lowercase_ : List[str] = vae_state_dict['quant_conv.weight'] lowercase_ : int = vae_state_dict['quant_conv.bias'] lowercase_ : int = vae_state_dict['post_quant_conv.weight'] lowercase_ : Optional[int] = vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only lowercase_ : str = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) lowercase_ : Tuple = { layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } # Retrieves the keys for the decoder up blocks only lowercase_ : Any = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) lowercase_ : int = { layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } for i in range(SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key] if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: lowercase_ : int = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.weight''' ) lowercase_ : List[Any] = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.bias''' ) lowercase_ : Optional[Any] = renew_vae_resnet_paths(SCREAMING_SNAKE_CASE_ ) lowercase_ : List[str] = {'old': F'''down.{i}.block''', 'new': F'''down_blocks.{i}.resnets'''} assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE_ ) lowercase_ : List[Any] = [key for key in vae_state_dict if 'encoder.mid.block' in key] lowercase_ : Any = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowercase_ : Union[str, Any] = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key] lowercase_ : Dict = renew_vae_resnet_paths(SCREAMING_SNAKE_CASE_ ) lowercase_ : Optional[Any] = {'old': F'''mid.block_{i}''', 'new': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE_ ) lowercase_ : List[str] = [key for key in vae_state_dict if 'encoder.mid.attn' in key] lowercase_ : Tuple = renew_vae_attention_paths(SCREAMING_SNAKE_CASE_ ) lowercase_ : Optional[Any] = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE_ ) conv_attn_to_linear(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): lowercase_ : Optional[Any] = num_up_blocks - 1 - i lowercase_ : Dict = [ key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key ] if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: lowercase_ : int = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.weight''' ] lowercase_ : Dict = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.bias''' ] lowercase_ : Optional[Any] = renew_vae_resnet_paths(SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = {'old': F'''up.{block_id}.block''', 'new': F'''up_blocks.{i}.resnets'''} assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE_ ) lowercase_ : Tuple = [key for key in vae_state_dict if 'decoder.mid.block' in key] lowercase_ : Optional[int] = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowercase_ : Optional[int] = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key] lowercase_ : Dict = renew_vae_resnet_paths(SCREAMING_SNAKE_CASE_ ) lowercase_ : Optional[int] = {'old': F'''mid.block_{i}''', 'new': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = [key for key in vae_state_dict if 'decoder.mid.attn' in key] lowercase_ : Any = renew_vae_attention_paths(SCREAMING_SNAKE_CASE_ ) lowercase_ : Any = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE_ ) conv_attn_to_linear(SCREAMING_SNAKE_CASE_ ) return new_checkpoint def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , ): # Only support V1 lowercase_ : Optional[int] = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) lowercase_ : Dict = io.BytesIO(r.content ) lowercase_ : List[str] = OmegaConf.load(SCREAMING_SNAKE_CASE_ ) lowercase_ : Dict = 5_12 lowercase_ : List[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open lowercase_ : List[str] = {} with safe_open(SCREAMING_SNAKE_CASE_ , framework='pt' , device='cpu' ) as f: for key in f.keys(): lowercase_ : Tuple = f.get_tensor(SCREAMING_SNAKE_CASE_ ) else: lowercase_ : Tuple = torch.load(SCREAMING_SNAKE_CASE_ , map_location=SCREAMING_SNAKE_CASE_ )['state_dict'] # Convert the VAE model. lowercase_ : Any = create_vae_diffusers_config(SCREAMING_SNAKE_CASE_ , image_size=SCREAMING_SNAKE_CASE_ ) lowercase_ : Optional[int] = custom_convert_ldm_vae_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ : str = AutoencoderKL(**SCREAMING_SNAKE_CASE_ ) vae.load_state_dict(SCREAMING_SNAKE_CASE_ ) vae.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") __SCREAMING_SNAKE_CASE =parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
366
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return None class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' return None class UpperCamelCase ( unittest.TestCase ): lowercase = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from transformers import BertModel lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCamelCase ) ) vocab_file.flush() lowercase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) lowercase_ : int = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) lowercase_ : Tuple = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from transformers import BertModel lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' from transformers import TFBertModel lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) ,1 ) self.assertEqual(len(__UpperCamelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
321
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCamelCase ( UpperCamelCase__ ): lowercase = ['pixel_values'] def __init__( self ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = True ,__UpperCamelCase = 1 / 255 ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = True ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__(**__lowerCamelCase ) lowercase_ : int = size if size is not None else {'shortest_edge': 224} lowercase_ : List[str] = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ) lowercase_ : Optional[int] = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase_ : int = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ,param_name='crop_size' ) lowercase_ : str = do_resize lowercase_ : Union[str, Any] = size lowercase_ : List[str] = resample lowercase_ : Optional[int] = do_center_crop lowercase_ : List[str] = crop_size lowercase_ : str = do_rescale lowercase_ : Union[str, Any] = rescale_factor lowercase_ : Dict = do_normalize lowercase_ : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase_ : str = image_std if image_std is not None else OPENAI_CLIP_STD lowercase_ : List[Any] = do_convert_rgb def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase_ : Dict = get_resize_output_image_size(__lowerCamelCase ,size=size['shortest_edge'] ,default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase ,size=__lowerCamelCase ,resample=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Dict: '''simple docstring''' lowercase_ : Optional[Any] = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__lowerCamelCase ,size=(size['height'], size['width']) ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any: '''simple docstring''' return rescale(__lowerCamelCase ,scale=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> str: '''simple docstring''' return normalize(__lowerCamelCase ,mean=__lowerCamelCase ,std=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = ChannelDimension.FIRST ,**__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowercase_ : List[str] = size if size is not None else self.size lowercase_ : Optional[Any] = get_size_dict(__lowerCamelCase ,param_name='size' ,default_to_square=__lowerCamelCase ) lowercase_ : Tuple = resample if resample is not None else self.resample lowercase_ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : List[Any] = crop_size if crop_size is not None else self.crop_size lowercase_ : Dict = get_size_dict(__lowerCamelCase ,param_name='crop_size' ,default_to_square=__lowerCamelCase ) lowercase_ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : str = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Any = image_mean if image_mean is not None else self.image_mean lowercase_ : Any = image_std if image_std is not None else self.image_std lowercase_ : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ : str = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ : Optional[int] = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. lowercase_ : List[Any] = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: lowercase_ : List[Any] = [self.resize(image=__lowerCamelCase ,size=__lowerCamelCase ,resample=__lowerCamelCase ) for image in images] if do_center_crop: lowercase_ : int = [self.center_crop(image=__lowerCamelCase ,size=__lowerCamelCase ) for image in images] if do_rescale: lowercase_ : Tuple = [self.rescale(image=__lowerCamelCase ,scale=__lowerCamelCase ) for image in images] if do_normalize: lowercase_ : Tuple = [self.normalize(image=__lowerCamelCase ,mean=__lowerCamelCase ,std=__lowerCamelCase ) for image in images] lowercase_ : Union[str, Any] = [to_channel_dimension_format(__lowerCamelCase ,__lowerCamelCase ) for image in images] lowercase_ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=__lowerCamelCase ,tensor_type=__lowerCamelCase )
367
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
0
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=99 ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=9 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase=8 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.002 ,__UpperCamelCase=1 ,__UpperCamelCase=0 ,__UpperCamelCase=0 ,__UpperCamelCase=None ,__UpperCamelCase=None ,) -> List[Any]: '''simple docstring''' lowercase_ : Optional[int] = parent lowercase_ : Any = batch_size lowercase_ : Union[str, Any] = encoder_seq_length lowercase_ : str = decoder_seq_length # For common tests lowercase_ : str = self.decoder_seq_length lowercase_ : Optional[int] = is_training lowercase_ : Union[str, Any] = use_attention_mask lowercase_ : Any = use_labels lowercase_ : Optional[Any] = vocab_size lowercase_ : Any = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : List[str] = num_attention_heads lowercase_ : Optional[int] = d_ff lowercase_ : Optional[Any] = relative_attention_num_buckets lowercase_ : str = dropout_rate lowercase_ : str = initializer_factor lowercase_ : Optional[int] = eos_token_id lowercase_ : List[str] = pad_token_id lowercase_ : int = decoder_start_token_id lowercase_ : Dict = None lowercase_ : Dict = decoder_layers def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return TaConfig.from_pretrained('google/umt5-base' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,) -> Tuple: '''simple docstring''' if attention_mask is None: lowercase_ : int = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowercase_ : Optional[int] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowercase_ : Tuple = torch.ones(config.num_hidden_layers ,config.num_attention_heads ,device=_lowerCamelCase ) if decoder_head_mask is None: lowercase_ : Dict = torch.ones(config.num_decoder_layers ,config.num_attention_heads ,device=_lowerCamelCase ) if cross_attn_head_mask is None: lowercase_ : int = torch.ones( config.num_decoder_layers ,config.num_attention_heads ,device=_lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.encoder_seq_length] ,self.vocab_size ) lowercase_ : str = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowercase_ : Optional[Any] = input_ids.clamp(self.pad_token_id + 1 ) lowercase_ : Dict = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowercase_ : Tuple = self.get_config() lowercase_ : Any = config.num_attention_heads lowercase_ : Union[str, Any] = self.prepare_inputs_dict(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ , lowercase_ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return TaConfig( vocab_size=166 ,d_model=self.hidden_size ,d_ff=self.d_ff ,d_kv=self.hidden_size // self.num_attention_heads ,num_layers=self.num_hidden_layers ,num_decoder_layers=self.decoder_layers ,num_heads=self.num_attention_heads ,relative_attention_num_buckets=self.relative_attention_num_buckets ,dropout_rate=self.dropout_rate ,initializer_factor=self.initializer_factor ,eos_token_id=self.eos_token_id ,bos_token_id=self.pad_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return TaConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,d_ff=self.d_ff ,d_kv=self.hidden_size // self.num_attention_heads ,num_layers=self.num_hidden_layers ,num_decoder_layers=self.decoder_layers ,num_heads=self.num_attention_heads ,relative_attention_num_buckets=self.relative_attention_num_buckets ,dropout_rate=self.dropout_rate ,initializer_factor=self.initializer_factor ,eos_token_id=self.eos_token_id ,bos_token_id=self.pad_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = UMTaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowercase_ : Optional[int] = model( input_ids=_lowerCamelCase ,decoder_input_ids=_lowerCamelCase ,attention_mask=_lowerCamelCase ,decoder_attention_mask=_lowerCamelCase ,) lowercase_ : str = model(input_ids=_lowerCamelCase ,decoder_input_ids=_lowerCamelCase ) lowercase_ : Dict = result.last_hidden_state lowercase_ : Dict = result.past_key_values lowercase_ : Optional[int] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() ,(self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() ,(self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_lowerCamelCase ) ,config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) ,4 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Dict: '''simple docstring''' lowercase_ : List[str] = UMTaModel(config=_lowerCamelCase ).get_decoder().to(_lowerCamelCase ).eval() # first forward pass lowercase_ : Tuple = model(_lowerCamelCase ,use_cache=_lowerCamelCase ) lowercase_ : List[str] = model(_lowerCamelCase ) lowercase_ : Tuple = model(_lowerCamelCase ,use_cache=_lowerCamelCase ) self.parent.assertTrue(len(_lowerCamelCase ) == len(_lowerCamelCase ) ) self.parent.assertTrue(len(_lowerCamelCase ) == len(_lowerCamelCase ) + 1 ) lowercase_ , lowercase_ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase_ : str = ids_tensor((self.batch_size, 1) ,config.vocab_size ) # append to next input_ids and lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase_ : Union[str, Any] = model(_lowerCamelCase )['last_hidden_state'] lowercase_ : List[str] = model(_lowerCamelCase ,past_key_values=_lowerCamelCase )['last_hidden_state'] # select random slice lowercase_ : Dict = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase_ : Optional[int] = output_from_no_past[:, -1, random_slice_idx].detach() lowercase_ : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = UMTaModel(config=_lowerCamelCase ).to(_lowerCamelCase ).half().eval() lowercase_ : Optional[Any] = model(**_lowerCamelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(_lowerCamelCase ).any().item() ) @require_torch class UpperCamelCase ( A_ , A_ , A_ , unittest.TestCase ): lowercase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowercase = (UMTaForConditionalGeneration,) if is_torch_available() else () lowercase = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = True lowercase = True # The small UMT5 model needs higher percentages for CPU/MP tests lowercase = [0.8, 0.9] def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[str] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() lowercase_ : int = UMTaModel(config_and_inputs[0] ).to(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _lowerCamelCase ,(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) ,f'''{tmpdirname}/t5_test.onnx''' ,export_params=_lowerCamelCase ,opset_version=9 ,input_names=['input_ids', 'decoder_input_ids'] ,) @unittest.skipIf(torch_device == 'cpu' ,'Cant do half precision' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_lowerCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Optional[Any] = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() lowercase_ : Any = config_and_inputs[0] lowercase_ : str = UMTaForConditionalGeneration(_lowerCamelCase ).eval() model.to(_lowerCamelCase ) lowercase_ : Optional[Any] = { 'head_mask': torch.zeros(config.num_layers ,config.num_heads ,device=_lowerCamelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers ,config.num_heads ,device=_lowerCamelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers ,config.num_heads ,device=_lowerCamelCase ), } for attn_name, (name, mask) in zip(_lowerCamelCase ,head_masking.items() ): lowercase_ : Any = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowercase_ : int = torch.ones( config.num_decoder_layers ,config.num_heads ,device=_lowerCamelCase ) lowercase_ : List[Any] = model.generate( config_and_inputs[1]['input_ids'] ,num_beams=1 ,max_length=3 ,output_attentions=_lowerCamelCase ,return_dict_in_generate=_lowerCamelCase ,**_lowerCamelCase ,) # We check the state of decoder_attentions and cross_attentions just from the last step lowercase_ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) ,0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Tuple = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' ,return_dict=_lowerCamelCase ).to(_lowerCamelCase ) lowercase_ : int = AutoTokenizer.from_pretrained('google/umt5-small' ,use_fast=_lowerCamelCase ,legacy=_lowerCamelCase ) lowercase_ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] lowercase_ : Optional[Any] = tokenizer(_lowerCamelCase ,return_tensors='pt' ,padding=_lowerCamelCase ).input_ids # fmt: off lowercase_ : List[str] = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_lowerCamelCase ,_lowerCamelCase ) lowercase_ : Tuple = model.generate(input_ids.to(_lowerCamelCase ) ) lowercase_ : Tuple = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] lowercase_ : Tuple = tokenizer.batch_decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase )
368
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[Any] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : Tuple = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) print(F'''Loading model based on config from {config_path}...''' ) lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowercase_ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention lowercase_ : BertSelfAttention = layer.attention.self lowercase_ : str = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape ) lowercase_ : int = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape ) lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape ) lowercase_ : List[Any] = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output lowercase_ : BertSelfOutput = layer.attention.output lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape ) lowercase_ : Any = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape ) lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' ) lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' ) # Intermediate lowercase_ : BertIntermediate = layer.intermediate lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' ) lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' ) # Output lowercase_ : BertOutput = layer.output lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' ) lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' ) lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' ) lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' ) # Embeddings lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' ) lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' ) lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' ) lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head lowercase_ : int = model.cls.predictions.transform lowercase_ : str = get_masked_lm_array('dense/kernel' ) lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' ) lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' ) lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' ) lowercase_ : List[str] = get_masked_lm_array('embedding_table' ) # Pooling lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(__SCREAMING_SNAKE_CASE ) # Integration test - should load without any errors ;) lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
321
0
"""simple docstring""" class UpperCamelCase : def __init__( self ) -> Optional[int]: '''simple docstring''' lowercase_ : dict[str, TrieNode] = {} # Mapping from char to TrieNode lowercase_ : str = False def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' for word in words: self.insert(_a ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[str] = self for char in word: if char not in curr.nodes: lowercase_ : str = TrieNode() lowercase_ : Any = curr.nodes[char] lowercase_ : str = True def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : int = self for char in word: if char not in curr.nodes: return False lowercase_ : Any = curr.nodes[char] return curr.is_leaf def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' def _delete(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> bool: if index == len(_a ): # If word does not exist if not curr.is_leaf: return False lowercase_ : Tuple = False return len(curr.nodes ) == 0 lowercase_ : Union[str, Any] = word[index] lowercase_ : List[Any] = curr.nodes.get(_a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowercase_ : List[Any] = _delete(_a ,_a ,index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self ,_a ,0 ) def lowercase__( __SCREAMING_SNAKE_CASE : TrieNode , __SCREAMING_SNAKE_CASE : str ): if node.is_leaf: print(_snake_case , end=' ' ) for key, value in node.nodes.items(): print_words(_snake_case , word + key ) def lowercase__( ): lowercase_ : Dict = "banana bananas bandana band apple all beast".split() lowercase_ : Optional[Any] = TrieNode() root.insert_many(_snake_case ) # print_words(root, "") assert all(root.find(_snake_case ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : bool ): print(str(_snake_case ) , 'works!' if passes else 'doesn\'t work :(' ) def lowercase__( ): assert test_trie() def lowercase__( ): print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
369
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore __SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered") def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ): lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
321
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE ={"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
370
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
321
0
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): return [ord(_lowerCAmelCase ) - 96 for elem in plain] def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ): return "".join(chr(elem + 96 ) for elem in encoded ) def lowercase__( ): lowercase_ : List[str] = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , _lowerCAmelCase ) print('Decoded:' , decode(_lowerCAmelCase ) ) if __name__ == "__main__": main()
371
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]: '''simple docstring''' lowercase_ : Any = parent lowercase_ : str = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Dict = is_training lowercase_ : Tuple = use_input_mask lowercase_ : Optional[Any] = use_token_type_ids lowercase_ : List[str] = use_labels lowercase_ : Any = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : Tuple = max_position_embeddings lowercase_ : Optional[int] = type_vocab_size lowercase_ : Optional[int] = type_sequence_label_size lowercase_ : Dict = initializer_range lowercase_ : int = num_labels lowercase_ : Any = num_choices lowercase_ : int = scope def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Dict = None if self.use_input_mask: lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Tuple = None lowercase_ : Tuple = None lowercase_ : Tuple = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) lowercase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Union[str, Any] = model(__UpperCamelCase ) lowercase_ : int = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.num_labels lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Any = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = config_and_inputs lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = False lowercase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowercase = () lowercase = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = EsmModelTester(self ) lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Optional[Any] = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowercase_ : List[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : List[Any] = torch.empty(2 ,4 ,30 ) lowercase_ : List[str] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch class UpperCamelCase ( lowercase_ ): @slow def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : List[str] = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = 33 lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : List[str] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase_ : Dict = model(__UpperCamelCase )[0] # compare the actual values for a slice. lowercase_ : Any = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
0
"""simple docstring""" from datetime import datetime import requests def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : str = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' lowercase_ : Union[str, Any] = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(__lowerCAmelCase ).content if __name__ == "__main__": __SCREAMING_SNAKE_CASE =input("Enter Video/IGTV url: ").strip() __SCREAMING_SNAKE_CASE =f"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f"Done. Video saved to disk as {file_name}.")
350
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE ={ """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
351
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): lowercase_ : Dict = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = 'patrickvonplaten/t5-tiny-random' lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] ) lowercase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'current' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
321
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE ={"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =["""GLPNFeatureExtractor"""] __SCREAMING_SNAKE_CASE =["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
352
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['input_values', 'padding_mask'] def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = chunk_length_s lowercase_ : Tuple = overlap @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowercase_ : Optional[int] = True lowercase_ : Optional[int] = bool( isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ): lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa ) elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) lowercase_ : Optional[int] = None lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio ) lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) ) lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio ) lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase_ : Union[str, Any] = 'max_length' else: lowercase_ : int = input_values # normal padding on batch if padded_inputs is None: lowercase_ : int = self.pad( __UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) if padding: lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' ) lowercase_ : Dict = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowercase_ : Optional[int] = example[..., None] input_values.append(example.T ) lowercase_ : str = input_values if return_tensors is not None: lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
321
0
"""simple docstring""" from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __SCREAMING_SNAKE_CASE ="\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" __SCREAMING_SNAKE_CASE ="\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" __SCREAMING_SNAKE_CASE ="\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n" def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple ): return float((preds == labels).mean() ) def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) lowercase_ : int = float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : Optional[Any] = float(pearsonr(lowerCamelCase__ , lowerCamelCase__ )[0] ) lowercase_ : str = float(spearmanr(lowerCamelCase__ , lowerCamelCase__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", ' '\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='numpy' ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__UpperCamelCase ,__UpperCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(__UpperCamelCase ,__UpperCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__UpperCamelCase ,__UpperCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__UpperCamelCase ,__UpperCamelCase )} else: raise KeyError( 'You should supply a configuration name selected in ' '[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", ' '\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]' )
353
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
321
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE ={ "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
354
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
321
0