code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"b0": efficientnet.EfficientNetBa,
"b1": efficientnet.EfficientNetBa,
"b2": efficientnet.EfficientNetBa,
"b3": efficientnet.EfficientNetBa,
"b4": efficientnet.EfficientNetBa,
"b5": efficientnet.EfficientNetBa,
"b6": efficientnet.EfficientNetBa,
"b7": efficientnet.EfficientNetBa,
}
__SCREAMING_SNAKE_CASE ={
"b0": {
"hidden_dim": 1280,
"width_coef": 1.0,
"depth_coef": 1.0,
"image_size": 224,
"dropout_rate": 0.2,
"dw_padding": [],
},
"b1": {
"hidden_dim": 1280,
"width_coef": 1.0,
"depth_coef": 1.1,
"image_size": 240,
"dropout_rate": 0.2,
"dw_padding": [16],
},
"b2": {
"hidden_dim": 1408,
"width_coef": 1.1,
"depth_coef": 1.2,
"image_size": 260,
"dropout_rate": 0.3,
"dw_padding": [5, 8, 16],
},
"b3": {
"hidden_dim": 1536,
"width_coef": 1.2,
"depth_coef": 1.4,
"image_size": 300,
"dropout_rate": 0.3,
"dw_padding": [5, 18],
},
"b4": {
"hidden_dim": 1792,
"width_coef": 1.4,
"depth_coef": 1.8,
"image_size": 380,
"dropout_rate": 0.4,
"dw_padding": [6],
},
"b5": {
"hidden_dim": 2048,
"width_coef": 1.6,
"depth_coef": 2.2,
"image_size": 456,
"dropout_rate": 0.4,
"dw_padding": [13, 27],
},
"b6": {
"hidden_dim": 2304,
"width_coef": 1.8,
"depth_coef": 2.6,
"image_size": 528,
"dropout_rate": 0.5,
"dw_padding": [31],
},
"b7": {
"hidden_dim": 2560,
"width_coef": 2.0,
"depth_coef": 3.1,
"image_size": 600,
"dropout_rate": 0.5,
"dw_padding": [18],
},
}
def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ) -> int:
lowercase_ : str = EfficientNetConfig()
lowercase_ : Optional[int] = CONFIG_MAP[model_name]['hidden_dim']
lowercase_ : Any = CONFIG_MAP[model_name]['width_coef']
lowercase_ : Optional[int] = CONFIG_MAP[model_name]['depth_coef']
lowercase_ : List[Any] = CONFIG_MAP[model_name]['image_size']
lowercase_ : List[str] = CONFIG_MAP[model_name]['dropout_rate']
lowercase_ : List[Any] = CONFIG_MAP[model_name]['dw_padding']
lowercase_ : int = 'huggingface/label-files'
lowercase_ : Any = 'imagenet-1k-id2label.json'
lowercase_ : Union[str, Any] = 10_00
lowercase_ : str = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
lowercase_ : List[str] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowercase_ : Dict = idalabel
lowercase_ : Dict = {v: k for k, v in idalabel.items()}
return config
def lowercase__( ) -> Any:
lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowercase_ : Optional[int] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
def lowercase__( __SCREAMING_SNAKE_CASE : int ) -> int:
lowercase_ : Tuple = CONFIG_MAP[model_name]['image_size']
lowercase_ : Any = EfficientNetImageProcessor(
size={'height': size, 'width': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=__SCREAMING_SNAKE_CASE , )
return preprocessor
def lowercase__( __SCREAMING_SNAKE_CASE : int ) -> Any:
lowercase_ : List[Any] = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )]
lowercase_ : str = sorted(set(__SCREAMING_SNAKE_CASE ) )
lowercase_ : int = len(__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = {b: str(__SCREAMING_SNAKE_CASE ) for b, i in zip(__SCREAMING_SNAKE_CASE , range(__SCREAMING_SNAKE_CASE ) )}
lowercase_ : str = []
rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') )
rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') )
rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') )
rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') )
rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') )
for b in block_names:
lowercase_ : Any = block_name_mapping[b]
rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') )
rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') )
rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') )
rename_keys.append(
(F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') )
rename_keys.append(
(F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') )
rename_keys.append(
(F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') )
rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') )
rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') )
rename_keys.append(
(F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') )
rename_keys.append(
(F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') )
rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') )
rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') )
rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') )
rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') )
rename_keys.append(
(F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') )
rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') )
rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') )
rename_keys.append(
(F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') )
rename_keys.append(
(F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') )
rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') )
rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') )
rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') )
rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') )
rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') )
lowercase_ : Dict = {}
for item in rename_keys:
if item[0] in original_param_names:
lowercase_ : Union[str, Any] = 'efficientnet.' + item[1]
lowercase_ : Any = 'classifier.weight'
lowercase_ : Tuple = 'classifier.bias'
return key_mapping
def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ) -> int:
for key, value in tf_params.items():
if "normalization" in key:
continue
lowercase_ : Any = key_mapping[key]
if "_conv" in key and "kernel" in key:
lowercase_ : int = torch.from_numpy(__SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
lowercase_ : str = torch.from_numpy(__SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
lowercase_ : List[str] = torch.from_numpy(np.transpose(__SCREAMING_SNAKE_CASE ) )
else:
lowercase_ : Union[str, Any] = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(__SCREAMING_SNAKE_CASE )
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple ) -> int:
lowercase_ : Any = model_classes[model_name](
include_top=__SCREAMING_SNAKE_CASE , weights='imagenet' , input_tensor=__SCREAMING_SNAKE_CASE , input_shape=__SCREAMING_SNAKE_CASE , pooling=__SCREAMING_SNAKE_CASE , classes=10_00 , classifier_activation='softmax' , )
lowercase_ : Tuple = original_model.trainable_variables
lowercase_ : str = original_model.non_trainable_variables
lowercase_ : Tuple = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
lowercase_ : Dict = param.numpy()
lowercase_ : str = list(tf_params.keys() )
# Load HuggingFace model
lowercase_ : List[str] = get_efficientnet_config(__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = EfficientNetForImageClassification(__SCREAMING_SNAKE_CASE ).eval()
lowercase_ : List[str] = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('Converting parameters...' )
lowercase_ : List[str] = rename_keys(__SCREAMING_SNAKE_CASE )
replace_params(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Initialize preprocessor and preprocess input image
lowercase_ : List[Any] = convert_image_processor(__SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = preprocessor(images=prepare_img() , return_tensors='pt' )
# HF model inference
hf_model.eval()
with torch.no_grad():
lowercase_ : Dict = hf_model(**__SCREAMING_SNAKE_CASE )
lowercase_ : Any = outputs.logits.detach().numpy()
# Original model inference
lowercase_ : str = False
lowercase_ : List[Any] = CONFIG_MAP[model_name]['image_size']
lowercase_ : List[str] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
lowercase_ : int = image.img_to_array(__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = np.expand_dims(__SCREAMING_SNAKE_CASE , axis=0 )
lowercase_ : Dict = original_model.predict(__SCREAMING_SNAKE_CASE )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same."
print('Model outputs match!' )
if save_model:
# Create folder to save model
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
os.mkdir(__SCREAMING_SNAKE_CASE )
# Save converted model and image processor
hf_model.save_pretrained(__SCREAMING_SNAKE_CASE )
preprocessor.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
# Push model and image processor to hub
print(F'''Pushing converted {model_name} to the hub...''' )
lowercase_ : List[str] = F'''efficientnet-{model_name}'''
preprocessor.push_to_hub(__SCREAMING_SNAKE_CASE )
hf_model.push_to_hub(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="b0",
type=str,
help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="hf_model",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--save_model", action="store_true", help="Save model to local")
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 367
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]]
lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase )
self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(__UpperCamelCase ) # fails here
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 )
lowercase_ : str = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 )
lowercase_ : Any = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 )
lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 321
| 0
|
"""simple docstring"""
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
__SCREAMING_SNAKE_CASE =parse(importlib.metadata.version("torch"))
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Version] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' )
lowercase_ : Union[str, Any] = STR_OPERATION_TO_FUNC[operation]
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowercase_ : Optional[int] = parse(importlib.metadata.version(__SCREAMING_SNAKE_CASE ) )
return operation(__SCREAMING_SNAKE_CASE , parse(__SCREAMING_SNAKE_CASE ) )
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
return compare_versions(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 368
|
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[Any] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : Tuple = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
print(F'''Loading model based on config from {config_path}...''' )
lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
lowercase_ : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
lowercase_ : BertSelfAttention = layer.attention.self
lowercase_ : str = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape )
lowercase_ : int = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape )
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape )
lowercase_ : List[Any] = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape )
# Self-attention Output
lowercase_ : BertSelfOutput = layer.attention.output
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape )
lowercase_ : Any = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape )
lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' )
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' )
# Intermediate
lowercase_ : BertIntermediate = layer.intermediate
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' )
lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' )
# Output
lowercase_ : BertOutput = layer.output
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' )
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' )
lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' )
lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' )
# Embeddings
lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' )
lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' )
lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' )
lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' )
# LM Head
lowercase_ : int = model.cls.predictions.transform
lowercase_ : str = get_masked_lm_array('dense/kernel' )
lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' )
lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' )
lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' )
lowercase_ : List[str] = get_masked_lm_array('embedding_table' )
# Pooling
lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' )
# Export final model
model.save_pretrained(__SCREAMING_SNAKE_CASE )
# Integration test - should load without any errors ;)
lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE )
print(new_model.eval() )
print('Model conversion was done sucessfully!' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 321
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json",
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class UpperCamelCase ( lowercase_ ):
lowercase = 'perceiver'
def __init__( self ,__UpperCamelCase=256 ,__UpperCamelCase=1280 ,__UpperCamelCase=768 ,__UpperCamelCase=1 ,__UpperCamelCase=26 ,__UpperCamelCase=8 ,__UpperCamelCase=8 ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="kv" ,__UpperCamelCase=1 ,__UpperCamelCase=1 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=True ,__UpperCamelCase=262 ,__UpperCamelCase=2048 ,__UpperCamelCase=56 ,__UpperCamelCase=[368, 496] ,__UpperCamelCase=16 ,__UpperCamelCase=1920 ,__UpperCamelCase=16 ,__UpperCamelCase=[1, 16, 224, 224] ,**__UpperCamelCase ,) -> List[Any]:
'''simple docstring'''
super().__init__(**__UpperCamelCase )
lowercase_ : Dict = num_latents
lowercase_ : List[str] = d_latents
lowercase_ : Tuple = d_model
lowercase_ : Optional[Any] = num_blocks
lowercase_ : Dict = num_self_attends_per_block
lowercase_ : Tuple = num_self_attention_heads
lowercase_ : Optional[Any] = num_cross_attention_heads
lowercase_ : Tuple = qk_channels
lowercase_ : Tuple = v_channels
lowercase_ : Any = cross_attention_shape_for_attention
lowercase_ : Any = self_attention_widening_factor
lowercase_ : str = cross_attention_widening_factor
lowercase_ : Optional[Any] = hidden_act
lowercase_ : Dict = attention_probs_dropout_prob
lowercase_ : Any = initializer_range
lowercase_ : Dict = layer_norm_eps
lowercase_ : int = use_query_residual
# masked language modeling attributes
lowercase_ : Tuple = vocab_size
lowercase_ : Union[str, Any] = max_position_embeddings
# image classification attributes
lowercase_ : Union[str, Any] = image_size
# flow attributes
lowercase_ : Dict = train_size
# multimodal autoencoding attributes
lowercase_ : Optional[int] = num_frames
lowercase_ : List[Any] = audio_samples_per_frame
lowercase_ : str = samples_per_patch
lowercase_ : Dict = output_shape
class UpperCamelCase ( lowercase_ ):
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
lowercase_ : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowercase_ : Optional[Any] = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('inputs', dynamic_axis),
('attention_mask', dynamic_axis),
] )
@property
def _UpperCAmelCase ( self ) -> float:
'''simple docstring'''
return 1e-4
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = -1 ,__UpperCamelCase = -1 ,__UpperCamelCase = -1 ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = 3 ,__UpperCamelCase = 40 ,__UpperCamelCase = 40 ,) -> Mapping[str, Any]:
'''simple docstring'''
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase_ : List[Any] = compute_effective_axis_dimension(
__UpperCamelCase ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowercase_ : Optional[Any] = preprocessor.num_special_tokens_to_add(__UpperCamelCase )
lowercase_ : int = compute_effective_axis_dimension(
__UpperCamelCase ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=__UpperCamelCase )
# Generate dummy inputs according to compute batch and sequence
lowercase_ : Dict = [' '.join(['a'] ) * seq_length] * batch_size
lowercase_ : int = dict(preprocessor(__UpperCamelCase ,return_tensors=__UpperCamelCase ) )
lowercase_ : Union[str, Any] = inputs.pop('input_ids' )
return inputs
elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase_ : Union[str, Any] = compute_effective_axis_dimension(__UpperCamelCase ,fixed_dimension=OnnxConfig.default_fixed_batch )
lowercase_ : Dict = self._generate_dummy_images(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
lowercase_ : Union[str, Any] = dict(preprocessor(images=__UpperCamelCase ,return_tensors=__UpperCamelCase ) )
lowercase_ : List[Any] = inputs.pop('pixel_values' )
return inputs
else:
raise ValueError(
'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
| 369
|
"""simple docstring"""
from collections import namedtuple
import requests
from lxml import html # type: ignore
__SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered")
def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ):
lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) )
__SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 321
| 0
|
"""simple docstring"""
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ="▁"
__SCREAMING_SNAKE_CASE ={"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
__SCREAMING_SNAKE_CASE ={
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
__SCREAMING_SNAKE_CASE ={
"ernie-m-base": 514,
"ernie-m-large": 514,
}
__SCREAMING_SNAKE_CASE ={
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class UpperCamelCase ( lowercase_ ):
lowercase = ['input_ids']
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_INIT_CONFIGURATION
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = RESOURCE_FILES_NAMES
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=None ,__UpperCamelCase=False ,__UpperCamelCase="utf8" ,__UpperCamelCase="[UNK]" ,__UpperCamelCase="[SEP]" ,__UpperCamelCase="[PAD]" ,__UpperCamelCase="[CLS]" ,__UpperCamelCase="[MASK]" ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> None:
'''simple docstring'''
lowercase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__UpperCamelCase ,unk_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,vocab_file=__UpperCamelCase ,encoding=__UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCamelCase ,)
lowercase_ : str = do_lower_case
lowercase_ : Union[str, Any] = sentencepiece_model_ckpt
lowercase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCamelCase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
lowercase_ : Union[str, Any] = self.load_vocab(filepath=__UpperCamelCase )
else:
lowercase_ : Optional[Any] = {self.sp_model.id_to_piece(__UpperCamelCase ): id for id in range(self.sp_model.get_piece_size() )}
lowercase_ : int = {v: k for k, v in self.vocab.items()}
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str:
'''simple docstring'''
if text is None:
return None
lowercase_ : Union[str, Any] = self.tokenize(__UpperCamelCase )
lowercase_ : Optional[int] = '', []
for i, ch in enumerate(__UpperCamelCase ):
if ch in self.SP_CHAR_MAPPING:
lowercase_ : Any = self.SP_CHAR_MAPPING.get(__UpperCamelCase )
else:
lowercase_ : Any = unicodedata.normalize('NFKC' ,__UpperCamelCase )
if self.is_whitespace(__UpperCamelCase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__UpperCamelCase ) )
lowercase_ : Optional[Any] = normalized_text, [], 0
if self.do_lower_case:
lowercase_ : int = text.lower()
for token in split_tokens:
if token[:1] == "▁":
lowercase_ : Optional[int] = token[1:]
lowercase_ : Union[str, Any] = text[offset:].index(__UpperCamelCase ) + offset
lowercase_ : int = start + len(__UpperCamelCase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
lowercase_ : Dict = end
return token_mapping
@property
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return len(self.vocab )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
return dict(self.vocab ,**self.added_tokens_encoder )
def __getstate__( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = self.__dict__.copy()
lowercase_ : List[str] = None
return state
def __setstate__( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : int = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
lowercase_ : List[str] = {}
lowercase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return "".join((self.SP_CHAR_MAPPING.get(__UpperCamelCase ,__UpperCamelCase ) for c in text) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=False ,__UpperCamelCase=64 ,__UpperCamelCase=0.1 ) -> List[Any]:
'''simple docstring'''
if self.sp_model_kwargs.get('enable_sampling' ) is True:
lowercase_ : Optional[int] = True
if self.sp_model_kwargs.get('alpha' ) is not None:
lowercase_ : List[str] = self.sp_model_kwargs.get('alpha' )
if self.sp_model_kwargs.get('nbest_size' ) is not None:
lowercase_ : List[Any] = self.sp_model_kwargs.get('nbest_size' )
if not enable_sampling:
lowercase_ : List[Any] = self.sp_model.EncodeAsPieces(__UpperCamelCase )
else:
lowercase_ : Union[str, Any] = self.sp_model.SampleEncodeAsPieces(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
lowercase_ : Union[str, Any] = []
for pi, piece in enumerate(__UpperCamelCase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__UpperCamelCase ) and pi != 0:
new_pieces.append(__UpperCamelCase )
continue
else:
continue
lowercase_ : Dict = 0
for i, chunk in enumerate(__UpperCamelCase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__UpperCamelCase ) or self.is_punct(__UpperCamelCase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__UpperCamelCase )
lowercase_ : Optional[Any] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowercase_ : Any = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowercase_ : Any = i
if len(__UpperCamelCase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[str] = ''.join(__UpperCamelCase ).replace(__UpperCamelCase ,' ' ).strip()
return out_string
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Dict = self.convert_ids_to_tokens(__UpperCamelCase )
lowercase_ : Optional[Any] = ''.join(__UpperCamelCase ).replace(__UpperCamelCase ,' ' ).strip()
return out_string
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return self.vocab.get(__UpperCamelCase ,self.vocab.get(self.unk_token ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
return self.reverse_vocab.get(__UpperCamelCase ,self.unk_token )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> List[str]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowercase_ : str = [self.cls_token_id]
lowercase_ : Any = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> str:
'''simple docstring'''
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ,__UpperCamelCase=False ) -> Union[str, Any]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1]
return [1] + ([0] * len(__UpperCamelCase )) + [1]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__UpperCamelCase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__UpperCamelCase ) + 1) + [1] * (len(__UpperCamelCase ) + 3)
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
if "\u4e00" <= char <= "\u9fff":
return True
return False
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__UpperCamelCase ) == 1:
lowercase_ : Tuple = unicodedata.category(__UpperCamelCase )
if cat == "Zs":
return True
return False
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Any = {}
with io.open(__UpperCamelCase ,'r' ,encoding='utf-8' ) as f:
for index, line in enumerate(__UpperCamelCase ):
lowercase_ : List[str] = line.rstrip('\n' )
lowercase_ : int = int(__UpperCamelCase )
return token_to_idx
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Dict = 0
if os.path.isdir(__UpperCamelCase ):
lowercase_ : Optional[Any] = os.path.join(
__UpperCamelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
lowercase_ : Tuple = (filename_prefix + '-' if filename_prefix else '') + save_directory
with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as writer:
for token, token_index in sorted(self.vocab.items() ,key=lambda __UpperCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
' Please check that the vocabulary is not corrupted!' )
lowercase_ : Optional[Any] = token_index
writer.write(token + '\n' )
index += 1
lowercase_ : Any = os.path.join(__UpperCamelCase ,'sentencepiece.bpe.model' )
with open(__UpperCamelCase ,'wb' ) as fi:
lowercase_ : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(__UpperCamelCase )
return (vocab_file,)
| 370
|
"""simple docstring"""
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 321
| 0
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : List[Any] = name
lowercase_ : int = val
def __str__( self ) -> Tuple:
'''simple docstring'''
return f'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return self.val < other.val
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Optional[int] = {}
lowercase_ : Tuple = {}
lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase )
def __getitem__( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
return self.get_value(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return (idx - 1) // 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return idx * 2 + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return idx * 2 + 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
return self.heap_dict[key]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1
lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase )
for idx, i in enumerate(__UpperCamelCase ):
lowercase_ : Any = idx
lowercase_ : str = i.val
for i in range(__UpperCamelCase ,-1 ,-1 ):
self.sift_down(__UpperCamelCase ,__UpperCamelCase )
return array
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
while True:
lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741
lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase )
lowercase_ : List[str] = idx
if l < len(__UpperCamelCase ) and array[l] < array[idx]:
lowercase_ : List[str] = l
if r < len(__UpperCamelCase ) and array[r] < array[smallest]:
lowercase_ : Dict = r
if smallest != idx:
lowercase_ : Union[str, Any] = array[smallest], array[idx]
(
lowercase_
) : str = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
lowercase_ : Any = smallest
else:
break
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase )
while p >= 0 and self.heap[p] > self.heap[idx]:
lowercase_ : Any = self.heap[idx], self.heap[p]
lowercase_ : Tuple = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
lowercase_ : int = p
lowercase_ : str = self.get_parent_idx(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return self.heap[0]
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Optional[Any] = self.heap[-1], self.heap[0]
lowercase_ : Tuple = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
lowercase_ : Tuple = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 ,self.heap )
return x
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
self.heap.append(__UpperCamelCase )
lowercase_ : Tuple = len(self.heap ) - 1
lowercase_ : Optional[int] = node.val
self.sift_up(len(self.heap ) - 1 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return len(self.heap ) == 0
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
lowercase_ : Any = new_value
lowercase_ : List[str] = new_value
self.sift_up(self.idx_of_element[node] )
__SCREAMING_SNAKE_CASE =Node("R", -1)
__SCREAMING_SNAKE_CASE =Node("B", 6)
__SCREAMING_SNAKE_CASE =Node("A", 3)
__SCREAMING_SNAKE_CASE =Node("X", 1)
__SCREAMING_SNAKE_CASE =Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
__SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371
|
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = parent
lowercase_ : str = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Dict = is_training
lowercase_ : Tuple = use_input_mask
lowercase_ : Optional[Any] = use_token_type_ids
lowercase_ : List[str] = use_labels
lowercase_ : Any = vocab_size
lowercase_ : List[str] = hidden_size
lowercase_ : Optional[int] = num_hidden_layers
lowercase_ : int = num_attention_heads
lowercase_ : int = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : Optional[int] = hidden_dropout_prob
lowercase_ : Tuple = attention_probs_dropout_prob
lowercase_ : Tuple = max_position_embeddings
lowercase_ : Optional[int] = type_vocab_size
lowercase_ : Optional[int] = type_sequence_label_size
lowercase_ : Dict = initializer_range
lowercase_ : int = num_labels
lowercase_ : Any = num_choices
lowercase_ : int = scope
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Dict = None
if self.use_input_mask:
lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase_ : Tuple = None
lowercase_ : Tuple = None
lowercase_ : Tuple = None
if self.use_labels:
lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices )
lowercase_ : str = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return EsmConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Union[str, Any] = model(__UpperCamelCase )
lowercase_ : int = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.num_labels
lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Any = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Optional[int] = config_and_inputs
lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = False
lowercase = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase = ()
lowercase = (
{
'feature-extraction': EsmModel,
'fill-mask': EsmForMaskedLM,
'text-classification': EsmForSequenceClassification,
'token-classification': EsmForTokenClassification,
'zero-shot': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = True
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = EsmModelTester(self )
lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowercase_ : Optional[Any] = type
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
lowercase_ : List[Any] = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : List[Any] = torch.empty(2 ,4 ,30 )
lowercase_ : List[str] = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] )
lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@require_torch
class UpperCamelCase ( lowercase_ ):
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowercase_ : List[str] = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = 33
lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : List[str] = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowercase_ : Dict = model(__UpperCamelCase )[0]
# compare the actual values for a slice.
lowercase_ : Any = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
from __future__ import annotations
from math import pow, sqrt
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if resistance == 0:
return {"resistance": sqrt(pow(__SCREAMING_SNAKE_CASE , 2 ) - pow(__SCREAMING_SNAKE_CASE , 2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(__SCREAMING_SNAKE_CASE , 2 ) - pow(__SCREAMING_SNAKE_CASE , 2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(__SCREAMING_SNAKE_CASE , 2 ) + pow(__SCREAMING_SNAKE_CASE , 2 ) )}
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 350
|
"""simple docstring"""
import pickle
import numpy as np
from matplotlib import pyplot as plt
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[int] = bp_numa
lowercase_ : Dict = bp_numa
lowercase_ : Tuple = bp_numa
lowercase_ : List[Any] = conva_get[:2]
lowercase_ : int = conva_get[2]
lowercase_ : Dict = size_pa
lowercase_ : int = rate_w
lowercase_ : Union[str, Any] = rate_t
lowercase_ : Dict = [
np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1
lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1
lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : int = {
'num_bp1': self.num_bpa,
'num_bp2': self.num_bpa,
'num_bp3': self.num_bpa,
'conv1': self.conva,
'step_conv1': self.step_conva,
'size_pooling1': self.size_poolinga,
'rate_weight': self.rate_weight,
'rate_thre': self.rate_thre,
'w_conv1': self.w_conva,
'wkj': self.wkj,
'vji': self.vji,
'thre_conv1': self.thre_conva,
'thre_bp2': self.thre_bpa,
'thre_bp3': self.thre_bpa,
}
with open(__UpperCamelCase ,'wb' ) as f:
pickle.dump(__UpperCamelCase ,__UpperCamelCase )
print(f'''Model saved: {save_path}''' )
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
with open(__UpperCamelCase ,'rb' ) as f:
lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301
lowercase_ : str = model_dic.get('conv1' )
conv_get.append(model_dic.get('step_conv1' ) )
lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' )
lowercase_ : Optional[Any] = model_dic.get('num_bp1' )
lowercase_ : str = model_dic.get('num_bp2' )
lowercase_ : Optional[Any] = model_dic.get('num_bp3' )
lowercase_ : Union[str, Any] = model_dic.get('rate_weight' )
lowercase_ : Optional[int] = model_dic.get('rate_thre' )
# create model instance
lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# modify model parameter
lowercase_ : Optional[Any] = model_dic.get('w_conv1' )
lowercase_ : Tuple = model_dic.get('wkj' )
lowercase_ : Union[str, Any] = model_dic.get('vji' )
lowercase_ : Optional[Any] = model_dic.get('thre_conv1' )
lowercase_ : Dict = model_dic.get('thre_bp2' )
lowercase_ : Optional[int] = model_dic.get('thre_bp3' )
return conv_ins
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
return 1 / (1 + np.exp(-1 * x ))
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return round(__UpperCamelCase ,3 )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Dict = convs[0]
lowercase_ : Any = convs[1]
lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0]
# get the data slice of original image data, data_focus
lowercase_ : Tuple = []
for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
lowercase_ : List[Any] = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(__UpperCamelCase )
# calculate the feature map of every single kernel, and saved as list of matrix
lowercase_ : Dict = []
lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(__UpperCamelCase ):
lowercase_ : Tuple = []
for i_focus in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[int] = (
np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(__UpperCamelCase ) )
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape(
__UpperCamelCase ,__UpperCamelCase )
data_featuremap.append(__UpperCamelCase )
# expanding the data slice to One dimenssion
lowercase_ : Optional[int] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) )
lowercase_ : str = np.asarray(__UpperCamelCase )
return focus_list, data_featuremap
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple:
'''simple docstring'''
lowercase_ : Union[str, Any] = len(featuremaps[0] )
lowercase_ : str = int(size_map / size_pooling )
lowercase_ : Optional[int] = []
for i_map in range(len(__UpperCamelCase ) ):
lowercase_ : int = featuremaps[i_map]
lowercase_ : List[str] = []
for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[str] = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(__UpperCamelCase ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(__UpperCamelCase ) )
lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase )
featuremap_pooled.append(__UpperCamelCase )
return featuremap_pooled
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
lowercase_ : Tuple = []
for i in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[Any] = np.shape(data[i] )
lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] )
lowercase_ : List[str] = data_listed.getA().tolist()[0]
data_expanded.extend(__UpperCamelCase )
lowercase_ : int = np.asarray(__UpperCamelCase )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Any = np.asarray(__UpperCamelCase )
lowercase_ : Any = np.shape(__UpperCamelCase )
lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
lowercase_ : Any = []
lowercase_ : List[Any] = 0
for i_map in range(__UpperCamelCase ):
lowercase_ : List[str] = np.ones((size_map, size_map) )
for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[Any] = pd_pool[
i_pool
]
lowercase_ : Any = i_pool + 1
lowercase_ : Optional[int] = np.multiply(
__UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) )
pd_all.append(__UpperCamelCase )
return pd_all
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]:
'''simple docstring'''
print('----------------------Start Training-------------------------' )
print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) )
print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) )
lowercase_ : int = 0
lowercase_ : Tuple = []
lowercase_ : Tuple = 1_0000
while rp < n_repeat and mse >= error_accuracy:
lowercase_ : List[str] = 0
print(f'''-------------Learning Time {rp}--------------''' )
for p in range(len(__UpperCamelCase ) ):
# print('------------Learning Image: %d--------------'%p)
lowercase_ : int = np.asmatrix(datas_train[p] )
lowercase_ : Any = np.asarray(datas_teach[p] )
lowercase_ , lowercase_ : Tuple = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : Optional[int] = np.shape(__UpperCamelCase )
lowercase_ : Optional[int] = self._expand(__UpperCamelCase )
lowercase_ : int = data_bp_input
lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa
lowercase_ : Dict = self.sig(__UpperCamelCase )
lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa
lowercase_ : int = self.sig(__UpperCamelCase )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
lowercase_ : str = np.multiply(
(data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Optional[int] = np.multiply(
np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji )
lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga)
lowercase_ : Dict = pd_conva_pooled.T.getA().tolist()
lowercase_ : List[Any] = self._calculate_gradient_from_pool(
__UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,)
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] )
lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
lowercase_ : Dict = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight
lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre
lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
lowercase_ : int = rp + 1
lowercase_ : Union[str, Any] = error_count / patterns
all_mse.append(__UpperCamelCase )
def draw_error():
lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(__UpperCamelCase ,'+-' )
plt.plot(__UpperCamelCase ,'r--' )
plt.xlabel('Learning Times' )
plt.ylabel('All_mse' )
plt.grid(__UpperCamelCase ,alpha=0.5 )
plt.show()
print('------------------Training Complished---------------------' )
print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') )
if draw_e:
draw_error()
return mse
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Union[str, Any] = []
print('-------------------Start Testing-------------------------' )
print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) )
for p in range(len(__UpperCamelCase ) ):
lowercase_ : List[Any] = np.asmatrix(datas_test[p] )
lowercase_ , lowercase_ : Optional[Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : List[str] = self._expand(__UpperCamelCase )
lowercase_ : Any = data_bp_input
lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa
lowercase_ : str = self.sig(__UpperCamelCase )
lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa
lowercase_ : Optional[int] = self.sig(__UpperCamelCase )
produce_out.extend(bp_outa.getA().tolist() )
lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out]
return np.asarray(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase )
lowercase_ , lowercase_ : Union[str, Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 321
| 0
|
"""simple docstring"""
import inspect
import unittest
from transformers import RegNetConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import RegNetForImageClassification, RegNetModel
from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=3 ,__UpperCamelCase=32 ,__UpperCamelCase=3 ,__UpperCamelCase=10 ,__UpperCamelCase=[10, 20, 30, 40] ,__UpperCamelCase=[1, 1, 2, 1] ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase="relu" ,__UpperCamelCase=3 ,__UpperCamelCase=None ,) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[str] = parent
lowercase_ : List[Any] = batch_size
lowercase_ : Optional[Any] = image_size
lowercase_ : str = num_channels
lowercase_ : List[Any] = embeddings_size
lowercase_ : Any = hidden_sizes
lowercase_ : Tuple = depths
lowercase_ : int = is_training
lowercase_ : List[Any] = use_labels
lowercase_ : str = hidden_act
lowercase_ : str = num_labels
lowercase_ : Dict = scope
lowercase_ : List[str] = len(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase_ : Any = None
if self.use_labels:
lowercase_ : str = ids_tensor([self.batch_size] ,self.num_labels )
lowercase_ : List[Any] = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Optional[Any] = RegNetModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : int = model(__UpperCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any:
'''simple docstring'''
lowercase_ : int = self.num_labels
lowercase_ : Dict = RegNetForImageClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Optional[int] = model(__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : List[Any] = self.prepare_config_and_inputs()
lowercase_ : List[Any] = config_and_inputs
lowercase_ : List[str] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (RegNetModel, RegNetForImageClassification) if is_torch_available() else ()
lowercase = (
{'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Any = RegNetModelTester(self )
lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,has_text_modality=__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
return
@unittest.skip(reason='RegNet does not use inputs_embeds' )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='RegNet does not support input and output embeddings' )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
pass
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Optional[int] = model_class(__UpperCamelCase )
lowercase_ : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ : Optional[int] = [*signature.parameters.keys()]
lowercase_ : int = ['pixel_values']
self.assertListEqual(arg_names[:1] ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Optional[int] = model_class(config=__UpperCamelCase )
for name, module in model.named_modules():
if isinstance(__UpperCamelCase ,(nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) ,msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,)
self.assertTrue(
torch.all(module.bias == 0 ) ,msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,)
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
def check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[Any] = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
lowercase_ : Any = model(**self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) )
lowercase_ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase_ : int = self.model_tester.num_stages
self.assertEqual(len(__UpperCamelCase ) ,expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 2, self.model_tester.image_size // 2] ,)
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ : Optional[Any] = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowercase_ : Optional[Any] = layer_type
lowercase_ : Optional[Any] = True
check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase_ : Any = True
check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : Optional[Any] = RegNetModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def lowercase__( ):
lowercase_ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class UpperCamelCase ( unittest.TestCase ):
@cached_property
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCamelCase )
lowercase_ : Optional[Any] = self.default_image_processor
lowercase_ : str = prepare_img()
lowercase_ : Dict = image_processor(images=__UpperCamelCase ,return_tensors='pt' ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
lowercase_ : Tuple = model(**__UpperCamelCase )
# verify the logits
lowercase_ : str = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape ,__UpperCamelCase )
lowercase_ : int = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 351
|
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ):
lowercase_ : Dict = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification'
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Dict = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : str = 'patrickvonplaten/t5-tiny-random'
lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[int] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] )
lowercase_ : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2'
lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__UpperCamelCase ):
self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'current' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Any = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
| 321
| 0
|
"""simple docstring"""
from __future__ import annotations
import time
import numpy as np
__SCREAMING_SNAKE_CASE =[8, 5, 9, 7]
__SCREAMING_SNAKE_CASE =[
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
__SCREAMING_SNAKE_CASE =[
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> None:
'''simple docstring'''
lowercase_ : Tuple = claim_vector
lowercase_ : Optional[Any] = allocated_resources_table
lowercase_ : str = maximum_claim_table
def _UpperCAmelCase ( self ) -> list[int]:
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def _UpperCAmelCase ( self ) -> list[int]:
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def _UpperCAmelCase ( self ) -> list[list[int]]:
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCamelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def _UpperCAmelCase ( self ) -> dict[int, list[int]]:
'''simple docstring'''
return {self.__need().index(__UpperCamelCase ): i for i in self.__need()}
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : Optional[Any] = self.__need()
lowercase_ : List[Any] = self.__allocated_resources_table
lowercase_ : List[Any] = self.__available_resources()
lowercase_ : int = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('_' * 50 + '\n' )
while need_list:
lowercase_ : Tuple = False
for each_need in need_list:
lowercase_ : Any = True
for index, need in enumerate(__UpperCamelCase ):
if need > available_resources[index]:
lowercase_ : Tuple = False
break
if execution:
lowercase_ : Optional[Any] = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
lowercase_ : int = original_need_index
print(f'''Process {process_number + 1} is executing.''' )
# remove the process run from stack
need_list.remove(__UpperCamelCase )
# update available/freed resources stack
lowercase_ : List[str] = np.array(__UpperCamelCase ) + np.array(
alloc_resources_table[process_number] )
print(
'Updated available resource stack for processes: '
+ ' '.join([str(__UpperCamelCase ) for x in available_resources] ) )
break
if safe:
print('The process is in a safe state.\n' )
else:
print('System in unsafe state. Aborting...\n' )
break
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
print(' ' * 9 + 'Allocated Resource Table' )
for item in self.__allocated_resources_table:
print(
f'''P{self.__allocated_resources_table.index(__UpperCamelCase ) + 1}'''
+ ' '.join(f'''{it:>8}''' for it in item )
+ '\n' )
print(' ' * 9 + 'System Resource Table' )
for item in self.__maximum_claim_table:
print(
f'''P{self.__maximum_claim_table.index(__UpperCamelCase ) + 1}'''
+ ' '.join(f'''{it:>8}''' for it in item )
+ '\n' )
print(
'Current Usage by Active Processes: '
+ ' '.join(str(__UpperCamelCase ) for x in self.__claim_vector ) )
print(
'Initial Available Resources: '
+ ' '.join(str(__UpperCamelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 352
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
class UpperCamelCase ( lowercase_ ):
lowercase = ['input_values', 'padding_mask']
def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : List[str] = chunk_length_s
lowercase_ : Tuple = overlap
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
f''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if padding and truncation:
raise ValueError('Both padding and truncation were set. Make sure you only set one.' )
elif padding is None:
# by default let's pad the inputs
lowercase_ : Optional[int] = True
lowercase_ : Optional[int] = bool(
isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) )
if is_batched:
lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ):
lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa )
elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
lowercase_ : List[str] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T]
# verify inputs are valid
for idx, example in enumerate(__UpperCamelCase ):
if example.ndim > 2:
raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' )
lowercase_ : Optional[int] = None
lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio )
lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) )
lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio )
lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) )
lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length
lowercase_ : Union[str, Any] = 'max_length'
else:
lowercase_ : int = input_values
# normal padding on batch
if padded_inputs is None:
lowercase_ : int = self.pad(
__UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,)
if padding:
lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' )
lowercase_ : Dict = []
for example in padded_inputs.pop('input_values' ):
if self.feature_size == 1:
lowercase_ : Optional[int] = example[..., None]
input_values.append(example.T )
lowercase_ : str = input_values
if return_tensors is not None:
lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase )
return padded_inputs
| 321
| 0
|
"""simple docstring"""
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class UpperCamelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=7 ,__UpperCamelCase=3 ,__UpperCamelCase=30 ,__UpperCamelCase=400 ,__UpperCamelCase=True ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=True ,__UpperCamelCase=1 / 255 ,__UpperCamelCase=True ,) -> List[str]:
'''simple docstring'''
lowercase_ : str = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333}
lowercase_ : Dict = parent
lowercase_ : str = batch_size
lowercase_ : Dict = num_channels
lowercase_ : str = min_resolution
lowercase_ : Optional[Any] = max_resolution
lowercase_ : Any = do_resize
lowercase_ : Optional[int] = size
lowercase_ : Union[str, Any] = do_normalize
lowercase_ : Any = image_mean
lowercase_ : List[Any] = image_std
lowercase_ : Tuple = do_rescale
lowercase_ : Optional[int] = rescale_factor
lowercase_ : List[Any] = do_pad
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=False ) -> List[Any]:
'''simple docstring'''
if not batched:
lowercase_ : Optional[Any] = image_inputs[0]
if isinstance(__UpperCamelCase ,Image.Image ):
lowercase_ : Optional[Any] = image.size
else:
lowercase_ : Optional[int] = image.shape[1], image.shape[2]
if w < h:
lowercase_ : Tuple = int(self.size['shortest_edge'] * h / w )
lowercase_ : Tuple = self.size['shortest_edge']
elif w > h:
lowercase_ : int = self.size['shortest_edge']
lowercase_ : Any = int(self.size['shortest_edge'] * w / h )
else:
lowercase_ : str = self.size['shortest_edge']
lowercase_ : Union[str, Any] = self.size['shortest_edge']
else:
lowercase_ : int = []
for image in image_inputs:
lowercase_ : Any = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowercase_ : Union[str, Any] = max(__UpperCamelCase ,key=lambda __UpperCamelCase : item[0] )[0]
lowercase_ : Any = max(__UpperCamelCase ,key=lambda __UpperCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
lowercase = ConditionalDetrImageProcessor if is_vision_available() else None
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[str] = ConditionalDetrImageProcessingTester(self )
@property
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__UpperCamelCase ,'image_mean' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'image_std' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'do_normalize' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'do_resize' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'size' ) )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{'shortest_edge': 18, 'longest_edge': 1333} )
self.assertEqual(image_processor.do_pad ,__UpperCamelCase )
lowercase_ : Any = self.image_processing_class.from_dict(
self.image_processor_dict ,size=42 ,max_size=84 ,pad_and_return_pixel_mask=__UpperCamelCase )
self.assertEqual(image_processor.size ,{'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
pass
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowercase_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCamelCase ,Image.Image )
# Test not batched input
lowercase_ : str = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values
lowercase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
lowercase_ : Optional[Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase ,batched=__UpperCamelCase )
lowercase_ : Dict = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase_ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ,numpify=__UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCamelCase ,np.ndarray )
# Test not batched input
lowercase_ : List[str] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values
lowercase_ : Dict = self.image_processor_tester.get_expected_values(__UpperCamelCase )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
lowercase_ : Any = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values
lowercase_ : str = self.image_processor_tester.get_expected_values(__UpperCamelCase ,batched=__UpperCamelCase )
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase_ : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ,torchify=__UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCamelCase ,torch.Tensor )
# Test not batched input
lowercase_ : List[str] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values
lowercase_ : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
lowercase_ : List[str] = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values
lowercase_ : List[Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase ,batched=__UpperCamelCase )
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' ,'r' ) as f:
lowercase_ : Optional[int] = json.loads(f.read() )
lowercase_ : str = {'image_id': 3_9769, 'annotations': target}
# encode them
lowercase_ : Any = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
lowercase_ : Dict = image_processing(images=__UpperCamelCase ,annotations=__UpperCamelCase ,return_tensors='pt' )
# verify pixel values
lowercase_ : Optional[int] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape ,__UpperCamelCase )
lowercase_ : Dict = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,__UpperCamelCase ,atol=1e-4 ) )
# verify area
lowercase_ : int = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,__UpperCamelCase ) )
# verify boxes
lowercase_ : str = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape ,__UpperCamelCase )
lowercase_ : Tuple = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,__UpperCamelCase ,atol=1e-3 ) )
# verify image_id
lowercase_ : Any = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,__UpperCamelCase ) )
# verify is_crowd
lowercase_ : str = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,__UpperCamelCase ) )
# verify class_labels
lowercase_ : int = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,__UpperCamelCase ) )
# verify orig_size
lowercase_ : Union[str, Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,__UpperCamelCase ) )
# verify size
lowercase_ : Dict = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,__UpperCamelCase ) )
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' ,'r' ) as f:
lowercase_ : Dict = json.loads(f.read() )
lowercase_ : Optional[Any] = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target}
lowercase_ : Dict = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
lowercase_ : Optional[int] = ConditionalDetrImageProcessor(format='coco_panoptic' )
lowercase_ : Optional[Any] = image_processing(images=__UpperCamelCase ,annotations=__UpperCamelCase ,masks_path=__UpperCamelCase ,return_tensors='pt' )
# verify pixel values
lowercase_ : Union[str, Any] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape ,__UpperCamelCase )
lowercase_ : str = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,__UpperCamelCase ,atol=1e-4 ) )
# verify area
lowercase_ : List[Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,__UpperCamelCase ) )
# verify boxes
lowercase_ : Optional[Any] = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape ,__UpperCamelCase )
lowercase_ : Optional[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,__UpperCamelCase ,atol=1e-3 ) )
# verify image_id
lowercase_ : List[str] = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,__UpperCamelCase ) )
# verify is_crowd
lowercase_ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,__UpperCamelCase ) )
# verify class_labels
lowercase_ : str = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,__UpperCamelCase ) )
# verify masks
lowercase_ : List[str] = 82_2873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() ,__UpperCamelCase )
# verify orig_size
lowercase_ : Optional[int] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,__UpperCamelCase ) )
# verify size
lowercase_ : List[str] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,__UpperCamelCase ) )
| 353
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"MRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"MraForMaskedLM",
"MraForMultipleChoice",
"MraForQuestionAnswering",
"MraForSequenceClassification",
"MraForTokenClassification",
"MraLayer",
"MraModel",
"MraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 321
| 0
|
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ):
lowercase_ : Dict = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification'
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Dict = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : str = 'patrickvonplaten/t5-tiny-random'
lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[int] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] )
lowercase_ : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2'
lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__UpperCamelCase ):
self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'current' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Any = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
| 354
|
"""simple docstring"""
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("dataclasses")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("importlib_metadata")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ):
require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
| 321
| 0
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
class UpperCamelCase ( lowercase_ ):
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = feature_size
lowercase_ : Optional[Any] = sampling_rate
lowercase_ : int = padding_value
lowercase_ : Dict = kwargs.pop('padding_side' ,'right' )
lowercase_ : str = kwargs.pop('return_attention_mask' ,__UpperCamelCase )
super().__init__(**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature:
'''simple docstring'''
if isinstance(__UpperCamelCase ,(list, tuple) ) and isinstance(processed_features[0] ,(dict, BatchFeature) ):
lowercase_ : List[Any] = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'
f''' to this method that includes {self.model_input_names[0]}, but you provided'''
f''' {list(processed_features.keys() )}''' )
lowercase_ : int = processed_features[self.model_input_names[0]]
lowercase_ : Union[str, Any] = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(__UpperCamelCase ) == 0:
if return_attention_mask:
lowercase_ : Union[str, Any] = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
lowercase_ : Union[str, Any] = required_input[0]
if isinstance(__UpperCamelCase ,(list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
lowercase_ : List[Any] = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(__UpperCamelCase ):
lowercase_ : List[str] = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(__UpperCamelCase ):
lowercase_ : str = 'tf'
elif is_torch_tensor(__UpperCamelCase ):
lowercase_ : Tuple = 'pt'
elif isinstance(__UpperCamelCase ,(int, float, list, tuple, np.ndarray) ):
lowercase_ : str = 'np'
else:
raise ValueError(
f'''type of {first_element} unknown: {type(__UpperCamelCase )}. '''
'Should be one of a python, numpy, pytorch or tensorflow object.' )
for key, value in processed_features.items():
if isinstance(value[0] ,(int, float) ):
lowercase_ : List[str] = to_numpy(__UpperCamelCase )
else:
lowercase_ : Optional[Any] = [to_numpy(__UpperCamelCase ) for v in value]
# Convert padding_strategy in PaddingStrategy
lowercase_ : int = self._get_padding_strategies(padding=__UpperCamelCase ,max_length=__UpperCamelCase )
lowercase_ : List[str] = processed_features[self.model_input_names[0]]
lowercase_ : Union[str, Any] = len(__UpperCamelCase )
if not all(len(__UpperCamelCase ) == batch_size for v in processed_features.values() ):
raise ValueError('Some items in the output dictionary have a different batch size than others.' )
lowercase_ : Dict = []
for i in range(__UpperCamelCase ):
lowercase_ : Any = {k: v[i] for k, v in processed_features.items()}
# truncation
lowercase_ : List[Any] = self._truncate(
__UpperCamelCase ,max_length=__UpperCamelCase ,pad_to_multiple_of=__UpperCamelCase ,truncation=__UpperCamelCase ,)
truncated_inputs.append(__UpperCamelCase )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
lowercase_ : Union[str, Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
lowercase_ : Dict = PaddingStrategy.MAX_LENGTH
lowercase_ : List[str] = {}
for i in range(__UpperCamelCase ):
# padding
lowercase_ : str = self._pad(
truncated_inputs[i] ,max_length=__UpperCamelCase ,padding_strategy=__UpperCamelCase ,pad_to_multiple_of=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,)
for key, value in outputs.items():
if key not in batch_outputs:
lowercase_ : Optional[int] = []
if value.dtype is np.dtype(np.floataa ):
lowercase_ : Optional[int] = value.astype(np.floataa )
batch_outputs[key].append(__UpperCamelCase )
return BatchFeature(__UpperCamelCase ,tensor_type=__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = PaddingStrategy.DO_NOT_PAD ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> dict:
'''simple docstring'''
lowercase_ : Optional[Any] = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
lowercase_ : Optional[Any] = len(__UpperCamelCase )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
lowercase_ : int = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
lowercase_ : str = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__UpperCamelCase ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
lowercase_ : str = np.ones(len(__UpperCamelCase ) ,dtype=np.intaa )
if needs_to_be_padded:
lowercase_ : Optional[int] = max_length - len(__UpperCamelCase )
if self.padding_side == "right":
if return_attention_mask:
lowercase_ : Union[str, Any] = np.pad(
processed_features['attention_mask'] ,(0, difference) )
lowercase_ : Optional[Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
lowercase_ : Tuple = np.pad(
__UpperCamelCase ,__UpperCamelCase ,'constant' ,constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
lowercase_ : Optional[Any] = np.pad(
processed_features['attention_mask'] ,(difference, 0) )
lowercase_ : List[Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
lowercase_ : Any = np.pad(
__UpperCamelCase ,__UpperCamelCase ,'constant' ,constant_values=self.padding_value )
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return processed_features
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> int:
'''simple docstring'''
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' )
lowercase_ : Union[str, Any] = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
lowercase_ : List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
lowercase_ : Any = len(__UpperCamelCase ) > max_length
if needs_to_be_truncated:
lowercase_ : Any = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
lowercase_ : Union[str, Any] = processed_features['attention_mask'][:max_length]
return processed_features
def _UpperCAmelCase ( self ,__UpperCamelCase=False ,__UpperCamelCase=None ) -> Dict:
'''simple docstring'''
if padding is not False:
if padding is True:
lowercase_ : Optional[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : Optional[Any] = PaddingStrategy(__UpperCamelCase )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : Union[str, Any] = padding
else:
lowercase_ : Union[str, Any] = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'
' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' )
return padding_strategy
| 355
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ):
lowercase_ : int = 'backbone.' if is_semantic else ''
lowercase_ : List[str] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(F'''{prefix}cls_token''', 'beit.embeddings.cls_token'),
(F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'),
(F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'),
(F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('mask_token', 'beit.embeddings.mask_token'),
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('fc_norm.weight', 'beit.pooler.layernorm.weight'),
('fc_norm.bias', 'beit.pooler.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ):
for i in range(config.num_hidden_layers ):
lowercase_ : Any = 'backbone.' if is_semantic else ''
# queries, keys and values
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' )
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' )
lowercase_ : List[str] = in_proj_weight[
: config.hidden_size, :
]
lowercase_ : List[str] = q_bias
lowercase_ : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ : Any = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ : Any = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' )
lowercase_ : Tuple = gamma_a
lowercase_ : List[Any] = gamma_a
def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = val
def lowercase__( ):
lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ):
lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True
lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
lowercase_ : Any = 10_24
lowercase_ : List[str] = 40_96
lowercase_ : Tuple = 24
lowercase_ : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
lowercase_ : Optional[Any] = 16
lowercase_ : Any = 'huggingface/label-files'
lowercase_ : int = 'rvlcdip-id2label.json'
lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowercase_ : str = idalabel
lowercase_ : str = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
# load HuggingFace model
lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(__SCREAMING_SNAKE_CASE )
# Check outputs on an image
lowercase_ : List[Any] = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE )
lowercase_ : str = prepare_img()
lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' )
lowercase_ : int = encoding['pixel_values']
lowercase_ : Any = model(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = outputs.logits
# verify logits
lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92]
assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected"
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
if has_lm_head:
lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large'
else:
lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip'
image_processor.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
model.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 321
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {
"microsoft/swinv2-tiny-patch4-window8-256": (
"https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"
),
}
class UpperCamelCase ( lowercase_ ):
lowercase = 'swinv2'
lowercase = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self ,__UpperCamelCase=224 ,__UpperCamelCase=4 ,__UpperCamelCase=3 ,__UpperCamelCase=96 ,__UpperCamelCase=[2, 2, 6, 2] ,__UpperCamelCase=[3, 6, 12, 24] ,__UpperCamelCase=7 ,__UpperCamelCase=4.0 ,__UpperCamelCase=True ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.1 ,__UpperCamelCase="gelu" ,__UpperCamelCase=False ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-5 ,__UpperCamelCase=32 ,**__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
super().__init__(**__UpperCamelCase )
lowercase_ : str = image_size
lowercase_ : List[Any] = patch_size
lowercase_ : Any = num_channels
lowercase_ : int = embed_dim
lowercase_ : Optional[int] = depths
lowercase_ : List[str] = len(__UpperCamelCase )
lowercase_ : int = num_heads
lowercase_ : Union[str, Any] = window_size
lowercase_ : str = mlp_ratio
lowercase_ : int = qkv_bias
lowercase_ : Optional[Any] = hidden_dropout_prob
lowercase_ : Tuple = attention_probs_dropout_prob
lowercase_ : Dict = drop_path_rate
lowercase_ : Dict = hidden_act
lowercase_ : List[Any] = use_absolute_embeddings
lowercase_ : str = layer_norm_eps
lowercase_ : Dict = initializer_range
lowercase_ : List[Any] = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowercase_ : Optional[Any] = int(embed_dim * 2 ** (len(__UpperCamelCase ) - 1) )
lowercase_ : List[Any] = (0, 0, 0, 0)
| 356
|
"""simple docstring"""
__SCREAMING_SNAKE_CASE ={
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
__SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()}
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Union[str, Any] = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
lowercase_ : Dict = ''
for word in coded.split():
while len(__SCREAMING_SNAKE_CASE ) != 0:
decoded += decode_dict[word[:5]]
lowercase_ : Any = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 321
| 0
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Union[str, Any] = abs(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = 0
while n > 0:
res += n % 10
n //= 10
return res
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Optional[Any] = abs(__SCREAMING_SNAKE_CASE )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
return sum(int(__SCREAMING_SNAKE_CASE ) for c in str(abs(__SCREAMING_SNAKE_CASE ) ) )
def lowercase__( ):
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(__SCREAMING_SNAKE_CASE : Callable , __SCREAMING_SNAKE_CASE : int ) -> None:
lowercase_ : int = F'''{func.__name__}({value})'''
lowercase_ : Any = timeit(F'''__main__.{call}''' , setup='import __main__' )
print(F'''{call:56} = {func(__SCREAMING_SNAKE_CASE )} -- {timing:.4f} seconds''' )
for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 357
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations_with_dp_array(
__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
lowercase_ : str = sum(
count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE )
for item in array )
lowercase_ : Tuple = answer
return answer
lowercase_ : Optional[Any] = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Dict = [0] * (target + 1)
lowercase_ : Dict = 1
for i in range(1 , target + 1 ):
for j in range(__SCREAMING_SNAKE_CASE ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE =3
__SCREAMING_SNAKE_CASE =5
__SCREAMING_SNAKE_CASE =[1, 2, 5]
print(combination_sum_iv(n, array, target))
| 321
| 0
|
"""simple docstring"""
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def lowercase__( ):
lowercase_ : List[Any] = ArgumentParser(
description=(
'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes'
) )
# Optional arguments for the launch helper
parser.add_argument('--num_cores' , type=__SCREAMING_SNAKE_CASE , default=1 , help='Number of TPU cores to use (1 or 8).' )
# positional
parser.add_argument(
'training_script' , type=__SCREAMING_SNAKE_CASE , help=(
'The full path to the single TPU training '
'program/script to be launched in parallel, '
'followed by all the arguments for the '
'training script'
) , )
# rest from the training program
parser.add_argument('training_script_args' , nargs=__SCREAMING_SNAKE_CASE )
return parser.parse_args()
def lowercase__( ):
lowercase_ : str = parse_args()
# Import training_script as a module.
lowercase_ : Union[str, Any] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
lowercase_ : List[str] = script_fpath.stem
lowercase_ : Dict = importlib.import_module(__SCREAMING_SNAKE_CASE )
# Patch sys.argv
lowercase_ : Tuple = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 358
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : int = set_counts
lowercase_ : List[Any] = max(__UpperCamelCase )
lowercase_ : Union[str, Any] = len(__UpperCamelCase )
lowercase_ : Dict = [1] * num_sets
lowercase_ : Optional[int] = list(range(__UpperCamelCase ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase )
lowercase_ : int = self.get_parent(__UpperCamelCase )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : Tuple = 0
lowercase_ : str = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : str = 0
lowercase_ : Tuple = src_parent
lowercase_ : int = self.set_counts[src_parent]
lowercase_ : str = max(self.max_set ,__UpperCamelCase )
return True
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 321
| 0
|
"""simple docstring"""
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__SCREAMING_SNAKE_CASE =models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu")
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation="relu"))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation="relu"))
classifier.add(layers.Dense(units=1, activation="sigmoid"))
# Compiling the CNN
classifier.compile(
optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__SCREAMING_SNAKE_CASE =tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__SCREAMING_SNAKE_CASE =tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__SCREAMING_SNAKE_CASE =train_datagen.flow_from_directory(
"dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary"
)
__SCREAMING_SNAKE_CASE =test_datagen.flow_from_directory(
"dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary"
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save("cnn.h5")
# Part 3 - Making new predictions
__SCREAMING_SNAKE_CASE =tf.keras.preprocessing.image.load_img(
"dataset/single_prediction/image.png", target_size=(64, 64)
)
__SCREAMING_SNAKE_CASE =tf.keras.preprocessing.image.img_to_array(test_image)
__SCREAMING_SNAKE_CASE =np.expand_dims(test_image, axis=0)
__SCREAMING_SNAKE_CASE =classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__SCREAMING_SNAKE_CASE ="Normal"
if result[0][0] == 1:
__SCREAMING_SNAKE_CASE ="Abnormality detected"
| 359
|
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
__SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BlenderbotTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) )
lowercase_ : Any = add_prefix_space
lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase )
lowercase_ : int = add_prefix_space
lowercase_ : Any = 'post_processor'
lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
if tokenizer_component_instance:
lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ : str = tuple(state['sep'] )
if "cls" in state:
lowercase_ : Union[str, Any] = tuple(state['cls'] )
lowercase_ : str = False
if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Dict = add_prefix_space
lowercase_ : int = True
if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets:
lowercase_ : Optional[Any] = trim_offsets
lowercase_ : Tuple = True
if changes_to_apply:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) )
lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase )
setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value
lowercase_ : str = value
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : int = [self.sep_token_id]
lowercase_ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any:
'''simple docstring'''
return token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]:
'''simple docstring'''
lowercase_ : Optional[Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(__UpperCamelCase )
lowercase_ : Dict = ' '.join(__UpperCamelCase )
lowercase_ : str = self.encode(__UpperCamelCase )
if len(__UpperCamelCase ) > self.model_max_length:
lowercase_ : List[str] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 321
| 0
|
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
__SCREAMING_SNAKE_CASE =["gpt2"]
__SCREAMING_SNAKE_CASE ="gpt2"
if is_tf_available():
class UpperCamelCase ( tf.Module ):
def __init__( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
lowercase_ : List[str] = tokenizer
lowercase_ : List[str] = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : str = TFGPTaLMHeadModel.from_config(__UpperCamelCase )
@tf.function(input_signature=(tf.TensorSpec((None,) ,tf.string ,name='text' ),) )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = self.tokenizer(__UpperCamelCase )
lowercase_ : Optional[Any] = tokenized['input_ids'].to_tensor()
lowercase_ : List[str] = tf.cast(input_ids_dense > 0 ,tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
lowercase_ : List[str] = self.model(input_ids=__UpperCamelCase ,attention_mask=__UpperCamelCase )['logits']
return outputs
@require_tf
@require_keras_nlp
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
lowercase_ : Tuple = [GPTaTokenizer.from_pretrained(__UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
lowercase_ : Optional[Any] = [TFGPTaTokenizer.from_pretrained(__UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
lowercase_ : List[str] = [
'This is a straightforward English test sentence.',
'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.',
'Now we\'re going to add some Chinese: 一 二 三 一二三',
'And some much more rare Chinese: 齉 堃 齉堃',
'Je vais aussi écrire en français pour tester les accents',
'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ',
]
lowercase_ : str = list(zip(self.test_sentences ,self.test_sentences[::-1] ) )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ):
for test_inputs in self.test_sentences:
lowercase_ : str = tokenizer([test_inputs] ,return_tensors='tf' )
lowercase_ : Optional[int] = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
lowercase_ : List[str] = python_outputs[key].numpy()
lowercase_ : str = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(__UpperCamelCase ,tf.intaa ) == tf_outputs_values ) )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
lowercase_ : List[str] = tf.function(__UpperCamelCase )
for test_inputs in self.test_sentences:
lowercase_ : Dict = tf.constant(__UpperCamelCase )
lowercase_ : Union[str, Any] = compiled_tokenizer(__UpperCamelCase )
lowercase_ : Dict = tf_tokenizer(__UpperCamelCase )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
lowercase_ : Union[str, Any] = ModelToSave(tokenizer=__UpperCamelCase )
lowercase_ : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] )
lowercase_ : Tuple = model.serving(__UpperCamelCase ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
lowercase_ : List[Any] = Path(__UpperCamelCase ) / 'saved.model'
tf.saved_model.save(__UpperCamelCase ,__UpperCamelCase ,signatures={'serving_default': model.serving} )
lowercase_ : Optional[Any] = tf.saved_model.load(__UpperCamelCase )
lowercase_ : Any = loaded_model.signatures['serving_default'](__UpperCamelCase )['output_0']
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
lowercase_ : List[str] = tf.convert_to_tensor([self.test_sentences[0]] )
lowercase_ : Any = tf_tokenizer(__UpperCamelCase ) # Build model with some sample inputs
lowercase_ : Union[str, Any] = tf_tokenizer.get_config()
lowercase_ : Dict = TFGPTaTokenizer.from_config(__UpperCamelCase )
lowercase_ : Union[str, Any] = model_from_config(__UpperCamelCase )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
lowercase_ : Union[str, Any] = 12_3123
for max_length in [3, 5, 1024]:
lowercase_ : str = tf.convert_to_tensor([self.test_sentences[0]] )
lowercase_ : List[Any] = tf_tokenizer(__UpperCamelCase ,max_length=__UpperCamelCase )
lowercase_ : Any = out['input_ids'].numpy().shape[1]
assert out_length == max_length
| 360
|
"""simple docstring"""
import os
import sys
import unittest
__SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py")
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py")
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'}
lowercase_ : Union[str, Any] = {
'BlipModelTest': 'BlipModelTester',
'BlipTextImageModelTest': 'BlipTextImageModelsModelTester',
'BlipTextModelTest': 'BlipTextModelTester',
'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester',
'BlipVQAModelTest': 'BlipVQAModelTester',
'BlipVisionModelTest': 'BlipVisionModelTester',
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : Any = {
'BertForMaskedLM': ['BertModelTest'],
'BertForMultipleChoice': ['BertModelTest'],
'BertForNextSentencePrediction': ['BertModelTest'],
'BertForPreTraining': ['BertModelTest'],
'BertForQuestionAnswering': ['BertModelTest'],
'BertForSequenceClassification': ['BertModelTest'],
'BertForTokenClassification': ['BertModelTest'],
'BertLMHeadModel': ['BertModelTest'],
'BertModel': ['BertModelTest'],
}
lowercase_ : Any = {
'BlipForConditionalGeneration': ['BlipTextImageModelTest'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'],
'BlipForQuestionAnswering': ['BlipVQAModelTest'],
'BlipModel': ['BlipModelTest'],
'BlipTextModel': ['BlipTextModelTest'],
'BlipVisionModel': ['BlipVisionModelTest'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Tuple = {
'BertForMaskedLM': ['BertModelTester'],
'BertForMultipleChoice': ['BertModelTester'],
'BertForNextSentencePrediction': ['BertModelTester'],
'BertForPreTraining': ['BertModelTester'],
'BertForQuestionAnswering': ['BertModelTester'],
'BertForSequenceClassification': ['BertModelTester'],
'BertForTokenClassification': ['BertModelTester'],
'BertLMHeadModel': ['BertModelTester'],
'BertModel': ['BertModelTester'],
}
lowercase_ : Optional[Any] = {
'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'],
'BlipForQuestionAnswering': ['BlipVQAModelTester'],
'BlipModel': ['BlipModelTester'],
'BlipTextModel': ['BlipTextModelTester'],
'BlipVisionModel': ['BlipVisionModelTester'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
import argparse
from collections import defaultdict
import yaml
__SCREAMING_SNAKE_CASE ="docs/source/en/_toctree.yml"
def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ):
lowercase_ : Optional[int] = defaultdict(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = []
lowercase_ : Tuple = []
for doc in doc_list:
if "local" in doc:
counts[doc["local"]] += 1
if doc["title"].lower() == "overview":
overview_doc.append({'local': doc['local'], 'title': doc['title']} )
else:
new_doc_list.append(__SCREAMING_SNAKE_CASE )
lowercase_ : str = new_doc_list
lowercase_ : List[Any] = [key for key, value in counts.items() if value > 1]
lowercase_ : Tuple = []
for duplicate_key in duplicates:
lowercase_ : str = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} )
if len(__SCREAMING_SNAKE_CASE ) > 1:
raise ValueError(
F'''{duplicate_key} is present several times in the documentation table of content at '''
'`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '
'others.' )
# Only add this once
new_doc.append({'local': duplicate_key, 'title': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] )
lowercase_ : Optional[Any] = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : s["title"].lower() )
# "overview" gets special treatment and is always first
if len(__SCREAMING_SNAKE_CASE ) > 1:
raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' )
overview_doc.extend(__SCREAMING_SNAKE_CASE )
# Sort
return overview_doc
def lowercase__( __SCREAMING_SNAKE_CASE : Dict=False ):
with open(__SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f:
lowercase_ : Optional[int] = yaml.safe_load(f.read() )
# Get to the API doc
lowercase_ : Any = 0
while content[api_idx]["title"] != "API":
api_idx += 1
lowercase_ : int = content[api_idx]['sections']
# Then to the model doc
lowercase_ : str = 0
while api_doc[scheduler_idx]["title"] != "Schedulers":
scheduler_idx += 1
lowercase_ : Union[str, Any] = api_doc[scheduler_idx]['sections']
lowercase_ : str = clean_doc_toc(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = False
if new_scheduler_doc != scheduler_doc:
lowercase_ : List[Any] = True
if overwrite:
lowercase_ : Optional[Any] = new_scheduler_doc
if diff:
if overwrite:
lowercase_ : Tuple = api_doc
with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f:
f.write(yaml.dump(__SCREAMING_SNAKE_CASE , allow_unicode=__SCREAMING_SNAKE_CASE ) )
else:
raise ValueError(
'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' )
def lowercase__( __SCREAMING_SNAKE_CASE : str=False ):
with open(__SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f:
lowercase_ : str = yaml.safe_load(f.read() )
# Get to the API doc
lowercase_ : Optional[int] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
lowercase_ : Optional[int] = content[api_idx]['sections']
# Then to the model doc
lowercase_ : str = 0
while api_doc[pipeline_idx]["title"] != "Pipelines":
pipeline_idx += 1
lowercase_ : List[Any] = False
lowercase_ : List[str] = api_doc[pipeline_idx]['sections']
lowercase_ : Optional[Any] = []
# sort sub pipeline docs
for pipeline_doc in pipeline_docs:
if "section" in pipeline_doc:
lowercase_ : int = pipeline_doc['section']
lowercase_ : str = clean_doc_toc(__SCREAMING_SNAKE_CASE )
if overwrite:
lowercase_ : Any = new_sub_pipeline_doc
new_pipeline_docs.append(__SCREAMING_SNAKE_CASE )
# sort overall pipeline doc
lowercase_ : Optional[Any] = clean_doc_toc(__SCREAMING_SNAKE_CASE )
if new_pipeline_docs != pipeline_docs:
lowercase_ : int = True
if overwrite:
lowercase_ : List[Any] = new_pipeline_docs
if diff:
if overwrite:
lowercase_ : Union[str, Any] = api_doc
with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f:
f.write(yaml.dump(__SCREAMING_SNAKE_CASE , allow_unicode=__SCREAMING_SNAKE_CASE ) )
else:
raise ValueError(
'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
__SCREAMING_SNAKE_CASE =parser.parse_args()
check_scheduler_doc(args.fix_and_overwrite)
check_pipeline_doc(args.fix_and_overwrite)
| 361
|
"""simple docstring"""
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ):
with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX )
try:
print(*__SCREAMING_SNAKE_CASE )
finally:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN )
__SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
__SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank)
__SCREAMING_SNAKE_CASE =socket.gethostname()
__SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]"
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__SCREAMING_SNAKE_CASE =dist.get_rank()
__SCREAMING_SNAKE_CASE =dist.get_world_size()
printflock(F"{gpu} is OK (global rank: {rank}/{world_size})")
dist.barrier()
if rank == 0:
printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
except Exception:
printflock(F"{gpu} is broken")
raise
| 321
| 0
|
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
lowercase_ : List[str] = list(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = list(__SCREAMING_SNAKE_CASE )
lowercase_ : Dict = 0
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
if lista[i] != lista[i]:
count += 1
lowercase_ : List[Any] = '_'
if count > 1:
return False
else:
return "".join(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : list[str] ):
lowercase_ : List[Any] = []
while True:
lowercase_ : Optional[Any] = ['$'] * len(__SCREAMING_SNAKE_CASE )
lowercase_ : int = []
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
for j in range(i + 1 , len(__SCREAMING_SNAKE_CASE ) ):
lowercase_ : Tuple = compare_string(binary[i] , binary[j] )
if k is False:
lowercase_ : List[str] = '*'
lowercase_ : Optional[Any] = '*'
temp.append('X' )
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(__SCREAMING_SNAKE_CASE ) == 0:
return pi
lowercase_ : Optional[Any] = list(set(__SCREAMING_SNAKE_CASE ) )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Sequence[float] ):
lowercase_ : Any = []
for minterm in minterms:
lowercase_ : Union[str, Any] = ''
for _ in range(__SCREAMING_SNAKE_CASE ):
lowercase_ : Dict = str(minterm % 2 ) + string
minterm //= 2
temp.append(__SCREAMING_SNAKE_CASE )
return temp
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Dict = list(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = list(__SCREAMING_SNAKE_CASE )
lowercase_ : str = 0
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : list[str] ):
lowercase_ : Tuple = []
lowercase_ : Optional[Any] = [0] * len(__SCREAMING_SNAKE_CASE )
for i in range(len(chart[0] ) ):
lowercase_ : int = 0
lowercase_ : Dict = -1
for j in range(len(__SCREAMING_SNAKE_CASE ) ):
if chart[j][i] == 1:
count += 1
lowercase_ : Union[str, Any] = j
if count == 1:
lowercase_ : Dict = 1
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(__SCREAMING_SNAKE_CASE ) ):
lowercase_ : List[str] = 0
temp.append(prime_implicants[i] )
while True:
lowercase_ : Optional[Any] = 0
lowercase_ : str = -1
lowercase_ : Any = 0
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
lowercase_ : Dict = chart[i].count(1 )
if count_n > max_n:
lowercase_ : List[str] = count_n
lowercase_ : str = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(__SCREAMING_SNAKE_CASE ) ):
lowercase_ : List[Any] = 0
def lowercase__( __SCREAMING_SNAKE_CASE : list[str] , __SCREAMING_SNAKE_CASE : list[str] ):
lowercase_ : int = [[0 for x in range(len(__SCREAMING_SNAKE_CASE ) )] for x in range(len(__SCREAMING_SNAKE_CASE ) )]
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
lowercase_ : str = prime_implicants[i].count('_' )
for j in range(len(__SCREAMING_SNAKE_CASE ) ):
if is_for_table(prime_implicants[i] , binary[j] , __SCREAMING_SNAKE_CASE ):
lowercase_ : Union[str, Any] = 1
return chart
def lowercase__( ):
lowercase_ : List[Any] = int(input('Enter the no. of variables\n' ) )
lowercase_ : Optional[Any] = [
float(__SCREAMING_SNAKE_CASE )
for x in input(
'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split()
]
lowercase_ : Optional[int] = decimal_to_binary(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Union[str, Any] = check(__SCREAMING_SNAKE_CASE )
print('Prime Implicants are:' )
print(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = prime_implicant_chart(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = selection(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
print('Essential Prime Implicants are:' )
print(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 362
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : List[Any] = name
lowercase_ : int = val
def __str__( self ) -> Tuple:
'''simple docstring'''
return f'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return self.val < other.val
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Optional[int] = {}
lowercase_ : Tuple = {}
lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase )
def __getitem__( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
return self.get_value(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return (idx - 1) // 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return idx * 2 + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return idx * 2 + 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
return self.heap_dict[key]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1
lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase )
for idx, i in enumerate(__UpperCamelCase ):
lowercase_ : Any = idx
lowercase_ : str = i.val
for i in range(__UpperCamelCase ,-1 ,-1 ):
self.sift_down(__UpperCamelCase ,__UpperCamelCase )
return array
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
while True:
lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741
lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase )
lowercase_ : List[str] = idx
if l < len(__UpperCamelCase ) and array[l] < array[idx]:
lowercase_ : List[str] = l
if r < len(__UpperCamelCase ) and array[r] < array[smallest]:
lowercase_ : Dict = r
if smallest != idx:
lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx]
(
(
lowercase_
) , (
lowercase_
) ,
) : str = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
lowercase_ : Any = smallest
else:
break
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase )
while p >= 0 and self.heap[p] > self.heap[idx]:
lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
lowercase_ : int = p
lowercase_ : str = self.get_parent_idx(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return self.heap[0]
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
lowercase_ : Tuple = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 ,self.heap )
return x
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
self.heap.append(__UpperCamelCase )
lowercase_ : Tuple = len(self.heap ) - 1
lowercase_ : Optional[int] = node.val
self.sift_up(len(self.heap ) - 1 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return len(self.heap ) == 0
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
lowercase_ : Any = new_value
lowercase_ : List[str] = new_value
self.sift_up(self.idx_of_element[node] )
__SCREAMING_SNAKE_CASE =Node("R", -1)
__SCREAMING_SNAKE_CASE =Node("B", 6)
__SCREAMING_SNAKE_CASE =Node("A", 3)
__SCREAMING_SNAKE_CASE =Node("X", 1)
__SCREAMING_SNAKE_CASE =Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
__SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 321
| 0
|
"""simple docstring"""
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def lowercase__( ):
lowercase_ : str = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
lowercase_ : List[str] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert('RGB' )
return image
def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ):
lowercase_ : Union[str, Any] = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ):
lowercase_ : int = dct.pop(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = val
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
lowercase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' )
lowercase_ : List[str] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
lowercase_ : Tuple = torch.cat((q_bias, torch.zeros_like(__SCREAMING_SNAKE_CASE , requires_grad=__SCREAMING_SNAKE_CASE ), v_bias) )
lowercase_ : str = qkv_bias
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : str = 3_64 if 'coco' in model_name else 2_24
lowercase_ : int = BlipaVisionConfig(image_size=__SCREAMING_SNAKE_CASE ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
lowercase_ : Tuple = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=__SCREAMING_SNAKE_CASE ).to_dict()
elif "opt-6.7b" in model_name:
lowercase_ : Optional[int] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=__SCREAMING_SNAKE_CASE ).to_dict()
elif "t5-xl" in model_name:
lowercase_ : int = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
lowercase_ : Dict = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
lowercase_ : List[Any] = BlipaConfig(vision_config=__SCREAMING_SNAKE_CASE , text_config=__SCREAMING_SNAKE_CASE )
return config, image_size
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ):
lowercase_ : Dict = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
lowercase_ : Any = tokenizer('\n' , add_special_tokens=__SCREAMING_SNAKE_CASE ).input_ids[0]
lowercase_ : Any = get_blipa_config(__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = BlipaForConditionalGeneration(__SCREAMING_SNAKE_CASE ).eval()
lowercase_ : str = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
lowercase_ : Any = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
lowercase_ : Union[str, Any] = 'cuda' if torch.cuda.is_available() else 'cpu'
lowercase_ : List[str] = load_model_and_preprocess(
name=__SCREAMING_SNAKE_CASE , model_type=__SCREAMING_SNAKE_CASE , is_eval=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE )
original_model.eval()
print('Done!' )
# update state dict keys
lowercase_ : Dict = original_model.state_dict()
lowercase_ : List[str] = create_rename_keys(__SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
lowercase_ : Any = state_dict.pop(__SCREAMING_SNAKE_CASE )
if key.startswith('Qformer.bert' ):
lowercase_ : Optional[Any] = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
lowercase_ : Optional[int] = key.replace('self' , 'attention' )
if "opt_proj" in key:
lowercase_ : List[Any] = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
lowercase_ : List[Any] = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
lowercase_ : Dict = key.replace('opt' , 'language' )
if key.startswith('t5' ):
lowercase_ : Tuple = key.replace('t5' , 'language' )
lowercase_ : Union[str, Any] = val
# read in qv biases
read_in_q_v_bias(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = hf_model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE )
assert len(__SCREAMING_SNAKE_CASE ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
lowercase_ : Tuple = load_demo_image()
lowercase_ : Any = vis_processors['eval'](__SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(__SCREAMING_SNAKE_CASE )
# create processor
lowercase_ : List[Any] = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=__SCREAMING_SNAKE_CASE , image_std=__SCREAMING_SNAKE_CASE )
lowercase_ : Dict = BlipaProcessor(image_processor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values.to(__SCREAMING_SNAKE_CASE )
# make sure processor creates exact same pixel values
assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
original_model.to(__SCREAMING_SNAKE_CASE )
hf_model.to(__SCREAMING_SNAKE_CASE )
with torch.no_grad():
if "opt" in model_name:
lowercase_ : Any = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
lowercase_ : str = hf_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).logits
else:
lowercase_ : str = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
lowercase_ : int = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
lowercase_ : Optional[Any] = hf_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
lowercase_ : Union[str, Any] = torch.tensor(
[[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=__SCREAMING_SNAKE_CASE )
assert torch.allclose(logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
elif model_name == "blip2-flan-t5-xl-coco":
lowercase_ : Optional[int] = torch.tensor(
[[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=__SCREAMING_SNAKE_CASE )
else:
# cast to same type
lowercase_ : List[Any] = logits.dtype
assert torch.allclose(original_logits.to(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , atol=1E-2 )
print('Looks ok!' )
print('Generating a caption...' )
lowercase_ : Union[str, Any] = ''
lowercase_ : Optional[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).input_ids.to(__SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = original_model.generate({'image': original_pixel_values} )
lowercase_ : Any = hf_model.generate(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = input_ids.shape[1]
lowercase_ : Optional[int] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = [text.strip() for text in output_text]
print('HF generation:' , __SCREAMING_SNAKE_CASE )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(__SCREAMING_SNAKE_CASE )
hf_model.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
processor.push_to_hub(F'''nielsr/{model_name}''' )
hf_model.push_to_hub(F'''nielsr/{model_name}''' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
__SCREAMING_SNAKE_CASE =[
"blip2-opt-2.7b",
"blip2-opt-6.7b",
"blip2-opt-2.7b-coco",
"blip2-opt-6.7b-coco",
"blip2-flan-t5-xl",
"blip2-flan-t5-xl-coco",
"blip2-flan-t5-xxl",
]
parser.add_argument(
"--model_name",
default="blip2-opt-2.7b",
choices=choices,
type=str,
help="Path to hf config.json of model to convert",
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub after converting",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 363
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[Any] = tempfile.mkdtemp()
# fmt: off
lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) )
lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
lowercase_ : Tuple = {'unk_token': '<unk>'}
lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + '\n' )
with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp:
fp.write('\n'.join(__UpperCamelCase ) )
lowercase_ : Any = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073],
'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase )
with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp:
json.dump(__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )]
lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_tokenizer()
lowercase_ : List[Any] = self.get_rust_tokenizer()
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase )
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase )
self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase )
self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' )
lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 )
lowercase_ : Any = CLIPSegProcessor.from_pretrained(
self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,__UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[str] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = self.prepare_image_inputs()
lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' )
lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[Any] = self.get_tokenizer()
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Dict = 'lower newer'
lowercase_ : Any = processor(text=__UpperCamelCase )
lowercase_ : int = tokenizer(__UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.get_image_processor()
lowercase_ : str = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = 'lower newer'
lowercase_ : str = self.prepare_image_inputs()
lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = self.prepare_image_inputs()
lowercase_ : Optional[Any] = self.prepare_image_inputs()
lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase )
lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations_with_dp_array(
__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
lowercase_ : str = sum(
count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE )
for item in array )
lowercase_ : Tuple = answer
return answer
lowercase_ : Optional[Any] = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Dict = [0] * (target + 1)
lowercase_ : Dict = 1
for i in range(1 , target + 1 ):
for j in range(__SCREAMING_SNAKE_CASE ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE =3
__SCREAMING_SNAKE_CASE =5
__SCREAMING_SNAKE_CASE =[1, 2, 5]
print(combination_sum_iv(n, array, target))
| 364
|
"""simple docstring"""
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 321
| 0
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(__SCREAMING_SNAKE_CASE ) )
def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
# Base Case
if index == len(__SCREAMING_SNAKE_CASE ):
return True
# Recursive Step
for i in range(__SCREAMING_SNAKE_CASE ):
if valid_coloring(graph[index] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# Color current vertex
lowercase_ : Any = i
# Validate coloring
if util_color(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , index + 1 ):
return True
# Backtrack
lowercase_ : Dict = -1
return False
def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Optional[Any] = [-1] * len(__SCREAMING_SNAKE_CASE )
if util_color(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 0 ):
return colored_vertices
return []
| 365
|
"""simple docstring"""
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = parent
lowercase_ : Tuple = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Optional[Any] = is_training
lowercase_ : Any = use_input_mask
lowercase_ : Optional[Any] = vocab_size
lowercase_ : str = hidden_size
lowercase_ : Any = num_hidden_layers
lowercase_ : Dict = num_attention_heads
lowercase_ : Optional[int] = intermediate_size
lowercase_ : Any = hidden_act
lowercase_ : Optional[Any] = hidden_dropout_prob
lowercase_ : str = attention_probs_dropout_prob
lowercase_ : Any = max_position_embeddings
lowercase_ : Optional[Any] = initializer_range
lowercase_ : Union[str, Any] = use_labels
lowercase_ : Union[str, Any] = scope
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : List[str] = None
if self.use_input_mask:
lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Any = self.get_config()
return config, input_ids, input_mask, token_labels
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return BertGenerationConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : str = self.prepare_config_and_inputs()
lowercase_ : int = True
lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Optional[Any] = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = True
lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Union[str, Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,)
lowercase_ : Dict = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,)
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int:
'''simple docstring'''
lowercase_ : List[str] = True
lowercase_ : Union[str, Any] = True
lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval()
# first forward pass
lowercase_ : str = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,)
lowercase_ : Dict = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size )
lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 )
# append to next input_ids and
lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 )
lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 )
lowercase_ : int = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
lowercase_ : List[Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
# select random slice
lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
lowercase_ : int = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
lowercase = (BertGenerationDecoder,) if is_torch_available() else ()
lowercase = (
{'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder}
if is_torch_available()
else {}
)
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoderTester(self )
lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs()
lowercase_ : Optional[int] = 'bert'
self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
lowercase_ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,)
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
self.assertIsNotNone(__UpperCamelCase )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Tuple = model(__UpperCamelCase )[0]
lowercase_ : Dict = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : str = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Dict = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : Dict = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
import cmath
import math
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
lowercase_ : str = math.radians(__SCREAMING_SNAKE_CASE )
lowercase_ : int = math.radians(__SCREAMING_SNAKE_CASE )
# Convert voltage and current to rectangular form
lowercase_ : Optional[int] = cmath.rect(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = cmath.rect(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod()
| 366
|
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
return None
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
return None
class UpperCamelCase ( unittest.TestCase ):
lowercase = [
# (model_name, model_kwargs)
('bert-base-cased', {}),
('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
from transformers import BertModel
lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words']
with NamedTemporaryFile(mode='w+t' ) as vocab_file:
vocab_file.write('\n'.join(__UpperCamelCase ) )
vocab_file.flush()
lowercase_ : List[str] = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) )
model.save_pretrained(__UpperCamelCase )
self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase )
@require_tf
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
lowercase_ : int = quantize(Path(__UpperCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
lowercase_ : Tuple = quantize(__UpperCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
try:
# Compute path
with TemporaryDirectory() as tempdir:
lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase )
return path
except Exception as e:
self.fail(__UpperCamelCase )
@require_torch
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
from transformers import BertModel
lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' )
@require_tf
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
from transformers import TFBertModel
lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1']
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase )
# Assert all variables are present
self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase )
self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} )
self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids']
lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]}
lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__UpperCamelCase ) ,3 )
# Should have exactly the same input names
self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__UpperCamelCase ) ,1 )
self.assertEqual(len(__UpperCamelCase ) ,1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] ,tokens['input_ids'] )
self.assertEqual(ordered_input_names[0] ,'input_ids' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' )
self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
| 321
| 0
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
__SCREAMING_SNAKE_CASE ={
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
__SCREAMING_SNAKE_CASE ={
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BartTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> int:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : str = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) )
lowercase_ : Optional[Any] = add_prefix_space
lowercase_ : str = pre_tok_class(**__UpperCamelCase )
lowercase_ : str = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase_ : int = 'post_processor'
lowercase_ : Any = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
if tokenizer_component_instance:
lowercase_ : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ : str = tuple(state['sep'] )
if "cls" in state:
lowercase_ : List[str] = tuple(state['cls'] )
lowercase_ : Optional[Any] = False
if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : List[str] = add_prefix_space
lowercase_ : List[Any] = True
if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets:
lowercase_ : List[str] = trim_offsets
lowercase_ : List[str] = True
if changes_to_apply:
lowercase_ : str = getattr(__UpperCamelCase ,state.pop('type' ) )
lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase )
setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
@property
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : Tuple = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value
lowercase_ : List[Any] = value
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : int = kwargs.get('is_split_into_words' ,__UpperCamelCase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Optional[Any] = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : Tuple = [self.sep_token_id]
lowercase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 367
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]]
lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase )
self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(__UpperCamelCase ) # fails here
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 )
lowercase_ : str = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 )
lowercase_ : Any = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 )
lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 321
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE ={
"configuration_xlm_roberta_xl": [
"XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XLMRobertaXLConfig",
"XLMRobertaXLOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMRobertaXLForCausalLM",
"XLMRobertaXLForMaskedLM",
"XLMRobertaXLForMultipleChoice",
"XLMRobertaXLForQuestionAnswering",
"XLMRobertaXLForSequenceClassification",
"XLMRobertaXLForTokenClassification",
"XLMRobertaXLModel",
"XLMRobertaXLPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaXLConfig,
XLMRobertaXLOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaXLForCausalLM,
XLMRobertaXLForMaskedLM,
XLMRobertaXLForMultipleChoice,
XLMRobertaXLForQuestionAnswering,
XLMRobertaXLForSequenceClassification,
XLMRobertaXLForTokenClassification,
XLMRobertaXLModel,
XLMRobertaXLPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 368
|
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[Any] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : Tuple = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
print(F'''Loading model based on config from {config_path}...''' )
lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
lowercase_ : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
lowercase_ : BertSelfAttention = layer.attention.self
lowercase_ : str = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape )
lowercase_ : int = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape )
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape )
lowercase_ : List[Any] = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape )
# Self-attention Output
lowercase_ : BertSelfOutput = layer.attention.output
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape )
lowercase_ : Any = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape )
lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' )
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' )
# Intermediate
lowercase_ : BertIntermediate = layer.intermediate
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' )
lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' )
# Output
lowercase_ : BertOutput = layer.output
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' )
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' )
lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' )
lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' )
# Embeddings
lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' )
lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' )
lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' )
lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' )
# LM Head
lowercase_ : int = model.cls.predictions.transform
lowercase_ : str = get_masked_lm_array('dense/kernel' )
lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' )
lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' )
lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' )
lowercase_ : List[str] = get_masked_lm_array('embedding_table' )
# Pooling
lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' )
# Export final model
model.save_pretrained(__SCREAMING_SNAKE_CASE )
# Integration test - should load without any errors ;)
lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE )
print(new_model.eval() )
print('Model conversion was done sucessfully!' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 321
| 0
|
"""simple docstring"""
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS}
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple ):
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' )
if tokenizer_name is None:
lowercase_ : str = TOKENIZER_CLASSES
else:
lowercase_ : int = {tokenizer_name: getattr(__SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )}
logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' )
for tokenizer_name in tokenizer_names:
lowercase_ : Dict = TOKENIZER_CLASSES[tokenizer_name]
lowercase_ : Union[str, Any] = True
if checkpoint_name is None:
lowercase_ : Tuple = list(tokenizer_class.max_model_input_sizes.keys() )
else:
lowercase_ : List[Any] = [checkpoint_name]
logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' )
for checkpoint in checkpoint_names:
logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' )
# Load tokenizer
lowercase_ : List[Any] = tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE )
# Save fast tokenizer
logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' )
# For organization names we create sub-directories
if "/" in checkpoint:
lowercase_ : List[str] = checkpoint.split('/' )
lowercase_ : Dict = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif add_prefix:
lowercase_ : List[str] = checkpoint
lowercase_ : Optional[Any] = dump_path
else:
lowercase_ : int = None
lowercase_ : str = dump_path
logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
lowercase_ : int = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
lowercase_ : List[str] = file_path.split(__SCREAMING_SNAKE_CASE )[-1][0]
if next_char == "/":
lowercase_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = None
logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' )
lowercase_ : Optional[int] = tokenizer.save_pretrained(
__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE , filename_prefix=__SCREAMING_SNAKE_CASE )
logger.info(F'''=> File names {file_names}''' )
for file_name in file_names:
if not file_name.endswith('tokenizer.json' ):
os.remove(__SCREAMING_SNAKE_CASE )
logger.info(F'''=> removing {file_name}''' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files."
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help=(
F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
"download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--checkpoint_name",
default=None,
type=str,
help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.",
)
parser.add_argument(
"--force_download",
action="store_true",
help="Re-download checkpoints.",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 369
|
"""simple docstring"""
from collections import namedtuple
import requests
from lxml import html # type: ignore
__SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered")
def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ):
lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) )
__SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 321
| 0
|
"""simple docstring"""
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class UpperCamelCase ( lowercase_ ):
lowercase = 4_2
lowercase = 4_2
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
| 370
|
"""simple docstring"""
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 321
| 0
|
"""simple docstring"""
from __future__ import annotations
from random import random
class UpperCamelCase :
def __init__( self ,__UpperCamelCase = None ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = value
lowercase_ : str = random()
lowercase_ : Node | None = None
lowercase_ : Node | None = None
def __repr__( self ) -> str:
'''simple docstring'''
from pprint import pformat
if self.left is None and self.right is None:
return f'''\'{self.value}: {self.prior:.5}\''''
else:
return pformat(
{f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 )
def __str__( self ) -> str:
'''simple docstring'''
lowercase_ : List[str] = str(self.value ) + ' '
lowercase_ : Any = str(self.left or '' )
lowercase_ : List[str] = str(self.right or '' )
return value + left + right
def lowercase__( __SCREAMING_SNAKE_CASE : Node | None , __SCREAMING_SNAKE_CASE : int ):
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
lowercase_ : Any = split(root.left , __SCREAMING_SNAKE_CASE )
return left, root
else:
lowercase_ : Union[str, Any] = split(root.right , __SCREAMING_SNAKE_CASE )
return root, right
def lowercase__( __SCREAMING_SNAKE_CASE : Node | None , __SCREAMING_SNAKE_CASE : Node | None ):
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
lowercase_ : int = merge(left.right , __SCREAMING_SNAKE_CASE )
return left
else:
lowercase_ : List[str] = merge(__SCREAMING_SNAKE_CASE , right.left )
return right
def lowercase__( __SCREAMING_SNAKE_CASE : Node | None , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Any = Node(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = split(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return merge(merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Node | None , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Optional[Any] = split(__SCREAMING_SNAKE_CASE , value - 1 )
lowercase_ : str = split(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Node | None ):
if not root: # None
return
else:
inorder(root.left )
print(root.value , end=',' )
inorder(root.right )
def lowercase__( __SCREAMING_SNAKE_CASE : Node | None , __SCREAMING_SNAKE_CASE : str ):
for arg in args.split():
if arg[0] == "+":
lowercase_ : Union[str, Any] = insert(__SCREAMING_SNAKE_CASE , int(arg[1:] ) )
elif arg[0] == "-":
lowercase_ : Union[str, Any] = erase(__SCREAMING_SNAKE_CASE , int(arg[1:] ) )
else:
print('Unknown command' )
return root
def lowercase__( ):
lowercase_ : Optional[int] = None
print(
'enter numbers to create a tree, + value to add value into treap, '
'- value to erase all nodes with value. \'q\' to quit. ' )
lowercase_ : Dict = input()
while args != "q":
lowercase_ : Union[str, Any] = interact_treap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
print(__SCREAMING_SNAKE_CASE )
lowercase_ : Dict = input()
print('good by!' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 371
|
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = parent
lowercase_ : str = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Dict = is_training
lowercase_ : Tuple = use_input_mask
lowercase_ : Optional[Any] = use_token_type_ids
lowercase_ : List[str] = use_labels
lowercase_ : Any = vocab_size
lowercase_ : List[str] = hidden_size
lowercase_ : Optional[int] = num_hidden_layers
lowercase_ : int = num_attention_heads
lowercase_ : int = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : Optional[int] = hidden_dropout_prob
lowercase_ : Tuple = attention_probs_dropout_prob
lowercase_ : Tuple = max_position_embeddings
lowercase_ : Optional[int] = type_vocab_size
lowercase_ : Optional[int] = type_sequence_label_size
lowercase_ : Dict = initializer_range
lowercase_ : int = num_labels
lowercase_ : Any = num_choices
lowercase_ : int = scope
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Dict = None
if self.use_input_mask:
lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase_ : Tuple = None
lowercase_ : Tuple = None
lowercase_ : Tuple = None
if self.use_labels:
lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices )
lowercase_ : str = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return EsmConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Union[str, Any] = model(__UpperCamelCase )
lowercase_ : int = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.num_labels
lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Any = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Optional[int] = config_and_inputs
lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = False
lowercase = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase = ()
lowercase = (
{
'feature-extraction': EsmModel,
'fill-mask': EsmForMaskedLM,
'text-classification': EsmForSequenceClassification,
'token-classification': EsmForTokenClassification,
'zero-shot': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = True
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = EsmModelTester(self )
lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowercase_ : Optional[Any] = type
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
lowercase_ : List[Any] = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : List[Any] = torch.empty(2 ,4 ,30 )
lowercase_ : List[str] = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] )
lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@require_torch
class UpperCamelCase ( lowercase_ ):
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowercase_ : List[str] = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = 33
lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : List[str] = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowercase_ : Dict = model(__UpperCamelCase )[0]
# compare the actual values for a slice.
lowercase_ : Any = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
import unittest
from transformers import RoFormerTokenizer, RoFormerTokenizerFast
from transformers.testing_utils import require_rjieba, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_rjieba
@require_tokenizers
class UpperCamelCase ( lowercase_ , unittest.TestCase ):
lowercase = RoFormerTokenizer
lowercase = RoFormerTokenizerFast
lowercase = True
lowercase = True
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
super().setUp()
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' ,**__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Optional[int] = '永和服装饰品有限公司,今天天气非常好'
lowercase_ : int = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好'
return input_text, output_text
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.get_tokenizer()
lowercase_ : str = self.get_chinese_input_output_texts()
lowercase_ : Any = tokenizer.tokenize(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase ,output_text.split() )
lowercase_ : Optional[int] = tokens + [tokenizer.unk_token]
lowercase_ : Union[str, Any] = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Tuple = self.get_rust_tokenizer()
lowercase_ : int = self.get_chinese_input_output_texts()
lowercase_ : Union[str, Any] = tokenizer.tokenize(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase ,output_text.split() )
lowercase_ : str = tokens + [tokenizer.unk_token]
lowercase_ : Optional[Any] = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
pass
| 350
|
"""simple docstring"""
import pickle
import numpy as np
from matplotlib import pyplot as plt
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[int] = bp_numa
lowercase_ : Dict = bp_numa
lowercase_ : Tuple = bp_numa
lowercase_ : List[Any] = conva_get[:2]
lowercase_ : int = conva_get[2]
lowercase_ : Dict = size_pa
lowercase_ : int = rate_w
lowercase_ : Union[str, Any] = rate_t
lowercase_ : Dict = [
np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1
lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1
lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : int = {
'num_bp1': self.num_bpa,
'num_bp2': self.num_bpa,
'num_bp3': self.num_bpa,
'conv1': self.conva,
'step_conv1': self.step_conva,
'size_pooling1': self.size_poolinga,
'rate_weight': self.rate_weight,
'rate_thre': self.rate_thre,
'w_conv1': self.w_conva,
'wkj': self.wkj,
'vji': self.vji,
'thre_conv1': self.thre_conva,
'thre_bp2': self.thre_bpa,
'thre_bp3': self.thre_bpa,
}
with open(__UpperCamelCase ,'wb' ) as f:
pickle.dump(__UpperCamelCase ,__UpperCamelCase )
print(f'''Model saved: {save_path}''' )
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
with open(__UpperCamelCase ,'rb' ) as f:
lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301
lowercase_ : str = model_dic.get('conv1' )
conv_get.append(model_dic.get('step_conv1' ) )
lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' )
lowercase_ : Optional[Any] = model_dic.get('num_bp1' )
lowercase_ : str = model_dic.get('num_bp2' )
lowercase_ : Optional[Any] = model_dic.get('num_bp3' )
lowercase_ : Union[str, Any] = model_dic.get('rate_weight' )
lowercase_ : Optional[int] = model_dic.get('rate_thre' )
# create model instance
lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# modify model parameter
lowercase_ : Optional[Any] = model_dic.get('w_conv1' )
lowercase_ : Tuple = model_dic.get('wkj' )
lowercase_ : Union[str, Any] = model_dic.get('vji' )
lowercase_ : Optional[Any] = model_dic.get('thre_conv1' )
lowercase_ : Dict = model_dic.get('thre_bp2' )
lowercase_ : Optional[int] = model_dic.get('thre_bp3' )
return conv_ins
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
return 1 / (1 + np.exp(-1 * x ))
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return round(__UpperCamelCase ,3 )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Dict = convs[0]
lowercase_ : Any = convs[1]
lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0]
# get the data slice of original image data, data_focus
lowercase_ : Tuple = []
for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
lowercase_ : List[Any] = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(__UpperCamelCase )
# calculate the feature map of every single kernel, and saved as list of matrix
lowercase_ : Dict = []
lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(__UpperCamelCase ):
lowercase_ : Tuple = []
for i_focus in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[int] = (
np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(__UpperCamelCase ) )
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape(
__UpperCamelCase ,__UpperCamelCase )
data_featuremap.append(__UpperCamelCase )
# expanding the data slice to One dimenssion
lowercase_ : Optional[int] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) )
lowercase_ : str = np.asarray(__UpperCamelCase )
return focus_list, data_featuremap
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple:
'''simple docstring'''
lowercase_ : Union[str, Any] = len(featuremaps[0] )
lowercase_ : str = int(size_map / size_pooling )
lowercase_ : Optional[int] = []
for i_map in range(len(__UpperCamelCase ) ):
lowercase_ : int = featuremaps[i_map]
lowercase_ : List[str] = []
for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[str] = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(__UpperCamelCase ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(__UpperCamelCase ) )
lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase )
featuremap_pooled.append(__UpperCamelCase )
return featuremap_pooled
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
lowercase_ : Tuple = []
for i in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[Any] = np.shape(data[i] )
lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] )
lowercase_ : List[str] = data_listed.getA().tolist()[0]
data_expanded.extend(__UpperCamelCase )
lowercase_ : int = np.asarray(__UpperCamelCase )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Any = np.asarray(__UpperCamelCase )
lowercase_ : Any = np.shape(__UpperCamelCase )
lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
lowercase_ : Any = []
lowercase_ : List[Any] = 0
for i_map in range(__UpperCamelCase ):
lowercase_ : List[str] = np.ones((size_map, size_map) )
for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[Any] = pd_pool[
i_pool
]
lowercase_ : Any = i_pool + 1
lowercase_ : Optional[int] = np.multiply(
__UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) )
pd_all.append(__UpperCamelCase )
return pd_all
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]:
'''simple docstring'''
print('----------------------Start Training-------------------------' )
print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) )
print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) )
lowercase_ : int = 0
lowercase_ : Tuple = []
lowercase_ : Tuple = 1_0000
while rp < n_repeat and mse >= error_accuracy:
lowercase_ : List[str] = 0
print(f'''-------------Learning Time {rp}--------------''' )
for p in range(len(__UpperCamelCase ) ):
# print('------------Learning Image: %d--------------'%p)
lowercase_ : int = np.asmatrix(datas_train[p] )
lowercase_ : Any = np.asarray(datas_teach[p] )
lowercase_ , lowercase_ : Tuple = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : Optional[int] = np.shape(__UpperCamelCase )
lowercase_ : Optional[int] = self._expand(__UpperCamelCase )
lowercase_ : int = data_bp_input
lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa
lowercase_ : Dict = self.sig(__UpperCamelCase )
lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa
lowercase_ : int = self.sig(__UpperCamelCase )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
lowercase_ : str = np.multiply(
(data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Optional[int] = np.multiply(
np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji )
lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga)
lowercase_ : Dict = pd_conva_pooled.T.getA().tolist()
lowercase_ : List[Any] = self._calculate_gradient_from_pool(
__UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,)
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] )
lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
lowercase_ : Dict = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight
lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre
lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
lowercase_ : int = rp + 1
lowercase_ : Union[str, Any] = error_count / patterns
all_mse.append(__UpperCamelCase )
def draw_error():
lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(__UpperCamelCase ,'+-' )
plt.plot(__UpperCamelCase ,'r--' )
plt.xlabel('Learning Times' )
plt.ylabel('All_mse' )
plt.grid(__UpperCamelCase ,alpha=0.5 )
plt.show()
print('------------------Training Complished---------------------' )
print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') )
if draw_e:
draw_error()
return mse
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Union[str, Any] = []
print('-------------------Start Testing-------------------------' )
print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) )
for p in range(len(__UpperCamelCase ) ):
lowercase_ : List[Any] = np.asmatrix(datas_test[p] )
lowercase_ , lowercase_ : Optional[Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : List[str] = self._expand(__UpperCamelCase )
lowercase_ : Any = data_bp_input
lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa
lowercase_ : str = self.sig(__UpperCamelCase )
lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa
lowercase_ : Optional[int] = self.sig(__UpperCamelCase )
produce_out.extend(bp_outa.getA().tolist() )
lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out]
return np.asarray(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase )
lowercase_ , lowercase_ : Union[str, Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 321
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json",
# See all XGLM models at https://huggingface.co/models?filter=xglm
}
class UpperCamelCase ( lowercase_ ):
lowercase = 'xglm'
lowercase = ['past_key_values']
lowercase = {
'num_attention_heads': 'attention_heads',
'hidden_size': 'd_model',
'num_hidden_layers': 'num_layers',
}
def __init__( self ,__UpperCamelCase=25_6008 ,__UpperCamelCase=2048 ,__UpperCamelCase=1024 ,__UpperCamelCase=4096 ,__UpperCamelCase=24 ,__UpperCamelCase=16 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=2 ,__UpperCamelCase=1 ,__UpperCamelCase=0 ,__UpperCamelCase=2 ,**__UpperCamelCase ,) -> List[str]:
'''simple docstring'''
lowercase_ : Union[str, Any] = vocab_size
lowercase_ : Optional[Any] = max_position_embeddings
lowercase_ : Tuple = d_model
lowercase_ : int = ffn_dim
lowercase_ : Tuple = num_layers
lowercase_ : Optional[int] = attention_heads
lowercase_ : Dict = activation_function
lowercase_ : Any = dropout
lowercase_ : Dict = attention_dropout
lowercase_ : Union[str, Any] = activation_dropout
lowercase_ : Dict = layerdrop
lowercase_ : Dict = init_std
lowercase_ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase_ : Dict = use_cache
super().__init__(
pad_token_id=__UpperCamelCase ,bos_token_id=__UpperCamelCase ,eos_token_id=__UpperCamelCase ,decoder_start_token_id=__UpperCamelCase ,**__UpperCamelCase ,)
| 351
|
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ):
lowercase_ : Dict = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification'
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Dict = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : str = 'patrickvonplaten/t5-tiny-random'
lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[int] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] )
lowercase_ : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2'
lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__UpperCamelCase ):
self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'current' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Any = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
| 321
| 0
|
"""simple docstring"""
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
__SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
__SCREAMING_SNAKE_CASE =" \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n"
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Any = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir ,'schedulers/' ) )
lowercase_ : List[Any] = self.diffusers_dir
shutil.copy(
os.path.join(__UpperCamelCase ,'src/diffusers/schedulers/scheduling_ddpm.py' ) ,os.path.join(self.diffusers_dir ,'schedulers/scheduling_ddpm.py' ) ,)
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : str = 'src/diffusers'
shutil.rmtree(self.diffusers_dir )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ) -> List[str]:
'''simple docstring'''
lowercase_ : List[Any] = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
lowercase_ : Any = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
lowercase_ : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 )
lowercase_ : List[Any] = black.format_str(__UpperCamelCase ,mode=__UpperCamelCase )
lowercase_ : Dict = os.path.join(self.diffusers_dir ,'new_code.py' )
with open(__UpperCamelCase ,'w' ,newline='\n' ) as f:
f.write(__UpperCamelCase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(__UpperCamelCase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name ,overwrite=__UpperCamelCase )
with open(__UpperCamelCase ,'r' ) as f:
self.assertTrue(f.read() ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[int] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' )
self.assertEqual(__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' ,'DDPMSchedulerOutput' ,REFERENCE_CODE + '\n' ,)
# With no empty line at the end
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' ,'DDPMSchedulerOutput' ,__UpperCamelCase ,)
# Copy consistency with rename
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' ,'TestSchedulerOutput' ,re.sub('DDPM' ,'Test' ,__UpperCamelCase ) ,)
# Copy consistency with a really long name
lowercase_ : List[Any] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'
self.check_copy_consistency(
f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' ,f'''{long_class_name}SchedulerOutput''' ,re.sub('Bert' ,__UpperCamelCase ,__UpperCamelCase ) ,)
# Copy consistency with overwrite
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' ,'TestSchedulerOutput' ,__UpperCamelCase ,overwrite_result=re.sub('DDPM' ,'Test' ,__UpperCamelCase ) ,)
| 352
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
class UpperCamelCase ( lowercase_ ):
lowercase = ['input_values', 'padding_mask']
def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : List[str] = chunk_length_s
lowercase_ : Tuple = overlap
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
f''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if padding and truncation:
raise ValueError('Both padding and truncation were set. Make sure you only set one.' )
elif padding is None:
# by default let's pad the inputs
lowercase_ : Optional[int] = True
lowercase_ : Optional[int] = bool(
isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) )
if is_batched:
lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ):
lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa )
elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
lowercase_ : List[str] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T]
# verify inputs are valid
for idx, example in enumerate(__UpperCamelCase ):
if example.ndim > 2:
raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' )
lowercase_ : Optional[int] = None
lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio )
lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) )
lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio )
lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) )
lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length
lowercase_ : Union[str, Any] = 'max_length'
else:
lowercase_ : int = input_values
# normal padding on batch
if padded_inputs is None:
lowercase_ : int = self.pad(
__UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,)
if padding:
lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' )
lowercase_ : Dict = []
for example in padded_inputs.pop('input_values' ):
if self.feature_size == 1:
lowercase_ : Optional[int] = example[..., None]
input_values.append(example.T )
lowercase_ : str = input_values
if return_tensors is not None:
lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase )
return padded_inputs
| 321
| 0
|
"""simple docstring"""
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def lowercase__( __SCREAMING_SNAKE_CASE : BertModel , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
lowercase_ : List[Any] = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value')
lowercase_ : int = (
('layer.', 'layer_'),
('word_embeddings.weight', 'word_embeddings'),
('position_embeddings.weight', 'position_embeddings'),
('token_type_embeddings.weight', 'token_type_embeddings'),
('.', '/'),
('LayerNorm/weight', 'LayerNorm/gamma'),
('LayerNorm/bias', 'LayerNorm/beta'),
('weight', 'kernel'),
)
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
os.makedirs(__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = model.state_dict()
def to_tf_var_name(__SCREAMING_SNAKE_CASE : str ):
for patt, repl in iter(__SCREAMING_SNAKE_CASE ):
lowercase_ : List[Any] = name.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return F'''bert/{name}'''
def create_tf_var(__SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : tf.Session ):
lowercase_ : Union[str, Any] = tf.dtypes.as_dtype(tensor.dtype )
lowercase_ : Optional[int] = tf.get_variable(dtype=__SCREAMING_SNAKE_CASE , shape=tensor.shape , name=__SCREAMING_SNAKE_CASE , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(__SCREAMING_SNAKE_CASE )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
lowercase_ : Tuple = to_tf_var_name(__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
lowercase_ : Optional[int] = torch_tensor.T
lowercase_ : str = create_tf_var(tensor=__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE , session=__SCREAMING_SNAKE_CASE )
tf.keras.backend.set_value(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = session.run(__SCREAMING_SNAKE_CASE )
print(F'''Successfully created {tf_name}: {np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}''' )
lowercase_ : Optional[Any] = tf.train.Saver(tf.trainable_variables() )
saver.save(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , model_name.replace('-' , '_' ) + '.ckpt' ) )
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any]=None ):
lowercase_ : Tuple = argparse.ArgumentParser()
parser.add_argument('--model_name' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='model name e.g. bert-base-uncased' )
parser.add_argument(
'--cache_dir' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='Directory containing pytorch model' )
parser.add_argument('--pytorch_model_path' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='/path/to/<pytorch-model-name>.bin' )
parser.add_argument('--tf_cache_dir' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='Directory in which to save tensorflow model' )
lowercase_ : Optional[int] = parser.parse_args(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=__SCREAMING_SNAKE_CASE , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 353
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"MRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"MraForMaskedLM",
"MraForMultipleChoice",
"MraForQuestionAnswering",
"MraForSequenceClassification",
"MraForTokenClassification",
"MraLayer",
"MraModel",
"MraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 321
| 0
|
__SCREAMING_SNAKE_CASE =[0, 2, 4, 6, 8]
__SCREAMING_SNAKE_CASE =[1, 3, 5, 7, 9]
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
lowercase_ : Optional[int] = 0
for digit in range(10 ):
lowercase_ : List[str] = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 10 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return result
lowercase_ : Dict = 0
for digita in range(10 ):
lowercase_ : Tuple = digita
if (remainder + digita) % 2 == 0:
lowercase_ : Dict = ODD_DIGITS
else:
lowercase_ : Any = EVEN_DIGITS
for digita in other_parity_digits:
lowercase_ : Union[str, Any] = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 10 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )
return result
def lowercase__( __SCREAMING_SNAKE_CASE : int = 9 ):
lowercase_ : List[Any] = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(__SCREAMING_SNAKE_CASE , 0 , [0] * length , __SCREAMING_SNAKE_CASE )
return result
if __name__ == "__main__":
print(F"{solution() = }")
| 354
|
"""simple docstring"""
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("dataclasses")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("importlib_metadata")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ):
require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
| 321
| 0
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
class UpperCamelCase ( lowercase_ ):
lowercase = ['input_values', 'padding_mask']
def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : List[str] = chunk_length_s
lowercase_ : Tuple = overlap
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
f''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if padding and truncation:
raise ValueError('Both padding and truncation were set. Make sure you only set one.' )
elif padding is None:
# by default let's pad the inputs
lowercase_ : Optional[int] = True
lowercase_ : Optional[int] = bool(
isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) )
if is_batched:
lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ):
lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa )
elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
lowercase_ : List[str] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T]
# verify inputs are valid
for idx, example in enumerate(__UpperCamelCase ):
if example.ndim > 2:
raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' )
lowercase_ : Optional[int] = None
lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio )
lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) )
lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio )
lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) )
lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length
lowercase_ : Union[str, Any] = 'max_length'
else:
lowercase_ : int = input_values
# normal padding on batch
if padded_inputs is None:
lowercase_ : int = self.pad(
__UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,)
if padding:
lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' )
lowercase_ : Dict = []
for example in padded_inputs.pop('input_values' ):
if self.feature_size == 1:
lowercase_ : Optional[int] = example[..., None]
input_values.append(example.T )
lowercase_ : str = input_values
if return_tensors is not None:
lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase )
return padded_inputs
| 355
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ):
lowercase_ : int = 'backbone.' if is_semantic else ''
lowercase_ : List[str] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(F'''{prefix}cls_token''', 'beit.embeddings.cls_token'),
(F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'),
(F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'),
(F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('mask_token', 'beit.embeddings.mask_token'),
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('fc_norm.weight', 'beit.pooler.layernorm.weight'),
('fc_norm.bias', 'beit.pooler.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ):
for i in range(config.num_hidden_layers ):
lowercase_ : Any = 'backbone.' if is_semantic else ''
# queries, keys and values
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' )
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' )
lowercase_ : List[str] = in_proj_weight[
: config.hidden_size, :
]
lowercase_ : List[str] = q_bias
lowercase_ : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ : Any = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ : Any = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' )
lowercase_ : Tuple = gamma_a
lowercase_ : List[Any] = gamma_a
def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = val
def lowercase__( ):
lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ):
lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True
lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
lowercase_ : Any = 10_24
lowercase_ : List[str] = 40_96
lowercase_ : Tuple = 24
lowercase_ : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
lowercase_ : Optional[Any] = 16
lowercase_ : Any = 'huggingface/label-files'
lowercase_ : int = 'rvlcdip-id2label.json'
lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowercase_ : str = idalabel
lowercase_ : str = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
# load HuggingFace model
lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(__SCREAMING_SNAKE_CASE )
# Check outputs on an image
lowercase_ : List[Any] = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE )
lowercase_ : str = prepare_img()
lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' )
lowercase_ : int = encoding['pixel_values']
lowercase_ : Any = model(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = outputs.logits
# verify logits
lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92]
assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected"
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
if has_lm_head:
lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large'
else:
lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip'
image_processor.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
model.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 321
| 0
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase ( unittest.TestCase ):
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=3 ,__UpperCamelCase=224 ,__UpperCamelCase=30 ,__UpperCamelCase=400 ,__UpperCamelCase=True ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=[0.5, 0.5, 0.5] ,) -> int:
'''simple docstring'''
lowercase_ : List[str] = size if size is not None else {'height': 18, 'width': 18}
lowercase_ : Optional[int] = parent
lowercase_ : Dict = batch_size
lowercase_ : Any = num_channels
lowercase_ : Optional[int] = image_size
lowercase_ : List[str] = min_resolution
lowercase_ : Dict = max_resolution
lowercase_ : Tuple = do_resize
lowercase_ : List[str] = size
lowercase_ : int = do_normalize
lowercase_ : List[str] = image_mean
lowercase_ : Any = image_std
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class UpperCamelCase ( lowercase_ , unittest.TestCase ):
lowercase = ViTImageProcessor if is_vision_available() else None
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = EfficientFormerImageProcessorTester(self )
@property
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__UpperCamelCase ,'image_mean' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'image_std' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'do_normalize' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'do_resize' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'size' ) )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
pass
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowercase_ : Any = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCamelCase ,Image.Image )
# Test not batched input
lowercase_ : Union[str, Any] = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) ,)
# Test batched
lowercase_ : Dict = image_processor(__UpperCamelCase ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) ,)
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase_ : Any = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__UpperCamelCase ,numpify=__UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCamelCase ,np.ndarray )
# Test not batched input
lowercase_ : Any = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) ,)
# Test batched
lowercase_ : List[str] = image_processor(__UpperCamelCase ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) ,)
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase_ : Optional[Any] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__UpperCamelCase ,torchify=__UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCamelCase ,torch.Tensor )
# Test not batched input
lowercase_ : Tuple = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) ,)
# Test batched
lowercase_ : Any = image_processor(__UpperCamelCase ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) ,)
| 356
|
"""simple docstring"""
__SCREAMING_SNAKE_CASE ={
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
__SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()}
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Union[str, Any] = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
lowercase_ : Dict = ''
for word in coded.split():
while len(__SCREAMING_SNAKE_CASE ) != 0:
decoded += decode_dict[word[:5]]
lowercase_ : Any = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 321
| 0
|
"""simple docstring"""
import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE ={
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"gpt2": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"t5": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"wav2vec2": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Tuple=True ):
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' )
lowercase_ : Tuple = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
lowercase_ : Optional[Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
lowercase_ : int = config_class.from_json_file(__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = True
lowercase_ : int = True
print(F'''Building TensorFlow model from configuration: {config}''' )
lowercase_ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
lowercase_ : Union[str, Any] = cached_file(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
lowercase_ : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if compare_with_pt_model:
lowercase_ : Optional[Any] = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network
lowercase_ : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' )
lowercase_ : str = pt_model_class.from_pretrained(
pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE )
with torch.no_grad():
lowercase_ : List[Any] = pt_model(**pt_model.dummy_inputs )
lowercase_ : Optional[int] = pto[0].numpy()
lowercase_ : Optional[Any] = tfo[0].numpy()
lowercase_ : str = np.amax(np.abs(np_pt - np_tf ) )
print(F'''Max absolute difference between models outputs {diff}''' )
assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}'''
# Save pytorch-model
print(F'''Save TensorFlow model to {tf_dump_path}''' )
tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format='h5' )
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Dict=False , ):
if args_model_type is None:
lowercase_ : Dict = list(MODEL_CLASSES.keys() )
else:
lowercase_ : Optional[int] = [args_model_type]
for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ):
print('=' * 1_00 )
print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' )
print('=' * 1_00 )
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' )
lowercase_ : List[Any] = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
lowercase_ : str = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
lowercase_ : Any = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ):
print('-' * 1_00 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' )
continue
lowercase_ : Any = model_shortcut_name
elif only_convert_finetuned_models:
print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' )
continue
print(
F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' )
print('-' * 1_00 )
if config_shortcut_name in aws_config_map:
lowercase_ : Dict = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
lowercase_ : Optional[int] = config_shortcut_name
if model_shortcut_name in aws_model_maps:
lowercase_ : Optional[int] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
lowercase_ : Any = model_shortcut_name
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
lowercase_ : Union[str, Any] = 'converted_model'
convert_pt_checkpoint_to_tf(
model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , )
if remove_cached_files:
os.remove(__SCREAMING_SNAKE_CASE )
os.remove(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
F"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and "
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
__SCREAMING_SNAKE_CASE =parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 357
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations_with_dp_array(
__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
lowercase_ : str = sum(
count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE )
for item in array )
lowercase_ : Tuple = answer
return answer
lowercase_ : Optional[Any] = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Dict = [0] * (target + 1)
lowercase_ : Dict = 1
for i in range(1 , target + 1 ):
for j in range(__SCREAMING_SNAKE_CASE ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE =3
__SCREAMING_SNAKE_CASE =5
__SCREAMING_SNAKE_CASE =[1, 2, 5]
print(combination_sum_iv(n, array, target))
| 321
| 0
|
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
__SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BlenderbotTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) )
lowercase_ : Any = add_prefix_space
lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase )
lowercase_ : int = add_prefix_space
lowercase_ : Any = 'post_processor'
lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
if tokenizer_component_instance:
lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ : str = tuple(state['sep'] )
if "cls" in state:
lowercase_ : Union[str, Any] = tuple(state['cls'] )
lowercase_ : str = False
if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Dict = add_prefix_space
lowercase_ : int = True
if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets:
lowercase_ : Optional[Any] = trim_offsets
lowercase_ : Tuple = True
if changes_to_apply:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) )
lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase )
setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value
lowercase_ : str = value
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : int = [self.sep_token_id]
lowercase_ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any:
'''simple docstring'''
return token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]:
'''simple docstring'''
lowercase_ : Optional[Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(__UpperCamelCase )
lowercase_ : Dict = ' '.join(__UpperCamelCase )
lowercase_ : str = self.encode(__UpperCamelCase )
if len(__UpperCamelCase ) > self.model_max_length:
lowercase_ : List[str] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 358
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : int = set_counts
lowercase_ : List[Any] = max(__UpperCamelCase )
lowercase_ : Union[str, Any] = len(__UpperCamelCase )
lowercase_ : Dict = [1] * num_sets
lowercase_ : Optional[int] = list(range(__UpperCamelCase ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase )
lowercase_ : int = self.get_parent(__UpperCamelCase )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : Tuple = 0
lowercase_ : str = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : str = 0
lowercase_ : Tuple = src_parent
lowercase_ : int = self.set_counts[src_parent]
lowercase_ : str = max(self.max_set ,__UpperCamelCase )
return True
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 321
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__SCREAMING_SNAKE_CASE ={"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
"SwinForImageClassification",
"SwinForMaskedImageModeling",
"SwinModel",
"SwinPreTrainedModel",
"SwinBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFSwinForImageClassification",
"TFSwinForMaskedImageModeling",
"TFSwinModel",
"TFSwinPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swin import (
SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinBackbone,
SwinForImageClassification,
SwinForMaskedImageModeling,
SwinModel,
SwinPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_swin import (
TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSwinForImageClassification,
TFSwinForMaskedImageModeling,
TFSwinModel,
TFSwinPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 359
|
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
__SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BlenderbotTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) )
lowercase_ : Any = add_prefix_space
lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase )
lowercase_ : int = add_prefix_space
lowercase_ : Any = 'post_processor'
lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
if tokenizer_component_instance:
lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ : str = tuple(state['sep'] )
if "cls" in state:
lowercase_ : Union[str, Any] = tuple(state['cls'] )
lowercase_ : str = False
if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Dict = add_prefix_space
lowercase_ : int = True
if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets:
lowercase_ : Optional[Any] = trim_offsets
lowercase_ : Tuple = True
if changes_to_apply:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) )
lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase )
setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value
lowercase_ : str = value
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : int = [self.sep_token_id]
lowercase_ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any:
'''simple docstring'''
return token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]:
'''simple docstring'''
lowercase_ : Optional[Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(__UpperCamelCase )
lowercase_ : Dict = ' '.join(__UpperCamelCase )
lowercase_ : str = self.encode(__UpperCamelCase )
if len(__UpperCamelCase ) > self.model_max_length:
lowercase_ : List[str] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 321
| 0
|
"""simple docstring"""
import math
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if initial_intensity < 0:
raise ValueError('The value of intensity cannot be negative' )
# handling of negative values of initial intensity
if angle < 0 or angle > 3_60:
raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' )
# handling of values out of allowed range
return initial_intensity * (math.cos(math.radians(__SCREAMING_SNAKE_CASE ) ) ** 2)
if __name__ == "__main__":
import doctest
doctest.testmod(name="malus_law")
| 360
|
"""simple docstring"""
import os
import sys
import unittest
__SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py")
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py")
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'}
lowercase_ : Union[str, Any] = {
'BlipModelTest': 'BlipModelTester',
'BlipTextImageModelTest': 'BlipTextImageModelsModelTester',
'BlipTextModelTest': 'BlipTextModelTester',
'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester',
'BlipVQAModelTest': 'BlipVQAModelTester',
'BlipVisionModelTest': 'BlipVisionModelTester',
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : Any = {
'BertForMaskedLM': ['BertModelTest'],
'BertForMultipleChoice': ['BertModelTest'],
'BertForNextSentencePrediction': ['BertModelTest'],
'BertForPreTraining': ['BertModelTest'],
'BertForQuestionAnswering': ['BertModelTest'],
'BertForSequenceClassification': ['BertModelTest'],
'BertForTokenClassification': ['BertModelTest'],
'BertLMHeadModel': ['BertModelTest'],
'BertModel': ['BertModelTest'],
}
lowercase_ : Any = {
'BlipForConditionalGeneration': ['BlipTextImageModelTest'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'],
'BlipForQuestionAnswering': ['BlipVQAModelTest'],
'BlipModel': ['BlipModelTest'],
'BlipTextModel': ['BlipTextModelTest'],
'BlipVisionModel': ['BlipVisionModelTest'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Tuple = {
'BertForMaskedLM': ['BertModelTester'],
'BertForMultipleChoice': ['BertModelTester'],
'BertForNextSentencePrediction': ['BertModelTester'],
'BertForPreTraining': ['BertModelTester'],
'BertForQuestionAnswering': ['BertModelTester'],
'BertForSequenceClassification': ['BertModelTester'],
'BertForTokenClassification': ['BertModelTester'],
'BertLMHeadModel': ['BertModelTester'],
'BertModel': ['BertModelTester'],
}
lowercase_ : Optional[Any] = {
'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'],
'BlipForQuestionAnswering': ['BlipVQAModelTester'],
'BlipModel': ['BlipModelTester'],
'BlipTextModel': ['BlipTextModelTester'],
'BlipVisionModel': ['BlipVisionModelTester'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
from queue import Queue
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from ..models.auto import AutoTokenizer
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
raise NotImplementedError()
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
raise NotImplementedError()
class UpperCamelCase ( lowercase_ ):
def __init__( self ,__UpperCamelCase ,__UpperCamelCase = False ,**__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = tokenizer
lowercase_ : List[Any] = skip_prompt
lowercase_ : Optional[Any] = decode_kwargs
# variables used in the streaming process
lowercase_ : Tuple = []
lowercase_ : List[Any] = 0
lowercase_ : Tuple = True
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
if len(value.shape ) > 1 and value.shape[0] > 1:
raise ValueError('TextStreamer only supports batch size 1' )
elif len(value.shape ) > 1:
lowercase_ : int = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
lowercase_ : str = False
return
# Add the new token to the cache and decodes the entire thing.
self.token_cache.extend(value.tolist() )
lowercase_ : Optional[int] = self.tokenizer.decode(self.token_cache ,**self.decode_kwargs )
# After the symbol for a new line, we flush the cache.
if text.endswith('\n' ):
lowercase_ : Optional[int] = text[self.print_len :]
lowercase_ : str = []
lowercase_ : Tuple = 0
# If the last token is a CJK character, we print the characters.
elif len(__UpperCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ):
lowercase_ : str = text[self.print_len :]
self.print_len += len(__UpperCamelCase )
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
# which may change with the subsequent token -- there are probably smarter ways to do this!)
else:
lowercase_ : List[Any] = text[self.print_len : text.rfind(' ' ) + 1]
self.print_len += len(__UpperCamelCase )
self.on_finalized_text(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
if len(self.token_cache ) > 0:
lowercase_ : Any = self.tokenizer.decode(self.token_cache ,**self.decode_kwargs )
lowercase_ : Optional[int] = text[self.print_len :]
lowercase_ : Union[str, Any] = []
lowercase_ : Dict = 0
else:
lowercase_ : Union[str, Any] = ''
lowercase_ : Optional[int] = True
self.on_finalized_text(__UpperCamelCase ,stream_end=__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = False ) -> Union[str, Any]:
'''simple docstring'''
print(__UpperCamelCase ,flush=__UpperCamelCase ,end='' if not stream_end else None )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
class UpperCamelCase ( lowercase_ ):
def __init__( self ,__UpperCamelCase ,__UpperCamelCase = False ,__UpperCamelCase = None ,**__UpperCamelCase ) -> str:
'''simple docstring'''
super().__init__(__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : Tuple = Queue()
lowercase_ : List[str] = None
lowercase_ : Union[str, Any] = timeout
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = False ) -> List[str]:
'''simple docstring'''
self.text_queue.put(__UpperCamelCase ,timeout=self.timeout )
if stream_end:
self.text_queue.put(self.stop_signal ,timeout=self.timeout )
def __iter__( self ) -> Union[str, Any]:
'''simple docstring'''
return self
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Optional[Any] = self.text_queue.get(timeout=self.timeout )
if value == self.stop_signal:
raise StopIteration()
else:
return value
| 361
|
"""simple docstring"""
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ):
with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX )
try:
print(*__SCREAMING_SNAKE_CASE )
finally:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN )
__SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
__SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank)
__SCREAMING_SNAKE_CASE =socket.gethostname()
__SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]"
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__SCREAMING_SNAKE_CASE =dist.get_rank()
__SCREAMING_SNAKE_CASE =dist.get_world_size()
printflock(F"{gpu} is OK (global rank: {rank}/{world_size})")
dist.barrier()
if rank == 0:
printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
except Exception:
printflock(F"{gpu} is broken")
raise
| 321
| 0
|
from math import factorial
__SCREAMING_SNAKE_CASE ={str(d): factorial(d) for d in range(10)}
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
return sum(DIGIT_FACTORIAL[d] for d in str(__SCREAMING_SNAKE_CASE ) )
def lowercase__( ):
lowercase_ : Dict = 7 * factorial(9 ) + 1
return sum(i for i in range(3 , __SCREAMING_SNAKE_CASE ) if sum_of_digit_factorial(__SCREAMING_SNAKE_CASE ) == i )
if __name__ == "__main__":
print(F"{solution() = }")
| 362
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : List[Any] = name
lowercase_ : int = val
def __str__( self ) -> Tuple:
'''simple docstring'''
return f'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return self.val < other.val
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Optional[int] = {}
lowercase_ : Tuple = {}
lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase )
def __getitem__( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
return self.get_value(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return (idx - 1) // 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return idx * 2 + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return idx * 2 + 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
return self.heap_dict[key]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1
lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase )
for idx, i in enumerate(__UpperCamelCase ):
lowercase_ : Any = idx
lowercase_ : str = i.val
for i in range(__UpperCamelCase ,-1 ,-1 ):
self.sift_down(__UpperCamelCase ,__UpperCamelCase )
return array
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
while True:
lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741
lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase )
lowercase_ : List[str] = idx
if l < len(__UpperCamelCase ) and array[l] < array[idx]:
lowercase_ : List[str] = l
if r < len(__UpperCamelCase ) and array[r] < array[smallest]:
lowercase_ : Dict = r
if smallest != idx:
lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx]
(
(
lowercase_
) , (
lowercase_
) ,
) : str = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
lowercase_ : Any = smallest
else:
break
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase )
while p >= 0 and self.heap[p] > self.heap[idx]:
lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
lowercase_ : int = p
lowercase_ : str = self.get_parent_idx(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return self.heap[0]
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
lowercase_ : Tuple = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 ,self.heap )
return x
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
self.heap.append(__UpperCamelCase )
lowercase_ : Tuple = len(self.heap ) - 1
lowercase_ : Optional[int] = node.val
self.sift_up(len(self.heap ) - 1 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return len(self.heap ) == 0
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
lowercase_ : Any = new_value
lowercase_ : List[str] = new_value
self.sift_up(self.idx_of_element[node] )
__SCREAMING_SNAKE_CASE =Node("R", -1)
__SCREAMING_SNAKE_CASE =Node("B", 6)
__SCREAMING_SNAKE_CASE =Node("A", 3)
__SCREAMING_SNAKE_CASE =Node("X", 1)
__SCREAMING_SNAKE_CASE =Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
__SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 321
| 0
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]]
lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase )
self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(__UpperCamelCase ) # fails here
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ : Union[str, Any] = dc.update(1 )
lowercase_ : str = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ : Optional[Any] = dc.update(2 )
lowercase_ : Any = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ : Tuple = dc.update(3 )
lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ : str = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
lowercase_ : List[str] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 363
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[Any] = tempfile.mkdtemp()
# fmt: off
lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) )
lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
lowercase_ : Tuple = {'unk_token': '<unk>'}
lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + '\n' )
with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp:
fp.write('\n'.join(__UpperCamelCase ) )
lowercase_ : Any = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073],
'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase )
with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp:
json.dump(__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )]
lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_tokenizer()
lowercase_ : List[Any] = self.get_rust_tokenizer()
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase )
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase )
self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase )
self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' )
lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 )
lowercase_ : Any = CLIPSegProcessor.from_pretrained(
self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,__UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[str] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = self.prepare_image_inputs()
lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' )
lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[Any] = self.get_tokenizer()
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Dict = 'lower newer'
lowercase_ : Any = processor(text=__UpperCamelCase )
lowercase_ : int = tokenizer(__UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.get_image_processor()
lowercase_ : str = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = 'lower newer'
lowercase_ : str = self.prepare_image_inputs()
lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = self.prepare_image_inputs()
lowercase_ : Optional[Any] = self.prepare_image_inputs()
lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase )
lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE ={
"configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MegatronBertForCausalLM",
"MegatronBertForMaskedLM",
"MegatronBertForMultipleChoice",
"MegatronBertForNextSentencePrediction",
"MegatronBertForPreTraining",
"MegatronBertForQuestionAnswering",
"MegatronBertForSequenceClassification",
"MegatronBertForTokenClassification",
"MegatronBertModel",
"MegatronBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 364
|
"""simple docstring"""
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 321
| 0
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
lowercase_ : int = 1
for i in range(1 , num + 1 ):
fact *= i
return fact
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Dict = 0
while number > 0:
lowercase_ : List[str] = number % 10
sum_of_digits += last_digit
lowercase_ : str = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def lowercase__( __SCREAMING_SNAKE_CASE : int = 1_00 ):
lowercase_ : Tuple = factorial(__SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = split_and_add(__SCREAMING_SNAKE_CASE )
return result
if __name__ == "__main__":
print(solution(int(input("Enter the Number: ").strip())))
| 365
|
"""simple docstring"""
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = parent
lowercase_ : Tuple = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Optional[Any] = is_training
lowercase_ : Any = use_input_mask
lowercase_ : Optional[Any] = vocab_size
lowercase_ : str = hidden_size
lowercase_ : Any = num_hidden_layers
lowercase_ : Dict = num_attention_heads
lowercase_ : Optional[int] = intermediate_size
lowercase_ : Any = hidden_act
lowercase_ : Optional[Any] = hidden_dropout_prob
lowercase_ : str = attention_probs_dropout_prob
lowercase_ : Any = max_position_embeddings
lowercase_ : Optional[Any] = initializer_range
lowercase_ : Union[str, Any] = use_labels
lowercase_ : Union[str, Any] = scope
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : List[str] = None
if self.use_input_mask:
lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Any = self.get_config()
return config, input_ids, input_mask, token_labels
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return BertGenerationConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : str = self.prepare_config_and_inputs()
lowercase_ : int = True
lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Optional[Any] = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = True
lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Union[str, Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,)
lowercase_ : Dict = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,)
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int:
'''simple docstring'''
lowercase_ : List[str] = True
lowercase_ : Union[str, Any] = True
lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval()
# first forward pass
lowercase_ : str = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,)
lowercase_ : Dict = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size )
lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 )
# append to next input_ids and
lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 )
lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 )
lowercase_ : int = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
lowercase_ : List[Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
# select random slice
lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
lowercase_ : int = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
lowercase = (BertGenerationDecoder,) if is_torch_available() else ()
lowercase = (
{'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder}
if is_torch_available()
else {}
)
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoderTester(self )
lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs()
lowercase_ : Optional[int] = 'bert'
self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
lowercase_ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,)
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
self.assertIsNotNone(__UpperCamelCase )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Tuple = model(__UpperCamelCase )[0]
lowercase_ : Dict = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : str = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Dict = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : Dict = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ="▁"
__SCREAMING_SNAKE_CASE ={"vocab_file": "sentencepiece.bpe.model"}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {
"facebook/mbart-large-50-one-to-many-mmt": (
"https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model"
),
}
}
__SCREAMING_SNAKE_CASE ={
"facebook/mbart-large-50-one-to-many-mmt": 1024,
}
# fmt: off
__SCREAMING_SNAKE_CASE =["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"]
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = ['input_ids', 'attention_mask']
lowercase = []
lowercase = []
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> None:
'''simple docstring'''
lowercase_ : Union[str, Any] = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else mask_token
lowercase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs
lowercase_ : Dict = kwargs.get('additional_special_tokens' ,[] )
kwargs["additional_special_tokens"] += [
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=__UpperCamelCase ,tgt_lang=__UpperCamelCase ,eos_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCamelCase ,)
lowercase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCamelCase ) )
lowercase_ : Optional[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
lowercase_ : Union[str, Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowercase_ : Dict = 1
lowercase_ : Dict = len(self.sp_model )
lowercase_ : Any = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCamelCase )
}
lowercase_ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()}
lowercase_ : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
lowercase_ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
lowercase_ : Tuple = src_lang if src_lang is not None else 'en_XX'
lowercase_ : Tuple = self.lang_code_to_id[self._src_lang]
lowercase_ : Union[str, Any] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return self._src_lang
@src_lang.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : Any = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ) -> Dict:
'''simple docstring'''
lowercase_ : str = self.__dict__.copy()
lowercase_ : Optional[int] = None
return state
def __setstate__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : Optional[Any] = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
lowercase_ : Optional[Any] = {}
lowercase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[Any] = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(__UpperCamelCase ,out_type=__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowercase_ : List[Any] = self.sp_model.PieceToId(__UpperCamelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : List[Any] = []
lowercase_ : str = ''
lowercase_ : List[Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__UpperCamelCase ) + token
lowercase_ : List[Any] = True
lowercase_ : List[str] = []
else:
current_sub_tokens.append(__UpperCamelCase )
lowercase_ : List[str] = False
out_string += self.sp_model.decode(__UpperCamelCase )
return out_string.strip()
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(__UpperCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase_ : List[Any] = os.path.join(
__UpperCamelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,__UpperCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCamelCase ,'wb' ) as fi:
lowercase_ : int = self.sp_model.serialized_model_proto()
fi.write(__UpperCamelCase )
return (out_vocab_file,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCamelCase ,token_ids_a=__UpperCamelCase ,already_has_special_tokens=__UpperCamelCase )
lowercase_ : str = [1] * len(self.prefix_tokens )
lowercase_ : Union[str, Any] = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__UpperCamelCase )) + suffix_ones
return prefix_ones + ([0] * len(__UpperCamelCase )) + ([0] * len(__UpperCamelCase )) + suffix_ones
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) -> Tuple:
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
lowercase_ : Optional[int] = src_lang
lowercase_ : Union[str, Any] = self(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,return_tensors=__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : Dict = self.convert_tokens_to_ids(__UpperCamelCase )
lowercase_ : List[str] = tgt_lang_id
return inputs
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = "en_XX" ,__UpperCamelCase = None ,__UpperCamelCase = "ro_RO" ,**__UpperCamelCase ,) -> BatchEncoding:
'''simple docstring'''
lowercase_ : List[Any] = src_lang
lowercase_ : Union[str, Any] = tgt_lang
return super().prepare_seqaseq_batch(__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : Dict = self.lang_code_to_id[src_lang]
lowercase_ : Tuple = [self.cur_lang_code_id]
lowercase_ : List[Any] = [self.eos_token_id]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : int = self.lang_code_to_id[tgt_lang]
lowercase_ : Any = [self.cur_lang_code_id]
lowercase_ : int = [self.eos_token_id]
| 366
|
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
return None
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
return None
class UpperCamelCase ( unittest.TestCase ):
lowercase = [
# (model_name, model_kwargs)
('bert-base-cased', {}),
('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
from transformers import BertModel
lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words']
with NamedTemporaryFile(mode='w+t' ) as vocab_file:
vocab_file.write('\n'.join(__UpperCamelCase ) )
vocab_file.flush()
lowercase_ : List[str] = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) )
model.save_pretrained(__UpperCamelCase )
self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase )
@require_tf
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
lowercase_ : int = quantize(Path(__UpperCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
lowercase_ : Tuple = quantize(__UpperCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
try:
# Compute path
with TemporaryDirectory() as tempdir:
lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase )
return path
except Exception as e:
self.fail(__UpperCamelCase )
@require_torch
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
from transformers import BertModel
lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' )
@require_tf
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
from transformers import TFBertModel
lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1']
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase )
# Assert all variables are present
self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase )
self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} )
self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids']
lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]}
lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__UpperCamelCase ) ,3 )
# Should have exactly the same input names
self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__UpperCamelCase ) ,1 )
self.assertEqual(len(__UpperCamelCase ) ,1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] ,tokens['input_ids'] )
self.assertEqual(ordered_input_names[0] ,'input_ids' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' )
self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
| 321
| 0
|
"""simple docstring"""
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ) -> Dict:
print('Loading config file...' )
def flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]="" , __SCREAMING_SNAKE_CASE : Union[str, Any]="." ):
lowercase_ : Optional[Any] = []
for k, v in d.items():
lowercase_ : str = parent_key + sep + k if parent_key else k
if isinstance(__SCREAMING_SNAKE_CASE , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , sep=__SCREAMING_SNAKE_CASE ).items() )
else:
items.append((new_key, v) )
return dict(__SCREAMING_SNAKE_CASE )
lowercase_ : Dict = argparse.Namespace()
with open(__SCREAMING_SNAKE_CASE , 'r' ) as yaml_file:
try:
lowercase_ : int = yaml.load(__SCREAMING_SNAKE_CASE , Loader=yaml.FullLoader )
lowercase_ : List[str] = flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE )
for k, v in flat_cfg.items():
setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
except yaml.YAMLError as exc:
logger.error('Error while loading config file: {}. Error message: {}'.format(__SCREAMING_SNAKE_CASE , str(__SCREAMING_SNAKE_CASE ) ) )
return config
def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]:
lowercase_ : Optional[Any] = MobileViTVaConfig()
lowercase_ : Optional[int] = False
# dataset
if task_name.startswith('imagenet1k_' ):
lowercase_ : int = 10_00
if int(task_name.strip().split('_' )[-1] ) == 3_84:
lowercase_ : Optional[Any] = 3_84
else:
lowercase_ : Dict = 2_56
lowercase_ : List[Any] = 'imagenet-1k-id2label.json'
elif task_name.startswith('imagenet21k_to_1k_' ):
lowercase_ : Optional[Any] = 2_10_00
if int(task_name.strip().split('_' )[-1] ) == 3_84:
lowercase_ : Tuple = 3_84
else:
lowercase_ : List[Any] = 2_56
lowercase_ : Optional[int] = 'imagenet-22k-id2label.json'
elif task_name.startswith('ade20k_' ):
lowercase_ : Tuple = 1_51
lowercase_ : str = 5_12
lowercase_ : Optional[int] = 'ade20k-id2label.json'
lowercase_ : Optional[int] = True
elif task_name.startswith('voc_' ):
lowercase_ : Any = 21
lowercase_ : Optional[Any] = 5_12
lowercase_ : Dict = 'pascal-voc-id2label.json'
lowercase_ : Tuple = True
# orig_config
lowercase_ : List[str] = load_orig_config_file(__SCREAMING_SNAKE_CASE )
assert getattr(__SCREAMING_SNAKE_CASE , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model"
lowercase_ : int = getattr(__SCREAMING_SNAKE_CASE , 'model.classification.mitv2.width_multiplier' , 1.0 )
assert (
getattr(__SCREAMING_SNAKE_CASE , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
lowercase_ : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , 'model.classification.activation.name' , 'swish' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
lowercase_ : List[str] = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.output_stride' , 16 )
if "_deeplabv3" in task_name:
lowercase_ : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] )
lowercase_ : int = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_out_channels' , 5_12 )
lowercase_ : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 )
# id2label
lowercase_ : List[str] = 'huggingface/label-files'
lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
lowercase_ : Any = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowercase_ : int = idalabel
lowercase_ : Optional[int] = {v: k for k, v in idalabel.items()}
return config
def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ) -> Any:
lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE )
lowercase_ : Union[str, Any] = val
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ) -> Tuple:
if base_model:
lowercase_ : Dict = ''
else:
lowercase_ : Optional[int] = 'mobilevitv2.'
lowercase_ : Optional[int] = []
for k in state_dict.keys():
if k[:8] == "encoder.":
lowercase_ : List[Any] = k[8:]
else:
lowercase_ : List[Any] = k
if ".block." in k:
lowercase_ : Optional[Any] = k_new.replace('.block.' , '.' )
if ".conv." in k:
lowercase_ : List[str] = k_new.replace('.conv.' , '.convolution.' )
if ".norm." in k:
lowercase_ : List[Any] = k_new.replace('.norm.' , '.normalization.' )
if "conv_1." in k:
lowercase_ : str = k_new.replace('conv_1.' , F'''{model_prefix}conv_stem.''' )
for i in [1, 2]:
if F'''layer_{i}.''' in k:
lowercase_ : List[Any] = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' )
if ".exp_1x1." in k:
lowercase_ : Dict = k_new.replace('.exp_1x1.' , '.expand_1x1.' )
if ".red_1x1." in k:
lowercase_ : Any = k_new.replace('.red_1x1.' , '.reduce_1x1.' )
for i in [3, 4, 5]:
if F'''layer_{i}.0.''' in k:
lowercase_ : Union[str, Any] = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' )
if F'''layer_{i}.1.local_rep.0.''' in k:
lowercase_ : int = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' )
if F'''layer_{i}.1.local_rep.1.''' in k:
lowercase_ : Any = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' )
for i in [3, 4, 5]:
if i == 3:
lowercase_ : Dict = [0, 1]
elif i == 4:
lowercase_ : Optional[Any] = [0, 1, 2, 3]
elif i == 5:
lowercase_ : List[str] = [0, 1, 2]
for j in j_in:
if F'''layer_{i}.1.global_rep.{j}.''' in k:
lowercase_ : int = k_new.replace(
F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' )
if F'''layer_{i}.1.global_rep.{j+1}.''' in k:
lowercase_ : List[str] = k_new.replace(
F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' )
if F'''layer_{i}.1.conv_proj.''' in k:
lowercase_ : Optional[int] = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' )
if "pre_norm_attn.0." in k:
lowercase_ : Any = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' )
if "pre_norm_attn.1." in k:
lowercase_ : Optional[Any] = k_new.replace('pre_norm_attn.1.' , 'attention.' )
if "pre_norm_ffn.0." in k:
lowercase_ : Union[str, Any] = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' )
if "pre_norm_ffn.1." in k:
lowercase_ : Optional[Any] = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' )
if "pre_norm_ffn.3." in k:
lowercase_ : Dict = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' )
if "classifier.1." in k:
lowercase_ : str = k_new.replace('classifier.1.' , 'classifier.' )
if "seg_head." in k:
lowercase_ : Optional[Any] = k_new.replace('seg_head.' , 'segmentation_head.' )
if ".aspp_layer." in k:
lowercase_ : List[str] = k_new.replace('.aspp_layer.' , '.' )
if ".aspp_pool." in k:
lowercase_ : Optional[Any] = k_new.replace('.aspp_pool.' , '.' )
rename_keys.append((k, k_new) )
return rename_keys
def lowercase__( __SCREAMING_SNAKE_CASE : Dict ) -> Dict:
lowercase_ : Optional[int] = []
for k in state_dict.keys():
if k.startswith('seg_head.aux_head.' ):
keys_to_ignore.append(__SCREAMING_SNAKE_CASE )
for k in keys_to_ignore:
state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase__( ) -> Optional[Any]:
lowercase_ : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg'
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
lowercase_ : Optional[int] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any ) -> Any:
lowercase_ : int = get_mobilevitva_config(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# load original state_dict
lowercase_ : List[Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' )
# load huggingface model
if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ):
lowercase_ : str = MobileViTVaForSemanticSegmentation(__SCREAMING_SNAKE_CASE ).eval()
lowercase_ : Optional[Any] = False
else:
lowercase_ : Tuple = MobileViTVaForImageClassification(__SCREAMING_SNAKE_CASE ).eval()
lowercase_ : int = False
# remove and rename some keys of load the original model
lowercase_ : Tuple = checkpoint
remove_unused_keys(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = create_rename_keys(__SCREAMING_SNAKE_CASE , base_model=__SCREAMING_SNAKE_CASE )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# load modified state_dict
model.load_state_dict(__SCREAMING_SNAKE_CASE )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowercase_ : List[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowercase_ : Dict = image_processor(images=prepare_img() , return_tensors='pt' )
lowercase_ : str = model(**__SCREAMING_SNAKE_CASE )
# verify classification model
if task_name.startswith('imagenet' ):
lowercase_ : int = outputs.logits
lowercase_ : Any = logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
lowercase_ : Optional[int] = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] )
assert torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 367
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]]
lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase )
self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(__UpperCamelCase ) # fails here
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 )
lowercase_ : str = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 )
lowercase_ : Any = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 )
lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 321
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__SCREAMING_SNAKE_CASE ={
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =["ConditionalDetrFeatureExtractor"]
__SCREAMING_SNAKE_CASE =["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 368
|
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[Any] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : Tuple = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
print(F'''Loading model based on config from {config_path}...''' )
lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
lowercase_ : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
lowercase_ : BertSelfAttention = layer.attention.self
lowercase_ : str = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape )
lowercase_ : int = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape )
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape )
lowercase_ : List[Any] = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape )
# Self-attention Output
lowercase_ : BertSelfOutput = layer.attention.output
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape )
lowercase_ : Any = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape )
lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' )
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' )
# Intermediate
lowercase_ : BertIntermediate = layer.intermediate
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' )
lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' )
# Output
lowercase_ : BertOutput = layer.output
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' )
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' )
lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' )
lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' )
# Embeddings
lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' )
lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' )
lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' )
lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' )
# LM Head
lowercase_ : int = model.cls.predictions.transform
lowercase_ : str = get_masked_lm_array('dense/kernel' )
lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' )
lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' )
lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' )
lowercase_ : List[str] = get_masked_lm_array('embedding_table' )
# Pooling
lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' )
# Export final model
model.save_pretrained(__SCREAMING_SNAKE_CASE )
# Integration test - should load without any errors ;)
lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE )
print(new_model.eval() )
print('Model conversion was done sucessfully!' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 321
| 0
|
"""simple docstring"""
from typing import Optional
from urllib.parse import quote
import huggingface_hub as hfh
from packaging import version
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ):
if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release:
# old versions of hfh don't url-encode the file path
lowercase_ : int = quote(__SCREAMING_SNAKE_CASE )
return hfh.hf_hub_url(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' , revision=__SCREAMING_SNAKE_CASE )
| 369
|
"""simple docstring"""
from collections import namedtuple
import requests
from lxml import html # type: ignore
__SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered")
def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ):
lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) )
__SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 321
| 0
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
lowercase_ : List[Any] = hex_num.strip()
if not hex_num:
raise ValueError('No value was passed to the function' )
lowercase_ : Dict = hex_num[0] == '-'
if is_negative:
lowercase_ : str = hex_num[1:]
try:
lowercase_ : Any = int(__SCREAMING_SNAKE_CASE , 16 )
except ValueError:
raise ValueError('Invalid value was passed to the function' )
lowercase_ : List[Any] = ''
while int_num > 0:
lowercase_ : Optional[int] = str(int_num % 2 ) + bin_str
int_num >>= 1
return int(('-' + bin_str) if is_negative else bin_str )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 370
|
"""simple docstring"""
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 321
| 0
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
lowercase_ : int = generate_pascal_triangle(__SCREAMING_SNAKE_CASE )
for row_idx in range(__SCREAMING_SNAKE_CASE ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=' ' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=' ' )
else:
print(triangle[row_idx][col_idx] , end='' )
print()
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
lowercase_ : list[list[int]] = []
for current_row_idx in range(__SCREAMING_SNAKE_CASE ):
lowercase_ : Dict = populate_current_row(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
triangle.append(__SCREAMING_SNAKE_CASE )
return triangle
def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Optional[int] = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
lowercase_ : Optional[int] = 1, 1
for current_col_idx in range(1 , __SCREAMING_SNAKE_CASE ):
calculate_current_element(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return current_row
def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , ):
lowercase_ : Tuple = triangle[current_row_idx - 1][current_col_idx - 1]
lowercase_ : int = triangle[current_row_idx - 1][current_col_idx]
lowercase_ : Any = above_to_left_elt + above_to_right_elt
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
lowercase_ : list[list[int]] = [[1]]
for row_index in range(1 , __SCREAMING_SNAKE_CASE ):
lowercase_ : Optional[int] = [0] + result[-1] + [0]
lowercase_ : Dict = row_index + 1
# Calculate the number of distinct elements in a row
lowercase_ : Optional[int] = sum(divmod(__SCREAMING_SNAKE_CASE , 2 ) )
lowercase_ : int = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
lowercase_ : List[Any] = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
lowercase_ : List[Any] = row_first_half + row_second_half
result.append(__SCREAMING_SNAKE_CASE )
return result
def lowercase__( ):
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(__SCREAMING_SNAKE_CASE : Callable , __SCREAMING_SNAKE_CASE : int ) -> None:
lowercase_ : int = F'''{func.__name__}({value})'''
lowercase_ : List[str] = timeit(F'''__main__.{call}''' , setup='import __main__' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(F'''{call:38} -- {timing:.4f} seconds''' )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 371
|
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = parent
lowercase_ : str = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Dict = is_training
lowercase_ : Tuple = use_input_mask
lowercase_ : Optional[Any] = use_token_type_ids
lowercase_ : List[str] = use_labels
lowercase_ : Any = vocab_size
lowercase_ : List[str] = hidden_size
lowercase_ : Optional[int] = num_hidden_layers
lowercase_ : int = num_attention_heads
lowercase_ : int = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : Optional[int] = hidden_dropout_prob
lowercase_ : Tuple = attention_probs_dropout_prob
lowercase_ : Tuple = max_position_embeddings
lowercase_ : Optional[int] = type_vocab_size
lowercase_ : Optional[int] = type_sequence_label_size
lowercase_ : Dict = initializer_range
lowercase_ : int = num_labels
lowercase_ : Any = num_choices
lowercase_ : int = scope
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Dict = None
if self.use_input_mask:
lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase_ : Tuple = None
lowercase_ : Tuple = None
lowercase_ : Tuple = None
if self.use_labels:
lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices )
lowercase_ : str = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return EsmConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Union[str, Any] = model(__UpperCamelCase )
lowercase_ : int = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.num_labels
lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Any = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Optional[int] = config_and_inputs
lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = False
lowercase = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase = ()
lowercase = (
{
'feature-extraction': EsmModel,
'fill-mask': EsmForMaskedLM,
'text-classification': EsmForSequenceClassification,
'token-classification': EsmForTokenClassification,
'zero-shot': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = True
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = EsmModelTester(self )
lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowercase_ : Optional[Any] = type
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
lowercase_ : List[Any] = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : List[Any] = torch.empty(2 ,4 ,30 )
lowercase_ : List[str] = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] )
lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@require_torch
class UpperCamelCase ( lowercase_ ):
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowercase_ : List[str] = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = 33
lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : List[str] = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowercase_ : Dict = model(__UpperCamelCase )[0]
# compare the actual values for a slice.
lowercase_ : Any = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
__SCREAMING_SNAKE_CASE =logging.getLogger(__name__)
class UpperCamelCase :
def __init__( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Dict = False
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any:
'''simple docstring'''
if not self.initialized:
lowercase_ : Optional[Any] = RagRetriever(
__UpperCamelCase ,question_encoder_tokenizer=__UpperCamelCase ,generator_tokenizer=__UpperCamelCase ,index=__UpperCamelCase ,init_retrieval=__UpperCamelCase ,)
lowercase_ : Dict = True
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
self.retriever.index.init_index()
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Any = self.retriever._main_retrieve(__UpperCamelCase ,__UpperCamelCase )
return doc_ids, retrieved_doc_embeds
class UpperCamelCase ( lowercase_ ):
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ) -> Optional[int]:
'''simple docstring'''
if index is not None and index.is_initialized() and len(__UpperCamelCase ) > 0:
raise ValueError(
'When using Ray for distributed fine-tuning, '
'you\'ll need to provide the paths instead, '
'as the dataset and the index are loaded '
'separately. More info in examples/rag/use_own_knowledge_dataset.py ' )
super().__init__(
__UpperCamelCase ,question_encoder_tokenizer=__UpperCamelCase ,generator_tokenizer=__UpperCamelCase ,index=__UpperCamelCase ,init_retrieval=__UpperCamelCase ,)
lowercase_ : List[Any] = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
for worker in self.retrieval_workers
] )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
logger.info('initializing retrieval' )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
lowercase_ : Any = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )]
lowercase_ : Optional[int] = ray.get(random_worker.retrieve.remote(__UpperCamelCase ,__UpperCamelCase ) )
else:
lowercase_ : int = self._main_retrieve(__UpperCamelCase ,__UpperCamelCase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__UpperCamelCase )
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return super(__UpperCamelCase ,cls ).get_tokenizers(__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase )
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
lowercase_ : Tuple = kwargs.pop('config' ,__UpperCamelCase ) or RagConfig.from_pretrained(__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : List[Any] = RagTokenizer.from_pretrained(__UpperCamelCase ,config=__UpperCamelCase )
lowercase_ : str = rag_tokenizer.question_encoder
lowercase_ : Dict = rag_tokenizer.generator
if indexed_dataset is not None:
lowercase_ : Union[str, Any] = 'custom'
lowercase_ : List[Any] = CustomHFIndex(config.retrieval_vector_size ,__UpperCamelCase )
else:
lowercase_ : Union[str, Any] = cls._build_index(__UpperCamelCase )
return cls(
__UpperCamelCase ,question_encoder_tokenizer=__UpperCamelCase ,generator_tokenizer=__UpperCamelCase ,retrieval_workers=__UpperCamelCase ,index=__UpperCamelCase ,)
| 350
|
"""simple docstring"""
import pickle
import numpy as np
from matplotlib import pyplot as plt
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Optional[int] = bp_numa
lowercase_ : Dict = bp_numa
lowercase_ : Tuple = bp_numa
lowercase_ : List[Any] = conva_get[:2]
lowercase_ : int = conva_get[2]
lowercase_ : Dict = size_pa
lowercase_ : int = rate_w
lowercase_ : Union[str, Any] = rate_t
lowercase_ : Dict = [
np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1
lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1
lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : int = {
'num_bp1': self.num_bpa,
'num_bp2': self.num_bpa,
'num_bp3': self.num_bpa,
'conv1': self.conva,
'step_conv1': self.step_conva,
'size_pooling1': self.size_poolinga,
'rate_weight': self.rate_weight,
'rate_thre': self.rate_thre,
'w_conv1': self.w_conva,
'wkj': self.wkj,
'vji': self.vji,
'thre_conv1': self.thre_conva,
'thre_bp2': self.thre_bpa,
'thre_bp3': self.thre_bpa,
}
with open(__UpperCamelCase ,'wb' ) as f:
pickle.dump(__UpperCamelCase ,__UpperCamelCase )
print(f'''Model saved: {save_path}''' )
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
with open(__UpperCamelCase ,'rb' ) as f:
lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301
lowercase_ : str = model_dic.get('conv1' )
conv_get.append(model_dic.get('step_conv1' ) )
lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' )
lowercase_ : Optional[Any] = model_dic.get('num_bp1' )
lowercase_ : str = model_dic.get('num_bp2' )
lowercase_ : Optional[Any] = model_dic.get('num_bp3' )
lowercase_ : Union[str, Any] = model_dic.get('rate_weight' )
lowercase_ : Optional[int] = model_dic.get('rate_thre' )
# create model instance
lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# modify model parameter
lowercase_ : Optional[Any] = model_dic.get('w_conv1' )
lowercase_ : Tuple = model_dic.get('wkj' )
lowercase_ : Union[str, Any] = model_dic.get('vji' )
lowercase_ : Optional[Any] = model_dic.get('thre_conv1' )
lowercase_ : Dict = model_dic.get('thre_bp2' )
lowercase_ : Optional[int] = model_dic.get('thre_bp3' )
return conv_ins
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
return 1 / (1 + np.exp(-1 * x ))
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return round(__UpperCamelCase ,3 )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Dict = convs[0]
lowercase_ : Any = convs[1]
lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0]
# get the data slice of original image data, data_focus
lowercase_ : Tuple = []
for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ):
lowercase_ : List[Any] = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(__UpperCamelCase )
# calculate the feature map of every single kernel, and saved as list of matrix
lowercase_ : Dict = []
lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(__UpperCamelCase ):
lowercase_ : Tuple = []
for i_focus in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[int] = (
np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(__UpperCamelCase ) )
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape(
__UpperCamelCase ,__UpperCamelCase )
data_featuremap.append(__UpperCamelCase )
# expanding the data slice to One dimenssion
lowercase_ : Optional[int] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) )
lowercase_ : str = np.asarray(__UpperCamelCase )
return focus_list, data_featuremap
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple:
'''simple docstring'''
lowercase_ : Union[str, Any] = len(featuremaps[0] )
lowercase_ : str = int(size_map / size_pooling )
lowercase_ : Optional[int] = []
for i_map in range(len(__UpperCamelCase ) ):
lowercase_ : int = featuremaps[i_map]
lowercase_ : List[str] = []
for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[str] = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(__UpperCamelCase ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(__UpperCamelCase ) )
lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase )
featuremap_pooled.append(__UpperCamelCase )
return featuremap_pooled
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any:
'''simple docstring'''
lowercase_ : Tuple = []
for i in range(len(__UpperCamelCase ) ):
lowercase_ : Optional[Any] = np.shape(data[i] )
lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] )
lowercase_ : List[str] = data_listed.getA().tolist()[0]
data_expanded.extend(__UpperCamelCase )
lowercase_ : int = np.asarray(__UpperCamelCase )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Any = np.asarray(__UpperCamelCase )
lowercase_ : Any = np.shape(__UpperCamelCase )
lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] )
return data_expanded
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
lowercase_ : Any = []
lowercase_ : List[Any] = 0
for i_map in range(__UpperCamelCase ):
lowercase_ : List[str] = np.ones((size_map, size_map) )
for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[Any] = pd_pool[
i_pool
]
lowercase_ : Any = i_pool + 1
lowercase_ : Optional[int] = np.multiply(
__UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) )
pd_all.append(__UpperCamelCase )
return pd_all
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]:
'''simple docstring'''
print('----------------------Start Training-------------------------' )
print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) )
print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) )
lowercase_ : int = 0
lowercase_ : Tuple = []
lowercase_ : Tuple = 1_0000
while rp < n_repeat and mse >= error_accuracy:
lowercase_ : List[str] = 0
print(f'''-------------Learning Time {rp}--------------''' )
for p in range(len(__UpperCamelCase ) ):
# print('------------Learning Image: %d--------------'%p)
lowercase_ : int = np.asmatrix(datas_train[p] )
lowercase_ : Any = np.asarray(datas_teach[p] )
lowercase_ , lowercase_ : Tuple = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : Optional[int] = np.shape(__UpperCamelCase )
lowercase_ : Optional[int] = self._expand(__UpperCamelCase )
lowercase_ : int = data_bp_input
lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa
lowercase_ : Dict = self.sig(__UpperCamelCase )
lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa
lowercase_ : int = self.sig(__UpperCamelCase )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
lowercase_ : str = np.multiply(
(data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Optional[int] = np.multiply(
np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) )
lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji )
lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga)
lowercase_ : Dict = pd_conva_pooled.T.getA().tolist()
lowercase_ : List[Any] = self._calculate_gradient_from_pool(
__UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,)
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] )
lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
lowercase_ : Dict = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight
lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre
lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
lowercase_ : int = rp + 1
lowercase_ : Union[str, Any] = error_count / patterns
all_mse.append(__UpperCamelCase )
def draw_error():
lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(__UpperCamelCase ,'+-' )
plt.plot(__UpperCamelCase ,'r--' )
plt.xlabel('Learning Times' )
plt.ylabel('All_mse' )
plt.grid(__UpperCamelCase ,alpha=0.5 )
plt.show()
print('------------------Training Complished---------------------' )
print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') )
if draw_e:
draw_error()
return mse
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Union[str, Any] = []
print('-------------------Start Testing-------------------------' )
print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) )
for p in range(len(__UpperCamelCase ) ):
lowercase_ : List[Any] = np.asmatrix(datas_test[p] )
lowercase_ , lowercase_ : Optional[Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga )
lowercase_ : List[str] = self._expand(__UpperCamelCase )
lowercase_ : Any = data_bp_input
lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa
lowercase_ : str = self.sig(__UpperCamelCase )
lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa
lowercase_ : Optional[int] = self.sig(__UpperCamelCase )
produce_out.extend(bp_outa.getA().tolist() )
lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out]
return np.asarray(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase )
lowercase_ , lowercase_ : Union[str, Any] = self.convolute(
__UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 321
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"MRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"MraForMaskedLM",
"MraForMultipleChoice",
"MraForQuestionAnswering",
"MraForSequenceClassification",
"MraForTokenClassification",
"MraLayer",
"MraModel",
"MraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 351
|
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ):
lowercase_ : Dict = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification'
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Dict = 'sshleifer/tiny-gpt2'
lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = 'sshleifer/tiny-gpt2'
lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
lowercase_ : List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] )
lowercase_ : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : str = 'patrickvonplaten/t5-tiny-random'
lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase )
lowercase_ : Optional[int] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] )
lowercase_ : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2'
lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,)
lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : int = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__UpperCamelCase ):
self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'current' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,)
lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase )
lowercase_ : Any = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
| 321
| 0
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class UpperCamelCase :
lowercase = 4_2 # [batch_size x 3]
lowercase = 4_2 # [batch_size x 3]
lowercase = 4_2 # [batch_size x 3]
lowercase = 4_2 # [batch_size x 3]
lowercase = 4_2
lowercase = 4_2
lowercase = 4_2
lowercase = 4_2
lowercase = 4_2
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return torch.from_numpy(np.array([self.width, self.height] ,dtype=np.floataa ) )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return torch.from_numpy(np.array([self.x_fov, self.y_fov] ,dtype=np.floataa ) )
def _UpperCAmelCase ( self ) -> torch.Tensor:
'''simple docstring'''
lowercase_ : Dict = torch.arange(self.height * self.width )
lowercase_ : str = torch.stack(
[
pixel_indices % self.width,
torch.div(__UpperCamelCase ,self.width ,rounding_mode='trunc' ),
] ,axis=1 ,)
return coords
@property
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : List[Any] = self.shape
lowercase_ : List[Any] = int(np.prod(__UpperCamelCase ) )
lowercase_ : Dict = self.get_image_coords()
lowercase_ : Tuple = torch.broadcast_to(coords.unsqueeze(0 ) ,[batch_size * inner_batch_size, *coords.shape] )
lowercase_ : List[Any] = self.get_camera_rays(__UpperCamelCase )
lowercase_ : Tuple = rays.view(__UpperCamelCase ,inner_batch_size * self.height * self.width ,2 ,3 )
return rays
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> torch.Tensor:
'''simple docstring'''
lowercase_ : Tuple = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
lowercase_ : Dict = coords.view(__UpperCamelCase ,-1 ,2 )
lowercase_ : int = self.resolution()
lowercase_ : List[Any] = self.fov()
lowercase_ : Tuple = (flat.float() / (res - 1)) * 2 - 1
lowercase_ : Tuple = fracs * torch.tan(fov / 2 )
lowercase_ : str = fracs.view(__UpperCamelCase ,-1 ,2 )
lowercase_ : Optional[Any] = (
self.z.view(__UpperCamelCase ,1 ,3 )
+ self.x.view(__UpperCamelCase ,1 ,3 ) * fracs[:, :, :1]
+ self.y.view(__UpperCamelCase ,1 ,3 ) * fracs[:, :, 1:]
)
lowercase_ : Tuple = directions / directions.norm(dim=-1 ,keepdim=__UpperCamelCase )
lowercase_ : Union[str, Any] = torch.stack(
[
torch.broadcast_to(self.origin.view(__UpperCamelCase ,1 ,3 ) ,[batch_size, directions.shape[1], 3] ),
directions,
] ,dim=2 ,)
return rays.view(__UpperCamelCase ,*__UpperCamelCase ,2 ,3 )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> "DifferentiableProjectiveCamera":
'''simple docstring'''
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin ,x=self.x ,y=self.y ,z=self.z ,width=__UpperCamelCase ,height=__UpperCamelCase ,x_fov=self.x_fov ,y_fov=self.y_fov ,)
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
lowercase_ : Optional[Any] = []
lowercase_ : Dict = []
lowercase_ : Tuple = []
lowercase_ : List[Any] = []
for theta in np.linspace(0 , 2 * np.pi , num=20 ):
lowercase_ : Tuple = np.array([np.sin(__SCREAMING_SNAKE_CASE ), np.cos(__SCREAMING_SNAKE_CASE ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
lowercase_ : Optional[int] = -z * 4
lowercase_ : List[str] = np.array([np.cos(__SCREAMING_SNAKE_CASE ), -np.sin(__SCREAMING_SNAKE_CASE ), 0.0] )
lowercase_ : Tuple = np.cross(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
origins.append(__SCREAMING_SNAKE_CASE )
xs.append(__SCREAMING_SNAKE_CASE )
ys.append(__SCREAMING_SNAKE_CASE )
zs.append(__SCREAMING_SNAKE_CASE )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(__SCREAMING_SNAKE_CASE , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__SCREAMING_SNAKE_CASE , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__SCREAMING_SNAKE_CASE , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__SCREAMING_SNAKE_CASE , axis=0 ) ).float() , width=__SCREAMING_SNAKE_CASE , height=__SCREAMING_SNAKE_CASE , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__SCREAMING_SNAKE_CASE )) , )
| 352
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
class UpperCamelCase ( lowercase_ ):
lowercase = ['input_values', 'padding_mask']
def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : List[str] = chunk_length_s
lowercase_ : Tuple = overlap
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
f''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if padding and truncation:
raise ValueError('Both padding and truncation were set. Make sure you only set one.' )
elif padding is None:
# by default let's pad the inputs
lowercase_ : Optional[int] = True
lowercase_ : Optional[int] = bool(
isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) )
if is_batched:
lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ):
lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa )
elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
lowercase_ : List[str] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T]
# verify inputs are valid
for idx, example in enumerate(__UpperCamelCase ):
if example.ndim > 2:
raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' )
lowercase_ : Optional[int] = None
lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio )
lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) )
lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio )
lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) )
lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length
lowercase_ : Union[str, Any] = 'max_length'
else:
lowercase_ : int = input_values
# normal padding on batch
if padded_inputs is None:
lowercase_ : int = self.pad(
__UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,)
if padding:
lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' )
lowercase_ : Dict = []
for example in padded_inputs.pop('input_values' ):
if self.feature_size == 1:
lowercase_ : Optional[int] = example[..., None]
input_values.append(example.T )
lowercase_ : str = input_values
if return_tensors is not None:
lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase )
return padded_inputs
| 321
| 0
|
"""simple docstring"""
import qiskit
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' )
# Create a Quantum Circuit acting on the q register
lowercase_ : Tuple = qiskit.QuantumCircuit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Apply X (NOT) Gate to Qubits 0 & 1
circuit.x(0 )
circuit.x(1 )
# Map the quantum measurement to the classical bits
circuit.measure([0, 1] , [0, 1] )
# Execute the circuit on the qasm simulator
lowercase_ : int = qiskit.execute(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , shots=10_00 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =single_qubit_measure(2, 2)
print(F"Total count for various states are: {counts}")
| 353
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE =[
"MRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"MraForMaskedLM",
"MraForMultipleChoice",
"MraForQuestionAnswering",
"MraForSequenceClassification",
"MraForTokenClassification",
"MraLayer",
"MraModel",
"MraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 321
| 0
|
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=False ):
try:
lowercase_ : Union[str, Any] = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowercase_ : List[Any] = default
else:
# KEY is set, convert it to True or False.
try:
lowercase_ : Dict = strtobool(__SCREAMING_SNAKE_CASE )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'''If set, {key} must be yes or no.''' )
return _value
__SCREAMING_SNAKE_CASE =parse_flag_from_env("RUN_SLOW", default=False)
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
return unittest.skip('Test was skipped' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ):
return unittest.skipUnless(_run_slow_tests , 'test is slow' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ):
return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ):
return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ):
return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ):
return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ):
return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ):
return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Any ):
return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Any ):
return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ):
return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Any ):
return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ):
return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Tuple=None ):
if test_case is None:
return partial(__SCREAMING_SNAKE_CASE , version=__SCREAMING_SNAKE_CASE )
return unittest.skipUnless(is_torch_version('>=' , __SCREAMING_SNAKE_CASE ) , F'''test requires torch version >= {version}''' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ):
return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ):
return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ):
return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE =(
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ):
return unittest.skipUnless(
_atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(__SCREAMING_SNAKE_CASE )
class UpperCamelCase ( unittest.TestCase ):
lowercase = True
@classmethod
def _UpperCAmelCase ( cls ) -> int:
'''simple docstring'''
lowercase_ : Optional[int] = tempfile.mkdtemp()
@classmethod
def _UpperCAmelCase ( cls ) -> int:
'''simple docstring'''
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob('**/*' ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(__UpperCamelCase )
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : List[str] = mocks if isinstance(__UpperCamelCase ,(tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ):
lowercase_ : int = AcceleratorState()
lowercase_ : int = tensor[None].clone().to(state.device )
lowercase_ : List[str] = gather(__SCREAMING_SNAKE_CASE ).cpu()
lowercase_ : str = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , __SCREAMING_SNAKE_CASE ):
return False
return True
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
lowercase_ : Any = returncode
lowercase_ : Optional[Any] = stdout
lowercase_ : int = stderr
async def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ):
while True:
lowercase_ : Dict = await stream.readline()
if line:
callback(__SCREAMING_SNAKE_CASE )
else:
break
async def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False ):
if echo:
print('\nRunning: ' , ' '.join(__SCREAMING_SNAKE_CASE ) )
lowercase_ : int = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=__SCREAMING_SNAKE_CASE , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__SCREAMING_SNAKE_CASE , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowercase_ : Any = []
lowercase_ : str = []
def tee(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int="" ):
lowercase_ : Optional[Any] = line.decode('utf-8' ).rstrip()
sink.append(__SCREAMING_SNAKE_CASE )
if not quiet:
print(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , file=__SCREAMING_SNAKE_CASE )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda __SCREAMING_SNAKE_CASE : tee(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , sys.stdout , label='stdout:' ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda __SCREAMING_SNAKE_CASE : tee(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , sys.stderr , label='stderr:' ) ) ),
] , timeout=__SCREAMING_SNAKE_CASE , )
return _RunOutput(await p.wait() , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[Any]=1_80 , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=True ):
lowercase_ : Optional[int] = asyncio.get_event_loop()
lowercase_ : List[Any] = loop.run_until_complete(
_stream_subprocess(__SCREAMING_SNAKE_CASE , env=__SCREAMING_SNAKE_CASE , stdin=__SCREAMING_SNAKE_CASE , timeout=__SCREAMING_SNAKE_CASE , quiet=__SCREAMING_SNAKE_CASE , echo=__SCREAMING_SNAKE_CASE ) )
lowercase_ : Optional[Any] = ' '.join(__SCREAMING_SNAKE_CASE )
if result.returncode > 0:
lowercase_ : int = '\n'.join(result.stderr )
raise RuntimeError(
F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
F'''The combined stderr from workers follows:\n{stderr}''' )
return result
class UpperCamelCase ( lowercase_ ):
pass
def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ):
try:
lowercase_ : Optional[int] = subprocess.check_output(__SCREAMING_SNAKE_CASE , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(__SCREAMING_SNAKE_CASE , 'decode' ):
lowercase_ : Any = output.decode('utf-8' )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
F'''Command `{" ".join(__SCREAMING_SNAKE_CASE )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
| 354
|
"""simple docstring"""
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("dataclasses")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("importlib_metadata")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ):
require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
| 321
| 0
|
"""simple docstring"""
import math
def lowercase__( __SCREAMING_SNAKE_CASE : int ):
lowercase_ : List[str] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : float = 1 / 1_23_45 ):
lowercase_ : Optional[Any] = 0
lowercase_ : Optional[int] = 0
lowercase_ : List[Any] = 3
while True:
lowercase_ : Dict = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(__SCREAMING_SNAKE_CASE ):
lowercase_ : Any = int(__SCREAMING_SNAKE_CASE )
total_partitions += 1
if check_partition_perfect(__SCREAMING_SNAKE_CASE ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(__SCREAMING_SNAKE_CASE )
integer += 1
if __name__ == "__main__":
print(F"{solution() = }")
| 355
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ):
lowercase_ : int = 'backbone.' if is_semantic else ''
lowercase_ : List[str] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(F'''{prefix}cls_token''', 'beit.embeddings.cls_token'),
(F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'),
(F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'),
(F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('mask_token', 'beit.embeddings.mask_token'),
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('fc_norm.weight', 'beit.pooler.layernorm.weight'),
('fc_norm.bias', 'beit.pooler.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ):
for i in range(config.num_hidden_layers ):
lowercase_ : Any = 'backbone.' if is_semantic else ''
# queries, keys and values
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' )
lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' )
lowercase_ : List[str] = in_proj_weight[
: config.hidden_size, :
]
lowercase_ : List[str] = q_bias
lowercase_ : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ : Any = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ : Any = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' )
lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' )
lowercase_ : Tuple = gamma_a
lowercase_ : List[Any] = gamma_a
def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = val
def lowercase__( ):
lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ):
lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True
lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
lowercase_ : Any = 10_24
lowercase_ : List[str] = 40_96
lowercase_ : Tuple = 24
lowercase_ : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
lowercase_ : Optional[Any] = 16
lowercase_ : Any = 'huggingface/label-files'
lowercase_ : int = 'rvlcdip-id2label.json'
lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowercase_ : str = idalabel
lowercase_ : str = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE )
# load HuggingFace model
lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(__SCREAMING_SNAKE_CASE )
# Check outputs on an image
lowercase_ : List[Any] = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE )
lowercase_ : str = prepare_img()
lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' )
lowercase_ : int = encoding['pixel_values']
lowercase_ : Any = model(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = outputs.logits
# verify logits
lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92]
assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected"
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
if has_lm_head:
lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large'
else:
lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip'
image_processor.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
model.push_to_hub(
repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 321
| 0
|
"""simple docstring"""
import html
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...utils import is_bsa_available, logging, requires_backends
if is_bsa_available():
import bsa
from bsa import BeautifulSoup
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class UpperCamelCase ( lowercase_ ):
def __init__( self ,**__UpperCamelCase ) -> int:
'''simple docstring'''
requires_backends(self ,['bs4'] )
super().__init__(**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Union[str, Any] = []
lowercase_ : int = []
lowercase_ : List[Any] = element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
lowercase_ : Optional[int] = parent.find_all(child.name ,recursive=__UpperCamelCase )
xpath_tags.append(child.name )
xpath_subscripts.append(
0 if 1 == len(__UpperCamelCase ) else next(i for i, s in enumerate(__UpperCamelCase ,1 ) if s is child ) )
lowercase_ : Any = parent
xpath_tags.reverse()
xpath_subscripts.reverse()
return xpath_tags, xpath_subscripts
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
lowercase_ : List[str] = BeautifulSoup(__UpperCamelCase ,'html.parser' )
lowercase_ : List[Any] = []
lowercase_ : List[str] = []
lowercase_ : Optional[Any] = []
for element in html_code.descendants:
if type(__UpperCamelCase ) == bsa.element.NavigableString:
if type(element.parent ) != bsa.element.Tag:
continue
lowercase_ : Dict = html.unescape(__UpperCamelCase ).strip()
if not text_in_this_tag:
continue
all_doc_strings.append(__UpperCamelCase )
lowercase_ : str = self.xpath_soup(__UpperCamelCase )
stringaxtag_seq.append(__UpperCamelCase )
stringaxsubs_seq.append(__UpperCamelCase )
if len(__UpperCamelCase ) != len(__UpperCamelCase ):
raise ValueError('Number of doc strings and xtags does not correspond' )
if len(__UpperCamelCase ) != len(__UpperCamelCase ):
raise ValueError('Number of doc strings and xsubs does not correspond' )
return all_doc_strings, stringaxtag_seq, stringaxsubs_seq
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Any = ''
for tagname, subs in zip(__UpperCamelCase ,__UpperCamelCase ):
xpath += f'''/{tagname}'''
if subs != 0:
xpath += f'''[{subs}]'''
return xpath
def __call__( self ,__UpperCamelCase ) -> BatchFeature:
'''simple docstring'''
lowercase_ : Optional[int] = False
# Check that strings has a valid type
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : Optional[Any] = True
elif isinstance(__UpperCamelCase ,(list, tuple) ):
if len(__UpperCamelCase ) == 0 or isinstance(html_strings[0] ,__UpperCamelCase ):
lowercase_ : Tuple = True
if not valid_strings:
raise ValueError(
'HTML strings must of type `str`, `List[str]` (batch of examples), '
f'''but is of type {type(__UpperCamelCase )}.''' )
lowercase_ : Optional[Any] = bool(isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(html_strings[0] ,__UpperCamelCase )) )
if not is_batched:
lowercase_ : Any = [html_strings]
# Get nodes + xpaths
lowercase_ : int = []
lowercase_ : Tuple = []
for html_string in html_strings:
lowercase_ : Optional[int] = self.get_three_from_single(__UpperCamelCase )
nodes.append(__UpperCamelCase )
lowercase_ : Optional[int] = []
for node, tag_list, sub_list in zip(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : Tuple = self.construct_xpath(__UpperCamelCase ,__UpperCamelCase )
xpath_strings.append(__UpperCamelCase )
xpaths.append(__UpperCamelCase )
# return as Dict
lowercase_ : Dict = {'nodes': nodes, 'xpaths': xpaths}
lowercase_ : int = BatchFeature(data=__UpperCamelCase ,tensor_type=__UpperCamelCase )
return encoded_inputs
| 356
|
"""simple docstring"""
__SCREAMING_SNAKE_CASE ={
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
__SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()}
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Union[str, Any] = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
lowercase_ : Dict = ''
for word in coded.split():
while len(__SCREAMING_SNAKE_CASE ) != 0:
decoded += decode_dict[word[:5]]
lowercase_ : Any = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 321
| 0
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={"vocab_file": "vocab.txt"}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {
"YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt",
"YituTech/conv-bert-medium-small": (
"https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt"
),
"YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt",
}
}
__SCREAMING_SNAKE_CASE ={
"YituTech/conv-bert-base": 512,
"YituTech/conv-bert-medium-small": 512,
"YituTech/conv-bert-small": 512,
}
__SCREAMING_SNAKE_CASE ={
"YituTech/conv-bert-base": {"do_lower_case": True},
"YituTech/conv-bert-medium-small": {"do_lower_case": True},
"YituTech/conv-bert-small": {"do_lower_case": True},
}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_INIT_CONFIGURATION
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ConvBertTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase="[UNK]" ,__UpperCamelCase="[SEP]" ,__UpperCamelCase="[PAD]" ,__UpperCamelCase="[CLS]" ,__UpperCamelCase="[MASK]" ,__UpperCamelCase=True ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> str:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,do_lower_case=__UpperCamelCase ,unk_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,tokenize_chinese_chars=__UpperCamelCase ,strip_accents=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' ,__UpperCamelCase ) != do_lower_case
or normalizer_state.get('strip_accents' ,__UpperCamelCase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' ,__UpperCamelCase ) != tokenize_chinese_chars
):
lowercase_ : str = getattr(__UpperCamelCase ,normalizer_state.pop('type' ) )
lowercase_ : Union[str, Any] = do_lower_case
lowercase_ : List[str] = strip_accents
lowercase_ : List[str] = tokenize_chinese_chars
lowercase_ : str = normalizer_class(**__UpperCamelCase )
lowercase_ : List[str] = do_lower_case
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : List[str] = [self.sep_token_id]
lowercase_ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
| 357
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
def count_of_possible_combinations_with_dp_array(
__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
lowercase_ : str = sum(
count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE )
for item in array )
lowercase_ : Tuple = answer
return answer
lowercase_ : Optional[Any] = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ):
lowercase_ : Dict = [0] * (target + 1)
lowercase_ : Dict = 1
for i in range(1 , target + 1 ):
for j in range(__SCREAMING_SNAKE_CASE ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE =3
__SCREAMING_SNAKE_CASE =5
__SCREAMING_SNAKE_CASE =[1, 2, 5]
print(combination_sum_iv(n, array, target))
| 321
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class UpperCamelCase ( lowercase_ ):
lowercase = 'megatron-bert'
def __init__( self ,__UpperCamelCase=2_9056 ,__UpperCamelCase=1024 ,__UpperCamelCase=24 ,__UpperCamelCase=16 ,__UpperCamelCase=4096 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=0 ,__UpperCamelCase="absolute" ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> List[str]:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCamelCase ,**__UpperCamelCase )
lowercase_ : List[str] = vocab_size
lowercase_ : Optional[Any] = hidden_size
lowercase_ : Tuple = num_hidden_layers
lowercase_ : List[str] = num_attention_heads
lowercase_ : Union[str, Any] = hidden_act
lowercase_ : Tuple = intermediate_size
lowercase_ : Any = hidden_dropout_prob
lowercase_ : Tuple = attention_probs_dropout_prob
lowercase_ : List[Any] = max_position_embeddings
lowercase_ : Optional[Any] = type_vocab_size
lowercase_ : Any = initializer_range
lowercase_ : str = layer_norm_eps
lowercase_ : Optional[Any] = position_embedding_type
lowercase_ : Tuple = use_cache
| 358
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : int = set_counts
lowercase_ : List[Any] = max(__UpperCamelCase )
lowercase_ : Union[str, Any] = len(__UpperCamelCase )
lowercase_ : Dict = [1] * num_sets
lowercase_ : Optional[int] = list(range(__UpperCamelCase ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase )
lowercase_ : int = self.get_parent(__UpperCamelCase )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : Tuple = 0
lowercase_ : str = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : str = 0
lowercase_ : Tuple = src_parent
lowercase_ : int = self.set_counts[src_parent]
lowercase_ : str = max(self.max_set ,__UpperCamelCase )
return True
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 321
| 0
|
"""simple docstring"""
import contextlib
import faulthandler
import io
import multiprocessing
import os
import platform
import signal
import tempfile
def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]:
lowercase_ : Tuple = multiprocessing.Manager()
lowercase_ : str = manager.list()
lowercase_ : List[str] = multiprocessing.Process(target=__SCREAMING_SNAKE_CASE , args=(check_program, result, timeout) )
p.start()
p.join(timeout=timeout + 1 )
if p.is_alive():
p.kill()
if not result:
result.append('timed out' )
return {
"task_id": task_id,
"passed": result[0] == "passed",
"result": result[0],
"completion_id": completion_id,
}
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ) -> List[Any]:
with create_tempdir():
# These system calls are needed when cleaning up tempdir.
import os
import shutil
lowercase_ : List[Any] = shutil.rmtree
lowercase_ : Optional[Any] = os.rmdir
lowercase_ : Tuple = os.chdir
# Disable functionalities that can make destructive changes to the test.
reliability_guard()
# Run program.
try:
lowercase_ : Union[str, Any] = {}
with swallow_io():
with time_limit(__SCREAMING_SNAKE_CASE ):
exec(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
result.append('passed' )
except TimeoutException:
result.append('timed out' )
except BaseException as e:
result.append(F'''failed: {e}''' )
# Needed for cleaning up.
lowercase_ : List[str] = rmtree
lowercase_ : List[str] = rmdir
lowercase_ : Dict = chdir
@contextlib.contextmanager
def lowercase__( __SCREAMING_SNAKE_CASE : Any ) -> List[Any]:
def signal_handler(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ):
raise TimeoutException('Timed out!' )
signal.setitimer(signal.ITIMER_REAL , __SCREAMING_SNAKE_CASE )
signal.signal(signal.SIGALRM , __SCREAMING_SNAKE_CASE )
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL , 0 )
@contextlib.contextmanager
def lowercase__( ) -> Any:
lowercase_ : Tuple = WriteOnlyStringIO()
with contextlib.redirect_stdout(__SCREAMING_SNAKE_CASE ):
with contextlib.redirect_stderr(__SCREAMING_SNAKE_CASE ):
with redirect_stdin(__SCREAMING_SNAKE_CASE ):
yield
@contextlib.contextmanager
def lowercase__( ) -> Tuple:
with tempfile.TemporaryDirectory() as dirname:
with chdir(__SCREAMING_SNAKE_CASE ):
yield dirname
class UpperCamelCase ( lowercase_ ):
pass
class UpperCamelCase ( io.StringIO ):
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
raise OSError
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> int:
'''simple docstring'''
raise OSError
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
raise OSError
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return False
class UpperCamelCase ( contextlib._RedirectStream ): # type: ignore
lowercase = 'stdin'
@contextlib.contextmanager
def lowercase__( __SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]:
if root == ".":
yield
return
lowercase_ : Any = os.getcwd()
os.chdir(__SCREAMING_SNAKE_CASE )
try:
yield
except BaseException as exc:
raise exc
finally:
os.chdir(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int=None ) -> List[Any]:
if maximum_memory_bytes is not None:
import resource
resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) )
resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) )
if not platform.uname().system == "Darwin":
resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) )
faulthandler.disable()
import builtins
lowercase_ : List[Any] = None
lowercase_ : str = None
import os
lowercase_ : Any = '1'
lowercase_ : Optional[int] = None
lowercase_ : Dict = None
lowercase_ : Union[str, Any] = None
lowercase_ : List[Any] = None
lowercase_ : Optional[int] = None
lowercase_ : Union[str, Any] = None
lowercase_ : Union[str, Any] = None
lowercase_ : Optional[Any] = None
lowercase_ : List[Any] = None
lowercase_ : List[Any] = None
lowercase_ : Union[str, Any] = None
lowercase_ : Tuple = None
lowercase_ : List[Any] = None
lowercase_ : int = None
lowercase_ : Optional[Any] = None
lowercase_ : Any = None
lowercase_ : List[Any] = None
lowercase_ : List[str] = None
lowercase_ : int = None
lowercase_ : Tuple = None
lowercase_ : Optional[int] = None
lowercase_ : List[str] = None
lowercase_ : Any = None
lowercase_ : Dict = None
lowercase_ : Optional[int] = None
lowercase_ : Union[str, Any] = None
lowercase_ : Optional[int] = None
import shutil
lowercase_ : Optional[int] = None
lowercase_ : int = None
lowercase_ : Optional[int] = None
import subprocess
lowercase_ : Optional[int] = None # type: ignore
lowercase_ : Dict = None
import sys
lowercase_ : List[Any] = None
lowercase_ : Tuple = None
lowercase_ : Union[str, Any] = None
lowercase_ : Optional[int] = None
lowercase_ : List[Any] = None
| 359
|
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
__SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BlenderbotTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) )
lowercase_ : Any = add_prefix_space
lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase )
lowercase_ : int = add_prefix_space
lowercase_ : Any = 'post_processor'
lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
if tokenizer_component_instance:
lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ : str = tuple(state['sep'] )
if "cls" in state:
lowercase_ : Union[str, Any] = tuple(state['cls'] )
lowercase_ : str = False
if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Dict = add_prefix_space
lowercase_ : int = True
if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets:
lowercase_ : Optional[Any] = trim_offsets
lowercase_ : Tuple = True
if changes_to_apply:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) )
lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase )
setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value
lowercase_ : str = value
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : int = [self.sep_token_id]
lowercase_ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any:
'''simple docstring'''
return token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]:
'''simple docstring'''
lowercase_ : Optional[Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(__UpperCamelCase )
lowercase_ : Dict = ' '.join(__UpperCamelCase )
lowercase_ : str = self.encode(__UpperCamelCase )
if len(__UpperCamelCase ) > self.model_max_length:
lowercase_ : List[str] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 321
| 0
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[Any] = XLMRobertaModel.from_pretrained('xlm-roberta-base' )
lowercase_ : Dict = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] )
# The dog is cute and lives in the garden house
lowercase_ : Dict = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim
lowercase_ : List[str] = torch.tensor(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowercase_ : Union[str, Any] = model(__UpperCamelCase )['last_hidden_state'].detach()
self.assertEqual(output.shape ,__UpperCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] ,__UpperCamelCase ,atol=1e-3 ) )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Any = XLMRobertaModel.from_pretrained('xlm-roberta-large' )
lowercase_ : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] )
# The dog is cute and lives in the garden house
lowercase_ : Dict = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim
lowercase_ : Tuple = torch.tensor(
[[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowercase_ : List[Any] = model(__UpperCamelCase )['last_hidden_state'].detach()
self.assertEqual(output.shape ,__UpperCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] ,__UpperCamelCase ,atol=1e-3 ) )
| 360
|
"""simple docstring"""
import os
import sys
import unittest
__SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py")
__SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py")
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase )
lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'}
lowercase_ : Union[str, Any] = {
'BlipModelTest': 'BlipModelTester',
'BlipTextImageModelTest': 'BlipTextImageModelsModelTester',
'BlipTextModelTest': 'BlipTextModelTester',
'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester',
'BlipVQAModelTest': 'BlipVQAModelTester',
'BlipVisionModelTest': 'BlipVisionModelTester',
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase )
lowercase_ : Any = {
'BertForMaskedLM': ['BertModelTest'],
'BertForMultipleChoice': ['BertModelTest'],
'BertForNextSentencePrediction': ['BertModelTest'],
'BertForPreTraining': ['BertModelTest'],
'BertForQuestionAnswering': ['BertModelTest'],
'BertForSequenceClassification': ['BertModelTest'],
'BertForTokenClassification': ['BertModelTest'],
'BertLMHeadModel': ['BertModelTest'],
'BertModel': ['BertModelTest'],
}
lowercase_ : Any = {
'BlipForConditionalGeneration': ['BlipTextImageModelTest'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'],
'BlipForQuestionAnswering': ['BlipVQAModelTest'],
'BlipModel': ['BlipModelTest'],
'BlipTextModel': ['BlipTextModelTest'],
'BlipVisionModel': ['BlipVisionModelTest'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase )
lowercase_ : Tuple = {
'BertForMaskedLM': ['BertModelTester'],
'BertForMultipleChoice': ['BertModelTester'],
'BertForNextSentencePrediction': ['BertModelTester'],
'BertForPreTraining': ['BertModelTester'],
'BertForQuestionAnswering': ['BertModelTester'],
'BertForSequenceClassification': ['BertModelTester'],
'BertForTokenClassification': ['BertModelTester'],
'BertLMHeadModel': ['BertModelTester'],
'BertModel': ['BertModelTester'],
}
lowercase_ : Optional[Any] = {
'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'],
'BlipForQuestionAnswering': ['BlipVQAModelTester'],
'BlipModel': ['BlipModelTester'],
'BlipTextModel': ['BlipTextModelTester'],
'BlipVisionModel': ['BlipVisionModelTester'],
}
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = parent
lowercase_ : Tuple = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Optional[Any] = is_training
lowercase_ : Any = use_input_mask
lowercase_ : Optional[Any] = vocab_size
lowercase_ : str = hidden_size
lowercase_ : Any = num_hidden_layers
lowercase_ : Dict = num_attention_heads
lowercase_ : Optional[int] = intermediate_size
lowercase_ : Any = hidden_act
lowercase_ : Optional[Any] = hidden_dropout_prob
lowercase_ : str = attention_probs_dropout_prob
lowercase_ : Any = max_position_embeddings
lowercase_ : Optional[Any] = initializer_range
lowercase_ : Union[str, Any] = use_labels
lowercase_ : Union[str, Any] = scope
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : List[str] = None
if self.use_input_mask:
lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Any = self.get_config()
return config, input_ids, input_mask, token_labels
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return BertGenerationConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
(
lowercase_
) : str = self.prepare_config_and_inputs()
lowercase_ : int = True
lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Optional[Any] = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = True
lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Union[str, Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,)
lowercase_ : Dict = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,)
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int:
'''simple docstring'''
lowercase_ : List[str] = True
lowercase_ : Union[str, Any] = True
lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval()
# first forward pass
lowercase_ : str = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,)
lowercase_ : Dict = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size )
lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 )
# append to next input_ids and
lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 )
lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 )
lowercase_ : int = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
lowercase_ : List[Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
# select random slice
lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
lowercase_ : int = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
lowercase = (BertGenerationDecoder,) if is_torch_available() else ()
lowercase = (
{'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder}
if is_torch_available()
else {}
)
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoderTester(self )
lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs()
lowercase_ : Optional[int] = 'bert'
self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
(
lowercase_
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
lowercase_ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,)
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
self.assertIsNotNone(__UpperCamelCase )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Tuple = model(__UpperCamelCase )[0]
lowercase_ : Dict = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : str = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Dict = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : Dict = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 361
|
"""simple docstring"""
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ):
with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX )
try:
print(*__SCREAMING_SNAKE_CASE )
finally:
fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN )
__SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
__SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank)
__SCREAMING_SNAKE_CASE =socket.gethostname()
__SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]"
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__SCREAMING_SNAKE_CASE =dist.get_rank()
__SCREAMING_SNAKE_CASE =dist.get_world_size()
printflock(F"{gpu} is OK (global rank: {rank}/{world_size})")
dist.barrier()
if rank == 0:
printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
except Exception:
printflock(F"{gpu} is broken")
raise
| 321
| 0
|
import math
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Tuple = 0.0
lowercase_ : Optional[Any] = 0.0
for i in range(len(__UpperCamelCase ) ):
da += math.pow((sample[i] - weights[0][i]) ,2 )
da += math.pow((sample[i] - weights[1][i]) ,2 )
return 0 if da > da else 1
return 0
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> list[list[int | float]]:
'''simple docstring'''
for i in range(len(__UpperCamelCase ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def lowercase__( ):
# Training Examples ( m, n )
lowercase_ : List[Any] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
lowercase_ : str = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
lowercase_ : str = SelfOrganizingMap()
lowercase_ : Optional[int] = 3
lowercase_ : int = 0.5
for _ in range(__SCREAMING_SNAKE_CASE ):
for j in range(len(__SCREAMING_SNAKE_CASE ) ):
# training sample
lowercase_ : str = training_samples[j]
# Compute the winning vector
lowercase_ : Tuple = self_organizing_map.get_winner(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Update the winning vector
lowercase_ : Optional[int] = self_organizing_map.update(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# classify test sample
lowercase_ : List[Any] = [0, 0, 0, 1]
lowercase_ : Optional[int] = self_organizing_map.get_winner(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# results
print(F'''Clusters that the test sample belongs to : {winner}''' )
print(F'''Weights that have been trained : {weights}''' )
# running the main() function
if __name__ == "__main__":
main()
| 362
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : List[Any] = name
lowercase_ : int = val
def __str__( self ) -> Tuple:
'''simple docstring'''
return f'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return self.val < other.val
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Optional[int] = {}
lowercase_ : Tuple = {}
lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase )
def __getitem__( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
return self.get_value(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
return (idx - 1) // 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
return idx * 2 + 1
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return idx * 2 + 2
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
return self.heap_dict[key]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1
lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase )
for idx, i in enumerate(__UpperCamelCase ):
lowercase_ : Any = idx
lowercase_ : str = i.val
for i in range(__UpperCamelCase ,-1 ,-1 ):
self.sift_down(__UpperCamelCase ,__UpperCamelCase )
return array
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
while True:
lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741
lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase )
lowercase_ : List[str] = idx
if l < len(__UpperCamelCase ) and array[l] < array[idx]:
lowercase_ : List[str] = l
if r < len(__UpperCamelCase ) and array[r] < array[smallest]:
lowercase_ : Dict = r
if smallest != idx:
lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx]
(
(
lowercase_
) , (
lowercase_
) ,
) : str = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
lowercase_ : Any = smallest
else:
break
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase )
while p >= 0 and self.heap[p] > self.heap[idx]:
lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
lowercase_ : int = p
lowercase_ : str = self.get_parent_idx(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return self.heap[0]
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0]
lowercase_ , lowercase_ : Tuple = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
lowercase_ : Tuple = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 ,self.heap )
return x
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
self.heap.append(__UpperCamelCase )
lowercase_ : Tuple = len(self.heap ) - 1
lowercase_ : Optional[int] = node.val
self.sift_up(len(self.heap ) - 1 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return len(self.heap ) == 0
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
lowercase_ : Any = new_value
lowercase_ : List[str] = new_value
self.sift_up(self.idx_of_element[node] )
__SCREAMING_SNAKE_CASE =Node("R", -1)
__SCREAMING_SNAKE_CASE =Node("B", 6)
__SCREAMING_SNAKE_CASE =Node("A", 3)
__SCREAMING_SNAKE_CASE =Node("X", 1)
__SCREAMING_SNAKE_CASE =Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
__SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 321
| 0
|
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = parent
lowercase_ : str = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Dict = is_training
lowercase_ : Tuple = use_input_mask
lowercase_ : Optional[Any] = use_token_type_ids
lowercase_ : List[str] = use_labels
lowercase_ : Any = vocab_size
lowercase_ : List[str] = hidden_size
lowercase_ : Optional[int] = num_hidden_layers
lowercase_ : int = num_attention_heads
lowercase_ : int = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : Optional[int] = hidden_dropout_prob
lowercase_ : Tuple = attention_probs_dropout_prob
lowercase_ : Tuple = max_position_embeddings
lowercase_ : Optional[int] = type_vocab_size
lowercase_ : Optional[int] = type_sequence_label_size
lowercase_ : Dict = initializer_range
lowercase_ : int = num_labels
lowercase_ : Any = num_choices
lowercase_ : int = scope
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Dict = None
if self.use_input_mask:
lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase_ : Tuple = None
lowercase_ : Tuple = None
lowercase_ : Tuple = None
if self.use_labels:
lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices )
lowercase_ : str = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return EsmConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Union[str, Any] = model(__UpperCamelCase )
lowercase_ : int = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.num_labels
lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Any = self.prepare_config_and_inputs()
(
lowercase_
) : Optional[int] = config_and_inputs
lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = False
lowercase = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase = ()
lowercase = (
{
'feature-extraction': EsmModel,
'fill-mask': EsmForMaskedLM,
'text-classification': EsmForSequenceClassification,
'token-classification': EsmForTokenClassification,
'zero-shot': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = True
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = EsmModelTester(self )
lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowercase_ : Optional[Any] = type
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
lowercase_ : List[Any] = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : List[Any] = torch.empty(2 ,4 ,30 )
lowercase_ : List[str] = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] )
lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@require_torch
class UpperCamelCase ( lowercase_ ):
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowercase_ : List[str] = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = 33
lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : List[str] = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowercase_ : Dict = model(__UpperCamelCase )[0]
# compare the actual values for a slice.
lowercase_ : Any = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 363
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : List[Any] = tempfile.mkdtemp()
# fmt: off
lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) )
lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
lowercase_ : Tuple = {'unk_token': '<unk>'}
lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + '\n' )
with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp:
fp.write('\n'.join(__UpperCamelCase ) )
lowercase_ : Any = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073],
'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase )
with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp:
json.dump(__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )]
lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_tokenizer()
lowercase_ : List[Any] = self.get_rust_tokenizer()
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase )
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase )
self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase )
self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' )
lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 )
lowercase_ : Any = CLIPSegProcessor.from_pretrained(
self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,__UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[str] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = self.prepare_image_inputs()
lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' )
lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = self.get_image_processor()
lowercase_ : List[Any] = self.get_tokenizer()
lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Dict = 'lower newer'
lowercase_ : Any = processor(text=__UpperCamelCase )
lowercase_ : int = tokenizer(__UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.get_image_processor()
lowercase_ : str = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : List[Any] = 'lower newer'
lowercase_ : str = self.prepare_image_inputs()
lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Tuple = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = self.prepare_image_inputs()
lowercase_ : Optional[Any] = self.prepare_image_inputs()
lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.get_image_processor()
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase )
lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase )
lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
| 321
| 0
|
"""simple docstring"""
import argparse
import struct
import unittest
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : Tuple = data
# Initialize hash values
lowercase_ : Optional[int] = [
0X6_A_0_9_E_6_6_7,
0XB_B_6_7_A_E_8_5,
0X3_C_6_E_F_3_7_2,
0XA_5_4_F_F_5_3_A,
0X5_1_0_E_5_2_7_F,
0X9_B_0_5_6_8_8_C,
0X1_F_8_3_D_9_A_B,
0X5_B_E_0_C_D_1_9,
]
# Initialize round constants
lowercase_ : List[Any] = [
0X4_2_8_A_2_F_9_8,
0X7_1_3_7_4_4_9_1,
0XB_5_C_0_F_B_C_F,
0XE_9_B_5_D_B_A_5,
0X3_9_5_6_C_2_5_B,
0X5_9_F_1_1_1_F_1,
0X9_2_3_F_8_2_A_4,
0XA_B_1_C_5_E_D_5,
0XD_8_0_7_A_A_9_8,
0X1_2_8_3_5_B_0_1,
0X2_4_3_1_8_5_B_E,
0X5_5_0_C_7_D_C_3,
0X7_2_B_E_5_D_7_4,
0X8_0_D_E_B_1_F_E,
0X9_B_D_C_0_6_A_7,
0XC_1_9_B_F_1_7_4,
0XE_4_9_B_6_9_C_1,
0XE_F_B_E_4_7_8_6,
0X0_F_C_1_9_D_C_6,
0X2_4_0_C_A_1_C_C,
0X2_D_E_9_2_C_6_F,
0X4_A_7_4_8_4_A_A,
0X5_C_B_0_A_9_D_C,
0X7_6_F_9_8_8_D_A,
0X9_8_3_E_5_1_5_2,
0XA_8_3_1_C_6_6_D,
0XB_0_0_3_2_7_C_8,
0XB_F_5_9_7_F_C_7,
0XC_6_E_0_0_B_F_3,
0XD_5_A_7_9_1_4_7,
0X0_6_C_A_6_3_5_1,
0X1_4_2_9_2_9_6_7,
0X2_7_B_7_0_A_8_5,
0X2_E_1_B_2_1_3_8,
0X4_D_2_C_6_D_F_C,
0X5_3_3_8_0_D_1_3,
0X6_5_0_A_7_3_5_4,
0X7_6_6_A_0_A_B_B,
0X8_1_C_2_C_9_2_E,
0X9_2_7_2_2_C_8_5,
0XA_2_B_F_E_8_A_1,
0XA_8_1_A_6_6_4_B,
0XC_2_4_B_8_B_7_0,
0XC_7_6_C_5_1_A_3,
0XD_1_9_2_E_8_1_9,
0XD_6_9_9_0_6_2_4,
0XF_4_0_E_3_5_8_5,
0X1_0_6_A_A_0_7_0,
0X1_9_A_4_C_1_1_6,
0X1_E_3_7_6_C_0_8,
0X2_7_4_8_7_7_4_C,
0X3_4_B_0_B_C_B_5,
0X3_9_1_C_0_C_B_3,
0X4_E_D_8_A_A_4_A,
0X5_B_9_C_C_A_4_F,
0X6_8_2_E_6_F_F_3,
0X7_4_8_F_8_2_E_E,
0X7_8_A_5_6_3_6_F,
0X8_4_C_8_7_8_1_4,
0X8_C_C_7_0_2_0_8,
0X9_0_B_E_F_F_F_A,
0XA_4_5_0_6_C_E_B,
0XB_E_F_9_A_3_F_7,
0XC_6_7_1_7_8_F_2,
]
lowercase_ : List[str] = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def _UpperCAmelCase ( __UpperCamelCase ) -> bytes:
'''simple docstring'''
lowercase_ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(__UpperCamelCase ) + 8) % 64))
lowercase_ : Optional[Any] = struct.pack('>Q' ,(len(__UpperCamelCase ) * 8) )
return data + padding + big_endian_integer
def _UpperCAmelCase ( self ) -> None:
'''simple docstring'''
lowercase_ : Tuple = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
lowercase_ : Dict = list(struct.unpack('>16L' ,__UpperCamelCase ) )
# add 48 0-ed integers
words += [0] * 48
lowercase_ : List[str] = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
lowercase_ : Tuple = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
lowercase_ : List[str] = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
lowercase_ : Dict = (
words[index - 16] + sa + words[index - 7] + sa
) % 0X1_0_0_0_0_0_0_0_0
# Compression
lowercase_ : Tuple = self.ror(__UpperCamelCase ,6 ) ^ self.ror(__UpperCamelCase ,11 ) ^ self.ror(__UpperCamelCase ,25 )
lowercase_ : int = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g)
lowercase_ : str = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X1_0_0_0_0_0_0_0_0
lowercase_ : Any = self.ror(__UpperCamelCase ,2 ) ^ self.ror(__UpperCamelCase ,13 ) ^ self.ror(__UpperCamelCase ,22 )
lowercase_ : Optional[int] = (a & b) ^ (a & c) ^ (b & c)
lowercase_ : Any = (sa + maj) % 0X1_0_0_0_0_0_0_0_0
lowercase_ : Optional[Any] = (
g,
f,
e,
((d + tempa) % 0X1_0_0_0_0_0_0_0_0),
c,
b,
a,
((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0),
)
lowercase_ : Dict = [a, b, c, d, e, f, g, h]
# Modify final values
lowercase_ : List[str] = [
((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0)
for index, element in enumerate(self.hashes )
]
lowercase_ : Optional[int] = ''.join([hex(__UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations)
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> None:
'''simple docstring'''
import hashlib
lowercase_ : str = bytes('Test String' ,'utf-8' )
self.assertEqual(SHAaaa(__UpperCamelCase ).hash ,hashlib.shaaaa(__UpperCamelCase ).hexdigest() )
def lowercase__( ):
import doctest
doctest.testmod()
lowercase_ : Tuple = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
lowercase_ : Union[str, Any] = parser.parse_args()
lowercase_ : List[Any] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
lowercase_ : Union[str, Any] = f.read()
else:
lowercase_ : Optional[Any] = bytes(__SCREAMING_SNAKE_CASE , 'utf-8' )
print(SHAaaa(__SCREAMING_SNAKE_CASE ).hash )
if __name__ == "__main__":
main()
| 364
|
"""simple docstring"""
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 321
| 0
|
"""simple docstring"""
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
__SCREAMING_SNAKE_CASE ="bert-base-cased"
__SCREAMING_SNAKE_CASE ="fp16"
__SCREAMING_SNAKE_CASE ="bf16"
__SCREAMING_SNAKE_CASE =[FPaa, BFaa]
@require_fsdp
@require_cuda
class __lowerCamelCase ( lowercase_ ):
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
super().setUp()
lowercase_ : str = dict(
ACCELERATE_USE_FSDP='true' ,MASTER_ADDR='localhost' ,MASTER_PORT='10999' ,RANK='0' ,LOCAL_RANK='0' ,WORLD_SIZE='1' ,)
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(__UpperCamelCase ):
lowercase_ : Dict = self.dist_env.copy()
lowercase_ : Union[str, Any] = f'''{i + 1}'''
lowercase_ : int = strategy
with mockenv_context(**__UpperCamelCase ):
lowercase_ : int = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(__UpperCamelCase ):
lowercase_ : Optional[Any] = self.dist_env.copy()
lowercase_ : List[str] = prefetch_policy
with mockenv_context(**__UpperCamelCase ):
lowercase_ : List[Any] = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(__UpperCamelCase ):
lowercase_ : Any = self.dist_env.copy()
lowercase_ : List[Any] = state_dict_type
with mockenv_context(**__UpperCamelCase ):
lowercase_ : Union[str, Any] = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Dict = AutoModel.from_pretrained(__UpperCamelCase )
for policy in FSDP_AUTO_WRAP_POLICY:
lowercase_ : List[str] = self.dist_env.copy()
lowercase_ : List[str] = policy
if policy == "TRANSFORMER_BASED_WRAP":
lowercase_ : str = 'BertLayer'
elif policy == "SIZE_BASED_WRAP":
lowercase_ : List[str] = '2000'
with mockenv_context(**__UpperCamelCase ):
lowercase_ : Dict = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__UpperCamelCase )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
lowercase_ : Optional[int] = self.dist_env.copy()
lowercase_ : Optional[int] = 'TRANSFORMER_BASED_WRAP'
lowercase_ : Any = 'T5Layer'
with mockenv_context(**__UpperCamelCase ):
lowercase_ : Optional[int] = FullyShardedDataParallelPlugin()
with self.assertRaises(__UpperCamelCase ) as cm:
fsdp_plugin.set_auto_wrap_policy(__UpperCamelCase )
self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) )
lowercase_ : Optional[int] = self.dist_env.copy()
lowercase_ : str = 'SIZE_BASED_WRAP'
lowercase_ : Union[str, Any] = '0'
with mockenv_context(**__UpperCamelCase ):
lowercase_ : Union[str, Any] = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__UpperCamelCase )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
lowercase_ : List[Any] = self.dist_env.copy()
lowercase_ : Optional[Any] = mp_dtype
with mockenv_context(**__UpperCamelCase ):
lowercase_ : Any = Accelerator()
if mp_dtype == "fp16":
lowercase_ : int = torch.floataa
elif mp_dtype == "bf16":
lowercase_ : str = torch.bfloataa
lowercase_ : Optional[Any] = MixedPrecision(param_dtype=__UpperCamelCase ,reduce_dtype=__UpperCamelCase ,buffer_dtype=__UpperCamelCase )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__UpperCamelCase )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler ,__UpperCamelCase ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
lowercase_ : List[str] = self.dist_env.copy()
lowercase_ : Optional[Any] = str(__UpperCamelCase ).lower()
with mockenv_context(**__UpperCamelCase ):
lowercase_ : Optional[Any] = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__UpperCamelCase ) )
@require_fsdp
@require_multi_gpu
@slow
class __lowerCamelCase ( lowercase_ ):
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
super().setUp()
lowercase_ : Union[str, Any] = 0.82
lowercase_ : List[str] = [
'fsdp_shard_grad_op_transformer_based_wrap',
'fsdp_full_shard_transformer_based_wrap',
]
lowercase_ : str = {
'multi_gpu_fp16': 3200,
'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2000,
'fsdp_full_shard_transformer_based_wrap_fp16': 1900,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
lowercase_ : Dict = 160
lowercase_ : Optional[Any] = 160
lowercase_ : str = inspect.getfile(accelerate.test_utils )
lowercase_ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[str] = os.path.join(self.test_scripts_folder ,'test_performance.py' )
lowercase_ : Optional[int] = ['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp']
for config in self.performance_configs:
lowercase_ : str = cmd.copy()
for i, strategy in enumerate(__UpperCamelCase ):
if strategy.lower() in config:
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
break
if "fp32" in config:
cmd_config.append('--mixed_precision=no' )
else:
cmd_config.append('--mixed_precision=fp16' )
if "cpu_offload" in config:
cmd_config.append('--fsdp_offload_params=True' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('--fsdp_min_num_params=2000' )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
f'''--performance_lower_bound={self.performance_lower_bound}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__UpperCamelCase ,env=os.environ.copy() )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Dict = os.path.join(self.test_scripts_folder ,'test_checkpointing.py' )
lowercase_ : Optional[int] = [
'accelerate',
'launch',
'--num_processes=2',
'--num_machines=1',
'--machine_rank=0',
'--use_fsdp',
'--mixed_precision=fp16',
'--fsdp_transformer_layer_cls_to_wrap=BertLayer',
]
for i, strategy in enumerate(__UpperCamelCase ):
lowercase_ : Any = cmd.copy()
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
if strategy != "FULL_SHARD":
continue
lowercase_ : int = len(__UpperCamelCase )
for state_dict_type in FSDP_STATE_DICT_TYPE:
lowercase_ : int = cmd_config[:state_dict_config_index]
cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
'--partial_train_epoch=1',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__UpperCamelCase ,env=os.environ.copy() )
lowercase_ : int = cmd_config[:-1]
lowercase_ : int = os.path.join(self.tmpdir ,'epoch_0' )
cmd_config.extend(
[
f'''--resume_from_checkpoint={resume_from_checkpoint}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__UpperCamelCase ,env=os.environ.copy() )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Union[str, Any] = os.path.join(self.test_scripts_folder ,'test_peak_memory_usage.py' )
lowercase_ : Dict = [
'accelerate',
'launch',
'--num_processes=2',
'--num_machines=1',
'--machine_rank=0',
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
lowercase_ : List[Any] = cmd.copy()
if "fp16" in spec:
cmd_config.extend(['--mixed_precision=fp16'] )
else:
cmd_config.extend(['--mixed_precision=no'] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(['--use_fsdp'] )
for i, strategy in enumerate(__UpperCamelCase ):
if strategy.lower() in spec:
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
break
if "cpu_offload" in spec:
cmd_config.append('--fsdp_offload_params=True' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('--fsdp_min_num_params=2000' )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
f'''--peak_memory_upper_bound={peak_mem_upper_bound}''',
f'''--n_train={self.n_train}''',
f'''--n_val={self.n_val}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__UpperCamelCase ,env=os.environ.copy() )
| 365
|
"""simple docstring"""
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = parent
lowercase_ : Tuple = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Optional[Any] = is_training
lowercase_ : Any = use_input_mask
lowercase_ : Optional[Any] = vocab_size
lowercase_ : str = hidden_size
lowercase_ : Any = num_hidden_layers
lowercase_ : Dict = num_attention_heads
lowercase_ : Optional[int] = intermediate_size
lowercase_ : Any = hidden_act
lowercase_ : Optional[Any] = hidden_dropout_prob
lowercase_ : str = attention_probs_dropout_prob
lowercase_ : Any = max_position_embeddings
lowercase_ : Optional[Any] = initializer_range
lowercase_ : Union[str, Any] = use_labels
lowercase_ : Union[str, Any] = scope
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : List[str] = None
if self.use_input_mask:
lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Any = self.get_config()
return config, input_ids, input_mask, token_labels
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return BertGenerationConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : str = self.prepare_config_and_inputs()
lowercase_ : int = True
lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Optional[Any] = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Optional[Any] = True
lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Union[str, Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,)
lowercase_ : Dict = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,)
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int:
'''simple docstring'''
lowercase_ : List[str] = True
lowercase_ : Union[str, Any] = True
lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval()
# first forward pass
lowercase_ : str = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,)
lowercase_ : Dict = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size )
lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 )
# append to next input_ids and
lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 )
lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 )
lowercase_ : int = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
lowercase_ : List[Any] = model(
__UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0]
# select random slice
lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
lowercase_ : int = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
lowercase = (BertGenerationDecoder,) if is_torch_available() else ()
lowercase = (
{'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder}
if is_torch_available()
else {}
)
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[Any] = BertGenerationEncoderTester(self )
lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs()
lowercase_ : Optional[int] = 'bert'
self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
lowercase_ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,)
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
self.assertIsNotNone(__UpperCamelCase )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Tuple = model(__UpperCamelCase )[0]
lowercase_ : Dict = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : str = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@require_torch
class UpperCamelCase ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] )
with torch.no_grad():
lowercase_ : Dict = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : Dict = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={"vocab_file": "spiece.model"}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
}
}
__SCREAMING_SNAKE_CASE ={
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
# Segments (not really needed)
__SCREAMING_SNAKE_CASE =0
__SCREAMING_SNAKE_CASE =1
__SCREAMING_SNAKE_CASE =2
__SCREAMING_SNAKE_CASE =3
__SCREAMING_SNAKE_CASE =4
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = 'left'
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<sep>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<cls>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=["<eop>", "<eod>"] ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> None:
'''simple docstring'''
lowercase_ : List[str] = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else mask_token
lowercase_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__UpperCamelCase ,remove_space=__UpperCamelCase ,keep_accents=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,additional_special_tokens=__UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCamelCase ,)
lowercase_ : List[Any] = 3
lowercase_ : Optional[int] = do_lower_case
lowercase_ : Optional[int] = remove_space
lowercase_ : Any = keep_accents
lowercase_ : Optional[Any] = vocab_file
lowercase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCamelCase )
@property
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return len(self.sp_model )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : List[str] = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[Any] = self.__dict__.copy()
lowercase_ : Optional[Any] = None
return state
def __setstate__( self ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Tuple = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
lowercase_ : Any = {}
lowercase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
if self.remove_space:
lowercase_ : Dict = ' '.join(inputs.strip().split() )
else:
lowercase_ : int = inputs
lowercase_ : Optional[Any] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' )
if not self.keep_accents:
lowercase_ : List[str] = unicodedata.normalize('NFKD' ,__UpperCamelCase )
lowercase_ : Any = ''.join([c for c in outputs if not unicodedata.combining(__UpperCamelCase )] )
if self.do_lower_case:
lowercase_ : Tuple = outputs.lower()
return outputs
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]:
'''simple docstring'''
lowercase_ : Tuple = self.preprocess_text(__UpperCamelCase )
lowercase_ : Dict = self.sp_model.encode(__UpperCamelCase ,out_type=__UpperCamelCase )
lowercase_ : List[str] = []
for piece in pieces:
if len(__UpperCamelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit():
lowercase_ : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCamelCase ,'' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowercase_ : Dict = cur_pieces[1:]
else:
lowercase_ : List[str] = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__UpperCamelCase )
else:
new_pieces.append(__UpperCamelCase )
return new_pieces
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
return self.sp_model.PieceToId(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str:
'''simple docstring'''
return self.sp_model.IdToPiece(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
lowercase_ : Dict = ''.join(__UpperCamelCase ).replace(__UpperCamelCase ,' ' ).strip()
return out_string
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = True ,**__UpperCamelCase ,) -> str:
'''simple docstring'''
lowercase_ : List[Any] = kwargs.pop('use_source_tokenizer' ,__UpperCamelCase )
lowercase_ : str = self.convert_ids_to_tokens(__UpperCamelCase ,skip_special_tokens=__UpperCamelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
lowercase_ : Tuple = []
lowercase_ : Tuple = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCamelCase ) )
lowercase_ : List[str] = []
sub_texts.append(__UpperCamelCase )
else:
current_sub_text.append(__UpperCamelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCamelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
lowercase_ : int = ''.join(__UpperCamelCase )
lowercase_ : Dict = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
lowercase_ : Optional[int] = self.clean_up_tokenization(__UpperCamelCase )
return clean_text
else:
return text
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : str = [self.sep_token_id]
lowercase_ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCamelCase ,token_ids_a=__UpperCamelCase ,already_has_special_tokens=__UpperCamelCase )
if token_ids_a is not None:
return ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1, 1]
return ([0] * len(__UpperCamelCase )) + [1, 1]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : Any = [self.sep_token_id]
lowercase_ : Optional[Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(__UpperCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase_ : Tuple = os.path.join(
__UpperCamelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,__UpperCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCamelCase ,'wb' ) as fi:
lowercase_ : Tuple = self.sp_model.serialized_model_proto()
fi.write(__UpperCamelCase )
return (out_vocab_file,)
| 366
|
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
return None
class UpperCamelCase :
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str:
'''simple docstring'''
return None
class UpperCamelCase ( unittest.TestCase ):
lowercase = [
# (model_name, model_kwargs)
('bert-base-cased', {}),
('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
from transformers import BertModel
lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words']
with NamedTemporaryFile(mode='w+t' ) as vocab_file:
vocab_file.write('\n'.join(__UpperCamelCase ) )
vocab_file.flush()
lowercase_ : List[str] = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) )
model.save_pretrained(__UpperCamelCase )
self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase )
@require_tf
@slow
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase )
lowercase_ : int = quantize(Path(__UpperCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase )
lowercase_ : Tuple = quantize(__UpperCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
try:
# Compute path
with TemporaryDirectory() as tempdir:
lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase )
return path
except Exception as e:
self.fail(__UpperCamelCase )
@require_torch
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
from transformers import BertModel
lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' )
@require_tf
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
from transformers import TFBertModel
lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase )
lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1']
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase )
# Assert all variables are present
self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase )
self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} )
self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids']
lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]}
lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__UpperCamelCase ) ,3 )
# Should have exactly the same input names
self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__UpperCamelCase ) ,1 )
self.assertEqual(len(__UpperCamelCase ) ,1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] ,tokens['input_ids'] )
self.assertEqual(ordered_input_names[0] ,'input_ids' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' )
self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
| 321
| 0
|
"""simple docstring"""
from __future__ import annotations
def lowercase__( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> Tuple:
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
lowercase_ : Dict = array[indexa], array[indexa]
def lowercase__( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> str:
if length > 1:
lowercase_ : List[str] = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> List[str]:
if length > 1:
lowercase_ : Optional[Any] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =input("Enter numbers separated by a comma:\n").strip()
__SCREAMING_SNAKE_CASE =[int(item.strip()) for item in user_input.split(",")]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print("\nSorted array in ascending order is: ", end="")
print(*unsorted, sep=", ")
bitonic_merge(unsorted, 0, len(unsorted), 0)
print("Sorted array in descending order is: ", end="")
print(*unsorted, sep=", ")
| 367
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]]
lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase )
self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__UpperCamelCase ):
DisjunctiveConstraint(__UpperCamelCase ) # fails here
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 )
lowercase_ : str = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 )
lowercase_ : Any = stepped is True and completed is False and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 )
lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False
self.assertTrue(__UpperCamelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase )
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 321
| 0
|
"""simple docstring"""
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : int = set_counts
lowercase_ : List[Any] = max(__UpperCamelCase )
lowercase_ : Union[str, Any] = len(__UpperCamelCase )
lowercase_ : Dict = [1] * num_sets
lowercase_ : Optional[int] = list(range(__UpperCamelCase ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool:
'''simple docstring'''
lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase )
lowercase_ : int = self.get_parent(__UpperCamelCase )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : Tuple = 0
lowercase_ : str = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : str = 0
lowercase_ : Tuple = src_parent
lowercase_ : int = self.set_counts[src_parent]
lowercase_ : str = max(self.max_set ,__UpperCamelCase )
return True
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int:
'''simple docstring'''
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 368
|
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[Any] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_array(__SCREAMING_SNAKE_CASE : str ):
lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : Tuple = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ):
lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE )
if "kernel" in name:
lowercase_ : List[str] = array.transpose()
return torch.from_numpy(__SCREAMING_SNAKE_CASE )
print(F'''Loading model based on config from {config_path}...''' )
lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
lowercase_ : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
lowercase_ : BertSelfAttention = layer.attention.self
lowercase_ : str = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape )
lowercase_ : Tuple = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape )
lowercase_ : int = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape )
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape )
lowercase_ : List[Any] = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape )
# Self-attention Output
lowercase_ : BertSelfOutput = layer.attention.output
lowercase_ : Dict = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape )
lowercase_ : Any = get_encoder_attention_layer_array(
__SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape )
lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' )
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' )
# Intermediate
lowercase_ : BertIntermediate = layer.intermediate
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' )
lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' )
# Output
lowercase_ : BertOutput = layer.output
lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' )
lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' )
lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' )
lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' )
# Embeddings
lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' )
lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' )
lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' )
lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' )
# LM Head
lowercase_ : int = model.cls.predictions.transform
lowercase_ : str = get_masked_lm_array('dense/kernel' )
lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' )
lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' )
lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' )
lowercase_ : List[str] = get_masked_lm_array('embedding_table' )
# Pooling
lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' )
lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' )
# Export final model
model.save_pretrained(__SCREAMING_SNAKE_CASE )
# Integration test - should load without any errors ;)
lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE )
print(new_model.eval() )
print('Model conversion was done sucessfully!' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 321
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class UpperCamelCase ( lowercase_ ):
lowercase = 'falcon'
lowercase = ['past_key_values']
def __init__( self ,__UpperCamelCase=6_5024 ,__UpperCamelCase=4544 ,__UpperCamelCase=32 ,__UpperCamelCase=71 ,__UpperCamelCase=1e-5 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,__UpperCamelCase=None ,__UpperCamelCase=False ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=11 ,__UpperCamelCase=11 ,**__UpperCamelCase ,) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = vocab_size
# Backward compatibility with n_embed kwarg
lowercase_ : Union[str, Any] = kwargs.pop('n_embed' ,__UpperCamelCase )
lowercase_ : Optional[Any] = hidden_size if n_embed is None else n_embed
lowercase_ : Tuple = num_hidden_layers
lowercase_ : Any = num_attention_heads
lowercase_ : str = layer_norm_epsilon
lowercase_ : Any = initializer_range
lowercase_ : List[str] = use_cache
lowercase_ : Any = hidden_dropout
lowercase_ : Optional[Any] = attention_dropout
lowercase_ : Any = bos_token_id
lowercase_ : Optional[Any] = eos_token_id
lowercase_ : Optional[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads
lowercase_ : str = alibi
lowercase_ : Tuple = new_decoder_architecture
lowercase_ : Dict = multi_query # Ignored when new_decoder_architecture is True
lowercase_ : Optional[int] = parallel_attn
lowercase_ : Union[str, Any] = bias
super().__init__(bos_token_id=__UpperCamelCase ,eos_token_id=__UpperCamelCase ,**__UpperCamelCase )
@property
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
return self.hidden_size // self.num_attention_heads
@property
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return not self.alibi
| 369
|
"""simple docstring"""
from collections import namedtuple
import requests
from lxml import html # type: ignore
__SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered")
def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ):
lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) )
__SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 321
| 0
|
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
__SCREAMING_SNAKE_CASE =_symbol_database.Default()
__SCREAMING_SNAKE_CASE =_descriptor_pool.Default().AddSerializedFile(
B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"
)
__SCREAMING_SNAKE_CASE =globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
__SCREAMING_SNAKE_CASE =None
__SCREAMING_SNAKE_CASE =B"H\003"
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
__SCREAMING_SNAKE_CASE =45
__SCREAMING_SNAKE_CASE =1581
__SCREAMING_SNAKE_CASE =1517
__SCREAMING_SNAKE_CASE =1570
__SCREAMING_SNAKE_CASE =1584
__SCREAMING_SNAKE_CASE =1793
__SCREAMING_SNAKE_CASE =1795
__SCREAMING_SNAKE_CASE =1916
__SCREAMING_SNAKE_CASE =1864
__SCREAMING_SNAKE_CASE =1905
__SCREAMING_SNAKE_CASE =1919
__SCREAMING_SNAKE_CASE =2429
__SCREAMING_SNAKE_CASE =2208
__SCREAMING_SNAKE_CASE =2418
__SCREAMING_SNAKE_CASE =2323
__SCREAMING_SNAKE_CASE =2407
# @@protoc_insertion_point(module_scope)
| 370
|
"""simple docstring"""
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 321
| 0
|
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=32 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=[10, 20, 30, 40] ,__UpperCamelCase=[2, 2, 3, 2] ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=10 ,__UpperCamelCase=0.02 ,__UpperCamelCase=["stage2", "stage3", "stage4"] ,__UpperCamelCase=3 ,__UpperCamelCase=None ,) -> Any:
'''simple docstring'''
lowercase_ : List[Any] = parent
lowercase_ : List[str] = batch_size
lowercase_ : int = image_size
lowercase_ : List[str] = num_channels
lowercase_ : int = num_stages
lowercase_ : str = hidden_sizes
lowercase_ : List[Any] = depths
lowercase_ : List[str] = is_training
lowercase_ : Dict = use_labels
lowercase_ : Optional[Any] = intermediate_size
lowercase_ : int = hidden_act
lowercase_ : Any = type_sequence_label_size
lowercase_ : List[str] = initializer_range
lowercase_ : List[str] = out_features
lowercase_ : Union[str, Any] = num_labels
lowercase_ : Optional[Any] = scope
lowercase_ : Optional[int] = num_stages
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase_ : Dict = None
if self.use_labels:
lowercase_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase_ : str = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return ConvNextConfig(
num_channels=self.num_channels ,num_stages=self.num_stages ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,is_training=self.is_training ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,out_features=self.out_features ,)
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return UperNetConfig(
backbone_config=self.get_backbone_config() ,hidden_size=512 ,pool_scales=[1, 2, 3, 6] ,use_auxiliary_head=__UpperCamelCase ,auxiliary_loss_weight=0.4 ,auxiliary_in_channels=40 ,auxiliary_channels=256 ,auxiliary_num_convs=1 ,auxiliary_concat_input=__UpperCamelCase ,loss_ignore_index=255 ,num_labels=self.num_labels ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
lowercase_ : List[str] = UperNetForSemanticSegmentation(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[str] = model(__UpperCamelCase )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
lowercase_ : Optional[Any] = self.prepare_config_and_inputs()
(
lowercase_
) : str = config_and_inputs
lowercase_ : str = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowercase = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {}
lowercase = False
lowercase = False
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
lowercase_ : Tuple = UperNetModelTester(self )
lowercase_ : Dict = ConfigTester(self ,config_class=__UpperCamelCase ,has_text_modality=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Any = model_class(__UpperCamelCase )
lowercase_ : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ : str = [*signature.parameters.keys()]
lowercase_ : Dict = ['pixel_values']
self.assertListEqual(arg_names[:1] ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase )
@unittest.skip(reason='UperNet does not use inputs_embeds' )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='UperNet does not support input and output embeddings' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='UperNet does not have a base model' )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='UperNet does not have a base model' )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
def check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : Any = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
lowercase_ : int = model(**self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) )
lowercase_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase_ : Tuple = self.model_tester.num_stages
self.assertEqual(len(__UpperCamelCase ) ,expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,)
lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Tuple = True
check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase_ : Optional[int] = True
check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ : str = _config_zero_init(__UpperCamelCase )
lowercase_ : Optional[int] = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
lowercase_ : Dict = model_class(config=__UpperCamelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,)
@unittest.skip(reason='UperNet does not have tied weights' )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
pass
@slow
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def lowercase__( ):
lowercase_ : List[Any] = hf_hub_download(
repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' )
lowercase_ : str = Image.open(__SCREAMING_SNAKE_CASE ).convert('RGB' )
return image
@require_torch
@require_vision
@slow
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Any = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' )
lowercase_ : Optional[int] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(__UpperCamelCase )
lowercase_ : int = prepare_img()
lowercase_ : List[Any] = processor(images=__UpperCamelCase ,return_tensors='pt' ).to(__UpperCamelCase )
with torch.no_grad():
lowercase_ : int = model(**__UpperCamelCase )
lowercase_ : Tuple = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape ,__UpperCamelCase )
lowercase_ : Optional[Any] = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Union[str, Any] = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' )
lowercase_ : Optional[int] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(__UpperCamelCase )
lowercase_ : Union[str, Any] = prepare_img()
lowercase_ : List[Any] = processor(images=__UpperCamelCase ,return_tensors='pt' ).to(__UpperCamelCase )
with torch.no_grad():
lowercase_ : Any = model(**__UpperCamelCase )
lowercase_ : Optional[Any] = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape ,__UpperCamelCase )
lowercase_ : Any = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 371
|
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]:
'''simple docstring'''
lowercase_ : Any = parent
lowercase_ : str = batch_size
lowercase_ : List[Any] = seq_length
lowercase_ : Dict = is_training
lowercase_ : Tuple = use_input_mask
lowercase_ : Optional[Any] = use_token_type_ids
lowercase_ : List[str] = use_labels
lowercase_ : Any = vocab_size
lowercase_ : List[str] = hidden_size
lowercase_ : Optional[int] = num_hidden_layers
lowercase_ : int = num_attention_heads
lowercase_ : int = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : Optional[int] = hidden_dropout_prob
lowercase_ : Tuple = attention_probs_dropout_prob
lowercase_ : Tuple = max_position_embeddings
lowercase_ : Optional[int] = type_vocab_size
lowercase_ : Optional[int] = type_sequence_label_size
lowercase_ : Dict = initializer_range
lowercase_ : int = num_labels
lowercase_ : Any = num_choices
lowercase_ : int = scope
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase_ : Dict = None
if self.use_input_mask:
lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase_ : Tuple = None
lowercase_ : Tuple = None
lowercase_ : Tuple = None
if self.use_labels:
lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices )
lowercase_ : str = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return EsmConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,)
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )
lowercase_ : Union[str, Any] = model(__UpperCamelCase )
lowercase_ : int = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : str = self.num_labels
lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Any = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Optional[int] = config_and_inputs
lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
lowercase = False
lowercase = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase = ()
lowercase = (
{
'feature-extraction': EsmModel,
'fill-mask': EsmForMaskedLM,
'text-classification': EsmForSequenceClassification,
'token-classification': EsmForTokenClassification,
'zero-shot': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = True
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : Dict = EsmModelTester(self )
lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 )
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowercase_ : Optional[Any] = type
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase )
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase )
@slow
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
lowercase_ : List[Any] = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0]
lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase )
lowercase_ : List[Any] = torch.empty(2 ,4 ,30 )
lowercase_ : List[str] = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] )
lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase )
self.assertEqual(position_ids.shape ,expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip('Esm does not support embedding resizing' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@require_torch
class UpperCamelCase ( lowercase_ ):
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowercase_ : List[str] = model(__UpperCamelCase )[0]
lowercase_ : Optional[int] = 33
lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape ,__UpperCamelCase )
lowercase_ : List[str] = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
with torch.no_grad():
lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowercase_ : Dict = model(__UpperCamelCase )[0]
# compare the actual values for a slice.
lowercase_ : Any = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
| 321
| 0
|
'''simple docstring'''
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=512,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def __lowerCAmelCase (__lowerCAmelCase ):
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F"""could not parse string as bool {string}""" )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
lowerCamelCase__ = parser.parse_args()
lowerCamelCase__ = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 322
|
'''simple docstring'''
from manim import *
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def lowerCAmelCase__ ( self : List[Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 )
_UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 )
_UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )]
_UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )]
_UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
_UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
_UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
_UpperCAmelCase : int = Text("CPU" , font_size=24 )
_UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )]
_UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
_UpperCAmelCase : int = Text("GPU" , font_size=24 )
_UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ )
gpu.align_to(lowerCamelCase__ , lowerCamelCase__ )
gpu.set_x(gpu.get_x() - 1 )
self.add(lowerCamelCase__ )
_UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )]
_UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
_UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 )
_UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ )
model.move_to([3, -1.0, 0] )
self.play(
Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , )
_UpperCAmelCase : int = MarkupText(
F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , )
_UpperCAmelCase : Any = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_UpperCAmelCase : Union[str, Any] = MarkupText(
F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) )
self.add(lowerCamelCase__ )
_UpperCAmelCase : int = []
_UpperCAmelCase : List[str] = []
_UpperCAmelCase : Dict = []
for i, rect in enumerate(lowerCamelCase__ ):
_UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 )
cpu_target.move_to(lowerCamelCase__ )
cpu_target.generate_target()
_UpperCAmelCase : Dict = 0.4_6 / 4
_UpperCAmelCase : Any = 0.4_6 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 )
cpu_targs.append(lowerCamelCase__ )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) )
second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) )
self.play(*lowerCamelCase__ )
self.play(*lowerCamelCase__ )
self.wait()
| 322
| 1
|
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json',
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
lowerCAmelCase : List[Any] = "mvp"
lowerCAmelCase : int = ["past_key_values"]
lowerCAmelCase : Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : List[Any] , lowerCamelCase__ : int=5_02_67 , lowerCamelCase__ : str=10_24 , lowerCamelCase__ : Optional[Any]=12 , lowerCamelCase__ : Optional[int]=40_96 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : Union[str, Any]=12 , lowerCamelCase__ : Dict=40_96 , lowerCamelCase__ : List[Any]=16 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : int=0.0 , lowerCamelCase__ : int="gelu" , lowerCamelCase__ : Optional[int]=10_24 , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : Dict=0.0 , lowerCamelCase__ : str=0.0_2 , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : int=1 , lowerCamelCase__ : Optional[int]=0 , lowerCamelCase__ : Optional[int]=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : int=2 , lowerCamelCase__ : Optional[int]=2 , lowerCamelCase__ : Dict=False , lowerCamelCase__ : str=1_00 , lowerCamelCase__ : List[Any]=8_00 , **lowerCamelCase__ : Optional[int] , ) ->Any:
'''simple docstring'''
_UpperCAmelCase : List[str] = vocab_size
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : Dict = d_model
_UpperCAmelCase : Union[str, Any] = encoder_ffn_dim
_UpperCAmelCase : Union[str, Any] = encoder_layers
_UpperCAmelCase : str = encoder_attention_heads
_UpperCAmelCase : Tuple = decoder_ffn_dim
_UpperCAmelCase : str = decoder_layers
_UpperCAmelCase : List[Any] = decoder_attention_heads
_UpperCAmelCase : Optional[int] = dropout
_UpperCAmelCase : Dict = attention_dropout
_UpperCAmelCase : Optional[int] = activation_dropout
_UpperCAmelCase : List[Any] = activation_function
_UpperCAmelCase : Union[str, Any] = init_std
_UpperCAmelCase : Dict = encoder_layerdrop
_UpperCAmelCase : List[Any] = decoder_layerdrop
_UpperCAmelCase : List[Any] = classifier_dropout
_UpperCAmelCase : str = use_cache
_UpperCAmelCase : str = encoder_layers
_UpperCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True
_UpperCAmelCase : Tuple = use_prompt
_UpperCAmelCase : List[str] = prompt_length
_UpperCAmelCase : Any = prompt_mid_dim
super().__init__(
pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , forced_eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , lowerCamelCase__ ):
_UpperCAmelCase : Optional[int] = self.bos_token_id
warnings.warn(
F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """
"The config can simply be saved and uploaded again to be fixed." )
| 322
|
'''simple docstring'''
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ):
_UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase )
_UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase )
_UpperCAmelCase : Dict = tok.pad_token_id
def get_lens(__lowerCAmelCase ):
_UpperCAmelCase : Union[str, Any] = tqdm(
DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
_UpperCAmelCase : List[str] = []
for batch in dl:
_UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist()
_UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ):
max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) )
else:
max_lens.extend(__lowerCAmelCase )
return max_lens
_UpperCAmelCase : Dict = get_lens(__lowerCAmelCase )
_UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase )
_UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase )
pickle_save(__lowerCAmelCase , train_ds.len_file )
pickle_save(__lowerCAmelCase , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 322
| 1
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( UpperCAmelCase__ ):
lowerCAmelCase : List[str] = ["input_features", "attention_mask"]
def __init__( self : Any , lowerCamelCase__ : List[str]=80 , lowerCamelCase__ : Any=1_60_00 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : List[str]=10 , lowerCamelCase__ : Union[str, Any]=25 , lowerCamelCase__ : str="hamming_window" , lowerCamelCase__ : Any=3_2_7_6_8.0 , lowerCamelCase__ : Union[str, Any]=0.9_7 , lowerCamelCase__ : Union[str, Any]=1.0 , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=False , **lowerCamelCase__ : Optional[Any] , ) ->List[Any]:
'''simple docstring'''
super().__init__(feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , **lowerCamelCase__ )
_UpperCAmelCase : Dict = feature_size
_UpperCAmelCase : List[Any] = sampling_rate
_UpperCAmelCase : Optional[int] = padding_value
_UpperCAmelCase : Optional[int] = hop_length
_UpperCAmelCase : int = win_length
_UpperCAmelCase : str = frame_signal_scale
_UpperCAmelCase : Union[str, Any] = preemphasis_coeff
_UpperCAmelCase : Dict = mel_floor
_UpperCAmelCase : Tuple = normalize_means
_UpperCAmelCase : str = normalize_vars
_UpperCAmelCase : List[str] = win_function
_UpperCAmelCase : Optional[int] = return_attention_mask
_UpperCAmelCase : Optional[Any] = win_length * sampling_rate // 10_00
_UpperCAmelCase : Tuple = hop_length * sampling_rate // 10_00
_UpperCAmelCase : Union[str, Any] = optimal_fft_length(self.sample_size )
_UpperCAmelCase : List[Any] = (self.n_fft // 2) + 1
def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : np.array ) ->np.ndarray:
'''simple docstring'''
if self.win_function == "hamming_window":
_UpperCAmelCase : Union[str, Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCamelCase__ )
else:
_UpperCAmelCase : List[Any] = window_function(window_length=self.sample_size , name=self.win_function )
_UpperCAmelCase : Optional[int] = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , )
_UpperCAmelCase : Optional[int] = spectrogram(
one_waveform * self.frame_signal_scale , window=lowerCamelCase__ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowerCamelCase__ , preemphasis=self.preemphasis_coeff , mel_filters=lowerCamelCase__ , mel_floor=self.mel_floor , log_mel="log" , )
return msfc_features.T
def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int ) ->Optional[int]:
'''simple docstring'''
if self.normalize_means:
_UpperCAmelCase : Tuple = x[:input_length].mean(axis=0 )
_UpperCAmelCase : Dict = np.subtract(lowerCamelCase__ , lowerCamelCase__ )
if self.normalize_vars:
_UpperCAmelCase : Any = x[:input_length].std(axis=0 )
_UpperCAmelCase : int = np.divide(lowerCamelCase__ , lowerCamelCase__ )
if input_length < x.shape[0]:
_UpperCAmelCase : Any = padding_value
# make sure array is in float32
_UpperCAmelCase : Union[str, Any] = x.astype(np.floataa )
return x
def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : List[np.ndarray] , lowerCamelCase__ : Optional[np.ndarray] = None ) ->List[np.ndarray]:
'''simple docstring'''
_UpperCAmelCase : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(lowerCamelCase__ , lowerCamelCase__ , self.padding_value ) for x, n in zip(lowerCamelCase__ , lowerCamelCase__ )]
def __call__( self : Any , lowerCamelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : str , ) ->BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"""
F""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
_UpperCAmelCase : str = isinstance(lowerCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
_UpperCAmelCase : Dict = is_batched_numpy or (
isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_UpperCAmelCase : str = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ):
_UpperCAmelCase : List[Any] = np.asarray(lowerCamelCase__ , dtype=np.floataa )
elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_UpperCAmelCase : int = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_UpperCAmelCase : Union[str, Any] = [raw_speech]
# extract fbank features
_UpperCAmelCase : Optional[int] = [self._extract_mfsc_features(lowerCamelCase__ ) for one_waveform in raw_speech]
# convert into correct format for padding
_UpperCAmelCase : Union[str, Any] = BatchFeature({"input_features": features} )
_UpperCAmelCase : List[str] = self.pad(
lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , )
# make sure list is in array format
_UpperCAmelCase : Tuple = padded_inputs.get("input_features" )
if isinstance(input_features[0] , lowerCamelCase__ ):
_UpperCAmelCase : int = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for feature in input_features]
_UpperCAmelCase : int = padded_inputs.get("attention_mask" )
if attention_mask is not None:
_UpperCAmelCase : int = [np.asarray(lowerCamelCase__ , dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
_UpperCAmelCase : Optional[int] = (
np.array(lowerCamelCase__ , dtype=np.intaa )
if self._get_padding_strategies(lowerCamelCase__ , max_length=lowerCamelCase__ ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
_UpperCAmelCase : Optional[int] = self.normalize(
padded_inputs["input_features"] , attention_mask=lowerCamelCase__ )
if return_tensors is not None:
_UpperCAmelCase : Any = padded_inputs.convert_to_tensors(lowerCamelCase__ )
return padded_inputs
| 322
|
'''simple docstring'''
import pytest
lowerCamelCase__ = '__dummy_dataset1__'
lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def __lowerCAmelCase ():
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __lowerCAmelCase ():
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : Optional[Any] = dataset_loading_script_name
_UpperCAmelCase : Any = tmp_path / "datasets" / script_name
script_dir.mkdir(parents=__lowerCAmelCase )
_UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py"""
with open(__lowerCAmelCase , "w" ) as f:
f.write(__lowerCAmelCase )
return str(__lowerCAmelCase )
| 322
| 1
|
'''simple docstring'''
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
lowerCamelCase__ = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def __init__( self : Any , *lowerCamelCase__ : str , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : str=None , **lowerCamelCase__ : Optional[int] ) ->Optional[int]:
'''simple docstring'''
super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = eval_examples
_UpperCAmelCase : List[str] = post_process_function
_UpperCAmelCase : List[Any] = quant_trainer_args
_UpperCAmelCase : List[str] = 1_28 # default number of calibration samples
def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[Any]=None ) ->Any:
'''simple docstring'''
if calib_dataset is None and self.calib_dataset is None:
raise ValueError("Trainer: calibration requires an calib_dataset." )
_UpperCAmelCase : Dict = calib_dataset if calib_dataset is not None else self.calib_dataset
_UpperCAmelCase : Union[str, Any] = self._remove_unused_columns(lowerCamelCase__ , description="Calibration" )
return DataLoader(
lowerCamelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowerCamelCase__ , )
def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : List[str]=None ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = self.train_dataset if calib_dataset is None else calib_dataset
_UpperCAmelCase : int = self.get_calib_dataloader(lowerCamelCase__ )
_UpperCAmelCase : str = self.model
quant_trainer.configure_model(lowerCamelCase__ , self.quant_trainer_args , calib=lowerCamelCase__ )
model.eval()
quant_trainer.enable_calibration(lowerCamelCase__ )
logger.info("***** Running calibration *****" )
logger.info(F""" Num examples = {self.calib_num}""" )
logger.info(F""" Batch size = {calib_dataloader.batch_size}""" )
for step, inputs in enumerate(lowerCamelCase__ ):
# Prediction step
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = self.prediction_step(lowerCamelCase__ , lowerCamelCase__ , prediction_loss_only=lowerCamelCase__ )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(lowerCamelCase__ , self.quant_trainer_args )
_UpperCAmelCase : Dict = model
def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , lowerCamelCase__ : str = "eval" ) ->Dict:
'''simple docstring'''
_UpperCAmelCase : Any = self.eval_dataset if eval_dataset is None else eval_dataset
_UpperCAmelCase : Tuple = self.get_eval_dataloader(lowerCamelCase__ )
_UpperCAmelCase : Optional[int] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_UpperCAmelCase : List[str] = self.compute_metrics
_UpperCAmelCase : int = None
_UpperCAmelCase : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_UpperCAmelCase : Tuple = eval_loop(
lowerCamelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase__ , )
finally:
_UpperCAmelCase : Tuple = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
_UpperCAmelCase : str = self.post_process_function(lowerCamelCase__ , lowerCamelCase__ , output.predictions )
_UpperCAmelCase : Optional[int] = self.compute_metrics(lowerCamelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
_UpperCAmelCase : List[Any] = metrics.pop(lowerCamelCase__ )
self.log(lowerCamelCase__ )
else:
_UpperCAmelCase : List[str] = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_UpperCAmelCase : str = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCamelCase__ )
return metrics
def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : str = "test" ) ->Any:
'''simple docstring'''
_UpperCAmelCase : Any = self.get_test_dataloader(lowerCamelCase__ )
# Temporarily disable metric computation, we will do it in the loop here.
_UpperCAmelCase : Dict = self.compute_metrics
_UpperCAmelCase : Any = None
_UpperCAmelCase : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_UpperCAmelCase : List[Any] = eval_loop(
lowerCamelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase__ , )
finally:
_UpperCAmelCase : Union[str, Any] = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
_UpperCAmelCase : Optional[Any] = self.post_process_function(lowerCamelCase__ , lowerCamelCase__ , output.predictions , "predict" )
_UpperCAmelCase : Tuple = self.compute_metrics(lowerCamelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
_UpperCAmelCase : str = metrics.pop(lowerCamelCase__ )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCamelCase__ )
def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Tuple="./" ) ->Any:
'''simple docstring'''
_UpperCAmelCase : Any = self.eval_dataset
_UpperCAmelCase : Tuple = self.get_eval_dataloader(lowerCamelCase__ )
_UpperCAmelCase : Tuple = next(iter(lowerCamelCase__ ) )
# saving device - to make it consistent
_UpperCAmelCase : Dict = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
# convert to tuple
_UpperCAmelCase : List[Any] = tuple(v.to(lowerCamelCase__ ) for k, v in batch.items() )
logger.info("Converting model to be onnx compatible" )
from pytorch_quantization.nn import TensorQuantizer
_UpperCAmelCase : Dict = True
_UpperCAmelCase : str = self.model.to(lowerCamelCase__ )
model.eval()
model.float()
_UpperCAmelCase : int = model.module if hasattr(lowerCamelCase__ , "module" ) else model
quant_trainer.configure_model(lowerCamelCase__ , self.quant_trainer_args )
_UpperCAmelCase : Optional[int] = os.path.join(lowerCamelCase__ , "model.onnx" )
logger.info(F"""exporting model to {output_model_file}""" )
_UpperCAmelCase : List[Any] = {0: "batch_size", 1: "seq_len"}
torch.onnx.export(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , export_params=lowerCamelCase__ , opset_version=13 , do_constant_folding=lowerCamelCase__ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={
"input_ids": axes,
"attention_mask": axes,
"token_type_ids": axes,
"output_start_logits": axes,
"output_end_logits": axes,
} , verbose=lowerCamelCase__ , )
logger.info("onnx export finished" )
| 322
|
'''simple docstring'''
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
lowerCamelCase__ = version.parse(importlib_metadata.version('nltk'))
if NLTK_VERSION >= version.Version('3.6.4'):
from nltk import word_tokenize
lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n'
lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n'
lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[
"https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score",
"https://en.wikipedia.org/wiki/METEOR",
] , )
def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int:
'''simple docstring'''
import nltk
nltk.download("wordnet" )
if NLTK_VERSION >= version.Version("3.6.5" ):
nltk.download("punkt" )
if NLTK_VERSION >= version.Version("3.6.6" ):
nltk.download("omw-1.4" )
def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any:
'''simple docstring'''
if NLTK_VERSION >= version.Version("3.6.5" ):
_UpperCAmelCase : Dict = [
meteor_score.single_meteor_score(
word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ )
for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ )
]
else:
_UpperCAmelCase : Optional[int] = [
meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ )
for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ )
]
return {"meteor": np.mean(lowerCamelCase__ )}
| 322
| 1
|
'''simple docstring'''
import pytest
lowerCamelCase__ = '__dummy_dataset1__'
lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def __lowerCAmelCase ():
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __lowerCAmelCase ():
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : Optional[Any] = dataset_loading_script_name
_UpperCAmelCase : Any = tmp_path / "datasets" / script_name
script_dir.mkdir(parents=__lowerCAmelCase )
_UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py"""
with open(__lowerCAmelCase , "w" ) as f:
f.write(__lowerCAmelCase )
return str(__lowerCAmelCase )
| 322
|
'''simple docstring'''
from typing import List, Union
import numpy as np
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, logging
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline
lowerCamelCase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str:
'''simple docstring'''
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
_UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()]
return labels
def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str:
'''simple docstring'''
if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0:
raise ValueError("You must include at least one label and at least one sequence." )
if hypothesis_template.format(labels[0] ) == hypothesis_template:
raise ValueError(
(
"The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. "
"Make sure the passed template includes formatting syntax such as {{}} where the label should go."
).format(lowerCamelCase__ ) )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
_UpperCAmelCase : Optional[Any] = [sequences]
_UpperCAmelCase : int = []
for sequence in sequences:
sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] )
return sequence_pairs, sequences
@add_end_docstrings(UpperCAmelCase__ )
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase : Tuple = args_parser
super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
if self.entailment_id == -1:
logger.warning(
"Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to "
"-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." )
@property
def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]:
'''simple docstring'''
for label, ind in self.model.config.labelaid.items():
if label.lower().startswith("entail" ):
return ind
return -1
def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase : int = self.framework
if self.tokenizer.pad_token is None:
# Override for tokenizers not supporting padding
logger.error(
"Tokenizer was not supporting padding necessary for zero-shot, attempting to use "
" `pad_token=eos_token`" )
_UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token
try:
_UpperCAmelCase : List[str] = self.tokenizer(
lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , )
except Exception as e:
if "too short" in str(lowerCamelCase__ ):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
_UpperCAmelCase : List[Any] = self.tokenizer(
lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , )
else:
raise e
return inputs
def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple:
'''simple docstring'''
if kwargs.get("multi_class" , lowerCamelCase__ ) is not None:
_UpperCAmelCase : int = kwargs["multi_class"]
logger.warning(
"The `multi_class` argument has been deprecated and renamed to `multi_label`. "
"`multi_class` will be removed in a future version of Transformers." )
_UpperCAmelCase : Dict = {}
if "candidate_labels" in kwargs:
_UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] )
if "hypothesis_template" in kwargs:
_UpperCAmelCase : Dict = kwargs["hypothesis_template"]
_UpperCAmelCase : List[str] = {}
if "multi_label" in kwargs:
_UpperCAmelCase : Optional[Any] = kwargs["multi_label"]
return preprocess_params, {}, postprocess_params
def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]:
'''simple docstring'''
if len(lowerCamelCase__ ) == 0:
pass
elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs:
_UpperCAmelCase : int = args[0]
else:
raise ValueError(F"""Unable to understand extra arguments {args}""" )
return super().__call__(lowerCamelCase__ , **lowerCamelCase__ )
def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ):
_UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] )
yield {
"candidate_label": candidate_label,
"sequence": sequences[0],
"is_last": i == len(lowerCamelCase__ ) - 1,
**model_input,
}
def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int:
'''simple docstring'''
_UpperCAmelCase : Dict = inputs["candidate_label"]
_UpperCAmelCase : Optional[int] = inputs["sequence"]
_UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names}
_UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = {
"candidate_label": candidate_label,
"sequence": sequence,
"is_last": inputs["is_last"],
**outputs,
}
return model_outputs
def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs]
_UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs]
_UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] )
_UpperCAmelCase : Optional[Any] = logits.shape[0]
_UpperCAmelCase : Any = len(lowerCamelCase__ )
_UpperCAmelCase : str = N // n
_UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) )
if multi_label or len(lowerCamelCase__ ) == 1:
# softmax over the entailment vs. contradiction dim for each label independently
_UpperCAmelCase : int = self.entailment_id
_UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0
_UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]]
_UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ )
_UpperCAmelCase : str = scores[..., 1]
else:
# softmax the "entailment" logits over all candidate labels
_UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id]
_UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ )
_UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) )
return {
"sequence": sequences[0],
"labels": [candidate_labels[i] for i in top_inds],
"scores": scores[0, top_inds].tolist(),
}
| 322
| 1
|
'''simple docstring'''
lowerCamelCase__ = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : Optional[Any] = set()
# keep track of all the paths to be checked
_UpperCAmelCase : int = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
_UpperCAmelCase : Union[str, Any] = queue.pop(0 )
# get the last node from the path
_UpperCAmelCase : Tuple = path[-1]
if node not in explored:
_UpperCAmelCase : List[str] = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
_UpperCAmelCase : Optional[Any] = list(__lowerCAmelCase )
new_path.append(__lowerCAmelCase )
queue.append(__lowerCAmelCase )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(__lowerCAmelCase )
# in case there's no path between the 2 nodes
return []
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
_UpperCAmelCase : Union[str, Any] = [start]
_UpperCAmelCase : Dict = set(__lowerCAmelCase )
# Keep tab on distances from `start` node.
_UpperCAmelCase : Optional[int] = {start: 0, target: -1}
while queue:
_UpperCAmelCase : Any = queue.pop(0 )
if node == target:
_UpperCAmelCase : int = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(__lowerCAmelCase )
queue.append(__lowerCAmelCase )
_UpperCAmelCase : Dict = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
| 322
|
'''simple docstring'''
def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ):
_UpperCAmelCase : List[Any] = []
_UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(__lowerCAmelCase )
_UpperCAmelCase , _UpperCAmelCase : Any = b, a + b
return sum(__lowerCAmelCase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 322
| 1
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
lowerCamelCase__ = list[list[float | int]]
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : int = len(__lowerCAmelCase )
_UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )]
_UpperCAmelCase : int
_UpperCAmelCase : int
_UpperCAmelCase : int
_UpperCAmelCase : int
_UpperCAmelCase : int
_UpperCAmelCase : float
for row in range(__lowerCAmelCase ):
for col in range(__lowerCAmelCase ):
_UpperCAmelCase : Optional[Any] = matrix[row][col]
_UpperCAmelCase : Optional[int] = vector[row][0]
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 0
while row < size and col < size:
# pivoting
_UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , __lowerCAmelCase ):
_UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col]
_UpperCAmelCase : Optional[Any] = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , __lowerCAmelCase ):
for row in range(__lowerCAmelCase ):
_UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col]
for cola in range(__lowerCAmelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase )
]
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : int = len(__lowerCAmelCase )
_UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )]
_UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )]
_UpperCAmelCase : Matrix
_UpperCAmelCase : int
_UpperCAmelCase : int
_UpperCAmelCase : int
for x_val, y_val in enumerate(__lowerCAmelCase ):
for col in range(__lowerCAmelCase ):
_UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1)
_UpperCAmelCase : int = y_val
_UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase )
def interpolated_func(__lowerCAmelCase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(__lowerCAmelCase ) )
return interpolated_func
def __lowerCAmelCase (__lowerCAmelCase ):
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ):
_UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )]
_UpperCAmelCase : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
_UpperCAmelCase : int = 0
_UpperCAmelCase : Callable[[int], int]
_UpperCAmelCase : int
for poly in polynomials:
_UpperCAmelCase : int = 1
while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ):
x_val += 1
ret += poly(__lowerCAmelCase )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 322
|
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class lowerCAmelCase__ ( unittest.TestCase ):
def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : List[Any] = parent
_UpperCAmelCase : List[Any] = batch_size
_UpperCAmelCase : Optional[int] = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : Dict = use_attention_mask
_UpperCAmelCase : Optional[Any] = use_token_type_ids
_UpperCAmelCase : int = use_labels
_UpperCAmelCase : Optional[int] = vocab_size
_UpperCAmelCase : Any = hidden_size
_UpperCAmelCase : Any = num_hidden_layers
_UpperCAmelCase : List[Any] = num_attention_heads
_UpperCAmelCase : Tuple = intermediate_size
_UpperCAmelCase : int = hidden_act
_UpperCAmelCase : int = hidden_dropout_prob
_UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_UpperCAmelCase : Union[str, Any] = max_position_embeddings
_UpperCAmelCase : Tuple = type_vocab_size
_UpperCAmelCase : List[Any] = type_sequence_label_size
_UpperCAmelCase : Optional[int] = initializer_range
_UpperCAmelCase : Dict = num_choices
def lowerCAmelCase__ ( self : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : Dict = None
if self.use_attention_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Union[str, Any] = None
if self.use_token_type_ids:
_UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase : int = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase__ ( self : Any ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : Tuple = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs
_UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
lowerCAmelCase : Optional[int] = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase : int = FlaxAlbertModelTester(self )
@slow
def lowerCAmelCase__ ( self : Any ) ->List[str]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" )
_UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase__ )
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" )
_UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
_UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0]
_UpperCAmelCase : List[Any] = (1, 11, 7_68)
self.assertEqual(output.shape , lowerCamelCase__ )
_UpperCAmelCase : str = np.array(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
| 322
| 1
|
'''simple docstring'''
import random
from .binary_exp_mod import bin_exp_mod
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=1_000 ):
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
_UpperCAmelCase : List[str] = n - 1
_UpperCAmelCase : int = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
_UpperCAmelCase : Dict = 0
while count < prec:
_UpperCAmelCase : Tuple = random.randint(2 , n - 1 )
_UpperCAmelCase : Tuple = bin_exp_mod(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if b != 1:
_UpperCAmelCase : Tuple = True
for _ in range(__lowerCAmelCase ):
if b == n - 1:
_UpperCAmelCase : Optional[int] = False
break
_UpperCAmelCase : int = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
lowerCamelCase__ = abs(int(input('Enter bound : ').strip()))
print('Here\'s the list of primes:')
print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 322
|
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
CenterCrop,
Compose,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
Resize,
ToTensor,
)
import transformers
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForImageClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
lowerCamelCase__ = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt')
lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def __lowerCAmelCase (__lowerCAmelCase ):
with open(__lowerCAmelCase , "rb" ) as f:
_UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase )
return im.convert("RGB" )
@dataclass
class lowerCAmelCase__ :
lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={
"help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
} , )
lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} )
lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} )
lowerCAmelCase : Optional[float] = field(
default=0.15 , metadata={"help": "Percent to split off of train for validation."} )
lowerCAmelCase : Optional[int] = field(
default=UpperCAmelCase__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowerCAmelCase : Optional[int] = field(
default=UpperCAmelCase__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def lowerCAmelCase__ ( self : int ) ->List[str]:
'''simple docstring'''
if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
raise ValueError(
"You must specify either a dataset name from the hub or a train and/or validation directory." )
@dataclass
class lowerCAmelCase__ :
lowerCAmelCase : str = field(
default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , )
lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , )
lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} )
lowerCAmelCase : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} )
lowerCAmelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
lowerCAmelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , )
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] )
_UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] )
return {"pixel_values": pixel_values, "labels": labels}
def __lowerCAmelCase ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_UpperCAmelCase : Optional[Any] = training_args.get_process_log_level()
logger.setLevel(__lowerCAmelCase )
transformers.utils.logging.set_verbosity(__lowerCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
_UpperCAmelCase : List[Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Initialize our dataset and prepare it for the 'image-classification' task.
if data_args.dataset_name is not None:
_UpperCAmelCase : str = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , )
else:
_UpperCAmelCase : List[Any] = {}
if data_args.train_dir is not None:
_UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" )
if data_args.validation_dir is not None:
_UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" )
_UpperCAmelCase : Any = load_dataset(
"imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , )
# If we don't have a validation split, split off a percentage of train as validation.
_UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0:
_UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split )
_UpperCAmelCase : List[str] = split["train"]
_UpperCAmelCase : Union[str, Any] = split["test"]
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
_UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names
_UpperCAmelCase , _UpperCAmelCase : int = {}, {}
for i, label in enumerate(__lowerCAmelCase ):
_UpperCAmelCase : int = str(__lowerCAmelCase )
_UpperCAmelCase : str = label
# Load the accuracy metric from the datasets package
_UpperCAmelCase : int = evaluate.load("accuracy" )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__lowerCAmelCase ):
return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids )
_UpperCAmelCase : Dict = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
_UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in image_processor.size:
_UpperCAmelCase : int = image_processor.size["shortest_edge"]
else:
_UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"])
_UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std )
_UpperCAmelCase : Optional[int] = Compose(
[
RandomResizedCrop(__lowerCAmelCase ),
RandomHorizontalFlip(),
ToTensor(),
normalize,
] )
_UpperCAmelCase : Union[str, Any] = Compose(
[
Resize(__lowerCAmelCase ),
CenterCrop(__lowerCAmelCase ),
ToTensor(),
normalize,
] )
def train_transforms(__lowerCAmelCase ):
_UpperCAmelCase : Optional[Any] = [
_train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]
]
return example_batch
def val_transforms(__lowerCAmelCase ):
_UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]]
return example_batch
if training_args.do_train:
if "train" not in dataset:
raise ValueError("--do_train requires a train dataset" )
if data_args.max_train_samples is not None:
_UpperCAmelCase : Dict = (
dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
dataset["train"].set_transform(__lowerCAmelCase )
if training_args.do_eval:
if "validation" not in dataset:
raise ValueError("--do_eval requires a validation dataset" )
if data_args.max_eval_samples is not None:
_UpperCAmelCase : Optional[Any] = (
dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
dataset["validation"].set_transform(__lowerCAmelCase )
# Initalize our trainer
_UpperCAmelCase : Union[str, Any] = Trainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , )
# Training
if training_args.do_train:
_UpperCAmelCase : Any = None
if training_args.resume_from_checkpoint is not None:
_UpperCAmelCase : List[str] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCAmelCase : int = last_checkpoint
_UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase )
trainer.save_model()
trainer.log_metrics("train" , train_result.metrics )
trainer.save_metrics("train" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_UpperCAmelCase : Dict = trainer.evaluate()
trainer.log_metrics("eval" , __lowerCAmelCase )
trainer.save_metrics("eval" , __lowerCAmelCase )
# Write model card and (optionally) push to hub
_UpperCAmelCase : int = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "image-classification",
"dataset": data_args.dataset_name,
"tags": ["image-classification", "vision"],
}
if training_args.push_to_hub:
trainer.push_to_hub(**__lowerCAmelCase )
else:
trainer.create_model_card(**__lowerCAmelCase )
if __name__ == "__main__":
main()
| 322
| 1
|
'''simple docstring'''
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 ):
_UpperCAmelCase , _UpperCAmelCase : int = [], []
_UpperCAmelCase : Union[str, Any] = list(zip(__lowerCAmelCase , __lowerCAmelCase ) )
_UpperCAmelCase , _UpperCAmelCase : List[Any] = sorted_examples[0]
def is_too_big(__lowerCAmelCase ):
return tok(__lowerCAmelCase , return_tensors="pt" ).input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:] ):
_UpperCAmelCase : Optional[Any] = new_src + " " + src
_UpperCAmelCase : Optional[int] = new_tgt + " " + tgt
if is_too_big(__lowerCAmelCase ) or is_too_big(__lowerCAmelCase ): # cant fit, finalize example
finished_src.append(__lowerCAmelCase )
finished_tgt.append(__lowerCAmelCase )
_UpperCAmelCase , _UpperCAmelCase : str = src, tgt
else: # can fit, keep adding
_UpperCAmelCase , _UpperCAmelCase : Any = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(__lowerCAmelCase )
finished_tgt.append(__lowerCAmelCase )
return finished_src, finished_tgt
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : Optional[int] = Path(__lowerCAmelCase )
save_path.mkdir(exist_ok=__lowerCAmelCase )
for split in ["train"]:
_UpperCAmelCase , _UpperCAmelCase : Optional[Any] = data_dir / F"""{split}.source""", data_dir / F"""{split}.target"""
_UpperCAmelCase : List[Any] = [x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()]
_UpperCAmelCase : Optional[int] = [x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()]
_UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = pack_examples(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
print(F"""packed {split} split from {len(__lowerCAmelCase )} examples -> {len(__lowerCAmelCase )}.""" )
Path(save_path / F"""{split}.source""" ).open("w" ).write("\n".join(__lowerCAmelCase ) )
Path(save_path / F"""{split}.target""" ).open("w" ).write("\n".join(__lowerCAmelCase ) )
for split in ["val", "test"]:
_UpperCAmelCase , _UpperCAmelCase : Dict = data_dir / F"""{split}.source""", data_dir / F"""{split}.target"""
shutil.copyfile(__lowerCAmelCase , save_path / F"""{split}.source""" )
shutil.copyfile(__lowerCAmelCase , save_path / F"""{split}.target""" )
def __lowerCAmelCase ():
_UpperCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("--tok_name" , type=__lowerCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." )
parser.add_argument("--max_seq_len" , type=__lowerCAmelCase , default=128 )
parser.add_argument("--data_dir" , type=__lowerCAmelCase )
parser.add_argument("--save_path" , type=__lowerCAmelCase )
_UpperCAmelCase : List[Any] = parser.parse_args()
_UpperCAmelCase : int = AutoTokenizer.from_pretrained(args.tok_name )
return pack_data_dir(__lowerCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path )
if __name__ == "__main__":
packer_cli()
| 322
|
'''simple docstring'''
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowerCamelCase__ = logging.get_logger(__name__)
# General docstring
lowerCamelCase__ = 'RegNetConfig'
# Base docstring
lowerCamelCase__ = 'facebook/regnet-y-040'
lowerCamelCase__ = [1, 1_088, 7, 7]
# Image classification docstring
lowerCamelCase__ = 'facebook/regnet-y-040'
lowerCamelCase__ = 'tabby, tabby cat'
lowerCamelCase__ = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
_UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
_UpperCAmelCase : Dict = tf.keras.layers.ConvaD(
filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , )
_UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
_UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity
def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any:
'''simple docstring'''
_UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) )
_UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ )
_UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ )
return hidden_state
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
_UpperCAmelCase : List[str] = config.num_channels
_UpperCAmelCase : Any = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , )
def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
_UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) )
_UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ )
return hidden_state
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
_UpperCAmelCase : int = tf.keras.layers.ConvaD(
filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" )
_UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor:
'''simple docstring'''
return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ )
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
_UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" )
_UpperCAmelCase : int = [
tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ),
tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ),
]
def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ )
for layer_module in self.attention:
_UpperCAmelCase : str = layer_module(lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = hidden_state * pooled
return hidden_state
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
_UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1
_UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width )
_UpperCAmelCase : List[str] = (
TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
_UpperCAmelCase : Optional[int] = [
TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ),
]
_UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act]
def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase : Any = hidden_state
for layer_module in self.layers:
_UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ )
hidden_state += residual
_UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ )
return hidden_state
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
_UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1
_UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width )
_UpperCAmelCase : Union[str, Any] = (
TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
_UpperCAmelCase : List[Any] = [
TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ),
TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ),
]
_UpperCAmelCase : int = ACTaFN[config.hidden_act]
def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any:
'''simple docstring'''
_UpperCAmelCase : int = hidden_state
for layer_module in self.layers:
_UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ )
_UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ )
hidden_state += residual
_UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ )
return hidden_state
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
_UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
_UpperCAmelCase : List[str] = [
# downsampling is done in the first layer with stride of 2
layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ),
*[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )],
]
def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]:
'''simple docstring'''
for layer_module in self.layers:
_UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ )
return hidden_state
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
_UpperCAmelCase : Union[str, Any] = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) )
_UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) )
def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention:
'''simple docstring'''
_UpperCAmelCase : Optional[Any] = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,)
_UpperCAmelCase : Dict = stage_module(lowerCamelCase__ )
if output_hidden_states:
_UpperCAmelCase : Tuple = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ )
@keras_serializable
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
lowerCAmelCase : Optional[Any] = RegNetConfig
def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
_UpperCAmelCase : Union[str, Any] = config
_UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" )
_UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" )
_UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" )
@unpack_inputs
def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
_UpperCAmelCase : Tuple = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ )
_UpperCAmelCase : str = self.encoder(
lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ )
_UpperCAmelCase : Dict = encoder_outputs[0]
_UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ )
# Change to NCHW output format have uniformity in the modules
_UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) )
_UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
_UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class lowerCAmelCase__ ( UpperCAmelCase__ ):
lowerCAmelCase : Tuple = RegNetConfig
lowerCAmelCase : Tuple = "regnet"
lowerCAmelCase : Union[str, Any] = "pixel_values"
@property
def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]:
'''simple docstring'''
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )}
lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , )
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]:
'''simple docstring'''
super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" )
@unpack_inputs
@add_start_docstrings_to_model_forward(lowerCamelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
'''simple docstring'''
_UpperCAmelCase : Optional[int] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCAmelCase : Union[str, Any] = self.regnet(
pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , )
class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ):
def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any:
'''simple docstring'''
super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ )
_UpperCAmelCase : Optional[int] = config.num_labels
_UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" )
# classification head
_UpperCAmelCase : str = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(lowerCamelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
'''simple docstring'''
_UpperCAmelCase : str = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCAmelCase : Union[str, Any] = self.regnet(
lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ )
_UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1]
_UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ )
_UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ )
_UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ )
if not return_dict:
_UpperCAmelCase : int = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
| 322
| 1
|
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( UpperCAmelCase__ ):
lowerCAmelCase : str = (DEISMultistepScheduler,)
lowerCAmelCase : Tuple = (("num_inference_steps", 25),)
def lowerCAmelCase__ ( self : str , **lowerCamelCase__ : Any ) ->str:
'''simple docstring'''
_UpperCAmelCase : Any = {
"num_train_timesteps": 10_00,
"beta_start": 0.0_0_0_1,
"beta_end": 0.0_2,
"beta_schedule": "linear",
"solver_order": 2,
}
config.update(**lowerCamelCase__ )
return config
def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Any=0 , **lowerCamelCase__ : int ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase : str = dict(self.forward_default_kwargs )
_UpperCAmelCase : List[Any] = kwargs.pop("num_inference_steps" , lowerCamelCase__ )
_UpperCAmelCase : Dict = self.dummy_sample
_UpperCAmelCase : List[Any] = 0.1 * sample
_UpperCAmelCase : List[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
_UpperCAmelCase : List[Any] = self.get_scheduler_config(**lowerCamelCase__ )
_UpperCAmelCase : List[Any] = scheduler_class(**lowerCamelCase__ )
scheduler.set_timesteps(lowerCamelCase__ )
# copy over dummy past residuals
_UpperCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase__ )
_UpperCAmelCase : Optional[int] = scheduler_class.from_pretrained(lowerCamelCase__ )
new_scheduler.set_timesteps(lowerCamelCase__ )
# copy over dummy past residuals
_UpperCAmelCase : int = dummy_past_residuals[: new_scheduler.config.solver_order]
_UpperCAmelCase , _UpperCAmelCase : str = sample, sample
for t in range(lowerCamelCase__ , time_step + scheduler.config.solver_order + 1 ):
_UpperCAmelCase : int = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
_UpperCAmelCase : Dict = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase__ ( self : List[str] ) ->Tuple:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Optional[int]=0 , **lowerCamelCase__ : Union[str, Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase : str = dict(self.forward_default_kwargs )
_UpperCAmelCase : int = kwargs.pop("num_inference_steps" , lowerCamelCase__ )
_UpperCAmelCase : Tuple = self.dummy_sample
_UpperCAmelCase : int = 0.1 * sample
_UpperCAmelCase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
_UpperCAmelCase : Dict = self.get_scheduler_config()
_UpperCAmelCase : int = scheduler_class(**lowerCamelCase__ )
scheduler.set_timesteps(lowerCamelCase__ )
# copy over dummy past residuals (must be after setting timesteps)
_UpperCAmelCase : str = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowerCamelCase__ )
# copy over dummy past residual (must be after setting timesteps)
_UpperCAmelCase : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order]
_UpperCAmelCase : Optional[int] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
_UpperCAmelCase : Optional[int] = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Any=None , **lowerCamelCase__ : Any ) ->str:
'''simple docstring'''
if scheduler is None:
_UpperCAmelCase : List[Any] = self.scheduler_classes[0]
_UpperCAmelCase : List[str] = self.get_scheduler_config(**lowerCamelCase__ )
_UpperCAmelCase : Tuple = scheduler_class(**lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = self.scheduler_classes[0]
_UpperCAmelCase : Optional[Any] = self.get_scheduler_config(**lowerCamelCase__ )
_UpperCAmelCase : str = scheduler_class(**lowerCamelCase__ )
_UpperCAmelCase : List[str] = 10
_UpperCAmelCase : Dict = self.dummy_model()
_UpperCAmelCase : Tuple = self.dummy_sample_deter
scheduler.set_timesteps(lowerCamelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : Tuple = model(lowerCamelCase__ , lowerCamelCase__ )
_UpperCAmelCase : Tuple = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample
return sample
def lowerCAmelCase__ ( self : int ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : List[str] = dict(self.forward_default_kwargs )
_UpperCAmelCase : List[str] = kwargs.pop("num_inference_steps" , lowerCamelCase__ )
for scheduler_class in self.scheduler_classes:
_UpperCAmelCase : Optional[Any] = self.get_scheduler_config()
_UpperCAmelCase : Any = scheduler_class(**lowerCamelCase__ )
_UpperCAmelCase : int = self.dummy_sample
_UpperCAmelCase : Optional[Any] = 0.1 * sample
if num_inference_steps is not None and hasattr(lowerCamelCase__ , "set_timesteps" ):
scheduler.set_timesteps(lowerCamelCase__ )
elif num_inference_steps is not None and not hasattr(lowerCamelCase__ , "set_timesteps" ):
_UpperCAmelCase : Tuple = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_UpperCAmelCase : Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
_UpperCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order]
_UpperCAmelCase : Optional[int] = scheduler.timesteps[5]
_UpperCAmelCase : List[str] = scheduler.timesteps[6]
_UpperCAmelCase : Any = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
_UpperCAmelCase : Tuple = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCAmelCase__ ( self : List[Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase : Dict = DEISMultistepScheduler(**self.get_scheduler_config() )
_UpperCAmelCase : int = self.full_loop(scheduler=lowerCamelCase__ )
_UpperCAmelCase : Any = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1E-3
_UpperCAmelCase : Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config )
_UpperCAmelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config )
_UpperCAmelCase : Optional[int] = UniPCMultistepScheduler.from_config(scheduler.config )
_UpperCAmelCase : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config )
_UpperCAmelCase : Optional[int] = self.full_loop(scheduler=lowerCamelCase__ )
_UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1E-3
def lowerCAmelCase__ ( self : List[str] ) ->Dict:
'''simple docstring'''
for timesteps in [25, 50, 1_00, 9_99, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCamelCase__ )
def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]:
'''simple docstring'''
self.check_over_configs(thresholding=lowerCamelCase__ )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=lowerCamelCase__ , prediction_type=lowerCamelCase__ , sample_max_value=lowerCamelCase__ , algorithm_type="deis" , solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , )
def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCamelCase__ )
def lowerCAmelCase__ ( self : Dict ) ->Any:
'''simple docstring'''
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , )
_UpperCAmelCase : Any = self.full_loop(
solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , )
assert not torch.isnan(lowerCamelCase__ ).any(), "Samples have nan numbers"
def lowerCAmelCase__ ( self : Optional[int] ) ->Dict:
'''simple docstring'''
self.check_over_configs(lower_order_final=lowerCamelCase__ )
self.check_over_configs(lower_order_final=lowerCamelCase__ )
def lowerCAmelCase__ ( self : Tuple ) ->List[Any]:
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]:
self.check_over_forward(num_inference_steps=lowerCamelCase__ , time_step=0 )
def lowerCAmelCase__ ( self : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase : List[str] = self.full_loop()
_UpperCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1E-3
def lowerCAmelCase__ ( self : str ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase : List[Any] = self.full_loop(prediction_type="v_prediction" )
_UpperCAmelCase : str = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_mean.item() - 0.0_9_1 ) < 1E-3
def lowerCAmelCase__ ( self : List[str] ) ->Any:
'''simple docstring'''
_UpperCAmelCase : Dict = self.scheduler_classes[0]
_UpperCAmelCase : Dict = self.get_scheduler_config(thresholding=lowerCamelCase__ , dynamic_thresholding_ratio=0 )
_UpperCAmelCase : Any = scheduler_class(**lowerCamelCase__ )
_UpperCAmelCase : List[Any] = 10
_UpperCAmelCase : Union[str, Any] = self.dummy_model()
_UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter.half()
scheduler.set_timesteps(lowerCamelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : Tuple = model(lowerCamelCase__ , lowerCamelCase__ )
_UpperCAmelCase : Optional[int] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample
assert sample.dtype == torch.floataa
| 322
|
'''simple docstring'''
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def __lowerCAmelCase (__lowerCAmelCase ):
if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ):
return False
return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule )
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ):
_UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
_UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase )
if is_compiled:
_UpperCAmelCase : Optional[int] = model
_UpperCAmelCase : Any = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(__lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : Any = model.module
if not keep_fpaa_wrapper:
_UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" )
_UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase )
if original_forward is not None:
while hasattr(__lowerCAmelCase , "__wrapped__" ):
_UpperCAmelCase : Optional[int] = forward.__wrapped__
if forward == original_forward:
break
_UpperCAmelCase : Dict = forward
if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ):
convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase )
if is_compiled:
_UpperCAmelCase : int = model
_UpperCAmelCase : str = compiled_model
return model
def __lowerCAmelCase ():
PartialState().wait_for_everyone()
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ):
if PartialState().distributed_type == DistributedType.TPU:
xm.save(__lowerCAmelCase , __lowerCAmelCase )
elif PartialState().local_process_index == 0:
torch.save(__lowerCAmelCase , __lowerCAmelCase )
@contextmanager
def __lowerCAmelCase (**__lowerCAmelCase ):
for key, value in kwargs.items():
_UpperCAmelCase : str = str(__lowerCAmelCase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def __lowerCAmelCase (__lowerCAmelCase ):
if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ):
_UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase )
if hasattr(__lowerCAmelCase , "__qualname__" ):
return obj.__qualname__
if hasattr(__lowerCAmelCase , "__name__" ):
return obj.__name__
return str(__lowerCAmelCase )
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ):
for key, value in source.items():
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} )
merge_dicts(__lowerCAmelCase , __lowerCAmelCase )
else:
_UpperCAmelCase : Optional[int] = value
return destination
def __lowerCAmelCase (__lowerCAmelCase = None ):
if port is None:
_UpperCAmelCase : Tuple = 29_500
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(("localhost", port) ) == 0
| 322
| 1
|
'''simple docstring'''
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
lowerCamelCase__ = version.parse(importlib_metadata.version('nltk'))
if NLTK_VERSION >= version.Version('3.6.4'):
from nltk import word_tokenize
lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n'
lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n'
lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[
"https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score",
"https://en.wikipedia.org/wiki/METEOR",
] , )
def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int:
'''simple docstring'''
import nltk
nltk.download("wordnet" )
if NLTK_VERSION >= version.Version("3.6.5" ):
nltk.download("punkt" )
if NLTK_VERSION >= version.Version("3.6.6" ):
nltk.download("omw-1.4" )
def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any:
'''simple docstring'''
if NLTK_VERSION >= version.Version("3.6.5" ):
_UpperCAmelCase : Dict = [
meteor_score.single_meteor_score(
word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ )
for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ )
]
else:
_UpperCAmelCase : Optional[int] = [
meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ )
for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ )
]
return {"meteor": np.mean(lowerCamelCase__ )}
| 322
|
'''simple docstring'''
def __lowerCAmelCase (__lowerCAmelCase ):
if number < 0:
raise ValueError("number must not be negative" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 322
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ = {
'configuration_instructblip': [
'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InstructBlipConfig',
'InstructBlipQFormerConfig',
'InstructBlipVisionConfig',
],
'processing_instructblip': ['InstructBlipProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'InstructBlipQFormerModel',
'InstructBlipPreTrainedModel',
'InstructBlipForConditionalGeneration',
'InstructBlipVisionModel',
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 322
|
'''simple docstring'''
def __lowerCAmelCase (__lowerCAmelCase ):
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('Program to check whether a number is a Perfect number or not...')
lowerCamelCase__ = int(input('Enter number: ').strip())
print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
| 322
| 1
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class lowerCAmelCase__ ( UpperCAmelCase__ ):
lowerCAmelCase : List[str] = "openai/whisper-base"
lowerCAmelCase : Optional[int] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
lowerCAmelCase : Optional[int] = "transcriber"
lowerCAmelCase : List[str] = WhisperProcessor
lowerCAmelCase : Optional[Any] = WhisperForConditionalGeneration
lowerCAmelCase : List[Any] = ["audio"]
lowerCAmelCase : List[str] = ["text"]
def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Union[str, Any] ) ->Optional[Any]:
'''simple docstring'''
return self.pre_processor(lowerCamelCase__ , return_tensors="pt" ).input_features
def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Dict ) ->str:
'''simple docstring'''
return self.model.generate(inputs=lowerCamelCase__ )
def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Dict ) ->int:
'''simple docstring'''
return self.pre_processor.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ )[0]
| 322
|
'''simple docstring'''
from collections.abc import Sequence
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ):
return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) )
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : Dict = 0.0
for coeff in reversed(__lowerCAmelCase ):
_UpperCAmelCase : int = result * x + coeff
return result
if __name__ == "__main__":
lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0)
lowerCamelCase__ = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 322
| 1
|
'''simple docstring'''
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
lowerCamelCase__ = logging.getLogger()
def __lowerCAmelCase ():
_UpperCAmelCase : str = argparse.ArgumentParser()
parser.add_argument("-f" )
_UpperCAmelCase : int = parser.parse_args()
return args.f
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def lowerCAmelCase__ ( self : str ) ->None:
'''simple docstring'''
_UpperCAmelCase : Dict = logging.StreamHandler(sys.stdout )
logger.addHandler(lowerCamelCase__ )
def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase : int = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , "run_glue_deebert.py" )
with patch.object(lowerCamelCase__ , "argv" , lowerCamelCase__ ):
_UpperCAmelCase : Any = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(lowerCamelCase__ , 0.6_6_6 )
@slow
@require_torch_non_multi_gpu
def lowerCAmelCase__ ( self : str ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase : Optional[int] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split()
self.run_and_check(lowerCamelCase__ )
_UpperCAmelCase : Union[str, Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowerCamelCase__ )
_UpperCAmelCase : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowerCamelCase__ )
| 322
|
'''simple docstring'''
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : List[Any] = len(__lowerCAmelCase )
_UpperCAmelCase : Tuple = sum(__lowerCAmelCase )
_UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
_UpperCAmelCase : Any = True
for i in range(1 , s + 1 ):
_UpperCAmelCase : List[Any] = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
_UpperCAmelCase : Optional[int] = dp[i][j - 1]
if arr[i - 1] <= j:
_UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
_UpperCAmelCase : List[Any] = s - 2 * j
break
return diff
| 322
| 1
|
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCAmelCase__ )
class lowerCAmelCase__ ( UpperCAmelCase__ ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
lowerCAmelCase : str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} )
lowerCAmelCase : ClassVar[Features] = Features({"text": Value("string" )} )
lowerCAmelCase : ClassVar[Features] = Features({"summary": Value("string" )} )
lowerCAmelCase : str = "text"
lowerCAmelCase : str = "summary"
@property
def lowerCAmelCase__ ( self : Tuple ) ->Dict[str, str]:
'''simple docstring'''
return {self.text_column: "text", self.summary_column: "summary"}
| 322
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json',
}
class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase : int = "resnet"
lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"]
def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
if layer_type not in self.layer_types:
raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" )
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : List[str] = embedding_size
_UpperCAmelCase : Tuple = hidden_sizes
_UpperCAmelCase : Dict = depths
_UpperCAmelCase : List[Any] = layer_type
_UpperCAmelCase : Optional[int] = hidden_act
_UpperCAmelCase : Tuple = downsample_in_first_stage
_UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )]
_UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices(
out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
class lowerCAmelCase__ ( UpperCAmelCase__ ):
lowerCAmelCase : Optional[Any] = version.parse("1.11" )
@property
def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def lowerCAmelCase__ ( self : str ) ->float:
'''simple docstring'''
return 1E-3
| 322
| 1
|
'''simple docstring'''
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
lowerCamelCase__ = {
'E': 12.70,
'T': 9.06,
'A': 8.17,
'O': 7.51,
'I': 6.97,
'N': 6.75,
'S': 6.33,
'H': 6.09,
'R': 5.99,
'D': 4.25,
'L': 4.03,
'C': 2.78,
'U': 2.76,
'M': 2.41,
'W': 2.36,
'F': 2.23,
'G': 2.02,
'Y': 1.97,
'P': 1.93,
'B': 1.29,
'V': 0.98,
'K': 0.77,
'J': 0.15,
'X': 0.15,
'Q': 0.10,
'Z': 0.07,
}
lowerCamelCase__ = 'ETAOINSHRDLCUMWFGYPBVKJXQZ'
lowerCamelCase__ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : Union[str, Any] = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def __lowerCAmelCase (__lowerCAmelCase ):
return x[0]
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : int = get_letter_count(__lowerCAmelCase )
_UpperCAmelCase : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(__lowerCAmelCase )
_UpperCAmelCase : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__lowerCAmelCase )
_UpperCAmelCase : Union[str, Any] = "".join(freq_to_letter[freq] )
_UpperCAmelCase : Any = list(freq_to_letter_str.items() )
freq_pairs.sort(key=__lowerCAmelCase , reverse=__lowerCAmelCase )
_UpperCAmelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(__lowerCAmelCase )
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : Any = get_frequency_order(__lowerCAmelCase )
_UpperCAmelCase : Optional[Any] = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 322
|
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
lowerCamelCase__ = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __lowerCAmelCase (__lowerCAmelCase ):
if isinstance(__lowerCAmelCase , torch.Tensor ):
return image
elif isinstance(__lowerCAmelCase , PIL.Image.Image ):
_UpperCAmelCase : int = [image]
_UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image]
_UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase )
return image
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
_UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ )
def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]:
'''simple docstring'''
if strength < 0 or strength > 1:
raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" )
def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ )
_UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 )
_UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str:
'''simple docstring'''
if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" )
_UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
_UpperCAmelCase : List[str] = init_latents.shape
_UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ )
# get latents
print("add noise to latents at timestep" , lowerCamelCase__ )
_UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
_UpperCAmelCase : List[Any] = init_latents
return latents
@torch.no_grad()
def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
self.check_inputs(lowerCamelCase__ )
# 2. Preprocess image
_UpperCAmelCase : Dict = preprocess(lowerCamelCase__ )
# 3. set timesteps
self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device )
_UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device )
_UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ )
# 4. Prepare latent variables
_UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ )
_UpperCAmelCase : Any = latents
# 5. Denoising loop
for t in self.progress_bar(lowerCamelCase__ ):
# 1. predict noise model_output
_UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
_UpperCAmelCase : int = self.scheduler.step(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample
_UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 )
_UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=lowerCamelCase__ )
| 322
| 1
|
'''simple docstring'''
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : List[Any] = len(__lowerCAmelCase )
_UpperCAmelCase : Tuple = sum(__lowerCAmelCase )
_UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
_UpperCAmelCase : Any = True
for i in range(1 , s + 1 ):
_UpperCAmelCase : List[Any] = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
_UpperCAmelCase : Optional[int] = dp[i][j - 1]
if arr[i - 1] <= j:
_UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
_UpperCAmelCase : List[Any] = s - 2 * j
break
return diff
| 322
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
lowerCamelCase__ = list[list[float | int]]
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : int = len(__lowerCAmelCase )
_UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )]
_UpperCAmelCase : int
_UpperCAmelCase : int
_UpperCAmelCase : int
_UpperCAmelCase : int
_UpperCAmelCase : int
_UpperCAmelCase : float
for row in range(__lowerCAmelCase ):
for col in range(__lowerCAmelCase ):
_UpperCAmelCase : Optional[Any] = matrix[row][col]
_UpperCAmelCase : Optional[int] = vector[row][0]
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 0
while row < size and col < size:
# pivoting
_UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , __lowerCAmelCase ):
_UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col]
_UpperCAmelCase : Optional[Any] = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , __lowerCAmelCase ):
for row in range(__lowerCAmelCase ):
_UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col]
for cola in range(__lowerCAmelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase )
]
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : int = len(__lowerCAmelCase )
_UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )]
_UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )]
_UpperCAmelCase : Matrix
_UpperCAmelCase : int
_UpperCAmelCase : int
_UpperCAmelCase : int
for x_val, y_val in enumerate(__lowerCAmelCase ):
for col in range(__lowerCAmelCase ):
_UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1)
_UpperCAmelCase : int = y_val
_UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase )
def interpolated_func(__lowerCAmelCase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(__lowerCAmelCase ) )
return interpolated_func
def __lowerCAmelCase (__lowerCAmelCase ):
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ):
_UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )]
_UpperCAmelCase : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
_UpperCAmelCase : int = 0
_UpperCAmelCase : Callable[[int], int]
_UpperCAmelCase : int
for poly in polynomials:
_UpperCAmelCase : int = 1
while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ):
x_val += 1
ret += poly(__lowerCAmelCase )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 322
| 1
|
'''simple docstring'''
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
'tensor(bool)': np.bool_,
'tensor(int8)': np.inta,
'tensor(uint8)': np.uinta,
'tensor(int16)': np.intaa,
'tensor(uint16)': np.uintaa,
'tensor(int32)': np.intaa,
'tensor(uint32)': np.uintaa,
'tensor(int64)': np.intaa,
'tensor(uint64)': np.uintaa,
'tensor(float16)': np.floataa,
'tensor(float)': np.floataa,
'tensor(double)': np.floataa,
}
class lowerCAmelCase__ :
def __init__( self : int , lowerCamelCase__ : Any=None , **lowerCamelCase__ : Optional[Any] ) ->Union[str, Any]:
'''simple docstring'''
logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." )
_UpperCAmelCase : int = model
_UpperCAmelCase : List[Any] = kwargs.get("model_save_dir" , lowerCamelCase__ )
_UpperCAmelCase : int = kwargs.get("latest_model_name" , lowerCamelCase__ )
def __call__( self : Union[str, Any] , **lowerCamelCase__ : Optional[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase : List[str] = {k: np.array(lowerCamelCase__ ) for k, v in kwargs.items()}
return self.model.run(lowerCamelCase__ , lowerCamelCase__ )
@staticmethod
def lowerCAmelCase__ ( lowerCamelCase__ : Union[str, Path] , lowerCamelCase__ : Any=None , lowerCamelCase__ : Union[str, Any]=None ) ->Optional[int]:
'''simple docstring'''
if provider is None:
logger.info("No onnxruntime provider specified, using CPUExecutionProvider" )
_UpperCAmelCase : Any = "CPUExecutionProvider"
return ort.InferenceSession(lowerCamelCase__ , providers=[provider] , sess_options=lowerCamelCase__ )
def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Union[str, Path] , lowerCamelCase__ : Optional[str] = None , **lowerCamelCase__ : Any ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : List[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME
_UpperCAmelCase : Dict = self.model_save_dir.joinpath(self.latest_model_name )
_UpperCAmelCase : List[str] = Path(lowerCamelCase__ ).joinpath(lowerCamelCase__ )
try:
shutil.copyfile(lowerCamelCase__ , lowerCamelCase__ )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
_UpperCAmelCase : Dict = self.model_save_dir.joinpath(lowerCamelCase__ )
if src_path.exists():
_UpperCAmelCase : List[Any] = Path(lowerCamelCase__ ).joinpath(lowerCamelCase__ )
try:
shutil.copyfile(lowerCamelCase__ , lowerCamelCase__ )
except shutil.SameFileError:
pass
def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Union[str, os.PathLike] , **lowerCamelCase__ : Union[str, Any] , ) ->int:
'''simple docstring'''
if os.path.isfile(lowerCamelCase__ ):
logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" )
return
os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ )
# saving model weights/files
self._save_pretrained(lowerCamelCase__ , **lowerCamelCase__ )
@classmethod
def lowerCAmelCase__ ( cls : Any , lowerCamelCase__ : Union[str, Path] , lowerCamelCase__ : Optional[Union[bool, str, None]] = None , lowerCamelCase__ : Optional[Union[str, None]] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional["ort.SessionOptions"] = None , **lowerCamelCase__ : List[str] , ) ->str:
'''simple docstring'''
_UpperCAmelCase : List[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(lowerCamelCase__ ):
_UpperCAmelCase : Any = OnnxRuntimeModel.load_model(
os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , provider=lowerCamelCase__ , sess_options=lowerCamelCase__ )
_UpperCAmelCase : Dict = Path(lowerCamelCase__ )
# load model from hub
else:
# download model
_UpperCAmelCase : Optional[int] = hf_hub_download(
repo_id=lowerCamelCase__ , filename=lowerCamelCase__ , use_auth_token=lowerCamelCase__ , revision=lowerCamelCase__ , cache_dir=lowerCamelCase__ , force_download=lowerCamelCase__ , )
_UpperCAmelCase : Any = Path(lowerCamelCase__ ).parent
_UpperCAmelCase : List[Any] = Path(lowerCamelCase__ ).name
_UpperCAmelCase : int = OnnxRuntimeModel.load_model(lowerCamelCase__ , provider=lowerCamelCase__ , sess_options=lowerCamelCase__ )
return cls(model=lowerCamelCase__ , **lowerCamelCase__ )
@classmethod
def lowerCAmelCase__ ( cls : int , lowerCamelCase__ : Union[str, Path] , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = None , **lowerCamelCase__ : Dict , ) ->Dict:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = None
if len(str(lowerCamelCase__ ).split("@" ) ) == 2:
_UpperCAmelCase , _UpperCAmelCase : Dict = model_id.split("@" )
return cls._from_pretrained(
model_id=lowerCamelCase__ , revision=lowerCamelCase__ , cache_dir=lowerCamelCase__ , force_download=lowerCamelCase__ , use_auth_token=lowerCamelCase__ , **lowerCamelCase__ , )
| 322
|
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 322
| 1
|
'''simple docstring'''
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : Tuple = [0] * len(__lowerCAmelCase )
_UpperCAmelCase : int = []
_UpperCAmelCase : Optional[Any] = []
_UpperCAmelCase : Optional[Any] = 0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(__lowerCAmelCase ) ):
if indegree[i] == 0:
queue.append(__lowerCAmelCase )
while queue:
_UpperCAmelCase : Optional[int] = queue.pop(0 )
cnt += 1
topo.append(__lowerCAmelCase )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(__lowerCAmelCase )
if cnt != len(__lowerCAmelCase ):
print("Cycle exists" )
else:
print(__lowerCAmelCase )
# Adjacency List of Graph
lowerCamelCase__ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 322
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
lowerCamelCase__ = TypeVar('T')
class lowerCAmelCase__ ( Generic[T] ):
def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase : Dict = data
_UpperCAmelCase : Node[T] | None = None
def __str__( self : Any ) ->str:
'''simple docstring'''
return F"""{self.data}"""
class lowerCAmelCase__ ( Generic[T] ):
def __init__( self : Tuple ) ->None:
'''simple docstring'''
_UpperCAmelCase : Node[T] | None = None
def __iter__( self : List[str] ) ->Iterator[T]:
'''simple docstring'''
_UpperCAmelCase : Any = self.top
while node:
yield node.data
_UpperCAmelCase : Dict = node.next
def __str__( self : Dict ) ->str:
'''simple docstring'''
return "->".join([str(lowerCamelCase__ ) for item in self] )
def __len__( self : Optional[int] ) ->int:
'''simple docstring'''
return len(tuple(iter(self ) ) )
def lowerCAmelCase__ ( self : List[Any] ) ->bool:
'''simple docstring'''
return self.top is None
def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None:
'''simple docstring'''
_UpperCAmelCase : List[Any] = Node(lowerCamelCase__ )
if not self.is_empty():
_UpperCAmelCase : Tuple = self.top
_UpperCAmelCase : List[str] = node
def lowerCAmelCase__ ( self : Union[str, Any] ) ->T:
'''simple docstring'''
if self.is_empty():
raise IndexError("pop from empty stack" )
assert isinstance(self.top , lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = self.top
_UpperCAmelCase : Optional[Any] = self.top.next
return pop_node.data
def lowerCAmelCase__ ( self : Union[str, Any] ) ->T:
'''simple docstring'''
if self.is_empty():
raise IndexError("peek from empty stack" )
assert self.top is not None
return self.top.data
def lowerCAmelCase__ ( self : List[Any] ) ->None:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 322
| 1
|
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mvp import MvpTokenizer
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
# See all MVP models at https://huggingface.co/models?filter=mvp
lowerCamelCase__ = {
'vocab_file': {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json',
},
'added_tokens.json': {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json',
},
'merges_file': {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt',
},
'tokenizer_file': {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json',
},
}
lowerCamelCase__ = {
'RUCAIBox/mvp': 1_024,
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
lowerCAmelCase : Optional[int] = VOCAB_FILES_NAMES
lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase : Any = ["input_ids", "attention_mask"]
lowerCAmelCase : List[Any] = MvpTokenizer
def __init__( self : Any , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : Any="replace" , lowerCamelCase__ : List[Any]="<s>" , lowerCamelCase__ : Dict="</s>" , lowerCamelCase__ : List[Any]="</s>" , lowerCamelCase__ : str="<s>" , lowerCamelCase__ : List[Any]="<unk>" , lowerCamelCase__ : Tuple="<pad>" , lowerCamelCase__ : int="<mask>" , lowerCamelCase__ : str=False , lowerCamelCase__ : Optional[Any]=True , **lowerCamelCase__ : Any , ) ->str:
'''simple docstring'''
super().__init__(
lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , )
_UpperCAmelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space:
_UpperCAmelCase : Optional[int] = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) )
_UpperCAmelCase : List[str] = add_prefix_space
_UpperCAmelCase : Any = pre_tok_class(**lowerCamelCase__ )
_UpperCAmelCase : Optional[int] = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
_UpperCAmelCase : Dict = "post_processor"
_UpperCAmelCase : Dict = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ )
if tokenizer_component_instance:
_UpperCAmelCase : int = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_UpperCAmelCase : Any = tuple(state["sep"] )
if "cls" in state:
_UpperCAmelCase : int = tuple(state["cls"] )
_UpperCAmelCase : int = False
if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space:
_UpperCAmelCase : Dict = add_prefix_space
_UpperCAmelCase : List[Any] = True
if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets:
_UpperCAmelCase : str = trim_offsets
_UpperCAmelCase : Dict = True
if changes_to_apply:
_UpperCAmelCase : Optional[int] = getattr(lowerCamelCase__ , state.pop("type" ) )
_UpperCAmelCase : int = component_class(**lowerCamelCase__ )
setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ )
@property
def lowerCAmelCase__ ( self : Optional[Any] ) ->str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase : List[str] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value
_UpperCAmelCase : Union[str, Any] = value
def lowerCAmelCase__ ( self : int , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : int ) ->BatchEncoding:
'''simple docstring'''
_UpperCAmelCase : List[str] = kwargs.get("is_split_into_words" , lowerCamelCase__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs." )
return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ )
def lowerCAmelCase__ ( self : Optional[Any] , *lowerCamelCase__ : Optional[Any] , **lowerCamelCase__ : List[Any] ) ->BatchEncoding:
'''simple docstring'''
_UpperCAmelCase : List[str] = kwargs.get("is_split_into_words" , lowerCamelCase__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs." )
return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ )
def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ )
return tuple(lowerCamelCase__ )
def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int=None ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]:
'''simple docstring'''
_UpperCAmelCase : List[Any] = [self.sep_token_id]
_UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 322
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json'
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
lowerCAmelCase : int = "speech_to_text_2"
lowerCAmelCase : str = ["past_key_values"]
lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase : Any = vocab_size
_UpperCAmelCase : Optional[int] = d_model
_UpperCAmelCase : List[Any] = decoder_ffn_dim
_UpperCAmelCase : Any = decoder_layers
_UpperCAmelCase : int = decoder_attention_heads
_UpperCAmelCase : Any = dropout
_UpperCAmelCase : List[Any] = attention_dropout
_UpperCAmelCase : Optional[int] = activation_dropout
_UpperCAmelCase : List[Any] = activation_function
_UpperCAmelCase : int = init_std
_UpperCAmelCase : Dict = decoder_layerdrop
_UpperCAmelCase : str = use_cache
_UpperCAmelCase : Union[str, Any] = decoder_layers
_UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True
_UpperCAmelCase : Any = max_target_positions
super().__init__(
pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
| 322
| 1
|
'''simple docstring'''
import os
from datetime import datetime as dt
from github import Github
lowerCamelCase__ = [
'good first issue',
'feature request',
'wip',
]
def __lowerCAmelCase ():
_UpperCAmelCase : Optional[Any] = Github(os.environ["GITHUB_TOKEN"] )
_UpperCAmelCase : int = g.get_repo("huggingface/accelerate" )
_UpperCAmelCase : Tuple = repo.get_issues(state="open" )
for issue in open_issues:
_UpperCAmelCase : Any = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
_UpperCAmelCase : List[Any] = comments[0] if len(__lowerCAmelCase ) > 0 else None
_UpperCAmelCase : Union[str, Any] = dt.utcnow()
_UpperCAmelCase : Union[str, Any] = (current_time - issue.updated_at).days
_UpperCAmelCase : int = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state="closed" )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
if __name__ == "__main__":
main()
| 322
|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
lowerCamelCase__ = logging.getLogger(__name__)
torch.set_grad_enabled(False)
lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu'
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ):
_UpperCAmelCase : Any = text.split(__lowerCAmelCase )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )]
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase , _UpperCAmelCase : Dict = [], []
for title, text in zip(documents["title"] , documents["text"] ):
if text is not None:
for passage in split_text(__lowerCAmelCase ):
titles.append(title if title is not None else "" )
texts.append(__lowerCAmelCase )
return {"title": titles, "text": texts}
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : str = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"]
_UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ):
######################################
logger.info("Step 1 - Create the dataset" )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
_UpperCAmelCase : Optional[int] = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
_UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc )
# And compute the embeddings
_UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase )
_UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
_UpperCAmelCase : Dict = Features(
{"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space
_UpperCAmelCase : int = dataset.map(
partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , )
# And finally save your dataset
_UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" )
dataset.save_to_disk(__lowerCAmelCase )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset" )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
_UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase )
# And save the index
_UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" )
dataset.get_index("embeddings" ).save(__lowerCAmelCase )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class lowerCAmelCase__ :
lowerCAmelCase : str = field(
default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , )
lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , )
lowerCAmelCase : str = field(
default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , )
lowerCAmelCase : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" , metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} , )
lowerCAmelCase : Optional[str] = field(
default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , )
@dataclass
class lowerCAmelCase__ :
lowerCAmelCase : Optional[int] = field(
default=UpperCAmelCase__ , metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} , )
lowerCAmelCase : int = field(
default=16 , metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} , )
@dataclass
class lowerCAmelCase__ :
lowerCAmelCase : int = field(
default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , )
lowerCAmelCase : int = field(
default=128 , metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 322
| 1
|
'''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def __lowerCAmelCase (__lowerCAmelCase ):
# A local function to see if a dot lands in the circle.
def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool:
_UpperCAmelCase : Tuple = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
_UpperCAmelCase : str = mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(__lowerCAmelCase ) )
# The ratio of the area for circle to square is pi/4.
_UpperCAmelCase : List[str] = proportion * 4
print(F"""The estimated value of pi is {pi_estimate}""" )
print(F"""The numpy value of pi is {pi}""" )
print(F"""The total error is {abs(pi - pi_estimate )}""" )
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , ):
return mean(
function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value)
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 ):
def identity_function(__lowerCAmelCase ) -> float:
return x
_UpperCAmelCase : Tuple = area_under_curve_estimator(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
_UpperCAmelCase : Tuple = (max_value * max_value - min_value * min_value) / 2
print("******************" )
print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(F"""Estimated value is {estimated_value}""" )
print(F"""Expected value is {expected_value}""" )
print(F"""Total error is {abs(estimated_value - expected_value )}""" )
print("******************" )
def __lowerCAmelCase (__lowerCAmelCase ):
def function_to_integrate(__lowerCAmelCase ) -> float:
return sqrt(4.0 - x * x )
_UpperCAmelCase : List[str] = area_under_curve_estimator(
__lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(F"""Estimated value is {estimated_value}""" )
print(F"""Expected value is {pi}""" )
print(F"""Total error is {abs(estimated_value - pi )}""" )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 322
|
'''simple docstring'''
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
lowerCamelCase__ = {
'return_dict': False,
'output_hidden_states': True,
'output_attentions': True,
'torchscript': True,
'torch_dtype': 'float16',
'use_bfloat16': True,
'tf_legacy_loss': True,
'pruned_heads': {'a': 1},
'tie_word_embeddings': False,
'is_decoder': True,
'cross_attention_hidden_size': 128,
'add_cross_attention': True,
'tie_encoder_decoder': True,
'max_length': 50,
'min_length': 3,
'do_sample': True,
'early_stopping': True,
'num_beams': 3,
'num_beam_groups': 3,
'diversity_penalty': 0.5,
'temperature': 2.0,
'top_k': 10,
'top_p': 0.7,
'typical_p': 0.2,
'repetition_penalty': 0.8,
'length_penalty': 0.8,
'no_repeat_ngram_size': 5,
'encoder_no_repeat_ngram_size': 5,
'bad_words_ids': [1, 2, 3],
'num_return_sequences': 3,
'chunk_size_feed_forward': 5,
'output_scores': True,
'return_dict_in_generate': True,
'forced_bos_token_id': 2,
'forced_eos_token_id': 3,
'remove_invalid_values': True,
'architectures': ['BertModel'],
'finetuning_task': 'translation',
'id2label': {0: 'label'},
'label2id': {'label': '0'},
'tokenizer_class': 'BertTokenizerFast',
'prefix': 'prefix',
'bos_token_id': 6,
'pad_token_id': 7,
'eos_token_id': 8,
'sep_token_id': 9,
'decoder_start_token_id': 10,
'exponential_decay_length_penalty': (5, 1.01),
'suppress_tokens': [0, 1],
'begin_suppress_tokens': 2,
'task_specific_params': {'translation': 'some_params'},
'problem_type': 'regression',
}
@is_staging_test
class lowerCAmelCase__ ( unittest.TestCase ):
@classmethod
def lowerCAmelCase__ ( cls : List[str] ) ->str:
'''simple docstring'''
_UpperCAmelCase : Tuple = TOKEN
HfFolder.save_token(lowerCamelCase__ )
@classmethod
def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int:
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id="test-config" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-config-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-config" )
except HTTPError:
pass
def lowerCAmelCase__ ( self : int ) ->Any:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub("test-config" , use_auth_token=self._token )
_UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-config" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token )
_UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) )
def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase : str = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token )
_UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-config-org" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token )
_UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) )
def lowerCAmelCase__ ( self : List[str] ) ->Any:
'''simple docstring'''
CustomConfig.register_for_auto_class()
_UpperCAmelCase : int = CustomConfig(attribute=42 )
config.push_to_hub("test-dynamic-config" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} )
_UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ )
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , "CustomConfig" )
self.assertEqual(new_config.attribute , 42 )
class lowerCAmelCase__ ( unittest.TestCase ):
def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase : Tuple = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
_UpperCAmelCase : Any = c.n_embd + 1 # int
_UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float
_UpperCAmelCase : Tuple = not c.scale_attn_weights # bool
_UpperCAmelCase : List[Any] = c.summary_type + "foo" # str
c.update_from_string(
F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" )
self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" )
self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" )
self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" )
self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" )
def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : Any = PretrainedConfig()
_UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] )
_UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )]
if len(lowerCamelCase__ ) > 0:
raise ValueError(
"The following keys are set with the default values in"
" `test_configuration_common.config_common_kwargs` pick another value for them:"
F""" {', '.join(lowerCamelCase__ )}.""" )
def lowerCAmelCase__ ( self : Optional[int] ) ->int:
'''simple docstring'''
with self.assertRaises(lowerCamelCase__ ):
# config is in subfolder, the following should not work without specifying the subfolder
_UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" )
_UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" )
self.assertIsNotNone(lowerCamelCase__ )
def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = mock.Mock()
_UpperCAmelCase : List[str] = 5_00
_UpperCAmelCase : Dict = {}
_UpperCAmelCase : Tuple = HTTPError
_UpperCAmelCase : Any = {}
# Download this model to make sure it's in the cache.
_UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head:
_UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" )
# This check we did call the fake head request
mock_head.assert_called()
def lowerCAmelCase__ ( self : Optional[int] ) ->Any:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" )
def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" )
_UpperCAmelCase : str = ["config.4.0.0.json"]
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(lowerCamelCase__ )
_UpperCAmelCase : Dict = 2
json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) )
# This should pick the new configuration file as the version of Transformers is > 4.0.0
_UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertEqual(new_configuration.hidden_size , 2 )
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
_UpperCAmelCase : Dict = ["config.42.0.0.json"]
_UpperCAmelCase : Union[str, Any] = 7_68
configuration.save_pretrained(lowerCamelCase__ )
shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) )
_UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertEqual(new_configuration.hidden_size , 7_68 )
def lowerCAmelCase__ ( self : List[str] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs"
import transformers as new_transformers
_UpperCAmelCase : Any = "v4.0.0"
_UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained(
lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ )
self.assertEqual(new_configuration.hidden_size , 2 )
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(lowerCamelCase__ , {} )
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
_UpperCAmelCase : List[Any] = "v3.0.0"
_UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertEqual(old_configuration.hidden_size , 7_68 )
| 322
| 1
|
'''simple docstring'''
class lowerCAmelCase__ :
def __init__( self : str ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : Optional[Any] = 0
_UpperCAmelCase : Tuple = 0
_UpperCAmelCase : str = {}
def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[Any] ) ->str:
'''simple docstring'''
if vertex not in self.adjacency:
_UpperCAmelCase : Any = {}
self.num_vertices += 1
def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ) ->Union[str, Any]:
'''simple docstring'''
self.add_vertex(lowerCamelCase__ )
self.add_vertex(lowerCamelCase__ )
if head == tail:
return
_UpperCAmelCase : List[Any] = weight
_UpperCAmelCase : List[Any] = weight
def lowerCAmelCase__ ( self : Any ) ->Any:
'''simple docstring'''
_UpperCAmelCase : Tuple = self.get_edges()
for edge in edges:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = edge
edges.remove((tail, head, weight) )
for i in range(len(lowerCamelCase__ ) ):
_UpperCAmelCase : str = list(edges[i] )
edges.sort(key=lambda lowerCamelCase__ : e[2] )
for i in range(len(lowerCamelCase__ ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
_UpperCAmelCase : Any = edges[i][2] + 1
for edge in edges:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = edge
_UpperCAmelCase : Optional[int] = weight
_UpperCAmelCase : Union[str, Any] = weight
def __str__( self : Optional[Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase : Any = ""
for tail in self.adjacency:
for head in self.adjacency[tail]:
_UpperCAmelCase : Optional[Any] = self.adjacency[head][tail]
string += F"""{head} -> {tail} == {weight}\n"""
return string.rstrip("\n" )
def lowerCAmelCase__ ( self : str ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : Optional[int] = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
return self.adjacency.keys()
@staticmethod
def lowerCAmelCase__ ( lowerCamelCase__ : Tuple=None , lowerCamelCase__ : str=None ) ->int:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = Graph()
if vertices is None:
_UpperCAmelCase : str = []
if edges is None:
_UpperCAmelCase : Optional[int] = []
for vertex in vertices:
g.add_vertex(lowerCamelCase__ )
for edge in edges:
g.add_edge(*lowerCamelCase__ )
return g
class lowerCAmelCase__ :
def __init__( self : Union[str, Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : List[Any] = {}
_UpperCAmelCase : Dict = {}
def __len__( self : Optional[int] ) ->int:
'''simple docstring'''
return len(self.parent )
def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->List[str]:
'''simple docstring'''
if item in self.parent:
return self.find(lowerCamelCase__ )
_UpperCAmelCase : str = item
_UpperCAmelCase : Any = 0
return item
def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : List[Any] ) ->Tuple:
'''simple docstring'''
if item not in self.parent:
return self.make_set(lowerCamelCase__ )
if item != self.parent[item]:
_UpperCAmelCase : str = self.find(self.parent[item] )
return self.parent[item]
def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase : Optional[int] = self.find(lowerCamelCase__ )
_UpperCAmelCase : List[str] = self.find(lowerCamelCase__ )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
_UpperCAmelCase : Optional[int] = roota
return roota
if self.rank[roota] < self.rank[roota]:
_UpperCAmelCase : Tuple = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
_UpperCAmelCase : List[Any] = roota
return roota
return None
@staticmethod
def lowerCAmelCase__ ( lowerCamelCase__ : Optional[Any] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : Dict = graph.num_vertices
_UpperCAmelCase : Tuple = Graph.UnionFind()
_UpperCAmelCase : Tuple = []
while num_components > 1:
_UpperCAmelCase : Optional[int] = {}
for vertex in graph.get_vertices():
_UpperCAmelCase : Dict = -1
_UpperCAmelCase : int = graph.get_edges()
for edge in edges:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = edge
edges.remove((tail, head, weight) )
for edge in edges:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = edge
_UpperCAmelCase : Any = union_find.find(lowerCamelCase__ )
_UpperCAmelCase : Tuple = union_find.find(lowerCamelCase__ )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
_UpperCAmelCase : Tuple = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
_UpperCAmelCase : Any = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = cheap_edge[vertex]
if union_find.find(lowerCamelCase__ ) != union_find.find(lowerCamelCase__ ):
union_find.union(lowerCamelCase__ , lowerCamelCase__ )
mst_edges.append(cheap_edge[vertex] )
_UpperCAmelCase : Union[str, Any] = num_components - 1
_UpperCAmelCase : List[str] = Graph.build(edges=lowerCamelCase__ )
return mst
| 322
|
'''simple docstring'''
from manim import *
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def lowerCAmelCase__ ( self : List[Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 )
_UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 )
_UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )]
_UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )]
_UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
_UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
_UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
_UpperCAmelCase : int = Text("CPU" , font_size=24 )
_UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )]
_UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
_UpperCAmelCase : int = Text("GPU" , font_size=24 )
_UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ )
gpu.align_to(lowerCamelCase__ , lowerCamelCase__ )
gpu.set_x(gpu.get_x() - 1 )
self.add(lowerCamelCase__ )
_UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )]
_UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
_UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 )
_UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ )
model.move_to([3, -1.0, 0] )
self.play(
Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , )
_UpperCAmelCase : int = MarkupText(
F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , )
_UpperCAmelCase : Any = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_UpperCAmelCase : Union[str, Any] = MarkupText(
F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) )
self.add(lowerCamelCase__ )
_UpperCAmelCase : int = []
_UpperCAmelCase : List[str] = []
_UpperCAmelCase : Dict = []
for i, rect in enumerate(lowerCamelCase__ ):
_UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 )
cpu_target.move_to(lowerCamelCase__ )
cpu_target.generate_target()
_UpperCAmelCase : Dict = 0.4_6 / 4
_UpperCAmelCase : Any = 0.4_6 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 )
cpu_targs.append(lowerCamelCase__ )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) )
second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) )
self.play(*lowerCamelCase__ )
self.play(*lowerCamelCase__ )
self.wait()
| 322
| 1
|
'''simple docstring'''
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def __lowerCAmelCase (*__lowerCAmelCase ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : Any = list(__lowerCAmelCase )
for i in range(len(__lowerCAmelCase ) ):
_UpperCAmelCase : str = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : Any = [
"CUDA out of memory.", # CUDA OOM
"cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU
"DefaultCPUAllocator: can't allocate memory", # CPU OOM
]
if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def __lowerCAmelCase (__lowerCAmelCase = None , __lowerCAmelCase = 128 ):
if function is None:
return functools.partial(__lowerCAmelCase , starting_batch_size=__lowerCAmelCase )
_UpperCAmelCase : Any = starting_batch_size
def decorator(*__lowerCAmelCase , **__lowerCAmelCase ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
_UpperCAmelCase : str = list(inspect.signature(__lowerCAmelCase ).parameters.keys() )
# Guard against user error
if len(__lowerCAmelCase ) < (len(__lowerCAmelCase ) + 1):
_UpperCAmelCase : Dict = ", ".join([F"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] )
raise TypeError(
F"""Batch size was passed into `{function.__name__}` as the first argument when called."""
F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" )
while True:
if batch_size == 0:
raise RuntimeError("No executable batch size found, reached zero." )
try:
return function(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase )
except Exception as e:
if should_reduce_batch_size(__lowerCAmelCase ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 322
|
'''simple docstring'''
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ):
_UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase )
_UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase )
_UpperCAmelCase : Dict = tok.pad_token_id
def get_lens(__lowerCAmelCase ):
_UpperCAmelCase : Union[str, Any] = tqdm(
DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
_UpperCAmelCase : List[str] = []
for batch in dl:
_UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist()
_UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ):
max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) )
else:
max_lens.extend(__lowerCAmelCase )
return max_lens
_UpperCAmelCase : Dict = get_lens(__lowerCAmelCase )
_UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase )
_UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase )
pickle_save(__lowerCAmelCase , train_ds.len_file )
pickle_save(__lowerCAmelCase , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 322
| 1
|
'''simple docstring'''
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class lowerCAmelCase__ ( unittest.TestCase ):
def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : List[Any] = ["a", "b", "c"]
# Defaults to last layer if both are None
_UpperCAmelCase , _UpperCAmelCase : str = get_aligned_output_features_output_indices(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
self.assertEqual(lowerCamelCase__ , ["c"] )
self.assertEqual(lowerCamelCase__ , [2] )
# Out indices set to match out features
_UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices(["a", "c"] , lowerCamelCase__ , lowerCamelCase__ )
self.assertEqual(lowerCamelCase__ , ["a", "c"] )
self.assertEqual(lowerCamelCase__ , [0, 2] )
# Out features set to match out indices
_UpperCAmelCase , _UpperCAmelCase : Dict = get_aligned_output_features_output_indices(lowerCamelCase__ , [0, 2] , lowerCamelCase__ )
self.assertEqual(lowerCamelCase__ , ["a", "c"] )
self.assertEqual(lowerCamelCase__ , [0, 2] )
# Out features selected from negative indices
_UpperCAmelCase , _UpperCAmelCase : str = get_aligned_output_features_output_indices(lowerCamelCase__ , [-3, -1] , lowerCamelCase__ )
self.assertEqual(lowerCamelCase__ , ["a", "c"] )
self.assertEqual(lowerCamelCase__ , [-3, -1] )
def lowerCAmelCase__ ( self : List[str] ) ->str:
'''simple docstring'''
with self.assertRaises(lowerCamelCase__ ):
verify_out_features_out_indices(["a", "b"] , (0, 1) , lowerCamelCase__ )
# Out features must be a list
with self.assertRaises(lowerCamelCase__ ):
verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] )
# Out features must be a subset of stage names
with self.assertRaises(lowerCamelCase__ ):
verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] )
# Out indices must be a list or tuple
with self.assertRaises(lowerCamelCase__ ):
verify_out_features_out_indices(lowerCamelCase__ , 0 , ["a", "b"] )
# Out indices must be a subset of stage names
with self.assertRaises(lowerCamelCase__ ):
verify_out_features_out_indices(lowerCamelCase__ , (0, 1) , ["a"] )
# Out features and out indices must be the same length
with self.assertRaises(lowerCamelCase__ ):
verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] )
# Out features should match out indices
with self.assertRaises(lowerCamelCase__ ):
verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] )
# Out features and out indices should be in order
with self.assertRaises(lowerCamelCase__ ):
verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] )
# Check passes with valid inputs
verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] )
def lowerCAmelCase__ ( self : Optional[Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase : Any = BackboneMixin()
_UpperCAmelCase : str = ["a", "b", "c"]
_UpperCAmelCase : Optional[int] = ["a", "c"]
_UpperCAmelCase : Optional[int] = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ["a", "c"] )
self.assertEqual(backbone.out_indices , [0, 2] )
# Check out features and indices are updated correctly
_UpperCAmelCase : Optional[int] = ["a", "b"]
self.assertEqual(backbone.out_features , ["a", "b"] )
self.assertEqual(backbone.out_indices , [0, 1] )
_UpperCAmelCase : List[Any] = [-3, -1]
self.assertEqual(backbone.out_features , ["a", "c"] )
self.assertEqual(backbone.out_indices , [-3, -1] )
| 322
|
'''simple docstring'''
import pytest
lowerCamelCase__ = '__dummy_dataset1__'
lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def __lowerCAmelCase ():
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __lowerCAmelCase ():
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : Optional[Any] = dataset_loading_script_name
_UpperCAmelCase : Any = tmp_path / "datasets" / script_name
script_dir.mkdir(parents=__lowerCAmelCase )
_UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py"""
with open(__lowerCAmelCase , "w" ) as f:
f.write(__lowerCAmelCase )
return str(__lowerCAmelCase )
| 322
| 1
|
'''simple docstring'''
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def __init__( self : Optional[Any] , lowerCamelCase__ : NestedDataStructureLike[PathLike] , lowerCamelCase__ : Optional[NamedSplit] = None , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Union[str, Any] , ) ->Union[str, Any]:
'''simple docstring'''
super().__init__(
lowerCamelCase__ , split=lowerCamelCase__ , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , streaming=lowerCamelCase__ , num_proc=lowerCamelCase__ , **lowerCamelCase__ , )
_UpperCAmelCase : List[str] = path_or_paths if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else {self.split: path_or_paths}
_UpperCAmelCase : Optional[Any] = Text(
cache_dir=lowerCamelCase__ , data_files=lowerCamelCase__ , features=lowerCamelCase__ , **lowerCamelCase__ , )
def lowerCAmelCase__ ( self : int ) ->Union[str, Any]:
'''simple docstring'''
if self.streaming:
_UpperCAmelCase : Tuple = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
_UpperCAmelCase : Any = None
_UpperCAmelCase : List[str] = None
_UpperCAmelCase : List[Any] = None
_UpperCAmelCase : List[Any] = None
self.builder.download_and_prepare(
download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , num_proc=self.num_proc , )
_UpperCAmelCase : Union[str, Any] = self.builder.as_dataset(
split=self.split , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory )
return dataset
| 322
|
'''simple docstring'''
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
lowerCamelCase__ = version.parse(importlib_metadata.version('nltk'))
if NLTK_VERSION >= version.Version('3.6.4'):
from nltk import word_tokenize
lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n'
lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n'
lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[
"https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score",
"https://en.wikipedia.org/wiki/METEOR",
] , )
def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int:
'''simple docstring'''
import nltk
nltk.download("wordnet" )
if NLTK_VERSION >= version.Version("3.6.5" ):
nltk.download("punkt" )
if NLTK_VERSION >= version.Version("3.6.6" ):
nltk.download("omw-1.4" )
def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any:
'''simple docstring'''
if NLTK_VERSION >= version.Version("3.6.5" ):
_UpperCAmelCase : Dict = [
meteor_score.single_meteor_score(
word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ )
for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ )
]
else:
_UpperCAmelCase : Optional[int] = [
meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ )
for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ )
]
return {"meteor": np.mean(lowerCamelCase__ )}
| 322
| 1
|
'''simple docstring'''
import argparse
import json
import os
import torch
from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
# Load configuration defined in the metadata file
with open(__lowerCAmelCase ) as metadata_file:
_UpperCAmelCase : List[str] = json.load(__lowerCAmelCase )
_UpperCAmelCase : List[Any] = LukeConfig(use_entity_aware_attention=__lowerCAmelCase , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
_UpperCAmelCase : Tuple = torch.load(__lowerCAmelCase , map_location="cpu" )
# Load the entity vocab file
_UpperCAmelCase : List[Any] = load_entity_vocab(__lowerCAmelCase )
_UpperCAmelCase : Optional[int] = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
_UpperCAmelCase : Dict = AddedToken("<ent>" , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase )
_UpperCAmelCase : Optional[int] = AddedToken("<ent2>" , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(__lowerCAmelCase )
with open(os.path.join(__lowerCAmelCase , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
_UpperCAmelCase : Any = LukeTokenizer.from_pretrained(__lowerCAmelCase )
# Initialize the embeddings of the special tokens
_UpperCAmelCase : List[Any] = state_dict["embeddings.word_embeddings.weight"]
_UpperCAmelCase : Any = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 )
_UpperCAmelCase : Union[str, Any] = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 )
_UpperCAmelCase : Tuple = torch.cat([word_emb, ent_emb, enta_emb] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
_UpperCAmelCase : int = F"""encoder.layer.{layer_index}.attention.self."""
_UpperCAmelCase : Optional[Any] = state_dict[prefix + matrix_name]
_UpperCAmelCase : str = state_dict[prefix + matrix_name]
_UpperCAmelCase : List[Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
_UpperCAmelCase : List[Any] = state_dict["entity_embeddings.entity_embeddings.weight"]
_UpperCAmelCase : Union[str, Any] = entity_emb[entity_vocab["[MASK]"]]
_UpperCAmelCase : Optional[Any] = LukeModel(config=__lowerCAmelCase ).eval()
_UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
if not (len(__lowerCAmelCase ) == 1 and missing_keys[0] == "embeddings.position_ids"):
raise ValueError(F"""Missing keys {', '.join(__lowerCAmelCase )}. Expected only missing embeddings.position_ids""" )
if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )):
raise ValueError(
"Unexpected keys"
F""" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}""" )
# Check outputs
_UpperCAmelCase : Optional[Any] = LukeTokenizer.from_pretrained(__lowerCAmelCase , task="entity_classification" )
_UpperCAmelCase : List[Any] = (
"Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the"
" new world number one avoid a humiliating second- round exit at Wimbledon ."
)
_UpperCAmelCase : Tuple = (39, 42)
_UpperCAmelCase : str = tokenizer(__lowerCAmelCase , entity_spans=[span] , add_prefix_space=__lowerCAmelCase , return_tensors="pt" )
_UpperCAmelCase : List[str] = model(**__lowerCAmelCase )
# Verify word hidden states
if model_size == "large":
_UpperCAmelCase : Any = torch.Size((1, 42, 1_024) )
_UpperCAmelCase : Union[str, Any] = torch.tensor(
[[0.0_1_3_3, 0.0_8_6_5, 0.0_0_9_5], [0.3_0_9_3, -0.2_5_7_6, -0.7_4_1_8], [-0.1_7_2_0, -0.2_1_1_7, -0.2_8_6_9]] )
else: # base
_UpperCAmelCase : Tuple = torch.Size((1, 42, 768) )
_UpperCAmelCase : Optional[Any] = torch.tensor([[0.0_0_3_7, 0.1_3_6_8, -0.0_0_9_1], [0.1_0_9_9, 0.3_3_2_9, -0.1_0_9_5], [0.0_7_6_5, 0.5_3_3_5, 0.1_1_7_9]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
_UpperCAmelCase : Tuple = torch.Size((1, 1, 1_024) )
_UpperCAmelCase : Optional[int] = torch.tensor([[0.0_4_6_6, -0.0_1_0_6, -0.0_1_7_9]] )
else: # base
_UpperCAmelCase : Any = torch.Size((1, 1, 768) )
_UpperCAmelCase : Optional[Any] = torch.tensor([[0.1_4_5_7, 0.1_0_4_4, 0.0_1_7_4]] )
if not (outputs.entity_last_hidden_state.shape != expected_shape):
raise ValueError(
F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
F""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ):
raise ValueError
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(__lowerCAmelCase ) )
model.save_pretrained(__lowerCAmelCase )
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : Any = {}
with open(__lowerCAmelCase , "r" , encoding="utf-8" ) as f:
for index, line in enumerate(__lowerCAmelCase ):
_UpperCAmelCase , _UpperCAmelCase : Tuple = line.rstrip().split("\t" )
_UpperCAmelCase : Dict = index
return entity_vocab
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.')
parser.add_argument(
'--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.'
)
parser.add_argument(
'--entity_vocab_path',
default=None,
type=str,
help='Path to an entity_vocab.tsv file, containing the entity vocabulary.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.'
)
parser.add_argument(
'--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.'
)
lowerCamelCase__ = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 322
|
'''simple docstring'''
from typing import List, Union
import numpy as np
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, logging
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline
lowerCamelCase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str:
'''simple docstring'''
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
_UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()]
return labels
def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str:
'''simple docstring'''
if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0:
raise ValueError("You must include at least one label and at least one sequence." )
if hypothesis_template.format(labels[0] ) == hypothesis_template:
raise ValueError(
(
"The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. "
"Make sure the passed template includes formatting syntax such as {{}} where the label should go."
).format(lowerCamelCase__ ) )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
_UpperCAmelCase : Optional[Any] = [sequences]
_UpperCAmelCase : int = []
for sequence in sequences:
sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] )
return sequence_pairs, sequences
@add_end_docstrings(UpperCAmelCase__ )
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase : Tuple = args_parser
super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
if self.entailment_id == -1:
logger.warning(
"Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to "
"-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." )
@property
def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]:
'''simple docstring'''
for label, ind in self.model.config.labelaid.items():
if label.lower().startswith("entail" ):
return ind
return -1
def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase : int = self.framework
if self.tokenizer.pad_token is None:
# Override for tokenizers not supporting padding
logger.error(
"Tokenizer was not supporting padding necessary for zero-shot, attempting to use "
" `pad_token=eos_token`" )
_UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token
try:
_UpperCAmelCase : List[str] = self.tokenizer(
lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , )
except Exception as e:
if "too short" in str(lowerCamelCase__ ):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
_UpperCAmelCase : List[Any] = self.tokenizer(
lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , )
else:
raise e
return inputs
def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple:
'''simple docstring'''
if kwargs.get("multi_class" , lowerCamelCase__ ) is not None:
_UpperCAmelCase : int = kwargs["multi_class"]
logger.warning(
"The `multi_class` argument has been deprecated and renamed to `multi_label`. "
"`multi_class` will be removed in a future version of Transformers." )
_UpperCAmelCase : Dict = {}
if "candidate_labels" in kwargs:
_UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] )
if "hypothesis_template" in kwargs:
_UpperCAmelCase : Dict = kwargs["hypothesis_template"]
_UpperCAmelCase : List[str] = {}
if "multi_label" in kwargs:
_UpperCAmelCase : Optional[Any] = kwargs["multi_label"]
return preprocess_params, {}, postprocess_params
def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]:
'''simple docstring'''
if len(lowerCamelCase__ ) == 0:
pass
elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs:
_UpperCAmelCase : int = args[0]
else:
raise ValueError(F"""Unable to understand extra arguments {args}""" )
return super().__call__(lowerCamelCase__ , **lowerCamelCase__ )
def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ):
_UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] )
yield {
"candidate_label": candidate_label,
"sequence": sequences[0],
"is_last": i == len(lowerCamelCase__ ) - 1,
**model_input,
}
def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int:
'''simple docstring'''
_UpperCAmelCase : Dict = inputs["candidate_label"]
_UpperCAmelCase : Optional[int] = inputs["sequence"]
_UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names}
_UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = {
"candidate_label": candidate_label,
"sequence": sequence,
"is_last": inputs["is_last"],
**outputs,
}
return model_outputs
def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs]
_UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs]
_UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] )
_UpperCAmelCase : Optional[Any] = logits.shape[0]
_UpperCAmelCase : Any = len(lowerCamelCase__ )
_UpperCAmelCase : str = N // n
_UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) )
if multi_label or len(lowerCamelCase__ ) == 1:
# softmax over the entailment vs. contradiction dim for each label independently
_UpperCAmelCase : int = self.entailment_id
_UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0
_UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]]
_UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ )
_UpperCAmelCase : str = scores[..., 1]
else:
# softmax the "entailment" logits over all candidate labels
_UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id]
_UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ )
_UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) )
return {
"sequence": sequences[0],
"labels": [candidate_labels[i] for i in top_inds],
"scores": scores[0, top_inds].tolist(),
}
| 322
| 1
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json',
'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json',
'uclanlp/visualbert-vqa-coco-pre': (
'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json'
),
'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json',
'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json',
'uclanlp/visualbert-vcr-coco-pre': (
'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json'
),
'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json',
'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json',
'uclanlp/visualbert-nlvr2-coco-pre': (
'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json'
)
# See all VisualBERT models at https://huggingface.co/models?filter=visual_bert
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
lowerCAmelCase : Optional[Any] = "visual_bert"
def __init__( self : Union[str, Any] , lowerCamelCase__ : Any=3_05_22 , lowerCamelCase__ : List[str]=7_68 , lowerCamelCase__ : Union[str, Any]=5_12 , lowerCamelCase__ : List[str]=12 , lowerCamelCase__ : List[str]=12 , lowerCamelCase__ : Union[str, Any]=30_72 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : int=0.0_2 , lowerCamelCase__ : int=1E-12 , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : Optional[Any]=1 , lowerCamelCase__ : List[Any]=0 , lowerCamelCase__ : List[str]=2 , **lowerCamelCase__ : Any , ) ->Union[str, Any]:
'''simple docstring'''
super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ )
_UpperCAmelCase : Union[str, Any] = vocab_size
_UpperCAmelCase : List[str] = max_position_embeddings
_UpperCAmelCase : List[Any] = hidden_size
_UpperCAmelCase : Optional[int] = visual_embedding_dim
_UpperCAmelCase : List[str] = num_hidden_layers
_UpperCAmelCase : int = num_attention_heads
_UpperCAmelCase : Tuple = intermediate_size
_UpperCAmelCase : Any = hidden_act
_UpperCAmelCase : Optional[int] = hidden_dropout_prob
_UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_UpperCAmelCase : List[Any] = initializer_range
_UpperCAmelCase : Tuple = type_vocab_size
_UpperCAmelCase : str = layer_norm_eps
_UpperCAmelCase : Union[str, Any] = bypass_transformer
_UpperCAmelCase : List[str] = special_visual_initialize
| 322
|
'''simple docstring'''
def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ):
_UpperCAmelCase : List[Any] = []
_UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(__lowerCAmelCase )
_UpperCAmelCase , _UpperCAmelCase : Any = b, a + b
return sum(__lowerCAmelCase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 322
| 1
|
'''simple docstring'''
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : List[str] = int(__lowerCAmelCase )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = t // 3_600, (t // 60) % 60, t % 60
return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}"""
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=300 ):
# docstyle-ignore
return F"""
<div>
{prefix}
<progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>
{label}
</div>
"""
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : List[Any] = "<table border=\"1\" class=\"dataframe\">\n"
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += F""" <th>{i}</th>\n"""
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
_UpperCAmelCase : int = F"""{elt:.6f}""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else str(__lowerCAmelCase )
html_code += F""" <td>{elt}</td>\n"""
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class lowerCAmelCase__ :
lowerCAmelCase : List[Any] = 5
lowerCAmelCase : str = 0.2
def __init__( self : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional["NotebookTrainingTracker"] = None , lowerCamelCase__ : int = 3_00 , ) ->str:
'''simple docstring'''
_UpperCAmelCase : Optional[int] = total
_UpperCAmelCase : Optional[Any] = "" if prefix is None else prefix
_UpperCAmelCase : Union[str, Any] = leave
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : Optional[int] = width
_UpperCAmelCase : Dict = None
_UpperCAmelCase : List[str] = None
_UpperCAmelCase : Optional[int] = None
def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : bool = False , lowerCamelCase__ : str = None ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : Dict = value
if comment is not None:
_UpperCAmelCase : Optional[int] = comment
if self.last_value is None:
_UpperCAmelCase : Dict = time.time()
_UpperCAmelCase : List[str] = value
_UpperCAmelCase : Union[str, Any] = None
_UpperCAmelCase : str = self.warmup
_UpperCAmelCase : Dict = 1
self.update_bar(lowerCamelCase__ )
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ):
if self.first_calls > 0:
self.first_calls -= 1
_UpperCAmelCase : Union[str, Any] = time.time()
_UpperCAmelCase : Any = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
_UpperCAmelCase : Any = self.elapsed_time / (value - self.start_value)
else:
_UpperCAmelCase : List[Any] = None
if value >= self.total:
_UpperCAmelCase : int = self.total
_UpperCAmelCase : Any = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
_UpperCAmelCase : Optional[Any] = self.average_time_per_item * (self.total - value)
self.update_bar(lowerCamelCase__ )
_UpperCAmelCase : Union[str, Any] = value
_UpperCAmelCase : Tuple = current_time
if self.average_time_per_item is None:
_UpperCAmelCase : str = 1
else:
_UpperCAmelCase : Union[str, Any] = max(int(self.update_every / self.average_time_per_item ) , 1 )
def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str]=None ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : List[Any] = " " * (len(str(self.total ) ) - len(str(lowerCamelCase__ ) )) + str(lowerCamelCase__ )
if self.elapsed_time is None:
_UpperCAmelCase : Union[str, Any] = F"""[{spaced_value}/{self.total} : < :"""
elif self.predicted_remaining is None:
_UpperCAmelCase : str = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}"""
else:
_UpperCAmelCase : Optional[int] = (
F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <"""
F""" {format_time(self.predicted_remaining )}"""
)
self.label += F""", {1/self.average_time_per_item:.2f} it/s"""
self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]"""
self.display()
def lowerCAmelCase__ ( self : Optional[int] ) ->str:
'''simple docstring'''
_UpperCAmelCase : List[Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
_UpperCAmelCase : List[Any] = disp.display(disp.HTML(self.html_code ) , display_id=lowerCamelCase__ )
else:
self.output.update(disp.HTML(self.html_code ) )
def lowerCAmelCase__ ( self : Dict ) ->Union[str, Any]:
'''simple docstring'''
if self.parent is None and self.output is not None:
self.output.update(disp.HTML("" ) )
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def __init__( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int]=None ) ->Any:
'''simple docstring'''
super().__init__(lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = None if column_names is None else [column_names]
_UpperCAmelCase : int = None
def lowerCAmelCase__ ( self : Any ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase : Optional[Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table )
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
_UpperCAmelCase : int = disp.display(disp.HTML(self.html_code ) , display_id=lowerCamelCase__ )
else:
self.output.update(disp.HTML(self.html_code ) )
def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[Any] ) ->Any:
'''simple docstring'''
if self.inner_table is None:
_UpperCAmelCase : int = [list(values.keys() ), list(values.values() )]
else:
_UpperCAmelCase : Dict = self.inner_table[0]
if len(self.inner_table ) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(lowerCamelCase__ )
_UpperCAmelCase : Tuple = columns
self.inner_table.append([values[c] for c in columns] )
def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any=None , lowerCamelCase__ : Optional[int]=3_00 ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase : Optional[int] = NotebookProgressBar(lowerCamelCase__ , prefix=lowerCamelCase__ , parent=self , width=lowerCamelCase__ )
return self.child_bar
def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = None
self.display()
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def __init__( self : Union[str, Any] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : Tuple = None
_UpperCAmelCase : List[str] = None
_UpperCAmelCase : Optional[Any] = False
def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , **lowerCamelCase__ : Optional[Any] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : int = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step"
_UpperCAmelCase : Tuple = 0
_UpperCAmelCase : Union[str, Any] = 0
_UpperCAmelCase : Dict = [self.first_column] + ["Training Loss"]
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append("Validation Loss" )
_UpperCAmelCase : Union[str, Any] = NotebookTrainingTracker(state.max_steps , lowerCamelCase__ )
def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , **lowerCamelCase__ : int ) ->Dict:
'''simple docstring'''
_UpperCAmelCase : List[str] = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}"""
self.training_tracker.update(
state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , )
_UpperCAmelCase : Tuple = False
def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=None , **lowerCamelCase__ : Optional[int] ) ->str:
'''simple docstring'''
if not has_length(lowerCamelCase__ ):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
_UpperCAmelCase : Optional[Any] = self.training_tracker.add_child(len(lowerCamelCase__ ) )
else:
_UpperCAmelCase : Any = NotebookProgressBar(len(lowerCamelCase__ ) )
self.prediction_bar.update(1 )
else:
self.prediction_bar.update(self.prediction_bar.value + 1 )
def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : str , **lowerCamelCase__ : List[Any] ) ->Dict:
'''simple docstring'''
if self.prediction_bar is not None:
self.prediction_bar.close()
_UpperCAmelCase : List[Any] = None
def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any]=None , **lowerCamelCase__ : List[Any] ) ->List[str]:
'''simple docstring'''
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
_UpperCAmelCase : Optional[Any] = {"Training Loss": logs["loss"]}
# First column is necessarily Step sine we're not in epoch eval strategy
_UpperCAmelCase : int = state.global_step
self.training_tracker.write_line(lowerCamelCase__ )
def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple=None , **lowerCamelCase__ : Optional[Any] ) ->str:
'''simple docstring'''
if self.training_tracker is not None:
_UpperCAmelCase : Optional[int] = {"Training Loss": "No log", "Validation Loss": "No log"}
for log in reversed(state.log_history ):
if "loss" in log:
_UpperCAmelCase : Union[str, Any] = log["loss"]
break
if self.first_column == "Epoch":
_UpperCAmelCase : Optional[int] = int(state.epoch )
else:
_UpperCAmelCase : Tuple = state.global_step
_UpperCAmelCase : Dict = "eval"
for k in metrics:
if k.endswith("_loss" ):
_UpperCAmelCase : Optional[Any] = re.sub(R"\_loss$" , "" , lowerCamelCase__ )
_UpperCAmelCase : List[Any] = metrics.pop("total_flos" , lowerCamelCase__ )
_UpperCAmelCase : Dict = metrics.pop("epoch" , lowerCamelCase__ )
_UpperCAmelCase : List[str] = metrics.pop(F"""{metric_key_prefix}_runtime""" , lowerCamelCase__ )
_UpperCAmelCase : str = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , lowerCamelCase__ )
_UpperCAmelCase : Optional[Any] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , lowerCamelCase__ )
_UpperCAmelCase : Tuple = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , lowerCamelCase__ )
for k, v in metrics.items():
if k == F"""{metric_key_prefix}_loss""":
_UpperCAmelCase : Optional[int] = v
else:
_UpperCAmelCase : str = k.split("_" )
_UpperCAmelCase : Any = " ".join([part.capitalize() for part in splits[1:]] )
_UpperCAmelCase : Optional[int] = v
self.training_tracker.write_line(lowerCamelCase__ )
self.training_tracker.remove_child()
_UpperCAmelCase : List[Any] = None
# Evaluation takes a long time so we should force the next update.
_UpperCAmelCase : Dict = True
def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ) ->Optional[int]:
'''simple docstring'''
self.training_tracker.update(
state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=lowerCamelCase__ )
_UpperCAmelCase : Any = None
| 322
|
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class lowerCAmelCase__ ( unittest.TestCase ):
def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : List[Any] = parent
_UpperCAmelCase : List[Any] = batch_size
_UpperCAmelCase : Optional[int] = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : Dict = use_attention_mask
_UpperCAmelCase : Optional[Any] = use_token_type_ids
_UpperCAmelCase : int = use_labels
_UpperCAmelCase : Optional[int] = vocab_size
_UpperCAmelCase : Any = hidden_size
_UpperCAmelCase : Any = num_hidden_layers
_UpperCAmelCase : List[Any] = num_attention_heads
_UpperCAmelCase : Tuple = intermediate_size
_UpperCAmelCase : int = hidden_act
_UpperCAmelCase : int = hidden_dropout_prob
_UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_UpperCAmelCase : Union[str, Any] = max_position_embeddings
_UpperCAmelCase : Tuple = type_vocab_size
_UpperCAmelCase : List[Any] = type_sequence_label_size
_UpperCAmelCase : Optional[int] = initializer_range
_UpperCAmelCase : Dict = num_choices
def lowerCAmelCase__ ( self : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : Dict = None
if self.use_attention_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Union[str, Any] = None
if self.use_token_type_ids:
_UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase : int = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase__ ( self : Any ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : Tuple = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs
_UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
lowerCAmelCase : Optional[int] = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase : int = FlaxAlbertModelTester(self )
@slow
def lowerCAmelCase__ ( self : Any ) ->List[str]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" )
_UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase__ )
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" )
_UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
_UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0]
_UpperCAmelCase : List[Any] = (1, 11, 7_68)
self.assertEqual(output.shape , lowerCamelCase__ )
_UpperCAmelCase : str = np.array(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
| 322
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.