code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Any = (DPMSolverSinglestepScheduler,) lowerCAmelCase : Any = (("num_inference_steps", 25),) def lowerCAmelCase__ ( self : Optional[Any] , **lowerCamelCase__ : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**lowerCamelCase__ ) return config def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int=0 , **lowerCamelCase__ : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = dict(self.forward_default_kwargs ) _UpperCAmelCase : List[str] = kwargs.pop("num_inference_steps" , lowerCamelCase__ ) _UpperCAmelCase : List[str] = self.dummy_sample _UpperCAmelCase : Optional[Any] = 0.1 * sample _UpperCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : Dict = self.get_scheduler_config(**lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals _UpperCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) _UpperCAmelCase : Dict = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals _UpperCAmelCase : Any = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase , _UpperCAmelCase : Any = sample, sample for t in range(lowerCamelCase__ , time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase : Dict = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample _UpperCAmelCase : Dict = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int=0 , **lowerCamelCase__ : Any ) ->Dict: '''simple docstring''' _UpperCAmelCase : int = dict(self.forward_default_kwargs ) _UpperCAmelCase : List[Any] = kwargs.pop("num_inference_steps" , lowerCamelCase__ ) _UpperCAmelCase : Tuple = self.dummy_sample _UpperCAmelCase : List[Any] = 0.1 * sample _UpperCAmelCase : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : List[str] = self.get_scheduler_config() _UpperCAmelCase : List[str] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) _UpperCAmelCase : str = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase : Any = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample _UpperCAmelCase : str = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[int]=None , **lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' if scheduler is None: _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : Optional[Any] = self.get_scheduler_config(**lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCamelCase__ ) _UpperCAmelCase : Tuple = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config(**lowerCamelCase__ ) _UpperCAmelCase : str = scheduler_class(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = 10 _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Dict = model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample return sample def lowerCAmelCase__ ( self : int ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase : str = 50 _UpperCAmelCase : int = self.dummy_model() _UpperCAmelCase : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _UpperCAmelCase : int = model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample _UpperCAmelCase : List[str] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_5_7_4 ) < 1E-3 def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : str = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase : str = self.full_loop(scheduler=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 _UpperCAmelCase : Tuple = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase : List[str] = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase : Tuple = self.full_loop(scheduler=lowerCamelCase__ ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase__ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase__ , prediction_type=lowerCamelCase__ , sample_max_value=lowerCamelCase__ , algorithm_type="dpmsolver++" , solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , ) def lowerCAmelCase__ ( self : int ) ->Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , ) _UpperCAmelCase : Union[str, Any] = self.full_loop( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , ) assert not torch.isnan(lowerCamelCase__ ).any(), "Samples have nan numbers" def lowerCAmelCase__ ( self : Tuple ) ->int: '''simple docstring''' self.check_over_configs(lower_order_final=lowerCamelCase__ ) self.check_over_configs(lower_order_final=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Dict: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowerCAmelCase__ ( self : int ) ->Union[str, Any]: '''simple docstring''' self.check_over_configs(variance_type=lowerCamelCase__ ) self.check_over_configs(variance_type="learned_range" ) def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase__ , time_step=0 ) def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.full_loop() _UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def lowerCAmelCase__ ( self : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : List[str] = self.full_loop(use_karras_sigmas=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_2_4_8 ) < 1E-3 def lowerCAmelCase__ ( self : int ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : str = self.full_loop(prediction_type="v_prediction" ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.1_4_5_3 ) < 1E-3 def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.0_6_4_9 ) < 1E-3 def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : Optional[Any] = self.get_scheduler_config(thresholding=lowerCamelCase__ , dynamic_thresholding_ratio=0 ) _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCamelCase__ ) _UpperCAmelCase : int = 10 _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : List[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Optional[int] = model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : str = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample assert sample.dtype == torch.floataa
322
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"] lowerCAmelCase : Optional[Any] = "ChineseCLIPImageProcessor" lowerCAmelCase : Tuple = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str=None , **lowerCamelCase__ : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase__ , ) _UpperCAmelCase : List[Any] = kwargs.pop("feature_extractor" ) _UpperCAmelCase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : int = self.image_processor def __call__( self : List[str] , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : Optional[int]=None , **lowerCamelCase__ : int ) ->int: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _UpperCAmelCase : Any = self.tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if images is not None: _UpperCAmelCase : Optional[Any] = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None and images is not None: _UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase__ ) , tensor_type=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , *lowerCamelCase__ : Dict , **lowerCamelCase__ : Dict ) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Any = self.tokenizer.model_input_names _UpperCAmelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase__ ( self : int ) ->Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase__ , ) return self.image_processor_class
322
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ = '▁' class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[str] = ["input_ids", "token_type_ids"] lowerCAmelCase : Union[str, Any] = FNetTokenizer def __init__( self : Optional[Any] , lowerCamelCase__ : str=None , lowerCamelCase__ : str=None , lowerCamelCase__ : str=False , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : List[Any]="<unk>" , lowerCamelCase__ : Optional[int]="[SEP]" , lowerCamelCase__ : Optional[Any]="<pad>" , lowerCamelCase__ : Optional[int]="[CLS]" , lowerCamelCase__ : int="[MASK]" , **lowerCamelCase__ : int , ) ->Dict: '''simple docstring''' _UpperCAmelCase : Tuple = ( AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ , normalized=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token ) super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , ) _UpperCAmelCase : str = do_lower_case _UpperCAmelCase : List[str] = remove_space _UpperCAmelCase : Union[str, Any] = keep_accents _UpperCAmelCase : int = vocab_file _UpperCAmelCase : Optional[Any] = False if not self.vocab_file else True def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : List[str] = [self.sep_token_id] _UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [self.sep_token_id] _UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Optional[int] = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
322
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
1
'''simple docstring''' from __future__ import annotations import time import numpy as np lowerCamelCase__ = [8, 5, 9, 7] lowerCamelCase__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCamelCase__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowerCAmelCase__ : def __init__( self : Any , lowerCamelCase__ : list[int] , lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : list[list[int]] , ) ->None: '''simple docstring''' _UpperCAmelCase : int = claim_vector _UpperCAmelCase : Optional[Any] = allocated_resources_table _UpperCAmelCase : str = maximum_claim_table def lowerCAmelCase__ ( self : Tuple ) ->list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase__ ( self : Optional[Any] ) ->list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase__ ( self : Optional[Any] ) ->list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowerCamelCase__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase__ ( self : Tuple ) ->dict[int, list[int]]: '''simple docstring''' return {self.__need().index(lowerCamelCase__ ): i for i in self.__need()} def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : int ) ->None: '''simple docstring''' _UpperCAmelCase : Any = self.__need() _UpperCAmelCase : List[Any] = self.__allocated_resources_table _UpperCAmelCase : List[str] = self.__available_resources() _UpperCAmelCase : Union[str, Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: _UpperCAmelCase : Any = False for each_need in need_list: _UpperCAmelCase : str = True for index, need in enumerate(lowerCamelCase__ ): if need > available_resources[index]: _UpperCAmelCase : Tuple = False break if execution: _UpperCAmelCase : str = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _UpperCAmelCase : List[str] = original_need_index print(F"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(lowerCamelCase__ ) # update available/freed resources stack _UpperCAmelCase : List[str] = np.array(lowerCamelCase__ ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(lowerCamelCase__ ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def lowerCAmelCase__ ( self : Optional[Any] ) ->Dict: '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(lowerCamelCase__ ) + 1}""" + " ".join(F"""{it:>8}""" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(lowerCamelCase__ ) + 1}""" + " ".join(F"""{it:>8}""" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(lowerCamelCase__ ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(lowerCamelCase__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : Dict=32 , lowerCamelCase__ : Any=3 , lowerCamelCase__ : List[Any]=10 , lowerCamelCase__ : List[Any]=[8, 16, 32, 64] , lowerCamelCase__ : Union[str, Any]=[1, 1, 2, 1] , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : Optional[Any]="relu" , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Optional[int]=["stage2", "stage3", "stage4"] , lowerCamelCase__ : Optional[Any]=[2, 3, 4] , lowerCamelCase__ : Optional[int]=1 , ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Any = image_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[Any] = embeddings_size _UpperCAmelCase : str = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : Union[str, Any] = is_training _UpperCAmelCase : Tuple = use_labels _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Tuple = num_labels _UpperCAmelCase : Dict = scope _UpperCAmelCase : str = len(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = out_features _UpperCAmelCase : Dict = out_indices _UpperCAmelCase : str = num_groups def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Optional[int] = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : Dict ) ->Any: '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = BitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.num_labels _UpperCAmelCase : Optional[int] = BitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : List[str] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : int = BitBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCAmelCase : int = None _UpperCAmelCase : List[Any] = BitBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase__ ( self : Dict ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = config_and_inputs _UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : int = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase : Dict = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : Optional[int] = False lowerCAmelCase : str = False lowerCAmelCase : Any = False lowerCAmelCase : Dict = False lowerCAmelCase : Dict = False def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = BitModelTester(self ) _UpperCAmelCase : int = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self : List[str] ) ->str: '''simple docstring''' return @unittest.skip(reason="Bit does not output attentions" ) def lowerCAmelCase__ ( self : Dict ) ->Any: '''simple docstring''' pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def lowerCAmelCase__ ( self : Tuple ) ->Tuple: '''simple docstring''' pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(lowerCamelCase__ ) _UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : int = [*signature.parameters.keys()] _UpperCAmelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Tuple = model_class(config=lowerCamelCase__ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCAmelCase__ ( self : str ) ->List[Any]: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : Any , lowerCamelCase__ : int , lowerCamelCase__ : Dict ): _UpperCAmelCase : Union[str, Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Any = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _UpperCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase : List[Any] = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[str] = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase : Optional[int] = layer_type _UpperCAmelCase : Any = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : List[str] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def lowerCAmelCase__ ( self : str ) ->List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[Any] = BitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowerCAmelCase (): _UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self : List[str] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase__ ) _UpperCAmelCase : Tuple = self.default_image_processor _UpperCAmelCase : List[str] = prepare_img() _UpperCAmelCase : Any = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCamelCase__ ) # verify the logits _UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : int = (BitBackbone,) if is_torch_available() else () lowerCAmelCase : Any = BitConfig lowerCAmelCase : int = False def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' _UpperCAmelCase : Dict = BitModelTester(self )
322
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
1
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase__ = 16 lowerCamelCase__ = 32 def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = 16 ): _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) _UpperCAmelCase : Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : List[str] = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : int = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : List[str] = 8 else: _UpperCAmelCase : List[Any] = None return tokenizer.pad( __lowerCAmelCase , padding="longest" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. _UpperCAmelCase : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase__ = mocked_dataloaders # noqa: F811 def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , __lowerCAmelCase ) == "1": _UpperCAmelCase : str = 2 # New Code # _UpperCAmelCase : Optional[int] = int(args.gradient_accumulation_steps ) _UpperCAmelCase : List[str] = int(args.local_sgd_steps ) # Initialize accelerator _UpperCAmelCase : Dict = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowerCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : int = config["lr"] _UpperCAmelCase : str = int(config["num_epochs"] ) _UpperCAmelCase : Union[str, Any] = int(config["seed"] ) _UpperCAmelCase : Any = int(config["batch_size"] ) _UpperCAmelCase : Tuple = evaluate.load("glue" , "mrpc" ) set_seed(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : int = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : Optional[Any] = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler _UpperCAmelCase : Tuple = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() with LocalSGD( accelerator=__lowerCAmelCase , model=__lowerCAmelCase , local_sgd_steps=__lowerCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowerCAmelCase ): _UpperCAmelCase : Dict = model(**__lowerCAmelCase ) _UpperCAmelCase : int = output.loss accelerator.backward(__lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : int = model(**__lowerCAmelCase ) _UpperCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase , _UpperCAmelCase : List[str] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) _UpperCAmelCase : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , __lowerCAmelCase ) def __lowerCAmelCase (): _UpperCAmelCase : Optional[int] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=__lowerCAmelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=__lowerCAmelCase , default=8 , help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _UpperCAmelCase : Any = parser.parse_args() _UpperCAmelCase : Union[str, Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
322
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Dict = "Wav2Vec2FeatureExtractor" lowerCAmelCase : Dict = "AutoTokenizer" def __init__( self : Tuple , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' super().__init__(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Any = self.feature_extractor _UpperCAmelCase : Union[str, Any] = False @classmethod def lowerCAmelCase__ ( cls : int , lowerCamelCase__ : int , **lowerCamelCase__ : List[Any] ) ->Dict: '''simple docstring''' try: return super().from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) except OSError: warnings.warn( F"""Loading a tokenizer inside {cls.__name__} from a config that does not""" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , lowerCamelCase__ , ) _UpperCAmelCase : int = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Any = WavaVecaCTCTokenizer.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) return cls(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) def __call__( self : int , *lowerCamelCase__ : str , **lowerCamelCase__ : str ) ->Any: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _UpperCAmelCase : Union[str, Any] = kwargs.pop("raw_speech" ) else: _UpperCAmelCase : Optional[Any] = kwargs.pop("audio" , lowerCamelCase__ ) _UpperCAmelCase : List[str] = kwargs.pop("sampling_rate" , lowerCamelCase__ ) _UpperCAmelCase : Any = kwargs.pop("text" , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: _UpperCAmelCase : List[str] = args[0] _UpperCAmelCase : Tuple = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _UpperCAmelCase : List[str] = self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None: _UpperCAmelCase : Dict = self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase : List[Any] = encodings["input_ids"] return inputs def lowerCAmelCase__ ( self : Union[str, Any] , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = kwargs.pop("input_features" , lowerCamelCase__ ) _UpperCAmelCase : str = kwargs.pop("labels" , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: _UpperCAmelCase : str = args[0] _UpperCAmelCase : Union[str, Any] = args[1:] if input_features is not None: _UpperCAmelCase : Optional[Any] = self.feature_extractor.pad(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) if labels is not None: _UpperCAmelCase : Optional[int] = self.tokenizer.pad(lowerCamelCase__ , **lowerCamelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: _UpperCAmelCase : List[Any] = labels["input_ids"] return input_features def lowerCAmelCase__ ( self : Union[str, Any] , *lowerCamelCase__ : int , **lowerCamelCase__ : int ) ->Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : int ) ->Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @contextmanager def lowerCAmelCase__ ( self : List[str] ) ->int: '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _UpperCAmelCase : Any = True _UpperCAmelCase : Dict = self.tokenizer yield _UpperCAmelCase : Optional[int] = self.feature_extractor _UpperCAmelCase : Any = False
322
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['MaskFormerFeatureExtractor'] lowerCamelCase__ = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] lowerCamelCase__ = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( __lowerCAmelCase , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
1
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowerCamelCase__ = 8 def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=BITS ): _UpperCAmelCase : Any = x.device _UpperCAmelCase : Optional[int] = (x * 255).int().clamp(0 , 255 ) _UpperCAmelCase : List[str] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCAmelCase ) _UpperCAmelCase : List[str] = rearrange(__lowerCAmelCase , "d -> d 1 1" ) _UpperCAmelCase : List[Any] = rearrange(__lowerCAmelCase , "b c h w -> b c 1 h w" ) _UpperCAmelCase : str = ((x & mask) != 0).float() _UpperCAmelCase : Tuple = rearrange(__lowerCAmelCase , "b c d h w -> b (c d) h w" ) _UpperCAmelCase : Optional[int] = bits * 2 - 1 return bits def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=BITS ): _UpperCAmelCase : Any = x.device _UpperCAmelCase : Dict = (x > 0).int() _UpperCAmelCase : List[str] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCAmelCase , dtype=torch.intaa ) _UpperCAmelCase : int = rearrange(__lowerCAmelCase , "d -> d 1 1" ) _UpperCAmelCase : str = rearrange(__lowerCAmelCase , "b (c d) h w -> b c d h w" , d=8 ) _UpperCAmelCase : List[Any] = reduce(x * mask , "b c d h w -> b c h w" , "sum" ) return (dec / 255).clamp(0.0 , 1.0 ) def __lowerCAmelCase (self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = True , __lowerCAmelCase=None , __lowerCAmelCase = True , ): if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _UpperCAmelCase : str = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _UpperCAmelCase : List[str] = self.alphas_cumprod[timestep] _UpperCAmelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _UpperCAmelCase : Dict = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _UpperCAmelCase : Dict = self.bit_scale if self.config.clip_sample: _UpperCAmelCase : str = torch.clamp(__lowerCAmelCase , -scale , __lowerCAmelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _UpperCAmelCase : Dict = self._get_variance(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _UpperCAmelCase : Union[str, Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : int = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : int = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _UpperCAmelCase : Any = model_output.device if torch.is_tensor(__lowerCAmelCase ) else "cpu" _UpperCAmelCase : int = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__lowerCAmelCase ).to(__lowerCAmelCase ) _UpperCAmelCase : List[str] = self._get_variance(__lowerCAmelCase , __lowerCAmelCase ) ** 0.5 * eta * noise _UpperCAmelCase : Optional[int] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) def __lowerCAmelCase (self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="epsilon" , __lowerCAmelCase=None , __lowerCAmelCase = True , ): _UpperCAmelCase : List[str] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _UpperCAmelCase , _UpperCAmelCase : Tuple = torch.split(__lowerCAmelCase , sample.shape[1] , dim=1 ) else: _UpperCAmelCase : str = None # 1. compute alphas, betas _UpperCAmelCase : Optional[int] = self.alphas_cumprod[t] _UpperCAmelCase : Optional[int] = self.alphas_cumprod[t - 1] if t > 0 else self.one _UpperCAmelCase : str = 1 - alpha_prod_t _UpperCAmelCase : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _UpperCAmelCase : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _UpperCAmelCase : Any = model_output else: raise ValueError(F"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" _UpperCAmelCase : Any = self.bit_scale if self.config.clip_sample: _UpperCAmelCase : Optional[Any] = torch.clamp(__lowerCAmelCase , -scale , __lowerCAmelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase : Optional[Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _UpperCAmelCase : str = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _UpperCAmelCase : Optional[int] = 0 if t > 0: _UpperCAmelCase : Union[str, Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__lowerCAmelCase ).to(model_output.device ) _UpperCAmelCase : str = (self._get_variance(__lowerCAmelCase , predicted_variance=__lowerCAmelCase ) ** 0.5) * noise _UpperCAmelCase : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : UNetaDConditionModel , lowerCamelCase__ : Union[DDIMScheduler, DDPMScheduler] , lowerCamelCase__ : Optional[float] = 1.0 , ) ->Union[str, Any]: '''simple docstring''' super().__init__() _UpperCAmelCase : List[Any] = bit_scale _UpperCAmelCase : Optional[int] = ( ddim_bit_scheduler_step if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self : Optional[Any] , lowerCamelCase__ : Optional[int] = 2_56 , lowerCamelCase__ : Optional[int] = 2_56 , lowerCamelCase__ : Optional[int] = 50 , lowerCamelCase__ : Optional[torch.Generator] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , **lowerCamelCase__ : List[Any] , ) ->Union[Tuple, ImagePipelineOutput]: '''simple docstring''' _UpperCAmelCase : Optional[int] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCamelCase__ , ) _UpperCAmelCase : Dict = decimal_to_bits(lowerCamelCase__ ) * self.bit_scale _UpperCAmelCase : str = latents.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _UpperCAmelCase : str = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : Any = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample _UpperCAmelCase : Any = bits_to_decimal(lowerCamelCase__ ) if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ )
322
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
1
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : List[str] = GPTSanJapaneseTokenizer lowerCAmelCase : List[Any] = False lowerCAmelCase : Optional[int] = {"do_clean_text": False, "add_prefix_space": False} def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' super().setUp() # fmt: off _UpperCAmelCase : Union[str, Any] = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on _UpperCAmelCase : Optional[Any] = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 _UpperCAmelCase : List[Any] = {"unk_token": "<unk>"} _UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] , **lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : Tuple = "こんにちは、世界。 \nこんばんは、㔺界。😀" _UpperCAmelCase : Optional[Any] = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Tuple ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Any = self.get_input_output_texts(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) return text, ids def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase__ ( self : Dict ) ->Any: '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = self.get_tokenizer() # Testing tokenization _UpperCAmelCase : Optional[int] = "こんにちは、世界。 こんばんは、㔺界。" _UpperCAmelCase : Any = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] _UpperCAmelCase : str = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Testing conversion to ids without special tokens _UpperCAmelCase : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _UpperCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Testing conversion to ids with special tokens _UpperCAmelCase : List[Any] = tokens + [tokenizer.unk_token] _UpperCAmelCase : Optional[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] _UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_tokenizer() # Testing tokenization _UpperCAmelCase : str = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" _UpperCAmelCase : List[Any] = "こんにちは、、、、世界。こんばんは、、、、世界。" _UpperCAmelCase : List[Any] = tokenizer.encode(lowerCamelCase__ ) _UpperCAmelCase : Any = tokenizer.decode(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _UpperCAmelCase : Any = "こんにちは、世界。" _UpperCAmelCase : List[str] = "こんばんは、㔺界。😀" _UpperCAmelCase : List[Any] = "こんにちは、世界。こんばんは、世界。😀" _UpperCAmelCase : Union[str, Any] = tokenizer.encode(prefix_text + input_text ) _UpperCAmelCase : Union[str, Any] = tokenizer.encode("" , prefix_text=prefix_text + input_text ) _UpperCAmelCase : Tuple = tokenizer.encode(lowerCamelCase__ , prefix_text=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = tokenizer.decode(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = tokenizer.decode(lowerCamelCase__ ) _UpperCAmelCase : int = tokenizer.decode(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _UpperCAmelCase : Dict = "こんにちは、世界。" _UpperCAmelCase : Tuple = "こんばんは、㔺界。😀" _UpperCAmelCase : Union[str, Any] = len(tokenizer.encode(lowerCamelCase__ ) ) - 2 _UpperCAmelCase : Tuple = len(tokenizer.encode(lowerCamelCase__ ) ) - 2 _UpperCAmelCase : Any = [1] + [0] * (len_prefix + len_text + 1) _UpperCAmelCase : Union[str, Any] = [1] * (len_prefix + len_text + 1) + [0] _UpperCAmelCase : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _UpperCAmelCase : Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _UpperCAmelCase : Any = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids _UpperCAmelCase : Union[str, Any] = tokenizer(lowerCamelCase__ , prefix_text=lowerCamelCase__ ).token_type_ids self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _UpperCAmelCase : Tuple = tokenizer.encode("あンいワ" ) _UpperCAmelCase : Union[str, Any] = tokenizer.encode("" , prefix_text="あンいワ" ) _UpperCAmelCase : Tuple = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(lowerCamelCase__ ) , tokenizer.decode(lowerCamelCase__ ) ) self.assertEqual(tokenizer.decode(lowerCamelCase__ ) , tokenizer.decode(lowerCamelCase__ ) ) self.assertNotEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCAmelCase__ ( self : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _UpperCAmelCase : Tuple = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] _UpperCAmelCase : Union[str, Any] = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ ) _UpperCAmelCase : int = tokenizer.batch_encode_plus(lowerCamelCase__ , padding=lowerCamelCase__ ) # fmt: off _UpperCAmelCase : str = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] _UpperCAmelCase : Any = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _UpperCAmelCase : Any = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCamelCase__ ) self.assertListEqual(x_token.token_type_ids , lowerCamelCase__ ) self.assertListEqual(x_token.attention_mask , lowerCamelCase__ ) self.assertListEqual(x_token_a.input_ids , lowerCamelCase__ ) self.assertListEqual(x_token_a.token_type_ids , lowerCamelCase__ ) self.assertListEqual(x_token_a.attention_mask , lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' pass def lowerCAmelCase__ ( self : int ) ->Tuple: '''simple docstring''' pass
322
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
1
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva lowerCamelCase__ = '' lowerCamelCase__ = '' lowerCamelCase__ = '' lowerCamelCase__ = 1 # (0 is vertical, 1 is horizontal) def __lowerCAmelCase (): _UpperCAmelCase , _UpperCAmelCase : str = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print("Processing..." ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _UpperCAmelCase : Optional[Any] = random_chars(32 ) _UpperCAmelCase : List[Any] = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] _UpperCAmelCase : Union[str, Any] = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(F"""/{file_root}.jpg""" , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Success {index+1}/{len(__lowerCAmelCase )} with {file_name}""" ) _UpperCAmelCase : List[Any] = [] for anno in new_annos[index]: _UpperCAmelCase : Union[str, Any] = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__lowerCAmelCase ) with open(F"""/{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = [] _UpperCAmelCase : int = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , "*.txt" ) ): _UpperCAmelCase : Optional[Any] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(__lowerCAmelCase ) as in_file: _UpperCAmelCase : Union[str, Any] = in_file.readlines() _UpperCAmelCase : Optional[Any] = os.path.join(__lowerCAmelCase , F"""{label_name}.jpg""" ) _UpperCAmelCase : Tuple = [] for obj_list in obj_lists: _UpperCAmelCase : Tuple = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 ): _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Union[str, Any] = [] for idx in range(len(__lowerCAmelCase ) ): _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Any = img_list[idx] path_list.append(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = anno_list[idx] _UpperCAmelCase : Any = cva.imread(__lowerCAmelCase ) if flip_type == 1: _UpperCAmelCase : List[str] = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: _UpperCAmelCase : List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _UpperCAmelCase : Tuple = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: _UpperCAmelCase : Optional[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __lowerCAmelCase (__lowerCAmelCase = 32 ): assert number_char > 1, "The number of character should greater than 1" _UpperCAmelCase : Optional[int] = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
322
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
1
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase (__lowerCAmelCase ): if len(__lowerCAmelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) _UpperCAmelCase : int = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
1
'''simple docstring''' from timeit import timeit lowerCamelCase__ = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Any = len(__lowerCAmelCase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = len(__lowerCAmelCase ) // 2 _UpperCAmelCase : Optional[Any] = len(__lowerCAmelCase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase ): if len(__lowerCAmelCase ) <= 2: return True if s[0] == s[len(__lowerCAmelCase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def __lowerCAmelCase (__lowerCAmelCase ): return s == s[::-1] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = F"""all({name}(key) is value for key, value in test_data.items())""" _UpperCAmelCase : List[str] = F"""from __main__ import test_data, {name}""" _UpperCAmelCase : List[Any] = 500_000 _UpperCAmelCase : Optional[Any] = timeit(stmt=__lowerCAmelCase , setup=__lowerCAmelCase , number=__lowerCAmelCase ) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F'''{key:21} {value}''') print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
1
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments lowerCamelCase__ = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) lowerCAmelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Whether to SortishSamler or not."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowerCAmelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "whether to use adafactor"} ) lowerCAmelCase : Optional[float] = field( default=UpperCAmelCase__ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) lowerCAmelCase : Optional[float] = field( default=UpperCAmelCase__ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) lowerCAmelCase : Optional[float] = field(default=UpperCAmelCase__ , metadata={"help": "Dropout probability. Goes into model.config."} ) lowerCAmelCase : Optional[float] = field( default=UpperCAmelCase__ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) lowerCAmelCase : Optional[str] = field( default="linear" , metadata={"help": F"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
322
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
1
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
322
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['LayoutLMv3FeatureExtractor'] lowerCamelCase__ = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
322
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
1
'''simple docstring''' lowerCamelCase__ = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.602176634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: _UpperCAmelCase : Any = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(__lowerCAmelCase )}""" ) raise ValueError(__lowerCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available lowerCamelCase__ = {'tokenization_herbert': ['HerbertTokenizer']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['HerbertTokenizerFast'] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
322
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowerCamelCase__ = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
322
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _UpperCAmelCase : List[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _UpperCAmelCase : int = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _UpperCAmelCase : str = subset[i - 1][j] if arr[i - 1] <= j: _UpperCAmelCase : Any = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : Tuple = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example lowerCamelCase__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowerCamelCase__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[str] = [] for i in range(len(__lowerCAmelCase ) ): _UpperCAmelCase : List[str] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _UpperCAmelCase : Dict = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__lowerCAmelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__lowerCAmelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(__lowerCAmelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _UpperCAmelCase : int = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__lowerCAmelCase ) return next_generation def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [] for _ in range(__lowerCAmelCase ): # Create output image _UpperCAmelCase : Optional[Any] = Image.new("RGB" , (len(cells[0] ), len(__lowerCAmelCase )) ) _UpperCAmelCase : List[Any] = img.load() # Save cells to image for x in range(len(__lowerCAmelCase ) ): for y in range(len(cells[0] ) ): _UpperCAmelCase : Dict = 255 - cells[y][x] * 255 _UpperCAmelCase : Dict = (colour, colour, colour) # Save image images.append(__lowerCAmelCase ) _UpperCAmelCase : int = new_generation(__lowerCAmelCase ) return images if __name__ == "__main__": lowerCamelCase__ = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
322
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
1
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "new-model" if is_tf_available(): class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = NewModelConfig @require_tf class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[int] = "bert-base-cased" _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[str] = TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Tuple = "bert-base-cased" _UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Tuple ) ->Tuple: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase : Tuple = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Any = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : str = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Dict = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase : Dict = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : List[Any] ) ->Dict: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[str] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : str ) ->Optional[int]: '''simple docstring''' for model_name in ["bert-base-uncased"]: _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[str] = TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Optional[Any] ) ->int: '''simple docstring''' for model_name in ["bert-base-uncased"]: _UpperCAmelCase : int = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : str = TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow @require_tensorflow_probability def lowerCAmelCase__ ( self : Any ) ->Optional[Any]: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: _UpperCAmelCase : List[str] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Dict = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 1_44_10 ) def lowerCAmelCase__ ( self : Dict ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 1_44_10 ) def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : str = copy.deepcopy(model.config ) _UpperCAmelCase : List[Any] = ["FunnelBaseModel"] _UpperCAmelCase : Union[str, Any] = TFAutoModel.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' try: AutoConfig.register("new-model" , lowerCamelCase__ ) _UpperCAmelCase : List[str] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API _UpperCAmelCase : Tuple = BertModelTester(self ).get_config() _UpperCAmelCase : Union[str, Any] = NewModelConfig(**tiny_config.to_dict() ) _UpperCAmelCase : Tuple = auto_class.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : int = auto_class.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ , "bert-base is not a local folder and is not a valid model identifier" ): _UpperCAmelCase : Any = TFAutoModel.from_pretrained("bert-base" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Any: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _UpperCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained(lowerCamelCase__ , revision="aaaaaa" ) def lowerCAmelCase__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): _UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def lowerCAmelCase__ ( self : int ) ->int: '''simple docstring''' with self.assertRaisesRegex(lowerCamelCase__ , "Use `from_pt=True` to load this model" ): _UpperCAmelCase : str = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def lowerCAmelCase__ ( self : Any ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: _UpperCAmelCase : Tuple = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint _UpperCAmelCase : str = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: _UpperCAmelCase : str = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
322
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
1
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): lowerCAmelCase : Union[str, Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str ) ->str: '''simple docstring''' _UpperCAmelCase : Any = TextaTextGenerationPipeline(model=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) return generator, ["Something to write", "Something else"] def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int ) ->List[str]: '''simple docstring''' _UpperCAmelCase : str = generator("Something there" ) self.assertEqual(lowerCamelCase__ , [{"generated_text": ANY(lowerCamelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) _UpperCAmelCase : Dict = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ , [ [{"generated_text": ANY(lowerCamelCase__ )}, {"generated_text": ANY(lowerCamelCase__ )}], [{"generated_text": ANY(lowerCamelCase__ )}, {"generated_text": ANY(lowerCamelCase__ )}], ] , ) _UpperCAmelCase : Union[str, Any] = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ , [ [{"generated_text": ANY(lowerCamelCase__ )}, {"generated_text": ANY(lowerCamelCase__ )}], [{"generated_text": ANY(lowerCamelCase__ )}, {"generated_text": ANY(lowerCamelCase__ )}], ] , ) with self.assertRaises(lowerCamelCase__ ): generator(4 ) @require_torch def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' _UpperCAmelCase : int = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility _UpperCAmelCase : Union[str, Any] = generator("Something there" , do_sample=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , [{"generated_text": ""}] ) _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Dict = generator( "Something there" , num_return_sequences=lowerCamelCase__ , num_beams=lowerCamelCase__ , ) _UpperCAmelCase : List[str] = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : str = generator("This is a test" , do_sample=lowerCamelCase__ , num_return_sequences=2 , return_tensors=lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) _UpperCAmelCase : List[str] = generator.model.config.eos_token_id _UpperCAmelCase : str = "<pad>" _UpperCAmelCase : int = generator( ["This is a test", "This is a second test"] , do_sample=lowerCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCamelCase__ , ) self.assertEqual( lowerCamelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility _UpperCAmelCase : Any = generator("Something there" , do_sample=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , [{"generated_text": ""}] )
322
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : List[Any] = "markuplm" def __init__( self : Optional[int] , lowerCamelCase__ : Optional[int]=3_05_22 , lowerCamelCase__ : int=7_68 , lowerCamelCase__ : List[Any]=12 , lowerCamelCase__ : Optional[int]=12 , lowerCamelCase__ : List[str]=30_72 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : str=5_12 , lowerCamelCase__ : Optional[int]=2 , lowerCamelCase__ : int=0.0_2 , lowerCamelCase__ : List[Any]=1E-12 , lowerCamelCase__ : str=0 , lowerCamelCase__ : List[str]=0 , lowerCamelCase__ : Optional[int]=2 , lowerCamelCase__ : List[Any]=2_56 , lowerCamelCase__ : List[Any]=10_24 , lowerCamelCase__ : Optional[Any]=2_16 , lowerCamelCase__ : Any=10_01 , lowerCamelCase__ : List[str]=32 , lowerCamelCase__ : Union[str, Any]=50 , lowerCamelCase__ : Optional[Any]="absolute" , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Optional[Any] , ) ->Tuple: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , ) _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : List[str] = type_vocab_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Optional[Any] = position_embedding_type _UpperCAmelCase : Any = use_cache _UpperCAmelCase : Tuple = classifier_dropout # additional properties _UpperCAmelCase : Dict = max_depth _UpperCAmelCase : Optional[int] = max_xpath_tag_unit_embeddings _UpperCAmelCase : List[Any] = max_xpath_subs_unit_embeddings _UpperCAmelCase : Any = tag_pad_id _UpperCAmelCase : Any = subs_pad_id _UpperCAmelCase : Dict = xpath_unit_hidden_size
322
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
322
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: _UpperCAmelCase : List[Any] = os.path.abspath(__lowerCAmelCase ) logger.info(F"""Loading PyTorch weights from {pt_path}""" ) _UpperCAmelCase : Optional[Any] = torch.load(__lowerCAmelCase , map_location="cpu" ) logger.info(F"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) _UpperCAmelCase : int = convert_pytorch_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _UpperCAmelCase : Union[str, Any] = convert_pytorch_sharded_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) return flax_state_dict def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): def is_key_or_prefix_key_in_dict(__lowerCAmelCase ) -> bool: return len(set(__lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm _UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding _UpperCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer _UpperCAmelCase : str = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): _UpperCAmelCase : int = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _UpperCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _UpperCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _UpperCAmelCase : str = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _UpperCAmelCase : Union[str, Any] = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _UpperCAmelCase : List[Any] = pt_tuple_key[-2] + "_v" if name is not None: _UpperCAmelCase : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): # convert pytorch tensor to numpy _UpperCAmelCase : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} _UpperCAmelCase : Union[str, Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _UpperCAmelCase : Union[str, Any] = flax_model.params["params"] else: _UpperCAmelCase : Any = flax_model.params _UpperCAmelCase : Optional[Any] = flatten_dict(__lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _UpperCAmelCase : int = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = {} _UpperCAmelCase : List[Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) _UpperCAmelCase : Tuple = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase : List[str] = tuple(pt_key.split("." ) ) # remove base model prefix if necessary _UpperCAmelCase : Optional[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _UpperCAmelCase : Any = pt_tuple_key[1:] # Correctly rename weight parameters _UpperCAmelCase , _UpperCAmelCase : Tuple = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary _UpperCAmelCase : Optional[Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _UpperCAmelCase : str = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _UpperCAmelCase : Optional[Any] = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown _UpperCAmelCase : str = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown _UpperCAmelCase : List[Any] = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): import torch # Load the index _UpperCAmelCase : List[Any] = {} for shard_file in shard_filenames: # load using msgpack utils _UpperCAmelCase : str = torch.load(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} _UpperCAmelCase : Union[str, Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _UpperCAmelCase : str = flax_model.params["params"] _UpperCAmelCase : Tuple = flatten_dict(__lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: _UpperCAmelCase : List[Any] = flax_model.params _UpperCAmelCase : Tuple = flatten_dict(__lowerCAmelCase ) _UpperCAmelCase : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) _UpperCAmelCase : Any = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase : Union[str, Any] = tuple(pt_key.split("." ) ) # remove base model prefix if necessary _UpperCAmelCase : str = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _UpperCAmelCase : Dict = pt_tuple_key[1:] # Correctly rename weight parameters _UpperCAmelCase , _UpperCAmelCase : int = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary _UpperCAmelCase : Any = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _UpperCAmelCase : str = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _UpperCAmelCase : List[str] = jnp.asarray(__lowerCAmelCase ) continue if "var" in flax_key[-1]: _UpperCAmelCase : Optional[Any] = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown _UpperCAmelCase : Dict = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown _UpperCAmelCase : int = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[int] = os.path.abspath(__lowerCAmelCase ) logger.info(F"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class _UpperCAmelCase : int = getattr(__lowerCAmelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(__lowerCAmelCase , "rb" ) as state_f: try: _UpperCAmelCase : Tuple = from_bytes(__lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights _UpperCAmelCase : Union[str, Any] = flatten_dict(jax.tree_util.tree_map(lambda __lowerCAmelCase : x.dtype == jnp.bfloataa , __lowerCAmelCase ) ).values() if any(__lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) _UpperCAmelCase : Any = jax.tree_util.tree_map( lambda __lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCAmelCase ) _UpperCAmelCase : Dict = flatten_dict(__lowerCAmelCase ) _UpperCAmelCase : int = pt_model.state_dict() _UpperCAmelCase : Tuple = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) _UpperCAmelCase : Tuple = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _UpperCAmelCase : str = flax_key_tuple[0] == pt_model.base_model_prefix _UpperCAmelCase : Any = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _UpperCAmelCase : List[Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _UpperCAmelCase : str = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCAmelCase ) not in pt_model_dict: # conv layer _UpperCAmelCase : Dict = flax_key_tuple[:-1] + ("weight",) _UpperCAmelCase : List[Any] = jnp.transpose(__lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCAmelCase ) not in pt_model_dict: # linear layer _UpperCAmelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _UpperCAmelCase : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _UpperCAmelCase : int = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _UpperCAmelCase : str = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: _UpperCAmelCase : int = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: _UpperCAmelCase : List[Any] = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _UpperCAmelCase : str = ".".join(__lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _UpperCAmelCase : str = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _UpperCAmelCase : Tuple = key.split("." ) _UpperCAmelCase : Optional[int] = None if key_components[-3::2] == ["parametrizations", "original0"]: _UpperCAmelCase : Any = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: _UpperCAmelCase : Tuple = key_components[-2] + "_v" if name is not None: _UpperCAmelCase : Optional[Any] = key_components[:-3] + [name] _UpperCAmelCase : int = ".".join(__lowerCAmelCase ) _UpperCAmelCase : Dict = key if flax_key in special_pt_names: _UpperCAmelCase : str = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict _UpperCAmelCase : Optional[Any] = np.asarray(__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , np.ndarray ) else flax_tensor _UpperCAmelCase : Optional[Any] = torch.from_numpy(__lowerCAmelCase ) # remove from missing keys missing_keys.remove(__lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCAmelCase ) pt_model.load_state_dict(__lowerCAmelCase ) # re-transform missing_keys to list _UpperCAmelCase : Any = list(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCAmelCase ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" " use it for predictions and inference." ) else: logger.warning( F"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" "If your task is similar to the task the model of the checkpoint was trained on, " F"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCAmelCase (__lowerCAmelCase ): return (data["data"], data["target"]) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[str] = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCAmelCase (): _UpperCAmelCase : Optional[Any] = load_iris() _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = data_handling(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.2_5 ) _UpperCAmelCase : List[Any] = iris["target_names"] # Create an XGBoost Classifier from the training data _UpperCAmelCase : List[Any] = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
322
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The column name of the images in the files."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = {} if self.train_dir is not None: _UpperCAmelCase : str = self.train_dir if self.validation_dir is not None: _UpperCAmelCase : Tuple = self.validation_dir _UpperCAmelCase : List[Any] = data_files if data_files else None @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=UpperCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : float = field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : float = field( default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. _UpperCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : Any = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[str] = ds["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : Dict = split["train"] _UpperCAmelCase : str = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Union[str, Any] = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase : Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.config_name , **__lowerCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase : Dict = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__lowerCAmelCase ) else: _UpperCAmelCase : str = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _UpperCAmelCase : str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__lowerCAmelCase ) elif model_args.model_name_or_path: _UpperCAmelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__lowerCAmelCase ) else: _UpperCAmelCase : Optional[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: _UpperCAmelCase : List[Any] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) _UpperCAmelCase : int = ViTMAEForPreTraining(__lowerCAmelCase ) if training_args.do_train: _UpperCAmelCase : Tuple = ds["train"].column_names else: _UpperCAmelCase : Union[str, Any] = ds["validation"].column_names if data_args.image_column_name is not None: _UpperCAmelCase : str = data_args.image_column_name elif "image" in column_names: _UpperCAmelCase : List[str] = "image" elif "img" in column_names: _UpperCAmelCase : Dict = "img" else: _UpperCAmelCase : Dict = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _UpperCAmelCase : List[str] = image_processor.size["shortest_edge"] else: _UpperCAmelCase : Union[str, Any] = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : Union[str, Any] = Compose( [ Lambda(lambda __lowerCAmelCase : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(__lowerCAmelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [transforms(__lowerCAmelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Union[str, Any] = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Any = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__lowerCAmelCase ) # Compute absolute learning rate _UpperCAmelCase : Union[str, Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _UpperCAmelCase : Optional[int] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _UpperCAmelCase : List[str] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : str = last_checkpoint _UpperCAmelCase : Optional[Any] = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Union[str, Any] = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : Optional[int] = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
322
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class lowerCAmelCase__ : def __init__( self : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any]=13 , lowerCamelCase__ : Union[str, Any]=7 , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : str=False , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : List[str]=99 , lowerCamelCase__ : Union[str, Any]=32 , lowerCamelCase__ : Optional[int]=5 , lowerCamelCase__ : Optional[int]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Tuple=5_12 , lowerCamelCase__ : int=16 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : int=0.0_2 , lowerCamelCase__ : Union[str, Any]=3 , lowerCamelCase__ : Optional[int]=4 , lowerCamelCase__ : Tuple=None , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = parent _UpperCAmelCase : Optional[int] = batch_size _UpperCAmelCase : Optional[Any] = seq_length _UpperCAmelCase : Dict = is_training _UpperCAmelCase : Optional[int] = use_input_mask _UpperCAmelCase : int = use_token_type_ids _UpperCAmelCase : Dict = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : List[str] = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : str = initializer_range _UpperCAmelCase : List[Any] = num_labels _UpperCAmelCase : int = num_choices _UpperCAmelCase : Tuple = scope def lowerCAmelCase__ ( self : Dict ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : str = None if self.use_token_type_ids: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Tuple = None if self.use_labels: _UpperCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self : Optional[Any] ) ->Dict: '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=lowerCamelCase__ , ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : str = OpenLlamaModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Any = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) _UpperCAmelCase : List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = True _UpperCAmelCase : int = OpenLlamaModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : List[str] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , ) _UpperCAmelCase : List[str] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , ) _UpperCAmelCase : Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , ) ->Dict: '''simple docstring''' _UpperCAmelCase : Any = OpenLlamaForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : str = True _UpperCAmelCase : int = OpenLlamaForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass _UpperCAmelCase : int = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ , ) _UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) _UpperCAmelCase : Tuple = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["hidden_states"][0] _UpperCAmelCase : Any = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["hidden_states"][0] # select random slice _UpperCAmelCase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase : str = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) ) def lowerCAmelCase__ ( self : Tuple ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Any = config_and_inputs _UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase : Dict = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCAmelCase : Union[str, Any] = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : Optional[Any] = False lowerCAmelCase : List[str] = False def lowerCAmelCase__ ( self : List[str] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : str = OpenLlamaModelTester(self ) _UpperCAmelCase : Tuple = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Tuple ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : str = type self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict ) ->Dict: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : Union[str, Any] = input_dict["input_ids"] _UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(lowerCamelCase__ ) _UpperCAmelCase : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase : Any = OpenLlamaForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self : Any ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : int = 3 _UpperCAmelCase : int = "single_label_classification" _UpperCAmelCase : str = input_dict["input_ids"] _UpperCAmelCase : str = input_ids.ne(1 ).to(lowerCamelCase__ ) _UpperCAmelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase : int = OpenLlamaForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : Tuple = "multi_label_classification" _UpperCAmelCase : List[Any] = input_dict["input_ids"] _UpperCAmelCase : Optional[int] = input_ids.ne(1 ).to(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase : Union[str, Any] = OpenLlamaForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : int = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def lowerCAmelCase__ ( self : int ) ->int: '''simple docstring''' pass @parameterized.expand([("linear",), ("dynamic",)] ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Tuple = ids_tensor([1, 10] , config.vocab_size ) _UpperCAmelCase : Dict = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _UpperCAmelCase : Union[str, Any] = OpenLlamaModel(lowerCamelCase__ ) original_model.to(lowerCamelCase__ ) original_model.eval() _UpperCAmelCase : Union[str, Any] = original_model(lowerCamelCase__ ).last_hidden_state _UpperCAmelCase : List[Any] = original_model(lowerCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _UpperCAmelCase : Optional[int] = {"type": scaling_type, "factor": 1_0.0} _UpperCAmelCase : Tuple = OpenLlamaModel(lowerCamelCase__ ) scaled_model.to(lowerCamelCase__ ) scaled_model.eval() _UpperCAmelCase : Any = scaled_model(lowerCamelCase__ ).last_hidden_state _UpperCAmelCase : Optional[Any] = scaled_model(lowerCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) )
322
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : UNetaDModel , lowerCamelCase__ : UNetaDModel , lowerCamelCase__ : DDPMScheduler , lowerCamelCase__ : Optional[Any] , ) ->Dict: '''simple docstring''' super().__init__() _UpperCAmelCase : List[str] = value_function _UpperCAmelCase : Dict = unet _UpperCAmelCase : Dict = scheduler _UpperCAmelCase : Optional[Any] = env _UpperCAmelCase : Optional[Any] = env.get_dataset() _UpperCAmelCase : int = {} for key in self.data.keys(): try: _UpperCAmelCase : Optional[int] = self.data[key].mean() except: # noqa: E722 pass _UpperCAmelCase : Union[str, Any] = {} for key in self.data.keys(): try: _UpperCAmelCase : Tuple = self.data[key].std() except: # noqa: E722 pass _UpperCAmelCase : Optional[Any] = env.observation_space.shape[0] _UpperCAmelCase : Tuple = env.action_space.shape[0] def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any] ) ->List[str]: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ) ->int: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : Any ) ->Optional[int]: '''simple docstring''' for key, val in cond.items(): _UpperCAmelCase : Optional[int] = val.clone() return x_in def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = x.shape[0] _UpperCAmelCase : int = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _UpperCAmelCase : Optional[int] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _UpperCAmelCase : str = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample _UpperCAmelCase : Any = torch.autograd.grad([y.sum()] , [x] )[0] _UpperCAmelCase : Optional[int] = self.scheduler._get_variance(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = torch.exp(0.5 * posterior_variance ) _UpperCAmelCase : Tuple = model_std * grad _UpperCAmelCase : int = 0 _UpperCAmelCase : Tuple = x.detach() _UpperCAmelCase : Optional[Any] = x + scale * grad _UpperCAmelCase : List[str] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) _UpperCAmelCase : Optional[int] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg _UpperCAmelCase : Any = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["prev_sample"] # apply conditions to the trajectory (set the initial state) _UpperCAmelCase : List[str] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) _UpperCAmelCase : int = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int]=64 , lowerCamelCase__ : List[str]=32 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : List[Any]=0.1 ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = self.normalize(lowerCamelCase__ , "observations" ) _UpperCAmelCase : Tuple = obs[None].repeat(lowerCamelCase__ , axis=0 ) _UpperCAmelCase : Union[str, Any] = {0: self.to_torch(lowerCamelCase__ )} _UpperCAmelCase : Tuple = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _UpperCAmelCase : List[str] = randn_tensor(lowerCamelCase__ , device=self.unet.device ) _UpperCAmelCase : int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) _UpperCAmelCase : Union[str, Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process _UpperCAmelCase , _UpperCAmelCase : List[str] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value _UpperCAmelCase : Any = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() _UpperCAmelCase : Dict = x[sorted_idx] _UpperCAmelCase : Tuple = sorted_values[:, :, : self.action_dim] _UpperCAmelCase : List[str] = actions.detach().cpu().numpy() _UpperCAmelCase : int = self.de_normalize(lowerCamelCase__ , key="actions" ) # select the action with the highest value if y is not None: _UpperCAmelCase : str = 0 else: # if we didn't run value guiding, select a random action _UpperCAmelCase : int = np.random.randint(0 , lowerCamelCase__ ) _UpperCAmelCase : str = denorm_actions[selected_index, 0] return denorm_actions
322
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
1
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = 10 def lowerCAmelCase__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = [1, 2, 3, 4] _UpperCAmelCase : Dict = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCamelCase__ , self.block_size , 0 ) , lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->Any: '''simple docstring''' _UpperCAmelCase : Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _UpperCAmelCase : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase__ , self.block_size , 0 ) , lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _UpperCAmelCase : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase__ , self.block_size , 0 ) , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." _UpperCAmelCase , _UpperCAmelCase : Any = process_story(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , [] ) def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = "" _UpperCAmelCase , _UpperCAmelCase : Tuple = process_story(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , [] ) self.assertEqual(lowerCamelCase__ , [] ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : Dict = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) _UpperCAmelCase , _UpperCAmelCase : int = process_story(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Dict = ["It was the best of times."] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = torch.tensor([1, 2, 3, 4] ) _UpperCAmelCase : List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCamelCase__ , 0 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self : List[str] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : int = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _UpperCAmelCase : List[str] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCamelCase__ , 23 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self : Dict ) ->int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _UpperCAmelCase : int = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCamelCase__ , 1 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self : List[str] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = 1_01 _UpperCAmelCase : Optional[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] ) _UpperCAmelCase : Any = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _UpperCAmelCase : Union[str, Any] = compute_token_type_ids(lowerCamelCase__ , lowerCamelCase__ ) np.testing.assert_array_equal(lowerCamelCase__ , lowerCamelCase__ )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
1
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('_T') class lowerCAmelCase__ ( Generic[_T] ): def __init__( self : Tuple , lowerCamelCase__ : Iterable[_T] | None = None ) ->None: '''simple docstring''' _UpperCAmelCase : list[_T] = list(iterable or [] ) _UpperCAmelCase : list[_T] = [] def __len__( self : Dict ) ->int: '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self : Any ) ->str: '''simple docstring''' return F"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def lowerCAmelCase__ ( self : int , lowerCamelCase__ : _T ) ->None: '''simple docstring''' self._stacka.append(lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] ) ->_T: '''simple docstring''' _UpperCAmelCase : List[str] = self._stacka.pop _UpperCAmelCase : List[str] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowerCamelCase__ = '\nHuman: <<task>>\n\nAssistant: ' lowerCamelCase__ = 'huggingface-tools/default-prompts' lowerCamelCase__ = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="run" ): if prompt_or_repo_id is None: _UpperCAmelCase : List[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , __lowerCAmelCase ) is not None: return prompt_or_repo_id _UpperCAmelCase : Union[str, Any] = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(__lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
322
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
1
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCamelCase__ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): for attribute in key.split("." ): _UpperCAmelCase : Optional[Any] = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: _UpperCAmelCase : str = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _UpperCAmelCase : Dict = value elif weight_type == "weight_g": _UpperCAmelCase : str = value elif weight_type == "weight_v": _UpperCAmelCase : Union[str, Any] = value elif weight_type == "bias": _UpperCAmelCase : Any = value else: _UpperCAmelCase : Tuple = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : int = fairseq_model.state_dict() _UpperCAmelCase : str = hf_model.feature_extractor _UpperCAmelCase : Optional[Any] = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCAmelCase : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) _UpperCAmelCase : Dict = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCAmelCase : str = True if "*" in mapped_key: _UpperCAmelCase : List[Any] = name.split(__lowerCAmelCase )[0].split("." )[-2] _UpperCAmelCase : Optional[int] = mapped_key.replace("*" , __lowerCAmelCase ) if "weight_g" in name: _UpperCAmelCase : str = "weight_g" elif "weight_v" in name: _UpperCAmelCase : int = "weight_v" elif "bias" in name: _UpperCAmelCase : Optional[int] = "bias" elif "weight" in name: _UpperCAmelCase : Optional[int] = "weight" else: _UpperCAmelCase : List[Any] = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[int] = full_name.split("conv_layers." )[-1] _UpperCAmelCase : List[str] = name.split("." ) _UpperCAmelCase : List[str] = int(items[0] ) _UpperCAmelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _UpperCAmelCase : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _UpperCAmelCase : Tuple = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _UpperCAmelCase : Optional[int] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _UpperCAmelCase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = full_name.split("adaptor." )[-1] _UpperCAmelCase : Optional[int] = name.split("." ) if items[1].isdigit(): _UpperCAmelCase : Optional[int] = int(items[1] ) else: _UpperCAmelCase : Dict = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" _UpperCAmelCase : int = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" _UpperCAmelCase : int = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" _UpperCAmelCase : str = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" _UpperCAmelCase : Optional[int] = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" _UpperCAmelCase : Tuple = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" _UpperCAmelCase : Any = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Optional[int] = emb.weight.shape _UpperCAmelCase : str = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) _UpperCAmelCase : Dict = emb.weight.data return lin_layer @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): _UpperCAmelCase : Any = WavaVecaConfig.from_pretrained( __lowerCAmelCase , add_adapter=__lowerCAmelCase , adapter_stride=__lowerCAmelCase , adapter_kernel_size=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , output_hidden_size=__lowerCAmelCase , ) _UpperCAmelCase : Optional[int] = MBartConfig.from_pretrained(__lowerCAmelCase ) # load model _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) _UpperCAmelCase : Any = model[0].eval() # load feature extractor _UpperCAmelCase : int = WavaVecaFeatureExtractor.from_pretrained(__lowerCAmelCase , use_auth_token=__lowerCAmelCase ) # set weights for wav2vec2 encoder _UpperCAmelCase : Optional[Any] = WavaVecaModel(__lowerCAmelCase ) recursively_load_weights_wavaveca(model.encoder , __lowerCAmelCase ) # load decoder weights _UpperCAmelCase : Any = MBartForCausalLM(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__lowerCAmelCase ) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) _UpperCAmelCase : List[str] = SpeechEncoderDecoderModel(encoder=__lowerCAmelCase , decoder=__lowerCAmelCase ) _UpperCAmelCase : List[str] = False _UpperCAmelCase : List[Any] = MBartaaTokenizer(__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = hf_wavavec.config.to_dict() _UpperCAmelCase : Tuple = tokenizer.pad_token_id _UpperCAmelCase : int = tokenizer.bos_token_id _UpperCAmelCase : Tuple = tokenizer.eos_token_id _UpperCAmelCase : List[str] = "mbart50" _UpperCAmelCase : Tuple = "wav2vec2" _UpperCAmelCase : Union[str, Any] = tokenizer.eos_token_id _UpperCAmelCase : Optional[Any] = 250_004 _UpperCAmelCase : List[Any] = tokenizer.eos_token_id _UpperCAmelCase : Union[str, Any] = SpeechEncoderDecoderConfig.from_dict(__lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1_024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=250_004, type=int, help='`decoder_start_token_id` of model config') lowerCamelCase__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = "biogpt" def __init__( self : List[str] , lowerCamelCase__ : Tuple=4_23_84 , lowerCamelCase__ : List[Any]=10_24 , lowerCamelCase__ : Optional[Any]=24 , lowerCamelCase__ : Dict=16 , lowerCamelCase__ : Optional[int]=40_96 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : List[str]=0.1 , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Any=10_24 , lowerCamelCase__ : List[str]=0.0_2 , lowerCamelCase__ : Optional[Any]=1E-12 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : int=True , lowerCamelCase__ : str=0.0 , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : Optional[int]=1 , lowerCamelCase__ : Any=0 , lowerCamelCase__ : Dict=2 , **lowerCamelCase__ : Optional[Any] , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : int = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : List[str] = scale_embedding _UpperCAmelCase : Optional[int] = use_cache _UpperCAmelCase : str = layerdrop _UpperCAmelCase : Optional[int] = activation_dropout super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ )
322
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
1
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
1
'''simple docstring''' from __future__ import annotations import queue class lowerCAmelCase__ : def __init__( self : List[str] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = data _UpperCAmelCase : str = None _UpperCAmelCase : Union[str, Any] = None def __lowerCAmelCase (): print("\n********Press N to stop entering at any point of time********\n" ) _UpperCAmelCase : str = input("Enter the value of the root node: " ).strip().lower() _UpperCAmelCase : queue.Queue = queue.Queue() _UpperCAmelCase : Tuple = TreeNode(int(__lowerCAmelCase ) ) q.put(__lowerCAmelCase ) while not q.empty(): _UpperCAmelCase : str = q.get() _UpperCAmelCase : Tuple = F"""Enter the left node of {node_found.data}: """ _UpperCAmelCase : List[Any] = input(__lowerCAmelCase ).strip().lower() or "n" if check == "n": return tree_node _UpperCAmelCase : Dict = TreeNode(int(__lowerCAmelCase ) ) _UpperCAmelCase : int = left_node q.put(__lowerCAmelCase ) _UpperCAmelCase : List[str] = F"""Enter the right node of {node_found.data}: """ _UpperCAmelCase : Any = input(__lowerCAmelCase ).strip().lower() or "n" if check == "n": return tree_node _UpperCAmelCase : Optional[int] = TreeNode(int(__lowerCAmelCase ) ) _UpperCAmelCase : Optional[Any] = right_node q.put(__lowerCAmelCase ) raise def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _UpperCAmelCase : queue.Queue = queue.Queue() q.put(__lowerCAmelCase ) while not q.empty(): _UpperCAmelCase : Any = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _UpperCAmelCase : queue.Queue = queue.Queue() q.put(__lowerCAmelCase ) while not q.empty(): _UpperCAmelCase : Dict = [] while not q.empty(): _UpperCAmelCase : Optional[Any] = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _UpperCAmelCase : list[TreeNode] = [] _UpperCAmelCase : Tuple = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(__lowerCAmelCase ) _UpperCAmelCase : int = n.left # end of while means current node doesn't have left child _UpperCAmelCase : Any = stack.pop() # start to traverse its right child _UpperCAmelCase : str = n.right def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _UpperCAmelCase : list[TreeNode] = [] _UpperCAmelCase : Any = node while n or stack: while n: stack.append(__lowerCAmelCase ) _UpperCAmelCase : Tuple = n.left _UpperCAmelCase : Dict = stack.pop() print(n.data , end="," ) _UpperCAmelCase : Optional[Any] = n.right def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _UpperCAmelCase , _UpperCAmelCase : Tuple = [], [] _UpperCAmelCase : str = node stacka.append(__lowerCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 _UpperCAmelCase : Optional[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__lowerCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def __lowerCAmelCase (__lowerCAmelCase = "" , __lowerCAmelCase=50 , __lowerCAmelCase="*" ): if not s: return "\n" + width * char _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = divmod(width - len(__lowerCAmelCase ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) lowerCamelCase__ = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : str = len(__lowerCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _UpperCAmelCase : Dict = i + 1 else: _UpperCAmelCase : Optional[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
322
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Any = 0 _UpperCAmelCase : Union[str, Any] = len(__lowerCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , __lowerCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __lowerCAmelCase (__lowerCAmelCase ): if len(__lowerCAmelCase ) <= 1: return arr, 0 _UpperCAmelCase : Optional[int] = len(__lowerCAmelCase ) // 2 _UpperCAmelCase : Any = arr[0:mid] _UpperCAmelCase : int = arr[mid:] _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = count_inversions_recursive(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = count_inversions_recursive(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Dict = _count_cross_inversions(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = [] _UpperCAmelCase : List[Any] = 0 while i < len(__lowerCAmelCase ) and j < len(__lowerCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__lowerCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__lowerCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __lowerCAmelCase (): _UpperCAmelCase : Tuple = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _UpperCAmelCase : Optional[int] = count_inversions_bf(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : str = count_inversions_recursive(__lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , __lowerCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _UpperCAmelCase : List[str] = count_inversions_bf(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = count_inversions_recursive(__lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , __lowerCAmelCase ) # an empty list should also have zero inversions _UpperCAmelCase : int = [] _UpperCAmelCase : Optional[int] = count_inversions_bf(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = count_inversions_recursive(__lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , __lowerCAmelCase ) if __name__ == "__main__": main()
322
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
1
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') lowerCamelCase__ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') lowerCamelCase__ = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = CamembertTokenizer lowerCAmelCase : List[Any] = CamembertTokenizerFast lowerCAmelCase : int = True lowerCAmelCase : Dict = True def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : List[Any] = CamembertTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : List[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCamelCase__ ) , 10_04 ) def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = CamembertTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Tuple = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _UpperCAmelCase : List[str] = "I was born in 92000, and this is falsé." _UpperCAmelCase : Tuple = tokenizer.encode(lowerCamelCase__ ) _UpperCAmelCase : List[str] = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) _UpperCAmelCase : str = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->Dict: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() _UpperCAmelCase : Any = "I was born in 92000, and this is falsé." _UpperCAmelCase : Tuple = tokenizer.tokenize(lowerCamelCase__ ) _UpperCAmelCase : Tuple = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Any = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.get_rust_tokenizer() _UpperCAmelCase : List[str] = tokenizer.encode(lowerCamelCase__ ) _UpperCAmelCase : str = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = {"input_ids": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _UpperCAmelCase : Dict = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=lowerCamelCase__ , )
322
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
1
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Any ) ->Union[str, Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase__ ) for s in shape] )}.npy""" def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' super().tearDown() gc.collect() def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str=0 , lowerCamelCase__ : int=(4, 4, 64, 64) , lowerCamelCase__ : Union[str, Any]=False ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase : Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase__ , lowerCamelCase__ ) ) , dtype=lowerCamelCase__ ) return image def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Dict="CompVis/stable-diffusion-v1-4" ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase : Union[str, Any] = "bf16" if fpaa else None _UpperCAmelCase , _UpperCAmelCase : Any = FlaxUNetaDConditionModel.from_pretrained( lowerCamelCase__ , subfolder="unet" , dtype=lowerCamelCase__ , revision=lowerCamelCase__ ) return model, params def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Optional[int]=0 , lowerCamelCase__ : List[Any]=(4, 77, 7_68) , lowerCamelCase__ : Optional[int]=False ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase : Optional[Any] = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase__ , lowerCamelCase__ ) ) , dtype=lowerCamelCase__ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 10_00, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : int = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=lowerCamelCase__ ) _UpperCAmelCase : List[str] = self.get_latents(lowerCamelCase__ , fpaa=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_encoder_hidden_states(lowerCamelCase__ , fpaa=lowerCamelCase__ ) _UpperCAmelCase : Tuple = model.apply( {"params": params} , lowerCamelCase__ , jnp.array(lowerCamelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase__ , ).sample assert sample.shape == latents.shape _UpperCAmelCase : Optional[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _UpperCAmelCase : str = jnp.array(lowerCamelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 10_00, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=lowerCamelCase__ ) _UpperCAmelCase : Tuple = self.get_latents(lowerCamelCase__ , shape=(4, 4, 96, 96) , fpaa=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.get_encoder_hidden_states(lowerCamelCase__ , shape=(4, 77, 10_24) , fpaa=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = model.apply( {"params": params} , lowerCamelCase__ , jnp.array(lowerCamelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase__ , ).sample assert sample.shape == latents.shape _UpperCAmelCase : List[str] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _UpperCAmelCase : Dict = jnp.array(lowerCamelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-2 )
322
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
1
'''simple docstring''' import cva import numpy as np class lowerCAmelCase__ : def __init__( self : str , lowerCamelCase__ : float , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' if k in (0.0_4, 0.0_6): _UpperCAmelCase : Optional[Any] = k _UpperCAmelCase : Dict = window_size else: raise ValueError("invalid k value" ) def __str__( self : Optional[Any] ) ->str: '''simple docstring''' return str(self.k ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : str ) ->tuple[cva.Mat, list[list[int]]]: '''simple docstring''' _UpperCAmelCase : int = cva.imread(lowerCamelCase__ , 0 ) _UpperCAmelCase , _UpperCAmelCase : Dict = img.shape _UpperCAmelCase : list[list[int]] = [] _UpperCAmelCase : Any = img.copy() _UpperCAmelCase : int = cva.cvtColor(lowerCamelCase__ , cva.COLOR_GRAY2RGB ) _UpperCAmelCase , _UpperCAmelCase : int = np.gradient(lowerCamelCase__ ) _UpperCAmelCase : Tuple = dx**2 _UpperCAmelCase : List[str] = dy**2 _UpperCAmelCase : Optional[int] = dx * dy _UpperCAmelCase : Union[str, Any] = 0.0_4 _UpperCAmelCase : Optional[int] = self.window_size // 2 for y in range(lowerCamelCase__ , h - offset ): for x in range(lowerCamelCase__ , w - offset ): _UpperCAmelCase : List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : str = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : List[Any] = (wxx * wyy) - (wxy**2) _UpperCAmelCase : List[Any] = wxx + wyy _UpperCAmelCase : Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase__ = HarrisCorner(0.04, 3) lowerCamelCase__ ,lowerCamelCase__ = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
322
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
1
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = 50 # max width of layer names lowerCamelCase__ = 70 # max width of quantizer names def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=__lowerCAmelCase , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=__lowerCAmelCase , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=__lowerCAmelCase , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=__lowerCAmelCase , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=__lowerCAmelCase , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=__lowerCAmelCase , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def __lowerCAmelCase (__lowerCAmelCase ): if args.calibrator == "max": _UpperCAmelCase : List[Any] = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) _UpperCAmelCase : Optional[Any] = "histogram" elif args.calibrator == "mse": _UpperCAmelCase : Dict = "histogram" else: raise ValueError(F"""Invalid calibrator {args.calibrator}""" ) _UpperCAmelCase : Any = QuantDescriptor(num_bits=args.aprec , calib_method=__lowerCAmelCase ) _UpperCAmelCase : Any = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowerCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False ): logger.info("Configuring Model for Quantization" ) logger.info(F"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowerCAmelCase , ["embeddings"] , which="weight" , _disabled=__lowerCAmelCase ) if args.quant_disable: set_quantizer_by_name(__lowerCAmelCase , [""] , _disabled=__lowerCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowerCAmelCase , args.quant_disable_keyword , _disabled=__lowerCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [R"layer.\d+." + args.quant_disable_layer_module] , _disabled=__lowerCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [R"layer.\d+." + args.quant_enable_layer_module] , _disabled=__lowerCAmelCase ) if args.recalibrate_weights: recalibrate_weights(__lowerCAmelCase ) if args.fuse_qkv: fuse_qkv(__lowerCAmelCase , __lowerCAmelCase ) if args.clip_gelu: clip_gelu(__lowerCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"""{name:80}: {module}""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): def fusea(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): for mod in [qq, qk, qv]: if not hasattr(__lowerCAmelCase , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return _UpperCAmelCase : Optional[int] = qq._amax.detach().item() _UpperCAmelCase : List[Any] = qk._amax.detach().item() _UpperCAmelCase : Optional[int] = qv._amax.detach().item() _UpperCAmelCase : Tuple = max(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) qq._amax.fill_(__lowerCAmelCase ) qk._amax.fill_(__lowerCAmelCase ) qv._amax.fill_(__lowerCAmelCase ) logger.info(F""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): _UpperCAmelCase : str = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = mod._input_quantizer._amax.data.detach().item() logger.info(F"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def __lowerCAmelCase (__lowerCAmelCase ): for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: _UpperCAmelCase : Tuple = mod.weight.shape[0] _UpperCAmelCase : Tuple = mod._weight_quantizer._amax.detach() _UpperCAmelCase : Any = torch.ones(__lowerCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(F"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def __lowerCAmelCase (__lowerCAmelCase ): for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _UpperCAmelCase : Any = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _UpperCAmelCase : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _UpperCAmelCase : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowerCAmelCase , keepdims=__lowerCAmelCase ).detach() logger.info(F"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) _UpperCAmelCase : int = amax def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=25 , __lowerCAmelCase=180 , __lowerCAmelCase=None ): if ignore is None: _UpperCAmelCase : Optional[Any] = [] elif not isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = [ignore] _UpperCAmelCase : str = 0 for name, mod in model.named_modules(): if not hasattr(__lowerCAmelCase , "weight" ): continue _UpperCAmelCase : Optional[int] = max(__lowerCAmelCase , len(__lowerCAmelCase ) ) for name, mod in model.named_modules(): _UpperCAmelCase : Union[str, Any] = getattr(__lowerCAmelCase , "_input_quantizer" , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = getattr(__lowerCAmelCase , "_weight_quantizer" , __lowerCAmelCase ) if not hasattr(__lowerCAmelCase , "weight" ): continue if type(__lowerCAmelCase ) in ignore: continue if [True for s in ignore if type(__lowerCAmelCase ) is str and s in name]: continue _UpperCAmelCase : List[str] = F"""Act:{input_q.extra_repr()}""" _UpperCAmelCase : Dict = F"""Wgt:{weight_q.extra_repr()}""" _UpperCAmelCase : List[str] = F"""{name:{name_width}} {act_str} {wgt_str}""" if len(__lowerCAmelCase ) <= line_width: logger.info(__lowerCAmelCase ) else: logger.info(F"""{name:{name_width}} {act_str}""" ) logger.info(F"""{' ':{name_width}} {wgt_str}""" ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = 0 for name, mod in model.named_modules(): if isinstance(__lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(F"""{name:80} {mod}""" ) count += 1 print(F"""{count} TensorQuantizers found in model""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if quantizer_mod is not None: assert hasattr(__lowerCAmelCase , __lowerCAmelCase ) setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: logger.warning(F"""{name} has no {quantizer}""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="both" , **__lowerCAmelCase ): _UpperCAmelCase : int = F"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" if which in ["input", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , "_input_quantizer" , __lowerCAmelCase , __lowerCAmelCase ) if which in ["weight", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , "_weight_quantizer" , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , "_input_quantizer" ) or hasattr(__lowerCAmelCase , "_weight_quantizer" ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): set_quantizers(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) elif name.endswith("_quantizer" ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[int] = F"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase )
322
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
1
'''simple docstring''' from __future__ import annotations import math def __lowerCAmelCase (__lowerCAmelCase ): if num <= 0: _UpperCAmelCase : Any = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = [True] * (num + 1) _UpperCAmelCase : Any = [] _UpperCAmelCase : str = 2 _UpperCAmelCase : int = int(math.sqrt(__lowerCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__lowerCAmelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , __lowerCAmelCase ): if sieve[i] is True: _UpperCAmelCase : Optional[int] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(__lowerCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
322
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() _UpperCAmelCase : List[str] = 5 # Realm tok _UpperCAmelCase : Optional[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) _UpperCAmelCase : Any = os.path.join(lowerCamelCase__ , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any ) ->RealmTokenizer: '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def lowerCAmelCase__ ( self : str ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=lowerCamelCase__ , ) return block_records def lowerCAmelCase__ ( self : Dict ) ->int: '''simple docstring''' _UpperCAmelCase : Tuple = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowerCAmelCase__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = self.get_config() _UpperCAmelCase : Tuple = self.get_dummy_retriever() _UpperCAmelCase : Any = retriever.tokenizer _UpperCAmelCase : Union[str, Any] = np.array([0, 3] , dtype="long" ) _UpperCAmelCase : Tuple = tokenizer(["Test question"] ).input_ids _UpperCAmelCase : Any = tokenizer( ["the fourth"] , add_special_tokens=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ).input_ids _UpperCAmelCase : Any = config.reader_seq_len _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = retriever( lowerCamelCase__ , lowerCamelCase__ , answer_ids=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors="np" ) self.assertEqual(len(lowerCamelCase__ ) , 2 ) self.assertEqual(len(lowerCamelCase__ ) , 2 ) self.assertEqual(len(lowerCamelCase__ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def lowerCAmelCase__ ( self : int ) ->int: '''simple docstring''' _UpperCAmelCase : Any = self.get_config() _UpperCAmelCase : int = self.get_dummy_retriever() _UpperCAmelCase : Optional[int] = retriever.tokenizer _UpperCAmelCase : Any = np.array([0, 3, 5] , dtype="long" ) _UpperCAmelCase : List[str] = tokenizer(["Test question"] ).input_ids _UpperCAmelCase : Dict = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ).input_ids _UpperCAmelCase : Optional[Any] = config.reader_seq_len _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = retriever( lowerCamelCase__ , lowerCamelCase__ , answer_ids=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors="np" ) self.assertEqual([False, True, True] , lowerCamelCase__ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowerCamelCase__ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCAmelCase : Optional[int] = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCAmelCase : List[Any] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCAmelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
322
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase : int = x_den * y_den * z_den _UpperCAmelCase : int = gcd(__lowerCAmelCase , __lowerCAmelCase ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase (__lowerCAmelCase = 35 ): _UpperCAmelCase : set = set() _UpperCAmelCase : int _UpperCAmelCase : Fraction = Fraction(0 ) _UpperCAmelCase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase : Optional[Any] = x_num * y_den + x_den * y_num _UpperCAmelCase : Dict = x_den * y_den _UpperCAmelCase : Optional[int] = gcd(__lowerCAmelCase , __lowerCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase : Dict = add_three( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) unique_s.add(__lowerCAmelCase ) # n=2 _UpperCAmelCase : Optional[Any] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase : str = x_den * x_den * y_den * y_den if is_sq(__lowerCAmelCase ) and is_sq(__lowerCAmelCase ): _UpperCAmelCase : Tuple = int(sqrt(__lowerCAmelCase ) ) _UpperCAmelCase : Any = int(sqrt(__lowerCAmelCase ) ) _UpperCAmelCase : Optional[Any] = gcd(__lowerCAmelCase , __lowerCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase : str = add_three( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) unique_s.add(__lowerCAmelCase ) # n=-1 _UpperCAmelCase : int = x_num * y_num _UpperCAmelCase : Tuple = x_den * y_num + x_num * y_den _UpperCAmelCase : Optional[int] = gcd(__lowerCAmelCase , __lowerCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase : List[Any] = add_three( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) unique_s.add(__lowerCAmelCase ) # n=2 _UpperCAmelCase : Dict = x_num * x_num * y_num * y_num _UpperCAmelCase : str = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCAmelCase ) and is_sq(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = int(sqrt(__lowerCAmelCase ) ) _UpperCAmelCase : Optional[int] = int(sqrt(__lowerCAmelCase ) ) _UpperCAmelCase : Any = gcd(__lowerCAmelCase , __lowerCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase : Dict = add_three( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) unique_s.add(__lowerCAmelCase ) for num, den in unique_s: total += Fraction(__lowerCAmelCase , __lowerCAmelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'''{solution() = }''')
322
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Optional[int] ) ->None: '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = [] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__lowerCAmelCase ) ) elif isinstance(__lowerCAmelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__lowerCAmelCase ) ) elif isinstance(__lowerCAmelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = [] for d in reversed(__lowerCAmelCase ): idx.append(flat_idx % d ) _UpperCAmelCase : List[str] = flat_idx // d return tuple(reversed(__lowerCAmelCase ) ) @torch.jit.ignore def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(__lowerCAmelCase ) -> None: _UpperCAmelCase : int = True for i in range(len(__lowerCAmelCase ) ): _UpperCAmelCase : Union[str, Any] = -1 * (i + 1) l[reversed_idx] &= tally _UpperCAmelCase : Optional[Any] = l[reversed_idx] if start_edges is None: _UpperCAmelCase : List[str] = [s == 0 for s in start] reduce_edge_list(__lowerCAmelCase ) if end_edges is None: _UpperCAmelCase : List[Any] = [e == (d - 1) for e, d in zip(__lowerCAmelCase , __lowerCAmelCase )] reduce_edge_list(__lowerCAmelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__lowerCAmelCase ) == 0: return [()] elif len(__lowerCAmelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _UpperCAmelCase : List[Tuple[slice, ...]] = [] _UpperCAmelCase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(__lowerCAmelCase , __lowerCAmelCase ): if s == e: path_list.append(slice(__lowerCAmelCase , s + 1 ) ) else: break _UpperCAmelCase : Tuple[slice, ...] = tuple(__lowerCAmelCase ) _UpperCAmelCase : List[str] = len(__lowerCAmelCase ) # start == end, and we're done if divergence_idx == len(__lowerCAmelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _UpperCAmelCase : str = start[divergence_idx] return tuple( path + (slice(__lowerCAmelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _UpperCAmelCase : str = end[divergence_idx] return tuple( path + (slice(__lowerCAmelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _UpperCAmelCase : str = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = t.shape[:no_batch_dims] _UpperCAmelCase : Optional[int] = list(_flat_idx_to_idx(__lowerCAmelCase , __lowerCAmelCase ) ) # _get_minimal_slice_set is inclusive _UpperCAmelCase : Tuple = list(_flat_idx_to_idx(flat_end - 1 , __lowerCAmelCase ) ) # Get an ordered list of slices to perform _UpperCAmelCase : Union[str, Any] = _get_minimal_slice_set( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) _UpperCAmelCase : Dict = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = False , ): if not (len(__lowerCAmelCase ) > 0): raise ValueError("Must provide at least one input" ) _UpperCAmelCase : Optional[int] = [shape[:no_batch_dims] for shape in _fetch_dims(__lowerCAmelCase )] _UpperCAmelCase : Any = tuple([max(__lowerCAmelCase ) for s in zip(*__lowerCAmelCase )] ) def _prep_inputs(__lowerCAmelCase ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _UpperCAmelCase : Tuple = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _UpperCAmelCase : str = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _UpperCAmelCase : str = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _UpperCAmelCase : Dict[str, Any] = tensor_tree_map(_prep_inputs , __lowerCAmelCase ) _UpperCAmelCase : str = None if _out is not None: _UpperCAmelCase : List[str] = tensor_tree_map(lambda __lowerCAmelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _UpperCAmelCase : Union[str, Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d _UpperCAmelCase : Any = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__lowerCAmelCase ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _UpperCAmelCase : Any = 0 _UpperCAmelCase : Optional[Any] = prepped_outputs for _ in range(__lowerCAmelCase ): # Chunk the input if not low_mem: _UpperCAmelCase : Union[str, Any] = _select_chunk else: _UpperCAmelCase : Tuple = partial( _chunk_slice , flat_start=__lowerCAmelCase , flat_end=min(__lowerCAmelCase , i + chunk_size ) , no_batch_dims=len(__lowerCAmelCase ) , ) _UpperCAmelCase : Dict[str, Any] = tensor_tree_map(__lowerCAmelCase , __lowerCAmelCase ) # Run the layer on the chunk _UpperCAmelCase : Optional[int] = layer(**__lowerCAmelCase ) # Allocate space for the output if out is None: _UpperCAmelCase : List[str] = tensor_tree_map(lambda __lowerCAmelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __lowerCAmelCase ) # Put the chunk in its pre-allocated space if isinstance(__lowerCAmelCase , __lowerCAmelCase ): def assign(__lowerCAmelCase , __lowerCAmelCase ) -> None: for k, v in da.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): assign(__lowerCAmelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _UpperCAmelCase : Tuple = da[k] assign(__lowerCAmelCase , __lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): for xa, xa in zip(__lowerCAmelCase , __lowerCAmelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: _UpperCAmelCase : Any = xa elif isinstance(__lowerCAmelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _UpperCAmelCase : List[str] = output_chunk else: raise ValueError("Not supported" ) i += chunk_size _UpperCAmelCase : List[Any] = tensor_tree_map(lambda __lowerCAmelCase : t.view(orig_batch_dims + t.shape[1:] ) , __lowerCAmelCase ) return out class lowerCAmelCase__ : def __init__( self : Union[str, Any] , lowerCamelCase__ : int = 5_12 , ) ->Dict: '''simple docstring''' _UpperCAmelCase : int = max_chunk_size _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[tuple] = None def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Callable , lowerCamelCase__ : tuple , lowerCamelCase__ : int ) ->int: '''simple docstring''' logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _UpperCAmelCase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] _UpperCAmelCase : List[str] = [c for c in candidates if c > min_chunk_size] _UpperCAmelCase : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowerCamelCase__ : int ) -> bool: try: with torch.no_grad(): fn(*lowerCamelCase__ , chunk_size=lowerCamelCase__ ) return True except RuntimeError: return False _UpperCAmelCase : Any = 0 _UpperCAmelCase : List[Any] = len(lowerCamelCase__ ) - 1 while i > min_viable_chunk_size_index: _UpperCAmelCase : Dict = test_chunk_size(candidates[i] ) if not viable: _UpperCAmelCase : int = (min_viable_chunk_size_index + i) // 2 else: _UpperCAmelCase : List[str] = i _UpperCAmelCase : Dict = (i + len(lowerCamelCase__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Iterable , lowerCamelCase__ : Iterable ) ->bool: '''simple docstring''' _UpperCAmelCase : Optional[int] = True for aa, aa in zip(lowerCamelCase__ , lowerCamelCase__ ): assert type(lowerCamelCase__ ) == type(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , (list, tuple) ): consistent &= self._compare_arg_caches(lowerCamelCase__ , lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Any = [v for _, v in sorted(aa.items() , key=lambda lowerCamelCase__ : x[0] )] _UpperCAmelCase : List[Any] = [v for _, v in sorted(aa.items() , key=lambda lowerCamelCase__ : x[0] )] consistent &= self._compare_arg_caches(lowerCamelCase__ , lowerCamelCase__ ) else: consistent &= aa == aa return consistent def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Callable , lowerCamelCase__ : tuple , lowerCamelCase__ : int , ) ->int: '''simple docstring''' _UpperCAmelCase : List[str] = True _UpperCAmelCase : tuple = tree_map(lambda lowerCamelCase__ : a.shape if isinstance(lowerCamelCase__ , torch.Tensor ) else a , lowerCamelCase__ , lowerCamelCase__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = self._compare_arg_caches(self.cached_arg_data , lowerCamelCase__ ) else: # Otherwise, we can reuse the precomputed value _UpperCAmelCase : List[Any] = False if not consistent: _UpperCAmelCase : List[Any] = self._determine_favorable_chunk_size( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) _UpperCAmelCase : int = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
322
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
1
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=[] ): _UpperCAmelCase : List[str] = size[0] - overlap_pixels * 2 _UpperCAmelCase : List[Any] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _UpperCAmelCase : str = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 _UpperCAmelCase : Any = np.pad(__lowerCAmelCase , mode="linear_ramp" , pad_width=__lowerCAmelCase , end_values=0 ) if "l" in remove_borders: _UpperCAmelCase : List[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _UpperCAmelCase : List[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _UpperCAmelCase : int = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _UpperCAmelCase : List[str] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return max(__lowerCAmelCase , min(__lowerCAmelCase , __lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = list(__lowerCAmelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _UpperCAmelCase : List[str] = clamp_rect(__lowerCAmelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = Image.new("RGB" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__lowerCAmelCase , (original_slice, 0) ) return result def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _UpperCAmelCase : Tuple = tile.crop(__lowerCAmelCase ) return tile def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = n % d return n - divisor class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Optional[int] , lowerCamelCase__ : AutoencoderKL , lowerCamelCase__ : CLIPTextModel , lowerCamelCase__ : CLIPTokenizer , lowerCamelCase__ : UNetaDConditionModel , lowerCamelCase__ : DDPMScheduler , lowerCamelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase__ : int = 3_50 , ) ->Tuple: '''simple docstring''' super().__init__( vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , unet=lowerCamelCase__ , low_res_scheduler=lowerCamelCase__ , scheduler=lowerCamelCase__ , max_noise_level=lowerCamelCase__ , ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple , **lowerCamelCase__ : Tuple ) ->Optional[int]: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : int = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) _UpperCAmelCase : Any = add_overlap_rect(lowerCamelCase__ , lowerCamelCase__ , image.size ) _UpperCAmelCase : List[Any] = image.crop(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _UpperCAmelCase : Tuple = translated_slice_x - (original_image_slice / 2) _UpperCAmelCase : Tuple = max(0 , lowerCamelCase__ ) _UpperCAmelCase : int = squeeze_tile(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[str] = to_input.size _UpperCAmelCase : Union[str, Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) _UpperCAmelCase : List[Any] = super(lowerCamelCase__ , self ).__call__(image=lowerCamelCase__ , **lowerCamelCase__ ).images[0] _UpperCAmelCase : str = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) _UpperCAmelCase : Any = unsqueeze_tile(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) _UpperCAmelCase : Optional[int] = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) _UpperCAmelCase : str = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=lowerCamelCase__ ) , mode="L" , ) final_image.paste( lowerCamelCase__ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , lowerCamelCase__ ) @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[str, List[str]] , lowerCamelCase__ : Union[PIL.Image.Image, List[PIL.Image.Image]] , lowerCamelCase__ : int = 75 , lowerCamelCase__ : float = 9.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[Union[str, List[str]]] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : Optional[torch.Generator] = None , lowerCamelCase__ : Optional[torch.FloatTensor] = None , lowerCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1_28 , lowerCamelCase__ : int = 32 , lowerCamelCase__ : int = 32 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) _UpperCAmelCase : Dict = math.ceil(image.size[0] / tile_size ) _UpperCAmelCase : Dict = math.ceil(image.size[1] / tile_size ) _UpperCAmelCase : Dict = tcx * tcy _UpperCAmelCase : Optional[Any] = 0 for y in range(lowerCamelCase__ ): for x in range(lowerCamelCase__ ): self._process_tile( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , prompt=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , noise_level=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def __lowerCAmelCase (): # Run a demo _UpperCAmelCase : Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : List[str] = StableDiffusionTiledUpscalePipeline.from_pretrained(__lowerCAmelCase , revision="fp16" , torch_dtype=torch.floataa ) _UpperCAmelCase : Optional[int] = pipe.to("cuda" ) _UpperCAmelCase : List[str] = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(__lowerCAmelCase ): print(F"""progress: {obj['progress']:.4f}""" ) obj["image"].save("diffusers_library_progress.jpg" ) _UpperCAmelCase : Optional[int] = pipe(image=__lowerCAmelCase , prompt="Black font, white background, vector" , noise_level=40 , callback=__lowerCAmelCase ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
322
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = "dpt" def __init__( self : int , lowerCamelCase__ : int=7_68 , lowerCamelCase__ : Any=12 , lowerCamelCase__ : str=12 , lowerCamelCase__ : Dict=30_72 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : int=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : str=0.0_2 , lowerCamelCase__ : int=1E-12 , lowerCamelCase__ : Optional[Any]=3_84 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : str=[2, 5, 8, 11] , lowerCamelCase__ : Tuple="project" , lowerCamelCase__ : List[str]=[4, 2, 1, 0.5] , lowerCamelCase__ : Optional[Any]=[96, 1_92, 3_84, 7_68] , lowerCamelCase__ : int=2_56 , lowerCamelCase__ : Optional[int]=-1 , lowerCamelCase__ : Any=False , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=0.4 , lowerCamelCase__ : str=2_55 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : str=[1, 10_24, 24, 24] , lowerCamelCase__ : List[str]=[0, 1] , lowerCamelCase__ : Optional[int]=None , **lowerCamelCase__ : List[Any] , ) ->str: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Tuple = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) _UpperCAmelCase : List[Any] = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } _UpperCAmelCase : str = BitConfig(**lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): logger.info("Initializing the config with a `BiT` backbone." ) _UpperCAmelCase : int = BitConfig(**lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Any = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) _UpperCAmelCase : str = backbone_featmap_shape _UpperCAmelCase : int = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : int = None _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : str = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : int = qkv_bias _UpperCAmelCase : Union[str, Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) _UpperCAmelCase : Optional[Any] = readout_type _UpperCAmelCase : str = reassemble_factors _UpperCAmelCase : List[str] = neck_hidden_sizes _UpperCAmelCase : List[str] = fusion_hidden_size _UpperCAmelCase : List[Any] = head_in_index _UpperCAmelCase : Optional[int] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase : List[Any] = use_auxiliary_head _UpperCAmelCase : List[str] = auxiliary_loss_weight _UpperCAmelCase : Dict = semantic_loss_ignore_index _UpperCAmelCase : Optional[int] = semantic_classifier_dropout def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase : int = self.backbone_config.to_dict() _UpperCAmelCase : Optional[int] = self.__class__.model_type return output
322
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
1
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger('transformers.models.speecht5') lowerCamelCase__ = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } lowerCamelCase__ = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } lowerCamelCase__ = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } lowerCamelCase__ = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } lowerCamelCase__ = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } lowerCamelCase__ = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } lowerCamelCase__ = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } lowerCamelCase__ = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } lowerCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowerCamelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCamelCase__ = [] lowerCamelCase__ = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] lowerCamelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] lowerCamelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] lowerCamelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): for attribute in key.split("." ): _UpperCAmelCase : Any = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: _UpperCAmelCase : str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _UpperCAmelCase : int = value elif weight_type == "weight_g": _UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_v": _UpperCAmelCase : List[str] = value elif weight_type == "bias": _UpperCAmelCase : List[str] = value elif weight_type == "running_mean": _UpperCAmelCase : Optional[int] = value elif weight_type == "running_var": _UpperCAmelCase : List[Any] = value elif weight_type == "num_batches_tracked": _UpperCAmelCase : int = value else: _UpperCAmelCase : Optional[int] = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _UpperCAmelCase , _UpperCAmelCase : Tuple = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = [] if task == "s2t": _UpperCAmelCase : Optional[Any] = hf_model.speechta.encoder.prenet.feature_encoder _UpperCAmelCase : Dict = MAPPING_S2T _UpperCAmelCase : Dict = IGNORE_KEYS_S2T elif task == "t2s": _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Union[str, Any] = MAPPING_T2S _UpperCAmelCase : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": _UpperCAmelCase : Optional[Any] = hf_model.speechta.encoder.prenet.feature_encoder _UpperCAmelCase : List[str] = MAPPING_S2S _UpperCAmelCase : int = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(__lowerCAmelCase , __lowerCAmelCase ): logger.info(F"""{name} was ignored""" ) continue _UpperCAmelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) _UpperCAmelCase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _UpperCAmelCase , _UpperCAmelCase : List[str] = key.split(".*." ) if prefix in name and suffix in name: _UpperCAmelCase : List[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _UpperCAmelCase : str = True if "*" in mapped_key: _UpperCAmelCase : str = name.split(__lowerCAmelCase )[0].split("." )[-2] _UpperCAmelCase : str = mapped_key.replace("*" , __lowerCAmelCase ) if "weight_g" in name: _UpperCAmelCase : Tuple = "weight_g" elif "weight_v" in name: _UpperCAmelCase : Optional[int] = "weight_v" elif "bias" in name: _UpperCAmelCase : Tuple = "bias" elif "weight" in name: _UpperCAmelCase : List[str] = "weight" elif "running_mean" in name: _UpperCAmelCase : str = "running_mean" elif "running_var" in name: _UpperCAmelCase : Dict = "running_var" elif "num_batches_tracked" in name: _UpperCAmelCase : Tuple = "num_batches_tracked" else: _UpperCAmelCase : Dict = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = full_name.split("conv_layers." )[-1] _UpperCAmelCase : List[Any] = name.split("." ) _UpperCAmelCase : List[Any] = int(items[0] ) _UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _UpperCAmelCase : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _UpperCAmelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _UpperCAmelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _UpperCAmelCase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ): if config_path is not None: _UpperCAmelCase : Union[str, Any] = SpeechTaConfig.from_pretrained(__lowerCAmelCase ) else: _UpperCAmelCase : Optional[Any] = SpeechTaConfig() if task == "s2t": _UpperCAmelCase : Dict = config.max_text_positions _UpperCAmelCase : List[Any] = SpeechTaForSpeechToText(__lowerCAmelCase ) elif task == "t2s": _UpperCAmelCase : Optional[Any] = 1_876 _UpperCAmelCase : int = 600 _UpperCAmelCase : Union[str, Any] = config.max_speech_positions _UpperCAmelCase : Tuple = SpeechTaForTextToSpeech(__lowerCAmelCase ) elif task == "s2s": _UpperCAmelCase : Any = 1_876 _UpperCAmelCase : Optional[Any] = config.max_speech_positions _UpperCAmelCase : Union[str, Any] = SpeechTaForSpeechToSpeech(__lowerCAmelCase ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: _UpperCAmelCase : Optional[int] = SpeechTaTokenizer(__lowerCAmelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _UpperCAmelCase : Dict = AddedToken("<mask>" , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) _UpperCAmelCase : List[Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) _UpperCAmelCase : Optional[Any] = SpeechTaFeatureExtractor() _UpperCAmelCase : str = SpeechTaProcessor(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) _UpperCAmelCase : int = torch.load(__lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint["model"] , __lowerCAmelCase , __lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(__lowerCAmelCase ) model.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowerCamelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['ConditionalDetrFeatureExtractor'] lowerCamelCase__ = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __lowerCAmelCase (): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
1
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCamelCase__ = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): lowerCAmelCase : Optional[datasets.Features] = None lowerCAmelCase : str = "utf-8" lowerCAmelCase : Optional[str] = None lowerCAmelCase : Optional[str] = None lowerCAmelCase : bool = True # deprecated lowerCAmelCase : Optional[int] = None # deprecated lowerCAmelCase : int = 10 << 20 # 10MB lowerCAmelCase : Optional[bool] = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): lowerCAmelCase : List[str] = JsonConfig def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) _UpperCAmelCase : Optional[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : Optional[int] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase__ , (str, list, tuple) ): _UpperCAmelCase : List[str] = data_files if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : List[str] = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : int = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : List[str] = [files] _UpperCAmelCase : Tuple = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase__ , gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : pa.Table ) ->pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _UpperCAmelCase : List[str] = self.config.features.arrow_schema.field(lowerCamelCase__ ).type _UpperCAmelCase : Optional[int] = pa_table.append_column(lowerCamelCase__ , pa.array([None] * len(lowerCamelCase__ ) , type=lowerCamelCase__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _UpperCAmelCase : List[str] = table_cast(lowerCamelCase__ , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] ) ->str: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowerCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _UpperCAmelCase : int = json.load(lowerCamelCase__ ) # We keep only the field we are interested in _UpperCAmelCase : Optional[Any] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowerCamelCase__ , (list, tuple) ): _UpperCAmelCase : Union[str, Any] = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase : int = {col: [row.get(lowerCamelCase__ ) for row in dataset] for col in keys} else: _UpperCAmelCase : List[Any] = dataset _UpperCAmelCase : str = pa.Table.from_pydict(lowerCamelCase__ ) yield file_idx, self._cast_table(lowerCamelCase__ ) # If the file has one json object per line else: with open(lowerCamelCase__ , "rb" ) as f: _UpperCAmelCase : Union[str, Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _UpperCAmelCase : int = max(self.config.chunksize // 32 , 16 << 10 ) _UpperCAmelCase : Dict = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: _UpperCAmelCase : Tuple = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowerCamelCase__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _UpperCAmelCase : Optional[Any] = batch.decode(self.config.encoding , errors=lowerCamelCase__ ).encode("utf-8" ) try: while True: try: _UpperCAmelCase : Union[str, Any] = paj.read_json( io.BytesIO(lowerCamelCase__ ) , read_options=paj.ReadOptions(block_size=lowerCamelCase__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowerCamelCase__ , pa.ArrowInvalid ) and "straddling" not in str(lowerCamelCase__ ) or block_size > len(lowerCamelCase__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(lowerCamelCase__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowerCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _UpperCAmelCase : List[str] = json.load(lowerCamelCase__ ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # list is the only sequence type supported in JSON try: _UpperCAmelCase : int = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase : Tuple = {col: [row.get(lowerCamelCase__ ) for row in dataset] for col in keys} _UpperCAmelCase : Optional[int] = pa.Table.from_pydict(lowerCamelCase__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(lowerCamelCase__ ) break else: logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase__ ) batch_idx += 1
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
1
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowerCamelCase__ = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' lowerCamelCase__ = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' lowerCamelCase__ = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return float((preds == labels).mean() ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = simple_accuracy(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Optional[int] = float(fa_score(y_true=__lowerCAmelCase , y_pred=__lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = float(pearsonr(__lowerCAmelCase , __lowerCAmelCase )[0] ) _UpperCAmelCase : Any = float(spearmanr(__lowerCAmelCase , __lowerCAmelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Any ) ->Optional[int]: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), "references": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase__ , lowerCamelCase__ )} elif self.config_name == "stsb": return pearson_and_spearman(lowerCamelCase__ , lowerCamelCase__ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowerCamelCase__ , lowerCamelCase__ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowerCamelCase__ , lowerCamelCase__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" )
322
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
1
'''simple docstring''' lowerCamelCase__ = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCamelCase__ = [None] * 10_000_000 lowerCamelCase__ = True lowerCamelCase__ = False def __lowerCAmelCase (__lowerCAmelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _UpperCAmelCase : str = chain(next_number(__lowerCAmelCase ) ) _UpperCAmelCase : Tuple = number_chain while number < 10_000_000: _UpperCAmelCase : Union[str, Any] = number_chain number *= 10 return number_chain def __lowerCAmelCase (__lowerCAmelCase = 10_000_000 ): for i in range(1 , __lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
322
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
1
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCamelCase__ = 'src/diffusers' # Matches is_xxx_available() lowerCamelCase__ = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla lowerCamelCase__ = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') lowerCamelCase__ = '\n{0} = None\n' lowerCamelCase__ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' lowerCamelCase__ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = _re_backend.findall(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None return "_and_".join(__lowerCAmelCase ) def __lowerCAmelCase (): with open(os.path.join(__lowerCAmelCase , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCAmelCase : Optional[int] = f.readlines() # Get to the point we do the actual imports for type checking _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Any = {} # Go through the end of the file while line_index < len(__lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _UpperCAmelCase : List[Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 _UpperCAmelCase : Optional[int] = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1: _UpperCAmelCase : Any = lines[line_index] _UpperCAmelCase : int = _re_single_line_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCAmelCase ) > 0: _UpperCAmelCase : Optional[Any] = objects else: line_index += 1 return backend_specific_objects def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase ) else: return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase=None ): if backend_specific_objects is None: _UpperCAmelCase : int = read_init() # For special correspondence backend to module name as used in the function requires_modulename _UpperCAmelCase : Union[str, Any] = {} for backend, objects in backend_specific_objects.items(): _UpperCAmelCase : Optional[int] = "[" + ", ".join(F"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]" _UpperCAmelCase : Dict = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] ) _UpperCAmelCase : Optional[Any] = dummy_file return dummy_files def __lowerCAmelCase (__lowerCAmelCase=False ): _UpperCAmelCase : List[str] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _UpperCAmelCase : Union[str, Any] = {"torch": "pt"} # Locate actual dummy modules and read their content. _UpperCAmelCase : List[str] = os.path.join(__lowerCAmelCase , "utils" ) _UpperCAmelCase : List[Any] = { backend: os.path.join(__lowerCAmelCase , F"""dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py""" ) for backend in dummy_files.keys() } _UpperCAmelCase : Union[str, Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCAmelCase : List[str] = f.read() else: _UpperCAmelCase : List[str] = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main """ "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"""diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` """ "to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCamelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' import os from pathlib import Path def __lowerCAmelCase (): from torch.utils.cpp_extension import load _UpperCAmelCase : Tuple = Path(__lowerCAmelCase ).resolve().parent.parent.parent / "kernels" / "deformable_detr" _UpperCAmelCase : Optional[Any] = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
322
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Dict = "timesformer" def __init__( self : int , lowerCamelCase__ : List[Any]=2_24 , lowerCamelCase__ : List[str]=16 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Dict=8 , lowerCamelCase__ : Optional[int]=7_68 , lowerCamelCase__ : Optional[Any]=12 , lowerCamelCase__ : List[Any]=12 , lowerCamelCase__ : Tuple=30_72 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : str=0.0 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : Tuple=0.0_2 , lowerCamelCase__ : int=1E-6 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : List[Any]="divided_space_time" , lowerCamelCase__ : Optional[int]=0 , **lowerCamelCase__ : int , ) ->Any: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Dict = image_size _UpperCAmelCase : Any = patch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Union[str, Any] = num_frames _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : List[str] = qkv_bias _UpperCAmelCase : str = attention_type _UpperCAmelCase : List[Any] = drop_path_rate
322
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Optional[Any] , lowerCamelCase__ : int=0.0_1 , lowerCamelCase__ : Optional[Any]=10_00 ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = p_stop _UpperCAmelCase : Any = max_length def __iter__( self : Optional[int] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : List[Any] = False while not stop and count < self.max_length: yield count count += 1 _UpperCAmelCase : Any = random.random() < self.p_stop class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : Union[str, Any]=True ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Any = [ BatchSamplerShard(lowerCamelCase__ , 2 , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) for i in range(2 ) ] _UpperCAmelCase : Optional[Any] = [list(lowerCamelCase__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowerCamelCase__ ) for shard in batch_sampler_shards] , [len(lowerCamelCase__ ) for e in expected] ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCAmelCase : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) # Check the shards when the dataset is very small. _UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Dict = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : List[str] = [[], []] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) _UpperCAmelCase : Tuple = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCAmelCase : Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) _UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCAmelCase : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) _UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) # Check the shards when the dataset is very small. _UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) _UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : List[str] = [[], []] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) _UpperCAmelCase : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) _UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) _UpperCAmelCase : int = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is very small. _UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) _UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) _UpperCAmelCase : Tuple = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is very small. _UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : int = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) _UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _UpperCAmelCase : str = [BatchSamplerShard(lowerCamelCase__ , 2 , lowerCamelCase__ , even_batches=lowerCamelCase__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : Optional[int]=2 , lowerCamelCase__ : Union[str, Any]=False ) ->Optional[int]: '''simple docstring''' random.seed(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = list(lowerCamelCase__ ) _UpperCAmelCase : str = [ IterableDatasetShard( lowerCamelCase__ , batch_size=lowerCamelCase__ , drop_last=lowerCamelCase__ , num_processes=lowerCamelCase__ , process_index=lowerCamelCase__ , split_batches=lowerCamelCase__ , ) for i in range(lowerCamelCase__ ) ] _UpperCAmelCase : List[Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowerCamelCase__ ) iterable_dataset_lists.append(list(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _UpperCAmelCase : Tuple = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) self.assertTrue(len(lowerCamelCase__ ) % shard_batch_size == 0 ) _UpperCAmelCase : Optional[Any] = [] for idx in range(0 , len(lowerCamelCase__ ) , lowerCamelCase__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowerCamelCase__ ) < len(lowerCamelCase__ ): reference += reference self.assertListEqual(lowerCamelCase__ , reference[: len(lowerCamelCase__ )] ) def lowerCAmelCase__ ( self : List[str] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = 42 _UpperCAmelCase : Optional[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) # Edge case with a very small dataset _UpperCAmelCase : Dict = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowerCamelCase__ ) _UpperCAmelCase : Tuple = SkipBatchSampler(lowerCamelCase__ , 2 ) self.assertListEqual(list(lowerCamelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCAmelCase__ ( self : str ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = DataLoader(list(range(16 ) ) , batch_size=4 ) _UpperCAmelCase : Any = skip_first_batches(lowerCamelCase__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCAmelCase__ ( self : List[str] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(lowerCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' Accelerator() _UpperCAmelCase : int = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(lowerCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
322
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
1
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
1
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowerCAmelCase__ ( UpperCAmelCase__ ): # to overwrite at feature extractactor specific tests lowerCAmelCase : Optional[Any] = None lowerCAmelCase : List[str] = None @property def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def lowerCAmelCase__ ( self : Dict ) ->Tuple: '''simple docstring''' _UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase__ , "feature_size" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "sampling_rate" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "padding_value" ) ) def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() _UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_dict ) _UpperCAmelCase : Optional[Any] = feat_extract.model_input_names[0] _UpperCAmelCase : int = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase__ ) == len(lowerCamelCase__ ) for x, y in zip(lowerCamelCase__ , processed_features[input_name] ) ) ) _UpperCAmelCase : List[str] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase__ ) _UpperCAmelCase : int = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) _UpperCAmelCase : Any = processed_features[input_name] if len(batch_features_input.shape ) < 3: _UpperCAmelCase : List[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def lowerCAmelCase__ ( self : int ) ->Dict: '''simple docstring''' _UpperCAmelCase : Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase__ ) _UpperCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict ) _UpperCAmelCase : Union[str, Any] = feat_extract.model_input_names[0] _UpperCAmelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) _UpperCAmelCase : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: _UpperCAmelCase : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def lowerCAmelCase__ ( self : str ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase__ ) _UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_dict ) _UpperCAmelCase : Optional[Any] = feat_extract.model_input_names[0] _UpperCAmelCase : Dict = BatchFeature({input_name: speech_inputs} , tensor_type="tf" ) _UpperCAmelCase : Tuple = processed_features[input_name] if len(batch_features_input.shape ) < 3: _UpperCAmelCase : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : str=False ) ->Optional[Any]: '''simple docstring''' def _inputs_have_equal_length(lowerCamelCase__ : int ): _UpperCAmelCase : Optional[int] = len(input[0] ) for input_slice in input[1:]: if len(lowerCamelCase__ ) != length: return False return True def _inputs_are_equal(lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ): if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): return False for input_slice_a, input_slice_a in zip(lowerCamelCase__ , lowerCamelCase__ ): if not np.allclose(np.asarray(lowerCamelCase__ ) , np.asarray(lowerCamelCase__ ) , atol=1E-3 ): return False return True _UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) _UpperCAmelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCamelCase__ ) _UpperCAmelCase : Any = feat_extract.model_input_names[0] _UpperCAmelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) _UpperCAmelCase : List[str] = self.feat_extract_tester.seq_length_diff _UpperCAmelCase : Optional[int] = self.feat_extract_tester.max_seq_length + pad_diff _UpperCAmelCase : Union[str, Any] = self.feat_extract_tester.min_seq_length _UpperCAmelCase : str = self.feat_extract_tester.batch_size _UpperCAmelCase : str = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _UpperCAmelCase : Optional[Any] = feat_extract.pad(lowerCamelCase__ , padding=lowerCamelCase__ ) _UpperCAmelCase : int = input_a[input_name] _UpperCAmelCase : Tuple = feat_extract.pad(lowerCamelCase__ , padding="longest" ) _UpperCAmelCase : Any = input_a[input_name] _UpperCAmelCase : Any = feat_extract.pad(lowerCamelCase__ , padding="max_length" , max_length=len(speech_inputs[-1] ) ) _UpperCAmelCase : List[Any] = input_a[input_name] _UpperCAmelCase : List[str] = feat_extract.pad(lowerCamelCase__ , padding="longest" , return_tensors="np" ) _UpperCAmelCase : Any = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCamelCase__ ): feat_extract.pad(lowerCamelCase__ , padding="max_length" )[input_name] _UpperCAmelCase : Any = feat_extract.pad( lowerCamelCase__ , padding="max_length" , max_length=lowerCamelCase__ , return_tensors="np" ) _UpperCAmelCase : Dict = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _UpperCAmelCase : Dict = feat_extract.pad(lowerCamelCase__ , pad_to_multiple_of=10 ) _UpperCAmelCase : List[Any] = input_a[input_name] _UpperCAmelCase : Tuple = feat_extract.pad(lowerCamelCase__ , padding="longest" , pad_to_multiple_of=10 ) _UpperCAmelCase : Any = input_a[input_name] _UpperCAmelCase : Union[str, Any] = feat_extract.pad( lowerCamelCase__ , padding="max_length" , pad_to_multiple_of=10 , max_length=lowerCamelCase__ ) _UpperCAmelCase : int = input_a[input_name] _UpperCAmelCase : str = feat_extract.pad( lowerCamelCase__ , padding="max_length" , pad_to_multiple_of=10 , max_length=lowerCamelCase__ , return_tensors="np" , ) _UpperCAmelCase : Dict = input_a[input_name] self.assertTrue(all(len(lowerCamelCase__ ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase__ , lowerCamelCase__ ) ) _UpperCAmelCase : Dict = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCamelCase__ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _UpperCAmelCase : Dict = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Any=False ) ->Optional[Any]: '''simple docstring''' def _inputs_have_equal_length(lowerCamelCase__ : Optional[int] ): _UpperCAmelCase : Optional[Any] = len(input[0] ) for input_slice in input[1:]: if len(lowerCamelCase__ ) != length: return False return True def _inputs_are_equal(lowerCamelCase__ : Tuple , lowerCamelCase__ : str ): if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): return False for input_slice_a, input_slice_a in zip(lowerCamelCase__ , lowerCamelCase__ ): if not np.allclose(np.asarray(lowerCamelCase__ ) , np.asarray(lowerCamelCase__ ) , atol=1E-3 ): return False return True _UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_dict ) _UpperCAmelCase : Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCamelCase__ ) _UpperCAmelCase : Tuple = feat_extract.model_input_names[0] _UpperCAmelCase : Any = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _UpperCAmelCase : Tuple = feat_extract.pad( lowerCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = input_a[input_name] _UpperCAmelCase : str = feat_extract.pad(lowerCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0] ) ) _UpperCAmelCase : Optional[int] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertFalse(_inputs_have_equal_length(lowerCamelCase__ ) ) # truncate to smallest with np _UpperCAmelCase : List[str] = feat_extract.pad( lowerCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=lowerCamelCase__ , ) _UpperCAmelCase : Any = input_a[input_name] _UpperCAmelCase : List[Any] = feat_extract.pad( lowerCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" ) _UpperCAmelCase : List[Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCamelCase__ ) ) # truncate to middle _UpperCAmelCase : Any = feat_extract.pad( lowerCamelCase__ , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=lowerCamelCase__ , return_tensors="np" , ) _UpperCAmelCase : Any = input_a[input_name] _UpperCAmelCase : List[Any] = feat_extract.pad( lowerCamelCase__ , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=lowerCamelCase__ ) _UpperCAmelCase : List[str] = input_a[input_name] _UpperCAmelCase : Union[str, Any] = feat_extract.pad( lowerCamelCase__ , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" ) _UpperCAmelCase : Optional[int] = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase__ , lowerCamelCase__ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase__ ): feat_extract.pad(lowerCamelCase__ , truncation=lowerCamelCase__ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase__ ): feat_extract.pad(lowerCamelCase__ , padding="longest" , truncation=lowerCamelCase__ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase__ ): feat_extract.pad(lowerCamelCase__ , padding="longest" , truncation=lowerCamelCase__ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCamelCase__ ): feat_extract.pad(lowerCamelCase__ , padding="max_length" , truncation=lowerCamelCase__ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _UpperCAmelCase : Any = 12 _UpperCAmelCase : Dict = feat_extract.pad( lowerCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCamelCase__ , truncation=lowerCamelCase__ , ) _UpperCAmelCase : Optional[int] = input_a[input_name] _UpperCAmelCase : Optional[Any] = feat_extract.pad( lowerCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCamelCase__ , ) _UpperCAmelCase : int = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _UpperCAmelCase : Dict = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _UpperCAmelCase : Any = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertFalse(_inputs_have_equal_length(lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Any: '''simple docstring''' self._check_padding(numpify=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' self._check_padding(numpify=lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->int: '''simple docstring''' self._check_truncation(numpify=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' self._check_truncation(numpify=lowerCamelCase__ ) @require_torch def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) _UpperCAmelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() _UpperCAmelCase : Tuple = feat_extract.model_input_names[0] _UpperCAmelCase : List[Any] = BatchFeature({input_name: speech_inputs} ) _UpperCAmelCase : int = feat_extract.pad(lowerCamelCase__ , padding="longest" , return_tensors="np" )[input_name] _UpperCAmelCase : Dict = feat_extract.pad(lowerCamelCase__ , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def lowerCAmelCase__ ( self : int ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) _UpperCAmelCase : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common() _UpperCAmelCase : Any = feat_extract.model_input_names[0] _UpperCAmelCase : Tuple = BatchFeature({input_name: speech_inputs} ) _UpperCAmelCase : Optional[int] = feat_extract.pad(lowerCamelCase__ , padding="longest" , return_tensors="np" )[input_name] _UpperCAmelCase : Union[str, Any] = feat_extract.pad(lowerCamelCase__ , padding="longest" , return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Any = self.feat_extract_dict _UpperCAmelCase : List[Any] = True _UpperCAmelCase : Any = self.feature_extraction_class(**lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() _UpperCAmelCase : Dict = [len(lowerCamelCase__ ) for x in speech_inputs] _UpperCAmelCase : int = feat_extract.model_input_names[0] _UpperCAmelCase : Any = BatchFeature({input_name: speech_inputs} ) _UpperCAmelCase : Dict = feat_extract.pad(lowerCamelCase__ , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.feat_extract_dict _UpperCAmelCase : Dict = True _UpperCAmelCase : List[Any] = self.feature_extraction_class(**lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() _UpperCAmelCase : List[Any] = [len(lowerCamelCase__ ) for x in speech_inputs] _UpperCAmelCase : List[str] = feat_extract.model_input_names[0] _UpperCAmelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) _UpperCAmelCase : List[str] = min(lowerCamelCase__ ) _UpperCAmelCase : Tuple = feat_extract.pad( lowerCamelCase__ , padding="max_length" , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
322
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
1
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = (KDPMaDiscreteScheduler,) lowerCAmelCase : Optional[int] = 10 def lowerCAmelCase__ ( self : Optional[int] , **lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = { "num_train_timesteps": 11_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**lowerCamelCase__ ) return config def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict ) ->str: '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict ) ->Tuple: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Tuple = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : Dict = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Optional[int] = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Any = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1E-3 def lowerCAmelCase__ ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' if torch_device == "mps": return _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : Any = self.get_scheduler_config() _UpperCAmelCase : Any = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : str = model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : str = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : Any = torch.sum(torch.abs(lowerCamelCase__ ) ) _UpperCAmelCase : List[str] = torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' if torch_device == "mps": return _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config() _UpperCAmelCase : Any = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase__ ) _UpperCAmelCase : Tuple = self.dummy_model() _UpperCAmelCase : Dict = self.dummy_sample_deter.to(lowerCamelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCAmelCase : Optional[int] = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Any = model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Tuple = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCamelCase__ ) ) if str(lowerCamelCase__ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3
322
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
1
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : float ) ->float: '''simple docstring''' return 0.0 def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _UpperCAmelCase : str = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = 512 _UpperCAmelCase : str = [1] + [0] * (size - 1) _UpperCAmelCase : int = [filter_type.process(__lowerCAmelCase ) for item in inputs] _UpperCAmelCase : int = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase : Any = np.abs(np.fft.fft(__lowerCAmelCase ) ) _UpperCAmelCase : Any = 20 * np.logaa(__lowerCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds _UpperCAmelCase : Tuple = get_bounds(__lowerCAmelCase , __lowerCAmelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCAmelCase ) plt.show() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = 512 _UpperCAmelCase : Union[str, Any] = [1] + [0] * (size - 1) _UpperCAmelCase : Union[str, Any] = [filter_type.process(__lowerCAmelCase ) for item in inputs] _UpperCAmelCase : Tuple = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase : List[Any] = np.angle(np.fft.fft(__lowerCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCAmelCase , -2 * pi ) ) plt.show()
322
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger('transformers.models.speecht5') def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): hf_model.apply_weight_norm() _UpperCAmelCase : List[str] = checkpoint["input_conv.weight_g"] _UpperCAmelCase : Optional[int] = checkpoint["input_conv.weight_v"] _UpperCAmelCase : Union[str, Any] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): _UpperCAmelCase : Tuple = checkpoint[F"""upsamples.{i}.1.weight_g"""] _UpperCAmelCase : Tuple = checkpoint[F"""upsamples.{i}.1.weight_v"""] _UpperCAmelCase : int = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _UpperCAmelCase : List[Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] _UpperCAmelCase : int = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] _UpperCAmelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] _UpperCAmelCase : Any = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] _UpperCAmelCase : int = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] _UpperCAmelCase : str = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] _UpperCAmelCase : Optional[Any] = checkpoint["output_conv.1.weight_g"] _UpperCAmelCase : Any = checkpoint["output_conv.1.weight_v"] _UpperCAmelCase : List[str] = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ): if config_path is not None: _UpperCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(__lowerCAmelCase ) else: _UpperCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() _UpperCAmelCase : Dict = SpeechTaHifiGan(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = torch.load(__lowerCAmelCase ) load_weights(orig_checkpoint["model"]["generator"] , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Any = np.load(__lowerCAmelCase ) _UpperCAmelCase : Dict = stats[0].reshape(-1 ) _UpperCAmelCase : str = stats[1].reshape(-1 ) _UpperCAmelCase : str = torch.from_numpy(__lowerCAmelCase ).float() _UpperCAmelCase : Dict = torch.from_numpy(__lowerCAmelCase ).float() model.save_pretrained(__lowerCAmelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowerCamelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
322
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
1
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase__ : def __init__( self : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase : List[Any] = {} def lowerCAmelCase__ ( self : int , lowerCamelCase__ : str ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = {} def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : float ) ->None: '''simple docstring''' if nodea not in self.connections: self.add_node(lowerCamelCase__ ) if nodea not in self.connections: self.add_node(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = probability def lowerCAmelCase__ ( self : Union[str, Any] ) ->list[str]: '''simple docstring''' return list(self.connections ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : str ) ->str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Optional[Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : List[Any] = Counter(graph.get_nodes() ) _UpperCAmelCase : Dict = start for _ in range(__lowerCAmelCase ): _UpperCAmelCase : Any = graph.transition(__lowerCAmelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
1
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): def update_area_of_max_square(__lowerCAmelCase , __lowerCAmelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _UpperCAmelCase : Optional[Any] = update_area_of_max_square(__lowerCAmelCase , col + 1 ) _UpperCAmelCase : Union[str, Any] = update_area_of_max_square(row + 1 , col + 1 ) _UpperCAmelCase : str = update_area_of_max_square(row + 1 , __lowerCAmelCase ) if mat[row][col]: _UpperCAmelCase : str = 1 + min([right, diagonal, down] ) _UpperCAmelCase : Dict = max(largest_square_area[0] , __lowerCAmelCase ) return sub_problem_sol else: return 0 _UpperCAmelCase : Union[str, Any] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): def update_area_of_max_square_using_dp_array( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _UpperCAmelCase : str = update_area_of_max_square_using_dp_array(__lowerCAmelCase , col + 1 , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , __lowerCAmelCase ) _UpperCAmelCase : Any = update_area_of_max_square_using_dp_array(row + 1 , __lowerCAmelCase , __lowerCAmelCase ) if mat[row][col]: _UpperCAmelCase : Any = 1 + min([right, diagonal, down] ) _UpperCAmelCase : List[str] = max(largest_square_area[0] , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = sub_problem_sol return sub_problem_sol else: return 0 _UpperCAmelCase : Optional[Any] = [0] _UpperCAmelCase : Union[str, Any] = [[-1] * cols for _ in range(__lowerCAmelCase )] update_area_of_max_square_using_dp_array(0 , 0 , __lowerCAmelCase ) return largest_square_area[0] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [[0] * (cols + 1) for _ in range(rows + 1 )] _UpperCAmelCase : Dict = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _UpperCAmelCase : Union[str, Any] = dp_array[row][col + 1] _UpperCAmelCase : str = dp_array[row + 1][col + 1] _UpperCAmelCase : List[Any] = dp_array[row + 1][col] if mat[row][col] == 1: _UpperCAmelCase : Tuple = 1 + min(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : List[str] = max(dp_array[row][col] , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[Any] = 0 return largest_square_area def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = [0] * (cols + 1) _UpperCAmelCase : Optional[Any] = [0] * (cols + 1) _UpperCAmelCase : str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _UpperCAmelCase : List[Any] = current_row[col + 1] _UpperCAmelCase : Union[str, Any] = next_row[col + 1] _UpperCAmelCase : List[str] = next_row[col] if mat[row][col] == 1: _UpperCAmelCase : Any = 1 + min(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : int = max(current_row[col] , __lowerCAmelCase ) else: _UpperCAmelCase : str = 0 _UpperCAmelCase : Optional[Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Dict = "autoformer" lowerCAmelCase : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Optional[Any] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : str = "student_t" , lowerCamelCase__ : str = "nll" , lowerCamelCase__ : int = 1 , lowerCamelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCamelCase__ : bool = True , lowerCamelCase__ : int = 0 , lowerCamelCase__ : int = 0 , lowerCamelCase__ : int = 0 , lowerCamelCase__ : int = 0 , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : int = 64 , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 32 , lowerCamelCase__ : int = 32 , lowerCamelCase__ : str = "gelu" , lowerCamelCase__ : float = 0.1 , lowerCamelCase__ : float = 0.1 , lowerCamelCase__ : float = 0.1 , lowerCamelCase__ : float = 0.1 , lowerCamelCase__ : float = 0.1 , lowerCamelCase__ : int = 1_00 , lowerCamelCase__ : float = 0.0_2 , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : int = 10 , lowerCamelCase__ : int = 25 , lowerCamelCase__ : int = 3 , **lowerCamelCase__ : Union[str, Any] , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = prediction_length _UpperCAmelCase : List[str] = context_length if context_length is not None else prediction_length _UpperCAmelCase : str = distribution_output _UpperCAmelCase : Tuple = loss _UpperCAmelCase : List[str] = input_size _UpperCAmelCase : str = num_time_features _UpperCAmelCase : Tuple = lags_sequence _UpperCAmelCase : Tuple = scaling _UpperCAmelCase : Optional[Any] = num_dynamic_real_features _UpperCAmelCase : Optional[int] = num_static_real_features _UpperCAmelCase : Dict = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowerCamelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[str] = cardinality else: _UpperCAmelCase : str = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowerCamelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : Optional[int] = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Tuple = decoder_attention_heads _UpperCAmelCase : Any = encoder_ffn_dim _UpperCAmelCase : int = decoder_ffn_dim _UpperCAmelCase : int = encoder_layers _UpperCAmelCase : Optional[Any] = decoder_layers _UpperCAmelCase : List[str] = dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : List[str] = activation_dropout _UpperCAmelCase : Optional[Any] = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Union[str, Any] = init_std _UpperCAmelCase : Optional[Any] = use_cache # Autoformer _UpperCAmelCase : int = label_length _UpperCAmelCase : Optional[Any] = moving_average _UpperCAmelCase : Dict = autocorrelation_factor super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def lowerCAmelCase__ ( self : List[str] ) ->int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
322
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
1
'''simple docstring''' import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = '▁' lowerCamelCase__ = {'vocab_file': 'prophetnet.tokenizer'} lowerCamelCase__ = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } lowerCamelCase__ = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } lowerCamelCase__ = { 'microsoft/xprophetnet-large-wiki100-cased': 512, } def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Any = collections.OrderedDict() with open(__lowerCAmelCase , "r" , encoding="utf-8" ) as reader: _UpperCAmelCase : Any = reader.readlines() for index, token in enumerate(__lowerCAmelCase ): _UpperCAmelCase : str = token.rstrip("\n" ) _UpperCAmelCase : Any = index return vocab class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = VOCAB_FILES_NAMES lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Tuple = ["input_ids", "attention_mask"] def __init__( self : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int]="[SEP]" , lowerCamelCase__ : Dict="[SEP]" , lowerCamelCase__ : List[str]="[SEP]" , lowerCamelCase__ : List[Any]="[UNK]" , lowerCamelCase__ : Optional[int]="[PAD]" , lowerCamelCase__ : List[str]="[CLS]" , lowerCamelCase__ : int="[MASK]" , lowerCamelCase__ : Optional[Dict[str, Any]] = None , **lowerCamelCase__ : int , ) ->None: '''simple docstring''' _UpperCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise _UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab _UpperCAmelCase : List[str] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): _UpperCAmelCase : List[Any] = F"""[unused{i}]""" _UpperCAmelCase : Union[str, Any] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab _UpperCAmelCase : Tuple = 12 _UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(lowerCamelCase__ ) def __getstate__( self : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = self.__dict__.copy() _UpperCAmelCase : int = None return state def __setstate__( self : List[Any] , lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : Any = {} _UpperCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return ([0] * len(lowerCamelCase__ )) + [1] return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def lowerCAmelCase__ ( self : str , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Tuple = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self : Any ) ->Optional[int]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def lowerCAmelCase__ ( self : Any ) ->Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self : int , lowerCamelCase__ : str ) ->str: '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase : str = self.sp_model.PieceToId(lowerCamelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : int ) ->List[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = "".join(lowerCamelCase__ ).replace(lowerCamelCase__ , " " ).strip() return out_string def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Union[str, Any] = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , "wb" ) as fi: _UpperCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] _UpperCAmelCase : Any = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
322
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class lowerCAmelCase__ : def __init__( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any]=3 , lowerCamelCase__ : Any=7 , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : Tuple=99 , lowerCamelCase__ : Any=32 , lowerCamelCase__ : Any=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Dict=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : Optional[Any]=0.1 , lowerCamelCase__ : Dict=5_12 , lowerCamelCase__ : List[str]=16 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Tuple=0.0_2 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : str=None , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Any = parent _UpperCAmelCase : List[str] = batch_size _UpperCAmelCase : Any = seq_length _UpperCAmelCase : Optional[Any] = is_training _UpperCAmelCase : Tuple = use_input_mask _UpperCAmelCase : int = use_token_type_ids _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : List[str] = type_vocab_size _UpperCAmelCase : Optional[int] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Union[str, Any] = num_labels _UpperCAmelCase : Optional[int] = num_choices _UpperCAmelCase : str = scope def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Tuple = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Tuple = None _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Tuple = None _UpperCAmelCase : Tuple = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowerCamelCase__ , ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : int = FalconModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) _UpperCAmelCase : str = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Dict = True _UpperCAmelCase : Union[str, Any] = FalconModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , ) _UpperCAmelCase : Optional[Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , ) _UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , ) ->Dict: '''simple docstring''' _UpperCAmelCase : Tuple = FalconForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict , ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : List[Any] = True _UpperCAmelCase : Any = FalconForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass _UpperCAmelCase : str = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ , ) _UpperCAmelCase : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _UpperCAmelCase : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) _UpperCAmelCase : Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["hidden_states"][0] _UpperCAmelCase : List[Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["hidden_states"][0] # select random slice _UpperCAmelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Optional[Any] = config_and_inputs _UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Dict = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase : int = (FalconForCausalLM,) if is_torch_available() else () lowerCAmelCase : str = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : int = FalconModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def lowerCAmelCase__ ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase , *_UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: _UpperCAmelCase : Optional[Any] = alibi self.model_tester.create_and_check_model(lowerCamelCase__ , *lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Optional[int] = 3 _UpperCAmelCase : Any = input_dict["input_ids"] _UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(lowerCamelCase__ ) _UpperCAmelCase : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase : Tuple = FalconForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : Tuple = "single_label_classification" _UpperCAmelCase : Any = input_dict["input_ids"] _UpperCAmelCase : Dict = input_ids.ne(1 ).to(lowerCamelCase__ ) _UpperCAmelCase : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase : List[Any] = FalconForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self : int ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Optional[int] = input_dict["input_ids"] _UpperCAmelCase : Dict = FalconForCausalLM(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ , use_cache=lowerCamelCase__ ) _UpperCAmelCase : int = input_ids.shape[0] _UpperCAmelCase : Tuple = model._convert_to_rw_cache(result.past_key_values ) _UpperCAmelCase : int = model._convert_cache_to_standard_format(lowerCamelCase__ , lowerCamelCase__ ) for layer in range(len(lowerCamelCase__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowerCAmelCase__ ( self : str ) ->Dict: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Union[str, Any] = 3 _UpperCAmelCase : List[str] = "multi_label_classification" _UpperCAmelCase : List[str] = input_dict["input_ids"] _UpperCAmelCase : Any = input_ids.ne(1 ).to(lowerCamelCase__ ) _UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase : List[Any] = FalconForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : int = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' for model_class in self.all_generative_model_classes: _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowerCamelCase__ , "use_cache" ): return _UpperCAmelCase : int = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) if "use_cache" not in inputs: _UpperCAmelCase : str = True _UpperCAmelCase : List[Any] = model(**lowerCamelCase__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return _UpperCAmelCase : int = ( getattr(lowerCamelCase__ , "decoder_layers" , lowerCamelCase__ ) or getattr(lowerCamelCase__ , "num_decoder_layers" , lowerCamelCase__ ) or config.num_hidden_layers ) _UpperCAmelCase : Optional[Any] = getattr(lowerCamelCase__ , "num_kv_heads" , config.num_attention_heads ) _UpperCAmelCase : Union[str, Any] = getattr(lowerCamelCase__ , "d_model" , config.hidden_size ) _UpperCAmelCase : Tuple = embed_dim // num_attention_heads _UpperCAmelCase : Optional[Any] = outputs["past_key_values"] self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = inputs["input_ids"].shape for i in range(lowerCamelCase__ ): if config.new_decoder_architecture: _UpperCAmelCase : Tuple = config.num_attention_heads elif config.multi_query: _UpperCAmelCase : List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : int ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) _UpperCAmelCase : List[Any] = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(lowerCamelCase__ ) _UpperCAmelCase : Tuple = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) _UpperCAmelCase : Dict = model.generate(**lowerCamelCase__ , do_sample=lowerCamelCase__ , max_new_tokens=19 ) _UpperCAmelCase : int = tokenizer.batch_decode(lowerCamelCase__ )[0] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: _UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = FalconForCausalLM.from_pretrained(lowerCamelCase__ ) model.eval() model.to(lowerCamelCase__ ) _UpperCAmelCase : List[str] = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCamelCase__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowerCamelCase__ , do_sample=lowerCamelCase__ , max_new_tokens=4 ) model.generate(**lowerCamelCase__ , do_sample=lowerCamelCase__ , max_new_tokens=4 ) model.generate(**lowerCamelCase__ , num_beams=2 , max_new_tokens=4 ) @slow def lowerCAmelCase__ ( self : List[str] ) ->str: '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: _UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCAmelCase : List[str] = FalconForCausalLM.from_pretrained(lowerCamelCase__ ) model.eval() model.to(device=lowerCamelCase__ ) _UpperCAmelCase : Tuple = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCamelCase__ ) # Test results are the same with and without cache _UpperCAmelCase : int = model.generate(**lowerCamelCase__ , do_sample=lowerCamelCase__ , max_new_tokens=20 , use_cache=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = model.generate(**lowerCamelCase__ , do_sample=lowerCamelCase__ , max_new_tokens=20 , use_cache=lowerCamelCase__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
322
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
1
'''simple docstring''' import numpy as np def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = int(np.ceil((x_end - xa) / h ) ) _UpperCAmelCase : Tuple = np.zeros((n + 1,) ) _UpperCAmelCase : List[str] = ya _UpperCAmelCase : Union[str, Any] = xa for k in range(__lowerCAmelCase ): _UpperCAmelCase : str = f(__lowerCAmelCase , y[k] ) _UpperCAmelCase : Union[str, Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCAmelCase : str = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCAmelCase : str = f(x + h , y[k] + h * ka ) _UpperCAmelCase : int = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[int] = "wav2vec2" def __init__( self : Any , lowerCamelCase__ : Dict=32 , lowerCamelCase__ : Optional[int]=7_68 , lowerCamelCase__ : List[str]=12 , lowerCamelCase__ : int=12 , lowerCamelCase__ : List[str]=30_72 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : str=0.1 , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : int=0.0_2 , lowerCamelCase__ : Optional[int]=1E-5 , lowerCamelCase__ : Optional[int]="group" , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : List[Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCamelCase__ : Any=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase__ : int=(10, 3, 3, 3, 3, 2, 2) , lowerCamelCase__ : Any=False , lowerCamelCase__ : List[Any]=1_28 , lowerCamelCase__ : Any=16 , lowerCamelCase__ : Dict=False , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Optional[int]=0.0_5 , lowerCamelCase__ : Optional[int]=10 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Optional[Any]=10 , lowerCamelCase__ : List[Any]=0 , lowerCamelCase__ : Dict=3_20 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : str=0.1 , lowerCamelCase__ : Optional[Any]=1_00 , lowerCamelCase__ : str=2_56 , lowerCamelCase__ : Tuple=2_56 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : int="sum" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : str=2_56 , lowerCamelCase__ : Any=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCamelCase__ : Tuple=(5, 3, 3, 1, 1) , lowerCamelCase__ : int=(1, 2, 3, 1, 1) , lowerCamelCase__ : Optional[Any]=5_12 , lowerCamelCase__ : List[str]=0 , lowerCamelCase__ : Optional[int]=1 , lowerCamelCase__ : Any=2 , lowerCamelCase__ : str=False , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : int=2 , lowerCamelCase__ : Any=3 , lowerCamelCase__ : Any=None , lowerCamelCase__ : Tuple=None , **lowerCamelCase__ : List[str] , ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Optional[int] = feat_extract_norm _UpperCAmelCase : Optional[int] = feat_extract_activation _UpperCAmelCase : Optional[int] = list(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(lowerCamelCase__ ) _UpperCAmelCase : Tuple = list(lowerCamelCase__ ) _UpperCAmelCase : Tuple = conv_bias _UpperCAmelCase : str = num_conv_pos_embeddings _UpperCAmelCase : Tuple = num_conv_pos_embedding_groups _UpperCAmelCase : Tuple = len(self.conv_dim ) _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : Union[str, Any] = hidden_dropout _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : int = activation_dropout _UpperCAmelCase : Tuple = feat_proj_dropout _UpperCAmelCase : Tuple = final_dropout _UpperCAmelCase : Tuple = layerdrop _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Dict = do_stable_layer_norm _UpperCAmelCase : Optional[int] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCAmelCase : List[str] = apply_spec_augment _UpperCAmelCase : Tuple = mask_time_prob _UpperCAmelCase : List[str] = mask_time_length _UpperCAmelCase : Union[str, Any] = mask_time_min_masks _UpperCAmelCase : Any = mask_feature_prob _UpperCAmelCase : Union[str, Any] = mask_feature_length _UpperCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _UpperCAmelCase : Optional[int] = num_codevectors_per_group _UpperCAmelCase : Optional[int] = num_codevector_groups _UpperCAmelCase : Tuple = contrastive_logits_temperature _UpperCAmelCase : Dict = feat_quantizer_dropout _UpperCAmelCase : str = num_negatives _UpperCAmelCase : Tuple = codevector_dim _UpperCAmelCase : Dict = proj_codevector_dim _UpperCAmelCase : Any = diversity_loss_weight # ctc loss _UpperCAmelCase : Dict = ctc_loss_reduction _UpperCAmelCase : Dict = ctc_zero_infinity # adapter _UpperCAmelCase : Tuple = add_adapter _UpperCAmelCase : List[Any] = adapter_kernel_size _UpperCAmelCase : Optional[Any] = adapter_stride _UpperCAmelCase : List[str] = num_adapter_layers _UpperCAmelCase : List[Any] = output_hidden_size or hidden_size _UpperCAmelCase : Optional[Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCAmelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCAmelCase : Any = list(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = list(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = list(lowerCamelCase__ ) _UpperCAmelCase : List[str] = xvector_output_dim @property def lowerCAmelCase__ ( self : Dict ) ->List[str]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
1
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase__ : def __init__( self : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any=13 , lowerCamelCase__ : int=32 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Tuple=16 , lowerCamelCase__ : List[Any]=[1, 2, 1] , lowerCamelCase__ : Tuple=[2, 2, 4] , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : int=2.0 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : str=0.1 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=0.0_2 , lowerCamelCase__ : Tuple=1E-5 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=10 , lowerCamelCase__ : Optional[Any]=8 , lowerCamelCase__ : Tuple=["stage1", "stage2", "stage3"] , lowerCamelCase__ : Dict=[1, 2, 3] , ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Dict = image_size _UpperCAmelCase : Optional[int] = patch_size _UpperCAmelCase : Union[str, Any] = num_channels _UpperCAmelCase : int = embed_dim _UpperCAmelCase : Tuple = depths _UpperCAmelCase : int = num_heads _UpperCAmelCase : Union[str, Any] = window_size _UpperCAmelCase : Tuple = mlp_ratio _UpperCAmelCase : List[Any] = qkv_bias _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = drop_path_rate _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Union[str, Any] = use_absolute_embeddings _UpperCAmelCase : Union[str, Any] = patch_norm _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : str = is_training _UpperCAmelCase : Optional[int] = scope _UpperCAmelCase : Any = use_labels _UpperCAmelCase : Union[str, Any] = type_sequence_label_size _UpperCAmelCase : List[str] = encoder_stride _UpperCAmelCase : List[Any] = out_features _UpperCAmelCase : int = out_indices def lowerCAmelCase__ ( self : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : str = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : int = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : Optional[Any] ) ->str: '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = MaskFormerSwinModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase : Optional[int] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = MaskFormerSwinBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(lowerCamelCase__ ): _UpperCAmelCase : Optional[int] = ["stem"] _UpperCAmelCase : Any = MaskFormerSwinBackbone(config=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : str = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = config_and_inputs _UpperCAmelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : int = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCAmelCase : Dict = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Optional[int] = False lowerCAmelCase : Optional[int] = False lowerCAmelCase : List[Any] = False def lowerCAmelCase__ ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = MaskFormerSwinModelTester(self ) _UpperCAmelCase : Any = ConfigTester(self , config_class=lowerCamelCase__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def lowerCAmelCase__ ( self : List[Any] ) ->Optional[int]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Dict ) ->Union[str, Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self : Optional[Any] ) ->Any: '''simple docstring''' return def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) @unittest.skip("Swin does not use inputs_embeds" ) def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' pass @unittest.skip("Swin does not support feedforward chunking" ) def lowerCAmelCase__ ( self : Tuple ) ->List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Tuple = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Any = [*signature.parameters.keys()] _UpperCAmelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def lowerCAmelCase__ ( self : List[str] ) ->Tuple: '''simple docstring''' pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int ) ->Dict: '''simple docstring''' _UpperCAmelCase : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _UpperCAmelCase : str = outputs.hidden_states _UpperCAmelCase : List[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # Swin has a different seq_length _UpperCAmelCase : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase : str = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase : Any = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Dict = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def lowerCAmelCase__ ( self : Dict ) ->Tuple: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def lowerCAmelCase__ ( self : str ) ->Tuple: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def lowerCAmelCase__ ( self : Dict ) ->Optional[int]: '''simple docstring''' pass def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCamelCase__ : Optional[int] ): _UpperCAmelCase : str = 0 return t def check_equivalence(lowerCamelCase__ : str , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict , lowerCamelCase__ : int={} ): with torch.no_grad(): _UpperCAmelCase : str = model(**lowerCamelCase__ , return_dict=lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Tuple = model(**lowerCamelCase__ , return_dict=lowerCamelCase__ , **lowerCamelCase__ ).to_tuple() def recursive_check(lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any] ): if isinstance(lowerCamelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCamelCase__ , lowerCamelCase__ ): recursive_check(lowerCamelCase__ , lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(lowerCamelCase__ , lowerCamelCase__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCamelCase__ ) , set_nan_tensor_to_zero(lowerCamelCase__ ) , atol=1E-5 ) , msg=( "Tuple and dict output are not equal. Difference:" F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(lowerCamelCase__ ).any()} and `inf`: {torch.isinf(lowerCamelCase__ )}. Dict has""" F""" `nan`: {torch.isnan(lowerCamelCase__ ).any()} and `inf`: {torch.isinf(lowerCamelCase__ )}.""" ) , ) recursive_check(lowerCamelCase__ , lowerCamelCase__ ) for model_class in self.all_model_classes: _UpperCAmelCase : Dict = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : List[str] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[str] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) check_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Tuple = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : Tuple = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) check_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Dict = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) check_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , {"output_hidden_states": True} ) _UpperCAmelCase : str = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : List[str] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) check_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , {"output_hidden_states": True} ) @require_torch class lowerCAmelCase__ ( unittest.TestCase , UpperCAmelCase__ ): lowerCAmelCase : int = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCAmelCase : Dict = MaskFormerSwinConfig def lowerCAmelCase__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = MaskFormerSwinModelTester(self ) def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase : str = backbone_class(lowerCamelCase__ ) backbone.to(lowerCamelCase__ ) backbone.eval() _UpperCAmelCase : Tuple = backbone(**lowerCamelCase__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowerCamelCase__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase : Optional[Any] = backbone(**lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase : Tuple = backbone(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertIsNotNone(outputs.attentions )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Any = 1 _UpperCAmelCase : Dict = 2 while i * i <= n: _UpperCAmelCase : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __lowerCAmelCase (): _UpperCAmelCase : int = 1 _UpperCAmelCase : int = 1 while True: i += 1 t_num += i if count_divisors(__lowerCAmelCase ) > 500: break return t_num if __name__ == "__main__": print(solution())
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return x if y == 0 else greatest_common_divisor(__lowerCAmelCase , x % y ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return (x * y) // greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase = 20 ): _UpperCAmelCase : List[Any] = 1 for i in range(1 , n + 1 ): _UpperCAmelCase : Dict = lcm(__lowerCAmelCase , __lowerCAmelCase ) return g if __name__ == "__main__": print(F'''{solution() = }''')
322
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
1
'''simple docstring''' import datasets from .evaluate import evaluate lowerCamelCase__ = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' lowerCamelCase__ = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' lowerCamelCase__ = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} _UpperCAmelCase : Any = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] _UpperCAmelCase : Tuple = evaluate(dataset=lowerCamelCase__ , predictions=lowerCamelCase__ ) return score
322
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
1
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : str=7 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Any=False , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Dict=99 , lowerCamelCase__ : Tuple=0 , lowerCamelCase__ : Tuple=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : Optional[Any]=0.1 , lowerCamelCase__ : Tuple=5_12 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Tuple=4 , lowerCamelCase__ : List[Any]="last" , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Union[str, Any]=0 , ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : List[Any] = seq_length _UpperCAmelCase : List[str] = is_training _UpperCAmelCase : Dict = use_input_lengths _UpperCAmelCase : Any = use_token_type_ids _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : Union[str, Any] = gelu_activation _UpperCAmelCase : str = sinusoidal_embeddings _UpperCAmelCase : Optional[int] = causal _UpperCAmelCase : Dict = asm _UpperCAmelCase : str = n_langs _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : Tuple = n_special _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : int = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : int = num_labels _UpperCAmelCase : Union[str, Any] = num_choices _UpperCAmelCase : Tuple = summary_type _UpperCAmelCase : Any = use_proj _UpperCAmelCase : List[str] = scope _UpperCAmelCase : int = bos_token_id def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Any = None if self.use_input_lengths: _UpperCAmelCase : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCAmelCase : List[Any] = None if self.use_token_type_ids: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCAmelCase : List[Any] = None _UpperCAmelCase : List[str] = None _UpperCAmelCase : Dict = None if self.use_labels: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , 2 ).float() _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Any , lowerCamelCase__ : int , lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Any , ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = XLMModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : List[Any] = model(lowerCamelCase__ , lengths=lowerCamelCase__ , langs=lowerCamelCase__ ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , langs=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any] , ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = XLMWithLMHeadModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = XLMForQuestionAnsweringSimple(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCamelCase__ ) _UpperCAmelCase : Tuple = model(lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ ) _UpperCAmelCase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = XLMForQuestionAnswering(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Optional[int] = model(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = model( lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , cls_index=lowerCamelCase__ , is_impossible=lowerCamelCase__ , p_mask=lowerCamelCase__ , ) _UpperCAmelCase : Dict = model( lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , cls_index=lowerCamelCase__ , is_impossible=lowerCamelCase__ , ) ((_UpperCAmelCase) , ) : Tuple = result_with_labels.to_tuple() _UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ ) ((_UpperCAmelCase) , ) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[str] , ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = XLMForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , ) ->int: '''simple docstring''' _UpperCAmelCase : Any = self.num_labels _UpperCAmelCase : Union[str, Any] = XLMForTokenClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any , ) ->str: '''simple docstring''' _UpperCAmelCase : Any = self.num_choices _UpperCAmelCase : Optional[int] = XLMForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Optional[Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self : int ) ->int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : str = config_and_inputs _UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowerCAmelCase : int = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCAmelCase : Optional[Any] = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple ) ->Optional[Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : str=False ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _UpperCAmelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ ) return inputs_dict def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = XLMModelTester(self ) _UpperCAmelCase : int = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : List[str] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict ) ->str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : Any=1 ) ->Optional[Any]: '''simple docstring''' self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual( [isinstance(lowerCamelCase__ , lowerCamelCase__ ) for iter_attentions in attentions] , [True] * len(lowerCamelCase__ ) ) self.assertEqual(len(lowerCamelCase__ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCamelCase__ ): # adds PAD dummy token _UpperCAmelCase : Dict = min_length + idx + 1 _UpperCAmelCase : Dict = min_length + idx + 1 _UpperCAmelCase : Dict = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : List[Any]=1 ) ->List[Any]: '''simple docstring''' self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual( [isinstance(lowerCamelCase__ , lowerCamelCase__ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCamelCase__ ) , ) self.assertEqual(len(lowerCamelCase__ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCamelCase__ ): # adds PAD dummy token _UpperCAmelCase : Union[str, Any] = min_length + idx + 1 _UpperCAmelCase : Tuple = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCamelCase__ ) , ) pass @slow def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[str]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[Any] = XLMModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(lowerCamelCase__ ) _UpperCAmelCase : int = torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCamelCase__ ) # the president _UpperCAmelCase : List[str] = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _UpperCAmelCase : Dict = model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCamelCase__ )
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str]=7 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=30 , lowerCamelCase__ : Dict=4_00 , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : str=None , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=[0.5, 0.5, 0.5] , lowerCamelCase__ : Any=[0.5, 0.5, 0.5] , lowerCamelCase__ : Any=True , lowerCamelCase__ : Optional[int]=1 / 2_55 , lowerCamelCase__ : Union[str, Any]=True , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Optional[int] = num_channels _UpperCAmelCase : Tuple = min_resolution _UpperCAmelCase : Union[str, Any] = max_resolution _UpperCAmelCase : Any = do_resize _UpperCAmelCase : str = size _UpperCAmelCase : Optional[int] = do_normalize _UpperCAmelCase : Optional[int] = image_mean _UpperCAmelCase : Any = image_std _UpperCAmelCase : List[str] = do_rescale _UpperCAmelCase : Optional[int] = rescale_factor _UpperCAmelCase : Tuple = do_pad def lowerCAmelCase__ ( self : Any ) ->Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any]=False ) ->Dict: '''simple docstring''' if not batched: _UpperCAmelCase : str = image_inputs[0] if isinstance(lowerCamelCase__ , Image.Image ): _UpperCAmelCase , _UpperCAmelCase : str = image.size else: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase : List[str] = int(self.size["shortest_edge"] * h / w ) _UpperCAmelCase : Dict = self.size["shortest_edge"] elif w > h: _UpperCAmelCase : List[Any] = self.size["shortest_edge"] _UpperCAmelCase : Any = int(self.size["shortest_edge"] * w / h ) else: _UpperCAmelCase : Optional[Any] = self.size["shortest_edge"] _UpperCAmelCase : Optional[Any] = self.size["shortest_edge"] else: _UpperCAmelCase : Any = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase : List[Any] = max(lowerCamelCase__ , key=lambda lowerCamelCase__ : item[0] )[0] _UpperCAmelCase : Tuple = max(lowerCamelCase__ , key=lambda lowerCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : List[str] = ConditionalDetrImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : int ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "size" ) ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , lowerCamelCase__ ) _UpperCAmelCase : Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] ) ->List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = image_processing(lowerCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self : Tuple ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input _UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _UpperCAmelCase , _UpperCAmelCase : int = self.image_processor_tester.get_expected_values(lowerCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase : List[Any] = image_processing(lowerCamelCase__ , return_tensors="pt" ).pixel_values _UpperCAmelCase , _UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _UpperCAmelCase , _UpperCAmelCase : str = self.image_processor_tester.get_expected_values(lowerCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase : List[str] = image_processing(lowerCamelCase__ , return_tensors="pt" ).pixel_values _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase__ ( self : int ) ->int: '''simple docstring''' _UpperCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: _UpperCAmelCase : int = json.loads(f.read() ) _UpperCAmelCase : int = {"image_id": 3_97_69, "annotations": target} # encode them _UpperCAmelCase : Optional[Any] = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) _UpperCAmelCase : Union[str, Any] = image_processing(images=lowerCamelCase__ , annotations=lowerCamelCase__ , return_tensors="pt" ) # verify pixel values _UpperCAmelCase : Union[str, Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase__ , atol=1E-4 ) ) # verify area _UpperCAmelCase : Any = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase__ ) ) # verify boxes _UpperCAmelCase : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase__ ) _UpperCAmelCase : Tuple = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase__ , atol=1E-3 ) ) # verify image_id _UpperCAmelCase : int = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase__ ) ) # verify is_crowd _UpperCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase__ ) ) # verify class_labels _UpperCAmelCase : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase__ ) ) # verify orig_size _UpperCAmelCase : List[str] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase__ ) ) # verify size _UpperCAmelCase : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase__ ) ) @slow def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: _UpperCAmelCase : Union[str, Any] = json.loads(f.read() ) _UpperCAmelCase : List[str] = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} _UpperCAmelCase : List[str] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them _UpperCAmelCase : Dict = ConditionalDetrImageProcessor(format="coco_panoptic" ) _UpperCAmelCase : Optional[int] = image_processing(images=lowerCamelCase__ , annotations=lowerCamelCase__ , masks_path=lowerCamelCase__ , return_tensors="pt" ) # verify pixel values _UpperCAmelCase : str = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase__ ) _UpperCAmelCase : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase__ , atol=1E-4 ) ) # verify area _UpperCAmelCase : Dict = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase__ ) ) # verify boxes _UpperCAmelCase : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase__ ) _UpperCAmelCase : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase__ , atol=1E-3 ) ) # verify image_id _UpperCAmelCase : int = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase__ ) ) # verify is_crowd _UpperCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase__ ) ) # verify class_labels _UpperCAmelCase : Dict = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase__ ) ) # verify masks _UpperCAmelCase : Union[str, Any] = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCamelCase__ ) # verify orig_size _UpperCAmelCase : List[str] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase__ ) ) # verify size _UpperCAmelCase : str = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase__ ) )
322
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
1
'''simple docstring''' # using dfs for finding eulerian path traversal def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): _UpperCAmelCase : Any = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _UpperCAmelCase , _UpperCAmelCase : List[str] = True, True _UpperCAmelCase : Any = dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return path def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : int = -1 for i in range(__lowerCAmelCase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _UpperCAmelCase : Optional[Any] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _UpperCAmelCase , _UpperCAmelCase : int = check_circuit_or_path(__lowerCAmelCase , __lowerCAmelCase ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return _UpperCAmelCase : Union[str, Any] = 1 if check == 2: _UpperCAmelCase : Any = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) _UpperCAmelCase : str = dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) print(__lowerCAmelCase ) def __lowerCAmelCase (): _UpperCAmelCase : int = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _UpperCAmelCase : Dict = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _UpperCAmelCase : Optional[int] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _UpperCAmelCase : str = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _UpperCAmelCase : str = { 1: [], 2: [] # all degree is zero } _UpperCAmelCase : Dict = 10 check_euler(__lowerCAmelCase , __lowerCAmelCase ) check_euler(__lowerCAmelCase , __lowerCAmelCase ) check_euler(__lowerCAmelCase , __lowerCAmelCase ) check_euler(__lowerCAmelCase , __lowerCAmelCase ) check_euler(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
322
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
1
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } lowerCamelCase__ = {'allegro/herbert-base-cased': 514} lowerCamelCase__ = {} class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Any = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[Any] = HerbertTokenizer def __init__( self : Dict , lowerCamelCase__ : str=None , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Optional[int]="<s>" , lowerCamelCase__ : Optional[Any]="<unk>" , lowerCamelCase__ : Union[str, Any]="<pad>" , lowerCamelCase__ : Tuple="<mask>" , lowerCamelCase__ : str="</s>" , **lowerCamelCase__ : List[str] , ) ->Union[str, Any]: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , **lowerCamelCase__ , ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [self.cls_token_id] _UpperCAmelCase : List[str] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self : str , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def lowerCAmelCase__ ( self : str , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : int = [self.sep_token_id] _UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
322
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
1
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCAmelCase__ ( UpperCAmelCase__ ): def __lt__( self : Any , lowerCamelCase__ : Tuple ) ->str: '''simple docstring''' return self[-1] < other[-1] def __eq__( self : Dict , lowerCamelCase__ : int ) ->Tuple: '''simple docstring''' return self[-1] == other[-1] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : list[Stack] = [] # sort into stacks for element in collection: _UpperCAmelCase : int = Stack([element] ) _UpperCAmelCase : Optional[int] = bisect_left(__lowerCAmelCase , __lowerCAmelCase ) if i != len(__lowerCAmelCase ): stacks[i].append(__lowerCAmelCase ) else: stacks.append(__lowerCAmelCase ) # use a heap-based merge to merge stack efficiently _UpperCAmelCase : List[str] = merge(*(reversed(__lowerCAmelCase ) for stack in stacks) ) return collection if __name__ == "__main__": lowerCamelCase__ = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase__ = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
322
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
1
'''simple docstring''' import sys def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = [[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] _UpperCAmelCase : Optional[int] = [[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] for chain_length in range(2 , __lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): _UpperCAmelCase : Optional[Any] = a + chain_length - 1 _UpperCAmelCase : int = sys.maxsize for c in range(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _UpperCAmelCase : Union[str, Any] = cost _UpperCAmelCase : Tuple = c return matrix, sol def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if i == j: print("A" + str(__lowerCAmelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCAmelCase , __lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCAmelCase , optimal_solution[i][j] + 1 , __lowerCAmelCase ) print(")" , end=" " ) def __lowerCAmelCase (): _UpperCAmelCase : Optional[Any] = [30, 35, 15, 5, 10, 20, 25] _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _UpperCAmelCase , _UpperCAmelCase : List[Any] = matrix_chain_order(__lowerCAmelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
322
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
0
'''simple docstring''' import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Dict = emb.weight.shape _UpperCAmelCase : Dict = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) _UpperCAmelCase : List[str] = emb.weight.data return lin_layer def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[str] = torch.load(lowercase__ , map_location="cpu" ) _UpperCAmelCase : int = Namespace(**checkpoint["cfg"]["model"] ) _UpperCAmelCase : Optional[Any] = checkpoint["""model"""] remove_ignore_keys_(lowercase__ ) _UpperCAmelCase : int = state_dict["""decoder.embed_tokens.weight"""].shape[0] _UpperCAmelCase : List[str] = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()} _UpperCAmelCase : int = XGLMConfig( vocab_size=lowercase__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _UpperCAmelCase : Union[str, Any] = XGLMForCausalLM(lowercase__ ) _UpperCAmelCase : int = model.load_state_dict(lowercase__ , strict=lowercase__ ) print(lowercase__ ) _UpperCAmelCase : Any = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
351
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCamelCase__ = random.Random() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=1.0 , __lowerCAmelCase=None , __lowerCAmelCase=None ): if rng is None: _UpperCAmelCase : Tuple = global_rng _UpperCAmelCase : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : Optional[int]=4_00 , lowerCamelCase__ : Optional[int]=20_00 , lowerCamelCase__ : int=1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : int=1_60_00 , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Any=True , ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : List[str] = batch_size _UpperCAmelCase : str = min_seq_length _UpperCAmelCase : Dict = max_seq_length _UpperCAmelCase : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase : List[str] = feature_size _UpperCAmelCase : Union[str, Any] = padding_value _UpperCAmelCase : Optional[Any] = sampling_rate _UpperCAmelCase : Dict = return_attention_mask _UpperCAmelCase : Dict = do_normalize def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : List[str]=False ) ->Dict: '''simple docstring''' def _flatten(lowerCamelCase__ : int ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: _UpperCAmelCase : Any = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _UpperCAmelCase : Optional[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase : Tuple = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs class lowerCAmelCase__ ( _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : Dict = WavaVecaFeatureExtractor def lowerCAmelCase__ ( self : str ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = WavaVecaFeatureExtractionTester(self ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Dict: '''simple docstring''' self.assertTrue(np.all(np.mean(_UpperCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_UpperCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _UpperCAmelCase : Any = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input _UpperCAmelCase : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values _UpperCAmelCase : Optional[int] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # Test batched _UpperCAmelCase : Dict = feat_extract(_UpperCAmelCase , return_tensors="np" ).input_values _UpperCAmelCase : Tuple = feat_extract(_UpperCAmelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase : Optional[int] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] _UpperCAmelCase : Any = np.asarray(_UpperCAmelCase ) _UpperCAmelCase : int = feat_extract(_UpperCAmelCase , return_tensors="np" ).input_values _UpperCAmelCase : List[Any] = feat_extract(_UpperCAmelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def lowerCAmelCase__ ( self : str ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _UpperCAmelCase : Optional[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] _UpperCAmelCase : str = [None, 16_00, None] for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase : Optional[Any] = feat_extract(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="np" ) _UpperCAmelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : str = range(8_00 , 14_00 , 2_00 ) _UpperCAmelCase : List[str] = [floats_list((1, x) )[0] for x in lengths] _UpperCAmelCase : Dict = ['''longest''', '''max_length''', '''do_not_pad'''] _UpperCAmelCase : int = [None, 16_00, None] for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase : List[Any] = feat_extract(_UpperCAmelCase , max_length=_UpperCAmelCase , padding=_UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _UpperCAmelCase : int = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10_00 , padding="max_length" , return_tensors="np" ) _UpperCAmelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : int = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _UpperCAmelCase : Any = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10_00 , padding="longest" , return_tensors="np" ) _UpperCAmelCase : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) _UpperCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _UpperCAmelCase : Dict = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=20_00 , padding="longest" , return_tensors="np" ) _UpperCAmelCase : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) @require_torch def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[str]: '''simple docstring''' import torch _UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : Optional[int] = np.random.rand(1_00 ).astype(np.floataa ) _UpperCAmelCase : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase : List[str] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _UpperCAmelCase : Dict = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def lowerCAmelCase__ ( self : Tuple ) ->List[str]: '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _UpperCAmelCase : Tuple = WavaVecaConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase : int = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
352
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
0
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters lowerCamelCase__ = False lowerCamelCase__ = False def __lowerCAmelCase (__lowerCAmelCase ) -> List[Any]: return TrainCommand(__lowerCAmelCase ) class lowerCAmelCase__ ( A__ ): @staticmethod def lowerCAmelCase__ ( lowerCamelCase__ : ArgumentParser ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=__snake_case , required=__snake_case , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=__snake_case , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=__snake_case , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=__snake_case , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=__snake_case , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=__snake_case , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=__snake_case , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=__snake_case , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=__snake_case , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=__snake_case , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=__snake_case , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=__snake_case , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=__snake_case , default=1E-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=__snake_case ) def __init__( self : str , lowerCamelCase__ : Namespace ) ->Any: '''simple docstring''' _UpperCAmelCase : Any = logging.get_logger("transformers-cli/training" ) _UpperCAmelCase : Any = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=__snake_case ) _UpperCAmelCase : List[Any] = args.output _UpperCAmelCase : str = args.column_label _UpperCAmelCase : Any = args.column_text _UpperCAmelCase : Any = args.column_id self.logger.info(F"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": _UpperCAmelCase : List[str] = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"""Loading dataset from {args.train_data}""" ) _UpperCAmelCase : str = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _UpperCAmelCase : Any = None if args.validation_data: self.logger.info(F"""Loading validation dataset from {args.validation_data}""" ) _UpperCAmelCase : Any = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _UpperCAmelCase : Tuple = args.validation_split _UpperCAmelCase : List[str] = args.train_batch_size _UpperCAmelCase : Dict = args.valid_batch_size _UpperCAmelCase : Optional[Any] = args.learning_rate _UpperCAmelCase : int = args.adam_epsilon def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' raise NotImplementedError def lowerCAmelCase__ ( self : Dict ) ->int: '''simple docstring''' self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
353
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
0
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCAmelCase__ ( a__ , unittest.TestCase ): lowerCAmelCase : Union[str, Any] = CpmAntTokenizer lowerCAmelCase : Union[str, Any] = False def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any: '''simple docstring''' super().setUp() _UpperCAmelCase : List[str] = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def lowerCAmelCase__ ( self : Tuple ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) _UpperCAmelCase : Optional[Any] = '''今天天气真好!''' _UpperCAmelCase : str = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] _UpperCAmelCase : int = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : List[str] = '''今天天气真好!''' _UpperCAmelCase : List[Any] = [tokenizer.bos_token] + tokens _UpperCAmelCase : Any = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) _UpperCAmelCase : List[Any] = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase )
354
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase__ = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
355
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
0
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowerCAmelCase : Union[str, Any] = IFImgaImgSuperResolutionPipeline lowerCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} lowerCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) lowerCAmelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self : str ) ->Union[str, Any]: '''simple docstring''' return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any]=0 ) ->Union[str, Any]: '''simple docstring''' if str(lowerCamelCase__ ).startswith("mps" ): _UpperCAmelCase : Tuple = torch.manual_seed(lowerCamelCase__ ) else: _UpperCAmelCase : int = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _UpperCAmelCase : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) _UpperCAmelCase : str = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase__ ( self : int ) ->List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowerCAmelCase__ ( self : int ) ->Dict: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self : Tuple ) ->Any: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->str: '''simple docstring''' self._test_save_load_local() def lowerCAmelCase__ ( self : Dict ) ->Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
356
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
0
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCamelCase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Optional[Any] ) ->int: '''simple docstring''' super().__init__(*_snake_case , **_snake_case ) self.check_model_type(_snake_case ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : str=None , **lowerCamelCase__ : Optional[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = {}, {} if padding is not None: _UpperCAmelCase : List[str] = padding if truncation is not None: _UpperCAmelCase : List[str] = truncation if top_k is not None: _UpperCAmelCase : Union[str, Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , lowerCamelCase__ : Union["Image.Image", str] , lowerCamelCase__ : str = None , **lowerCamelCase__ : str ) ->str: '''simple docstring''' if isinstance(_snake_case , (Image.Image, str) ) and isinstance(_snake_case , _snake_case ): _UpperCAmelCase : int = {"image": image, "question": question} else: _UpperCAmelCase : Union[str, Any] = image _UpperCAmelCase : Optional[int] = super().__call__(_snake_case , **_snake_case ) return results def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : int=False ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] = load_image(inputs["image"] ) _UpperCAmelCase : Union[str, Any] = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case ) _UpperCAmelCase : Optional[int] = self.image_processor(images=_snake_case , return_tensors=self.framework ) model_inputs.update(_snake_case ) return model_inputs def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model(**_snake_case ) return model_outputs def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str]=5 ) ->Optional[Any]: '''simple docstring''' if top_k > self.model.config.num_labels: _UpperCAmelCase : str = self.model.config.num_labels if self.framework == "pt": _UpperCAmelCase : int = model_outputs.logits.sigmoid()[0] _UpperCAmelCase , _UpperCAmelCase : Optional[int] = probs.topk(_snake_case ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) _UpperCAmelCase : Optional[Any] = scores.tolist() _UpperCAmelCase : Optional[Any] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case )]
357
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
0
from decimal import Decimal, getcontext from math import ceil, factorial def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _UpperCAmelCase : Union[str, Any] = precision _UpperCAmelCase : int = ceil(precision / 14 ) _UpperCAmelCase : Optional[int] = 426_880 * Decimal(10_005 ).sqrt() _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : List[Any] = 13_591_409 _UpperCAmelCase : Any = Decimal(lowerCamelCase_ ) for k in range(1 , lowerCamelCase_ ): _UpperCAmelCase : Dict = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCamelCase_ ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCamelCase__ = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
358
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
0