code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , "sklearn" ) return (preds == labels).mean() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , "sklearn" ) _UpperCAmelCase : Any = simple_accuracy(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : int = fa_score(y_true=__lowerCAmelCase , y_pred=__lowerCAmelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , "sklearn" ) _UpperCAmelCase : List[Any] = pearsonr(__lowerCAmelCase , __lowerCAmelCase )[0] _UpperCAmelCase : Any = spearmanr(__lowerCAmelCase , __lowerCAmelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , "sklearn" ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), F"""Predictions and labels have mismatched lengths {len(__lowerCAmelCase )} and {len(__lowerCAmelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCAmelCase , __lowerCAmelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCAmelCase , __lowerCAmelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCAmelCase , __lowerCAmelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} else: raise KeyError(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , "sklearn" ) if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError(F"""Predictions and labels have mismatched lengths {len(__lowerCAmelCase )} and {len(__lowerCAmelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} else: raise KeyError(__lowerCAmelCase )
359
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
0
'''simple docstring''' import argparse import copy def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = {} with open(__lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : int = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : Any = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Tuple = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): with open(__lowerCamelCase ) as f: _UpperCAmelCase : Dict = f.read(1 ) _UpperCAmelCase : Union[str, Any] = start_node _UpperCAmelCase : Dict = [] _UpperCAmelCase : int = start_node _UpperCAmelCase : Optional[int] = 0 while visiting not in first_solution: _UpperCAmelCase : Dict = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__lowerCamelCase ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : str = k[0] first_solution.append(__lowerCamelCase ) _UpperCAmelCase : List[str] = distance_of_first_solution + int(__lowerCamelCase ) _UpperCAmelCase : Any = best_node first_solution.append(__lowerCamelCase ) _UpperCAmelCase : Any = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [] for n in solution[1:-1]: _UpperCAmelCase : List[Any] = solution.index(__lowerCamelCase ) for kn in solution[1:-1]: _UpperCAmelCase : Optional[int] = solution.index(__lowerCamelCase ) if n == kn: continue _UpperCAmelCase : str = copy.deepcopy(__lowerCamelCase ) _UpperCAmelCase : List[str] = kn _UpperCAmelCase : List[Any] = n _UpperCAmelCase : Tuple = 0 for k in _tmp[:-1]: _UpperCAmelCase : Optional[int] = _tmp[_tmp.index(__lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Union[str, Any] = distance + int(i[1] ) _tmp.append(__lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __lowerCAmelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = 1 _UpperCAmelCase : Dict = first_solution _UpperCAmelCase : Dict = [] _UpperCAmelCase : List[str] = distance_of_first_solution _UpperCAmelCase : int = solution while count <= iters: _UpperCAmelCase : Tuple = find_neighborhood(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Tuple = neighborhood[index_of_best_solution] _UpperCAmelCase : List[Any] = len(__lowerCamelCase ) - 1 _UpperCAmelCase : List[Any] = False while not found: _UpperCAmelCase : int = 0 while i < len(__lowerCamelCase ): if best_solution[i] != solution[i]: _UpperCAmelCase : Optional[Any] = best_solution[i] _UpperCAmelCase : Optional[Any] = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Union[str, Any] = best_solution[:-1] _UpperCAmelCase : Union[str, Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Optional[Any] = cost _UpperCAmelCase : Optional[Any] = solution else: _UpperCAmelCase : Optional[Any] = index_of_best_solution + 1 _UpperCAmelCase : Tuple = neighborhood[index_of_best_solution] if len(__lowerCamelCase ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : List[Any] = count + 1 return best_solution_ever, best_cost def __lowerCAmelCase (__lowerCAmelCase=None ): _UpperCAmelCase : List[str] = generate_neighbours(args.File ) _UpperCAmelCase : List[str] = generate_first_solution( args.File , __lowerCamelCase ) _UpperCAmelCase : str = tabu_search( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , args.Iterations , args.Size , ) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
360
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = 0 _UpperCAmelCase : str = len(lowerCAmelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _UpperCAmelCase : Dict = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase__ ): return None _UpperCAmelCase : Any = sorted_collection[point] if current_item == item: return point else: if point < left: _UpperCAmelCase : List[str] = left _UpperCAmelCase : Dict = point elif point > right: _UpperCAmelCase : Union[str, Any] = right _UpperCAmelCase : List[str] = point else: if item < current_item: _UpperCAmelCase : int = point - 1 else: _UpperCAmelCase : Any = point + 1 return None def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _UpperCAmelCase : str = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) elif point > right: return interpolation_search_by_recursion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , point - 1 ) else: return interpolation_search_by_recursion( lowerCAmelCase__ , lowerCAmelCase__ , point + 1 , lowerCAmelCase__ ) def __lowerCAmelCase (__lowerCAmelCase ): if collection != sorted(lowerCAmelCase__ ): raise ValueError("Collection must be ascending sorted" ) return True if __name__ == "__main__": import sys lowerCamelCase__ = 0 if debug == 1: lowerCamelCase__ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') lowerCamelCase__ = 67 lowerCamelCase__ = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('Not found')
361
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
0
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowerCamelCase__ = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' lowerCamelCase__ = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' lowerCamelCase__ = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return float((preds == labels).mean() ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[int] = simple_accuracy(lowercase__ , lowercase__ ) _UpperCAmelCase : Dict = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[int] = float(pearsonr(lowercase__ , lowercase__ )[0] ) _UpperCAmelCase : int = float(spearmanr(lowercase__ , lowercase__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), "references": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase__ , lowerCamelCase__ )} elif self.config_name == "stsb": return pearson_and_spearman(lowerCamelCase__ , lowerCamelCase__ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowerCamelCase__ , lowerCamelCase__ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowerCamelCase__ , lowerCamelCase__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" )
362
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
0
'''simple docstring''' def __lowerCAmelCase (): _UpperCAmelCase : Optional[Any] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] _UpperCAmelCase : Union[str, Any] = 6 _UpperCAmelCase : int = 1 _UpperCAmelCase : List[str] = 1_901 _UpperCAmelCase : Union[str, Any] = 0 while year < 2_001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _UpperCAmelCase : List[Any] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 _UpperCAmelCase : Dict = day - 29 else: if day > days_per_month[month - 1]: month += 1 _UpperCAmelCase : Dict = day - days_per_month[month - 2] if month > 12: year += 1 _UpperCAmelCase : Union[str, Any] = 1 if year < 2_001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
363
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
0
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCamelCase__ = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) lowerCamelCase__ = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } lowerCamelCase__ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCamelCase__ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCamelCase__ = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } lowerCamelCase__ = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCamelCase__ = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) lowerCamelCase__ = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCamelCase__ = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) lowerCamelCase__ = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCamelCase__ = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' lowerCamelCase__ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCamelCase__ = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' lowerCamelCase__ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' lowerCamelCase__ = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' lowerCamelCase__ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' lowerCamelCase__ = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' lowerCamelCase__ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' lowerCamelCase__ = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' lowerCamelCase__ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCamelCase__ = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' lowerCamelCase__ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' lowerCamelCase__ = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' lowerCamelCase__ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCamelCase__ = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' lowerCamelCase__ = '' lowerCamelCase__ = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' lowerCamelCase__ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCamelCase__ = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): assert ReadMe.from_string(__a , __a ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__a , match=re.escape(expected_error.format(path="root" ) ) ): _UpperCAmelCase : List[Any] = ReadMe.from_string(__a , __a ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__a , match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(__a , __a ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __lowerCAmelCase (__lowerCAmelCase ): ReadMe.from_string(__a , __a , suppress_parsing_errors=__a ) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Tuple = Path(__a ) / '''README.md''' with open(__a , "w+" ) as readme_file: readme_file.write(__a ) _UpperCAmelCase : Optional[Any] = ReadMe.from_readme(__a , __a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : int = Path(__a ) / '''README.md''' with open(__a , "w+" ) as readme_file: readme_file.write(__a ) _UpperCAmelCase : Optional[int] = expected_error.format(path=__a ) with pytest.raises(__a , match=re.escape(__a ) ): _UpperCAmelCase : Any = ReadMe.from_readme(__a , __a ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Optional[Any] = Path(__a ) / '''README.md''' with open(__a , "w+" ) as readme_file: readme_file.write(__a ) _UpperCAmelCase : str = expected_error.format(path=__a ) with pytest.raises(__a , match=re.escape(__a ) ): ReadMe.from_readme(__a , __a ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __lowerCAmelCase (__lowerCAmelCase ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : int = Path(__a ) / '''README.md''' with open(__a , "w+" ) as readme_file: readme_file.write(__a ) ReadMe.from_readme(__a , __a , suppress_parsing_errors=__a )
365
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function" ) _UpperCAmelCase : Tuple = hex_num[0] == """-""" if is_negative: _UpperCAmelCase : Union[str, Any] = hex_num[1:] try: _UpperCAmelCase : Optional[Any] = int(lowerCAmelCase__ , 16 ) except ValueError: raise ValueError("Invalid value was passed to the function" ) _UpperCAmelCase : Union[str, Any] = """""" while int_num > 0: _UpperCAmelCase : int = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
0
'''simple docstring''' import baseaa def __lowerCAmelCase (__lowerCAmelCase ): return baseaa.baaencode(string.encode("utf-8" ) ) def __lowerCAmelCase (__lowerCAmelCase ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": lowerCamelCase__ = 'Hello World!' lowerCamelCase__ = baseaa_encode(test) print(encoded) lowerCamelCase__ = baseaa_decode(encoded) print(decoded)
367
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
'''simple docstring''' import cva import numpy as np class lowerCAmelCase__ : def __init__( self : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' if k in (0.0_4, 0.0_6): _UpperCAmelCase : int = k _UpperCAmelCase : List[str] = window_size else: raise ValueError("invalid k value" ) def __str__( self : Optional[Any] ) ->str: '''simple docstring''' return str(self.k ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str ) ->tuple[cva.Mat, list[list[int]]]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = img.shape _UpperCAmelCase : Dict = [] _UpperCAmelCase : Optional[Any] = img.copy() _UpperCAmelCase : Any = cva.cvtColor(_SCREAMING_SNAKE_CASE , cva.COLOR_GRAY2RGB ) _UpperCAmelCase , _UpperCAmelCase : Any = np.gradient(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = dx**2 _UpperCAmelCase : Optional[int] = dy**2 _UpperCAmelCase : Dict = dx * dy _UpperCAmelCase : Any = 0.0_4 _UpperCAmelCase : Optional[Any] = self.window_size // 2 for y in range(_SCREAMING_SNAKE_CASE , h - offset ): for x in range(_SCREAMING_SNAKE_CASE , w - offset ): _UpperCAmelCase : List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : str = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : Dict = (wxx * wyy) - (wxy**2) _UpperCAmelCase : List[str] = wxx + wyy _UpperCAmelCase : Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase__ = HarrisCorner(0.04, 3) lowerCamelCase__ = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
368
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCamelCase__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase__ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCamelCase__ = { '''unc-nlp/lxmert-base-uncased''': 512, } lowerCamelCase__ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class lowerCAmelCase__ ( a__ ): lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Tuple = LxmertTokenizer def __init__( self : int , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : int=True , lowerCamelCase__ : Dict="[UNK]" , lowerCamelCase__ : str="[SEP]" , lowerCamelCase__ : Union[str, Any]="[PAD]" , lowerCamelCase__ : Tuple="[CLS]" , lowerCamelCase__ : Union[str, Any]="[MASK]" , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Tuple , ) ->int: '''simple docstring''' super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) _UpperCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowerCamelCase ) != tokenize_chinese_chars ): _UpperCAmelCase : List[Any] = getattr(_lowerCamelCase , normalizer_state.pop("type" ) ) _UpperCAmelCase : Optional[int] = do_lower_case _UpperCAmelCase : str = strip_accents _UpperCAmelCase : Tuple = tokenize_chinese_chars _UpperCAmelCase : List[Any] = normalizer_class(**_lowerCamelCase ) _UpperCAmelCase : str = do_lower_case def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=None ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Any = [self.sep_token_id] _UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int = None ) ->Tuple[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
369
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Input list must be a non empty list" ) if len(__SCREAMING_SNAKE_CASE ) == 1: return True _UpperCAmelCase : Union[str, Any] = series[1] - series[0] for index in range(len(__SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Input list must be a non empty list" ) _UpperCAmelCase : Tuple = 0 for val in series: answer += val return answer / len(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any=7 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : str=30 , lowerCamelCase__ : Optional[Any]=4_00 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : int=[0.5, 0.5, 0.5] , lowerCamelCase__ : Tuple=[0.5, 0.5, 0.5] , lowerCamelCase__ : int=True , lowerCamelCase__ : List[str]=1 / 2_55 , lowerCamelCase__ : List[Any]=True , ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} _UpperCAmelCase : Any = parent _UpperCAmelCase : Optional[Any] = batch_size _UpperCAmelCase : int = num_channels _UpperCAmelCase : Any = min_resolution _UpperCAmelCase : Any = max_resolution _UpperCAmelCase : Optional[int] = do_resize _UpperCAmelCase : int = size _UpperCAmelCase : List[Any] = do_normalize _UpperCAmelCase : int = image_mean _UpperCAmelCase : Union[str, Any] = image_std _UpperCAmelCase : str = do_rescale _UpperCAmelCase : List[Any] = rescale_factor _UpperCAmelCase : Union[str, Any] = do_pad def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any]=False ) ->int: '''simple docstring''' if not batched: _UpperCAmelCase : List[Any] = image_inputs[0] if isinstance(lowercase_ , Image.Image ): _UpperCAmelCase : Dict = image.size else: _UpperCAmelCase : List[Any] = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase : str = int(self.size["shortest_edge"] * h / w ) _UpperCAmelCase : List[Any] = self.size["""shortest_edge"""] elif w > h: _UpperCAmelCase : List[str] = self.size["""shortest_edge"""] _UpperCAmelCase : int = int(self.size["shortest_edge"] * w / h ) else: _UpperCAmelCase : int = self.size["""shortest_edge"""] _UpperCAmelCase : str = self.size["""shortest_edge"""] else: _UpperCAmelCase : Dict = [] for image in image_inputs: _UpperCAmelCase : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowerCamelCase__ : item[0] )[0] _UpperCAmelCase : Tuple = max(lowercase_ , key=lambda lowerCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__ ( _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : int = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : str = DetaImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : Optional[int] ) ->Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Optional[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , "image_mean" ) ) self.assertTrue(hasattr(lowercase_ , "image_std" ) ) self.assertTrue(hasattr(lowercase_ , "do_normalize" ) ) self.assertTrue(hasattr(lowercase_ , "do_resize" ) ) self.assertTrue(hasattr(lowercase_ , "do_rescale" ) ) self.assertTrue(hasattr(lowercase_ , "do_pad" ) ) self.assertTrue(hasattr(lowercase_ , "size" ) ) def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) _UpperCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self : int ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input _UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _UpperCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase : List[str] = image_processing(lowercase_ , return_tensors="pt" ).pixel_values _UpperCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input _UpperCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase : Optional[Any] = image_processing(lowercase_ , return_tensors="pt" ).pixel_values _UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: _UpperCAmelCase : int = json.loads(f.read() ) _UpperCAmelCase : List[Any] = {"""image_id""": 3_97_69, """annotations""": target} # encode them _UpperCAmelCase : Optional[Any] = DetaImageProcessor() _UpperCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="pt" ) # verify pixel values _UpperCAmelCase : Tuple = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , lowercase_ ) _UpperCAmelCase : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowercase_ , atol=1E-4 ) ) # verify area _UpperCAmelCase : str = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowercase_ ) ) # verify boxes _UpperCAmelCase : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowercase_ ) _UpperCAmelCase : Any = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowercase_ , atol=1E-3 ) ) # verify image_id _UpperCAmelCase : Union[str, Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowercase_ ) ) # verify is_crowd _UpperCAmelCase : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowercase_ ) ) # verify class_labels _UpperCAmelCase : Optional[int] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowercase_ ) ) # verify orig_size _UpperCAmelCase : List[Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowercase_ ) ) # verify size _UpperCAmelCase : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowercase_ ) ) @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: _UpperCAmelCase : List[Any] = json.loads(f.read() ) _UpperCAmelCase : List[str] = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} _UpperCAmelCase : List[str] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them _UpperCAmelCase : Tuple = DetaImageProcessor(format="coco_panoptic" ) _UpperCAmelCase : List[Any] = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="pt" ) # verify pixel values _UpperCAmelCase : str = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , lowercase_ ) _UpperCAmelCase : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowercase_ , atol=1E-4 ) ) # verify area _UpperCAmelCase : Optional[Any] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowercase_ ) ) # verify boxes _UpperCAmelCase : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowercase_ ) _UpperCAmelCase : List[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowercase_ , atol=1E-3 ) ) # verify image_id _UpperCAmelCase : Dict = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowercase_ ) ) # verify is_crowd _UpperCAmelCase : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowercase_ ) ) # verify class_labels _UpperCAmelCase : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowercase_ ) ) # verify masks _UpperCAmelCase : Optional[Any] = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowercase_ ) # verify orig_size _UpperCAmelCase : List[str] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowercase_ ) ) # verify size _UpperCAmelCase : Dict = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowercase_ ) )
371
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
0
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase__ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCamelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase__ = re.compile(r'\[(.+?)\]\((https://huggingface\.co/.+?)\)') lowerCamelCase__ = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = None # source code of `config_class` _UpperCAmelCase : Dict = inspect.getsource(__a ) _UpperCAmelCase : str = _re_checkpoint.findall(__a ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): _UpperCAmelCase : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase : Dict = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: _UpperCAmelCase : Tuple = ckpt_name break return checkpoint def __lowerCAmelCase (): _UpperCAmelCase : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _UpperCAmelCase : Any = get_checkpoint_from_config_class(__a ) _UpperCAmelCase : Optional[Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: _UpperCAmelCase : int = "\n".join(sorted(__a ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
350
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
0
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCAmelCase : List[str] = IFImgaImgSuperResolutionPipeline lowerCAmelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} lowerCAmelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) lowerCAmelCase : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : List[Any]=0 ) ->str: '''simple docstring''' if str(lowercase_ ).startswith("mps" ): _UpperCAmelCase : Optional[Any] = torch.manual_seed(lowercase_ ) else: _UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) _UpperCAmelCase : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) _UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) _UpperCAmelCase : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self : List[str] ) ->List[Any]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self : Tuple ) ->Tuple: '''simple docstring''' self._test_save_load_local() def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
351
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } lowerCamelCase__ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = {} with open(_snake_case , "r" ) as file: for line_number, line in enumerate(_snake_case ): _UpperCAmelCase : Union[str, Any] = line.strip() if line: _UpperCAmelCase : str = line.split() _UpperCAmelCase : Union[str, Any] = line_number _UpperCAmelCase : Dict = words[0] _UpperCAmelCase : str = value return result def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): for attribute in key.split("." ): _UpperCAmelCase : Dict = getattr(_snake_case , _snake_case ) _UpperCAmelCase : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): _UpperCAmelCase : int = PARAM_MAPPING[full_name.split("." )[-1]] _UpperCAmelCase : str = '''param''' if weight_type is not None and weight_type != "param": _UpperCAmelCase : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": _UpperCAmelCase : Optional[Any] = hf_pointer for attribute in hf_param_name.split("." ): _UpperCAmelCase : Dict = getattr(_snake_case , _snake_case ) _UpperCAmelCase : List[str] = shape_pointer.shape # let's reduce dimension _UpperCAmelCase : int = value[0] else: _UpperCAmelCase : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _UpperCAmelCase : List[Any] = value elif weight_type == "weight_g": _UpperCAmelCase : Tuple = value elif weight_type == "weight_v": _UpperCAmelCase : str = value elif weight_type == "bias": _UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split("." ): _UpperCAmelCase : List[Any] = getattr(_snake_case , _snake_case ) _UpperCAmelCase : int = value else: _UpperCAmelCase : List[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): _UpperCAmelCase : Dict = PARAM_MAPPING[full_name.split("." )[-1]] _UpperCAmelCase : List[str] = '''param''' if weight_type is not None and weight_type != "param": _UpperCAmelCase : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _UpperCAmelCase : Tuple = '''.'''.join([key, hf_param_name] ) else: _UpperCAmelCase : Optional[int] = key _UpperCAmelCase : List[Any] = value if '''lm_head''' in full_key else value[0] lowerCamelCase__ = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ): _UpperCAmelCase : Tuple = False for key, mapped_key in MAPPING.items(): _UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCAmelCase : int = True if "*" in mapped_key: _UpperCAmelCase : List[Any] = name.split(_snake_case )[0].split("." )[-2] _UpperCAmelCase : Tuple = mapped_key.replace("*" , _snake_case ) if "weight_g" in name: _UpperCAmelCase : Union[str, Any] = '''weight_g''' elif "weight_v" in name: _UpperCAmelCase : List[str] = '''weight_v''' elif "bias" in name: _UpperCAmelCase : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase : List[Any] = '''weight''' else: _UpperCAmelCase : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Union[str, Any] = fairseq_model.state_dict() _UpperCAmelCase : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == "group" , ) _UpperCAmelCase : Union[str, Any] = True else: _UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = full_name.split("conv_layers." )[-1] _UpperCAmelCase : str = name.split("." ) _UpperCAmelCase : Optional[int] = int(items[0] ) _UpperCAmelCase : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _UpperCAmelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _UpperCAmelCase : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _UpperCAmelCase : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _UpperCAmelCase : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=False ): if config_path is not None: _UpperCAmelCase : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: _UpperCAmelCase : Tuple = WavaVecaConfig() if is_seq_class: _UpperCAmelCase : Optional[int] = read_txt_into_dict(_snake_case ) _UpperCAmelCase : List[Any] = idalabel _UpperCAmelCase : int = WavaVecaForSequenceClassification(_snake_case ) _UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: _UpperCAmelCase : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCAmelCase : Tuple = target_dict.pad_index _UpperCAmelCase : int = target_dict.bos_index _UpperCAmelCase : Tuple = target_dict.eos_index _UpperCAmelCase : Optional[Any] = len(target_dict.symbols ) _UpperCAmelCase : Any = os.path.join(_snake_case , "vocab.json" ) if not os.path.isdir(_snake_case ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) _UpperCAmelCase : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched _UpperCAmelCase : Dict = 0 _UpperCAmelCase : List[Any] = 1 with open(_snake_case , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_snake_case , _snake_case ) _UpperCAmelCase : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_snake_case , ) _UpperCAmelCase : Tuple = True if config.feat_extract_norm == '''layer''' else False _UpperCAmelCase : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) _UpperCAmelCase : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) _UpperCAmelCase : Optional[int] = WavaVecaForCTC(_snake_case ) else: _UpperCAmelCase : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: _UpperCAmelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _UpperCAmelCase : Dict = argparse.Namespace(task="audio_pretraining" ) _UpperCAmelCase : Optional[int] = fairseq.tasks.setup_task(_snake_case ) _UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) _UpperCAmelCase : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
352
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): lowerCAmelCase : Optional[Any] = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase : int = Features({"audio": Audio()} ) lowerCAmelCase : Union[str, Any] = Features({"labels": ClassLabel} ) lowerCAmelCase : Any = "audio" lowerCAmelCase : str = "labels" def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Optional[int] ) ->str: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , snake_case__ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) _UpperCAmelCase : List[str] = copy.deepcopy(self ) _UpperCAmelCase : Tuple = self.label_schema.copy() _UpperCAmelCase : Any = features[self.label_column] _UpperCAmelCase : Union[str, Any] = label_schema return task_template @property def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
353
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
0
'''simple docstring''' lowerCamelCase__ = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase__ = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase__ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
354
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' super().tearDown() gc.collect() def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _UpperCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _UpperCAmelCase : Dict = """xvjiarui/stable-diffusion-2-inpainting""" _UpperCAmelCase : List[str] = FlaxStableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Optional[int] = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) _UpperCAmelCase : Tuple = 50 _UpperCAmelCase : Dict = jax.device_count() _UpperCAmelCase : Optional[int] = num_samples * [prompt] _UpperCAmelCase : int = num_samples * [init_image] _UpperCAmelCase : List[Any] = num_samples * [mask_image] _UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # shard inputs and rng _UpperCAmelCase : Optional[int] = replicate(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Optional[int] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() ) _UpperCAmelCase : str = shard(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Union[str, Any] = shard(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : int = shard(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Optional[Any] = pipeline( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : List[str] = output.images.reshape(SCREAMING_SNAKE_CASE_ , 5_12 , 5_12 , 3 ) _UpperCAmelCase : List[Any] = images[0, 2_53:2_56, 2_53:2_56, -1] _UpperCAmelCase : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCAmelCase : Dict = jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
355
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
0
'''simple docstring''' import math import qiskit def __lowerCAmelCase (__lowerCAmelCase = 1 , __lowerCAmelCase = 1 , __lowerCAmelCase = 1 ): if ( isinstance(lowercase__ , lowercase__ ) or isinstance(lowercase__ , lowercase__ ) or isinstance(lowercase__ , lowercase__ ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(lowercase__ ) != input_a) or (math.floor(lowercase__ ) != input_a) or (math.floor(lowercase__ ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers _UpperCAmelCase : Union[str, Any] = qiskit.QuantumRegister(4 , "qr" ) _UpperCAmelCase : Optional[Any] = qiskit.ClassicalRegister(2 , "cr" ) # list the entries _UpperCAmelCase : str = [input_a, input_a, carry_in] _UpperCAmelCase : Optional[Any] = qiskit.QuantumCircuit(lowercase__ , lowercase__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowercase__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowercase__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowercase__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowercase__ ) # measure the last two qbits _UpperCAmelCase : List[Any] = qiskit.Aer.get_backend("aer_simulator" ) _UpperCAmelCase : Optional[Any] = qiskit.execute(lowercase__ , lowercase__ , shots=1_000 ) return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
356
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase__ ( __lowerCamelCase ): lowerCAmelCase : Union[str, Any] = 'visual_bert' def __init__( self : List[Any] , lowerCamelCase__ : Dict=3_05_22 , lowerCamelCase__ : str=7_68 , lowerCamelCase__ : List[Any]=5_12 , lowerCamelCase__ : Dict=12 , lowerCamelCase__ : List[str]=12 , lowerCamelCase__ : List[str]=30_72 , lowerCamelCase__ : str="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : List[Any]=5_12 , lowerCamelCase__ : Any=2 , lowerCamelCase__ : Tuple=0.0_2 , lowerCamelCase__ : List[str]=1E-12 , lowerCamelCase__ : str=False , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : List[str]=0 , lowerCamelCase__ : Dict=2 , **lowerCamelCase__ : Optional[Any] , ) ->Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : str = visual_embedding_dim _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : Optional[int] = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : Dict = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[str] = layer_norm_eps _UpperCAmelCase : Tuple = bypass_transformer _UpperCAmelCase : Optional[Any] = special_visual_initialize
357
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCAmelCase_ ): lowerCAmelCase : List[Any] = ['input_features', 'attention_mask'] def __init__( self : Optional[Any] , lowerCamelCase__ : str=80 , lowerCamelCase__ : int=1_60_00 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : int=10 , lowerCamelCase__ : List[str]=25 , lowerCamelCase__ : Any="hamming_window" , lowerCamelCase__ : List[str]=3_27_68.0 , lowerCamelCase__ : str=0.9_7 , lowerCamelCase__ : Optional[int]=1.0 , lowerCamelCase__ : Dict=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Dict=False , **lowerCamelCase__ : Union[str, Any] , ) ->Union[str, Any]: '''simple docstring''' super().__init__(feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase : Tuple = feature_size _UpperCAmelCase : List[str] = sampling_rate _UpperCAmelCase : str = padding_value _UpperCAmelCase : Optional[Any] = hop_length _UpperCAmelCase : str = win_length _UpperCAmelCase : Optional[Any] = frame_signal_scale _UpperCAmelCase : Dict = preemphasis_coeff _UpperCAmelCase : List[str] = mel_floor _UpperCAmelCase : Dict = normalize_means _UpperCAmelCase : int = normalize_vars _UpperCAmelCase : Dict = win_function _UpperCAmelCase : Optional[Any] = return_attention_mask _UpperCAmelCase : Union[str, Any] = win_length * sampling_rate // 10_00 _UpperCAmelCase : List[Any] = hop_length * sampling_rate // 10_00 _UpperCAmelCase : Optional[int] = optimal_fft_length(self.sample_size ) _UpperCAmelCase : List[Any] = (self.n_fft // 2) + 1 def lowerCAmelCase__ ( self : int , lowerCamelCase__ : np.array ) ->List[Any]: '''simple docstring''' if self.win_function == "hamming_window": _UpperCAmelCase : Optional[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=__lowerCAmelCase ) else: _UpperCAmelCase : str = window_function(window_length=self.sample_size , name=self.win_function ) _UpperCAmelCase : Any = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _UpperCAmelCase : List[Any] = spectrogram( one_waveform * self.frame_signal_scale , window=__lowerCAmelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__lowerCAmelCase , preemphasis=self.preemphasis_coeff , mel_filters=__lowerCAmelCase , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] ) ->List[Any]: '''simple docstring''' if self.normalize_means: _UpperCAmelCase : Union[str, Any] = x[:input_length].mean(axis=0 ) _UpperCAmelCase : int = np.subtract(__lowerCAmelCase , __lowerCAmelCase ) if self.normalize_vars: _UpperCAmelCase : Any = x[:input_length].std(axis=0 ) _UpperCAmelCase : Union[str, Any] = np.divide(__lowerCAmelCase , __lowerCAmelCase ) if input_length < x.shape[0]: _UpperCAmelCase : Optional[Any] = padding_value # make sure array is in float32 _UpperCAmelCase : int = x.astype(np.floataa ) return x def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[np.ndarray] , lowerCamelCase__ : Optional[np.ndarray] = None ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__lowerCAmelCase , __lowerCAmelCase , self.padding_value ) for x, n in zip(__lowerCAmelCase , __lowerCAmelCase )] def __call__( self : Union[str, Any] , lowerCamelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Optional[Any] , ) ->Any: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Optional[int] = isinstance(__lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : Dict = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : int = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray ): _UpperCAmelCase : List[str] = np.asarray(__lowerCAmelCase , dtype=np.floataa ) elif isinstance(__lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : str = [raw_speech] # extract fbank features _UpperCAmelCase : Tuple = [self._extract_mfsc_features(__lowerCAmelCase ) for one_waveform in raw_speech] # convert into correct format for padding _UpperCAmelCase : Dict = BatchFeature({"input_features": features} ) _UpperCAmelCase : str = self.pad( __lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) # make sure list is in array format _UpperCAmelCase : Union[str, Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for feature in input_features] _UpperCAmelCase : Tuple = padded_inputs.get("attention_mask" ) if attention_mask is not None: _UpperCAmelCase : List[Any] = [np.asarray(__lowerCAmelCase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _UpperCAmelCase : Dict = ( np.array(__lowerCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(__lowerCAmelCase , max_length=__lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _UpperCAmelCase : Optional[Any] = self.normalize( padded_inputs["input_features"] , attention_mask=__lowerCAmelCase ) if return_tensors is not None: _UpperCAmelCase : Dict = padded_inputs.convert_to_tensors(__lowerCAmelCase ) return padded_inputs
358
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
0
'''simple docstring''' from __future__ import annotations lowerCamelCase__ = "#" class lowerCAmelCase__ : def __init__( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = {} def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = self._trie for char in text: if char not in trie: _UpperCAmelCase : Tuple = {} _UpperCAmelCase : str = trie[char] _UpperCAmelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : str ) ->Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = self._trie for char in prefix: if char in trie: _UpperCAmelCase : str = trie[char] else: return [] return self._elements(a_ ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : dict ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Dict = [] for c, v in d.items(): _UpperCAmelCase : List[Any] = [" "] if c == END else [(c + s) for s in self._elements(a_ )] result.extend(a_ ) return tuple(a_ ) lowerCamelCase__ = Trie() lowerCamelCase__ = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = trie.find_word(_UpperCamelCase ) return tuple(string + word for word in suffixes ) def __lowerCAmelCase (): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
359
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Any = R"\w+[.]\d+" _UpperCAmelCase : Union[str, Any] = re.findall(lowerCAmelCase__ , lowerCAmelCase__ ) for pat in pats: _UpperCAmelCase : Optional[Any] = key.replace(lowerCAmelCase__ , "_".join(pat.split("." ) ) ) return key def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _UpperCAmelCase : str = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _UpperCAmelCase : Dict = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer _UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _UpperCAmelCase : Optional[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _UpperCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": _UpperCAmelCase : List[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=42 ): _UpperCAmelCase : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _UpperCAmelCase : Union[str, Any] = flax_model.init_weights(PRNGKey(lowerCAmelCase__ ) ) _UpperCAmelCase : List[str] = flatten_dict(lowerCAmelCase__ ) _UpperCAmelCase : Dict = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase : Tuple = rename_key(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters _UpperCAmelCase , _UpperCAmelCase : List[Any] = rename_key_and_reshape_tensor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown _UpperCAmelCase : List[Any] = jnp.asarray(lowerCAmelCase__ ) return unflatten_dict(lowerCAmelCase__ )
360
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
0
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowerCamelCase__ = True from torch.cuda.amp import autocast lowerCamelCase__ = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : int = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCAmelCase : Union[str, Any] = field( default=UpperCAmelCase__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowerCAmelCase : Union[str, Any] = field( default=UpperCAmelCase__ , metadata={"help": "Whether to log verbose messages or not."} , ) lowerCAmelCase : List[str] = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) lowerCAmelCase : Optional[int] = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) lowerCAmelCase : Any = field( default=0.99_9995 , metadata={"help": "Decay of gumbel temperature during training."} ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _UpperCAmelCase : List[str] = logging.WARNING if model_args.verbose_logging: _UpperCAmelCase : List[str] = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _UpperCAmelCase : Dict = logging.INFO logger.setLevel(a__ ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[Any] = field( default=UpperCAmelCase__ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Dict = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[Any] = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to \'train\'" } , ) lowerCAmelCase : Tuple = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'" ) } , ) lowerCAmelCase : Union[str, Any] = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to \'file\'"} , ) lowerCAmelCase : Dict = field( default=UpperCAmelCase__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCAmelCase : Union[str, Any] = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there\'s no validation split" } , ) lowerCAmelCase : str = field( default=UpperCAmelCase__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCAmelCase : int = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = 42 lowerCAmelCase : Optional[int] = 42 lowerCAmelCase : List[str] = "longest" lowerCAmelCase : Any = None lowerCAmelCase : Optional[Any] = None def __call__( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict[str, torch.Tensor]: '''simple docstring''' _UpperCAmelCase : int = self.feature_extractor.pad( _snake_case , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) _UpperCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) _UpperCAmelCase : List[str] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _UpperCAmelCase : Any = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) _UpperCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to _UpperCAmelCase : str = 1 _UpperCAmelCase : Tuple = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices _UpperCAmelCase : Tuple = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_snake_case , min_masks=2 , ) return batch class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : List[str] , *lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any]=1 , lowerCamelCase__ : Tuple=0 , lowerCamelCase__ : str=1.0 , **lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' super().__init__(*_snake_case , **_snake_case ) _UpperCAmelCase : str = 0 _UpperCAmelCase : Dict = max_gumbel_temp _UpperCAmelCase : Dict = min_gumbel_temp _UpperCAmelCase : Optional[Any] = gumbel_temp_decay def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Dict , lowerCamelCase__ : int ) ->torch.Tensor: '''simple docstring''' model.train() _UpperCAmelCase : str = self._prepare_inputs(_snake_case ) if self.use_amp: with autocast(): _UpperCAmelCase : int = self.compute_loss(_snake_case , _snake_case ) else: _UpperCAmelCase : List[str] = self.compute_loss(_snake_case , _snake_case ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _UpperCAmelCase : Dict = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCAmelCase : Optional[int] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCAmelCase : Optional[int] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_snake_case ).backward() elif self.use_apex: with amp.scale_loss(_snake_case , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_snake_case ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(a__ , a__ ) # Downloading and loading a dataset from the hub. _UpperCAmelCase : Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _UpperCAmelCase : Optional[int] = DatasetDict() _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) _UpperCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _UpperCAmelCase : int = DatasetDict() _UpperCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _UpperCAmelCase : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _UpperCAmelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=a__ ) def prepare_dataset(__lowerCAmelCase ): # check that all files have the correct sampling rate _UpperCAmelCase , _UpperCAmelCase : Dict = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _UpperCAmelCase : Tuple = datasets.map( a__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _UpperCAmelCase : Dict = vectorized_datasets.filter( lambda __lowerCAmelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__lowerCAmelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _UpperCAmelCase : List[Any] = vectorized_datasets.map( a__ , batched=a__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _UpperCAmelCase : Dict = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm=\'layer\'" ) _UpperCAmelCase : Tuple = WavaVecaForPreTraining(a__ ) _UpperCAmelCase : List[Any] = DataCollatorForWavaVecaPretraining(model=a__ , feature_extractor=a__ ) _UpperCAmelCase : str = WavaVecaPreTrainer( model=a__ , data_collator=a__ , args=a__ , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=a__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
361
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( __snake_case , __snake_case , unittest.TestCase ): lowerCAmelCase : Dict = IFInpaintingPipeline lowerCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self : Tuple ) ->int: '''simple docstring''' return self._get_dummy_components() def lowerCAmelCase__ ( self : int , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any]=0 ) ->Any: '''simple docstring''' if str(lowerCamelCase__ ).startswith("mps" ): _UpperCAmelCase : Optional[int] = torch.manual_seed(lowerCamelCase__ ) else: _UpperCAmelCase : str = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) _UpperCAmelCase : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) _UpperCAmelCase : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Dict: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowerCAmelCase__ ( self : int ) ->Dict: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self : Dict ) ->Dict: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self : int ) ->Union[str, Any]: '''simple docstring''' self._test_save_load_local() def lowerCAmelCase__ ( self : Tuple ) ->List[Any]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
362
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 10 ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or n < 0: raise ValueError("Invalid input" ) _UpperCAmelCase : str = 10**n _UpperCAmelCase : Tuple = 28_433 * (pow(2 , 7_830_457 , UpperCamelCase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(10) = }''')
363
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Tuple = ['input_features', 'attention_mask'] def __init__( self : Optional[int] , lowerCamelCase__ : Tuple=80 , lowerCamelCase__ : List[str]=1_60_00 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : int=10 , lowerCamelCase__ : Optional[int]=25 , lowerCamelCase__ : Optional[int]="hamming_window" , lowerCamelCase__ : int=3_27_68.0 , lowerCamelCase__ : Union[str, Any]=0.9_7 , lowerCamelCase__ : int=1.0 , lowerCamelCase__ : str=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Union[str, Any]=False , **lowerCamelCase__ : Any , ) ->Any: '''simple docstring''' super().__init__(feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Any = feature_size _UpperCAmelCase : Optional[int] = sampling_rate _UpperCAmelCase : List[Any] = padding_value _UpperCAmelCase : List[Any] = hop_length _UpperCAmelCase : List[str] = win_length _UpperCAmelCase : Union[str, Any] = frame_signal_scale _UpperCAmelCase : List[Any] = preemphasis_coeff _UpperCAmelCase : List[str] = mel_floor _UpperCAmelCase : str = normalize_means _UpperCAmelCase : Dict = normalize_vars _UpperCAmelCase : Dict = win_function _UpperCAmelCase : Tuple = return_attention_mask _UpperCAmelCase : List[Any] = win_length * sampling_rate // 10_00 _UpperCAmelCase : Union[str, Any] = hop_length * sampling_rate // 10_00 _UpperCAmelCase : Tuple = optimal_fft_length(self.sample_size ) _UpperCAmelCase : Union[str, Any] = (self.n_fft // 2) + 1 def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Tuple ) ->np.ndarray: '''simple docstring''' if self.win_function == "hamming_window": _UpperCAmelCase : Union[str, Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase : Any = window_function(window_length=self.sample_size , name=self.win_function ) _UpperCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _UpperCAmelCase : str = spectrogram( one_waveform * self.frame_signal_scale , window=_SCREAMING_SNAKE_CASE , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_SCREAMING_SNAKE_CASE , preemphasis=self.preemphasis_coeff , mel_filters=_SCREAMING_SNAKE_CASE , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Tuple ) ->Optional[Any]: '''simple docstring''' if self.normalize_means: _UpperCAmelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _UpperCAmelCase : Union[str, Any] = np.subtract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.normalize_vars: _UpperCAmelCase : Dict = x[:input_length].std(axis=0 ) _UpperCAmelCase : Optional[Any] = np.divide(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if input_length < x.shape[0]: _UpperCAmelCase : Optional[Any] = padding_value # make sure array is in float32 _UpperCAmelCase : Tuple = x.astype(np.floataa ) return x def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any = None ) ->List[np.ndarray]: '''simple docstring''' _UpperCAmelCase : Any = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.padding_value ) for x, n in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] def __call__( self : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : int = False , lowerCamelCase__ : List[Any] = None , lowerCamelCase__ : Union[str, Any] = False , lowerCamelCase__ : List[Any] = None , lowerCamelCase__ : Tuple = None , lowerCamelCase__ : str = None , lowerCamelCase__ : Optional[Any] = None , **lowerCamelCase__ : Optional[int] , ) ->BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Any = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : int = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Tuple = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): _UpperCAmelCase : List[Any] = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : Any = [raw_speech] # extract fbank features _UpperCAmelCase : str = [self._extract_mfsc_features(_SCREAMING_SNAKE_CASE ) for one_waveform in raw_speech] # convert into correct format for padding _UpperCAmelCase : Dict = BatchFeature({"input_features": features} ) _UpperCAmelCase : str = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # make sure list is in array format _UpperCAmelCase : Any = padded_inputs.get("input_features" ) if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase : str = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] _UpperCAmelCase : Optional[int] = padded_inputs.get("attention_mask" ) if attention_mask is not None: _UpperCAmelCase : Optional[Any] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _UpperCAmelCase : Optional[int] = ( np.array(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) if self._get_padding_strategies(_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _UpperCAmelCase : int = self.normalize( padded_inputs["input_features"] , attention_mask=_SCREAMING_SNAKE_CASE ) if return_tensors is not None: _UpperCAmelCase : Optional[Any] = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
0
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger('transformers.models.speecht5') lowerCamelCase__ = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } lowerCamelCase__ = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } lowerCamelCase__ = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } lowerCamelCase__ = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } lowerCamelCase__ = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } lowerCamelCase__ = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } lowerCamelCase__ = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } lowerCamelCase__ = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } lowerCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowerCamelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCamelCase__ = [] lowerCamelCase__ = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] lowerCamelCase__ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] lowerCamelCase__ = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] lowerCamelCase__ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): for attribute in key.split("." ): _UpperCAmelCase : Optional[int] = getattr(_UpperCAmelCase , _UpperCAmelCase ) if weight_type is not None: _UpperCAmelCase : Any = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape else: _UpperCAmelCase : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _UpperCAmelCase : Optional[int] = value elif weight_type == "weight_g": _UpperCAmelCase : int = value elif weight_type == "weight_v": _UpperCAmelCase : List[Any] = value elif weight_type == "bias": _UpperCAmelCase : Dict = value elif weight_type == "running_mean": _UpperCAmelCase : List[Any] = value elif weight_type == "running_var": _UpperCAmelCase : str = value elif weight_type == "num_batches_tracked": _UpperCAmelCase : int = value else: _UpperCAmelCase : str = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _UpperCAmelCase : Optional[int] = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = [] if task == "s2t": _UpperCAmelCase : List[str] = hf_model.speechta.encoder.prenet.feature_encoder _UpperCAmelCase : int = MAPPING_S2T _UpperCAmelCase : Dict = IGNORE_KEYS_S2T elif task == "t2s": _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : str = MAPPING_T2S _UpperCAmelCase : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": _UpperCAmelCase : int = hf_model.speechta.encoder.prenet.feature_encoder _UpperCAmelCase : Tuple = MAPPING_S2S _UpperCAmelCase : List[str] = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(_UpperCAmelCase , _UpperCAmelCase ): logger.info(F"""{name} was ignored""" ) continue _UpperCAmelCase : List[str] = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) _UpperCAmelCase : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _UpperCAmelCase : str = key.split(".*." ) if prefix in name and suffix in name: _UpperCAmelCase : Any = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: _UpperCAmelCase : Union[str, Any] = name.split(_UpperCAmelCase )[0].split("." )[-2] _UpperCAmelCase : Optional[Any] = mapped_key.replace("*" , _UpperCAmelCase ) if "weight_g" in name: _UpperCAmelCase : List[str] = "weight_g" elif "weight_v" in name: _UpperCAmelCase : int = "weight_v" elif "bias" in name: _UpperCAmelCase : Optional[Any] = "bias" elif "weight" in name: _UpperCAmelCase : Tuple = "weight" elif "running_mean" in name: _UpperCAmelCase : Union[str, Any] = "running_mean" elif "running_var" in name: _UpperCAmelCase : str = "running_var" elif "num_batches_tracked" in name: _UpperCAmelCase : int = "num_batches_tracked" else: _UpperCAmelCase : int = None set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) continue if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = full_name.split("conv_layers." )[-1] _UpperCAmelCase : Any = name.split("." ) _UpperCAmelCase : Tuple = int(items[0] ) _UpperCAmelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _UpperCAmelCase : Union[str, Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _UpperCAmelCase : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _UpperCAmelCase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _UpperCAmelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCAmelCase ) @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ): if config_path is not None: _UpperCAmelCase : List[str] = SpeechTaConfig.from_pretrained(_UpperCAmelCase ) else: _UpperCAmelCase : List[str] = SpeechTaConfig() if task == "s2t": _UpperCAmelCase : Tuple = config.max_text_positions _UpperCAmelCase : int = SpeechTaForSpeechToText(_UpperCAmelCase ) elif task == "t2s": _UpperCAmelCase : Tuple = 1_876 _UpperCAmelCase : List[Any] = 600 _UpperCAmelCase : Any = config.max_speech_positions _UpperCAmelCase : Union[str, Any] = SpeechTaForTextToSpeech(_UpperCAmelCase ) elif task == "s2s": _UpperCAmelCase : Tuple = 1_876 _UpperCAmelCase : int = config.max_speech_positions _UpperCAmelCase : List[Any] = SpeechTaForSpeechToSpeech(_UpperCAmelCase ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: _UpperCAmelCase : Dict = SpeechTaTokenizer(_UpperCAmelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _UpperCAmelCase : List[Any] = AddedToken("<mask>" , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) _UpperCAmelCase : List[Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) _UpperCAmelCase : List[Any] = SpeechTaFeatureExtractor() _UpperCAmelCase : Union[str, Any] = SpeechTaProcessor(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = torch.load(_UpperCAmelCase ) recursively_load_weights(fairseq_checkpoint["model"] , _UpperCAmelCase , _UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(_UpperCAmelCase ) model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowerCamelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
365
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
0
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Any=13 , lowerCamelCase__ : str=32 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Union[str, Any]=3 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : List[Any]=[32, 64, 1_28] , lowerCamelCase__ : List[Any]=[1, 2, 1] , lowerCamelCase__ : List[Any]=[2, 2, 4] , lowerCamelCase__ : Any=2 , lowerCamelCase__ : Optional[int]=2.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[str]=0.1 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Any=0.0_2 , lowerCamelCase__ : Optional[int]=1E-5 , lowerCamelCase__ : Any=True , lowerCamelCase__ : str=None , lowerCamelCase__ : int=True , lowerCamelCase__ : int=10 , lowerCamelCase__ : int=8 , lowerCamelCase__ : Optional[int]=["stage1", "stage2"] , lowerCamelCase__ : Optional[Any]=[1, 2] , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : str = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Optional[int] = num_channels _UpperCAmelCase : Optional[int] = embed_dim _UpperCAmelCase : Union[str, Any] = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : Union[str, Any] = num_heads _UpperCAmelCase : str = window_size _UpperCAmelCase : str = mlp_ratio _UpperCAmelCase : Tuple = qkv_bias _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = drop_path_rate _UpperCAmelCase : int = hidden_act _UpperCAmelCase : Tuple = use_absolute_embeddings _UpperCAmelCase : Any = patch_norm _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Dict = is_training _UpperCAmelCase : int = scope _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : int = type_sequence_label_size _UpperCAmelCase : Optional[int] = encoder_stride _UpperCAmelCase : Union[str, Any] = out_features _UpperCAmelCase : Optional[int] = out_indices def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Any = None if self.use_labels: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : int ) ->Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : str = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Dict = model(lowerCAmelCase__ ) _UpperCAmelCase : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[str] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _UpperCAmelCase : List[Any] = None _UpperCAmelCase : List[Any] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : int = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase : Any = 1 _UpperCAmelCase : List[Any] = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Any ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.type_sequence_label_size _UpperCAmelCase : Union[str, Any] = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : List[Any] = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self : str ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase : Optional[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[str] = False lowerCAmelCase : str = False lowerCAmelCase : Tuple = False lowerCAmelCase : Any = False lowerCAmelCase : Optional[int] = False def lowerCAmelCase__ ( self : List[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Any = FocalNetModelTester(self ) _UpperCAmelCase : Any = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' return def lowerCAmelCase__ ( self : Tuple ) ->int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCAmelCase : str = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCAmelCase : Optional[Any] = model_class(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] _UpperCAmelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : str = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : Dict = outputs.hidden_states _UpperCAmelCase : List[str] = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length _UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _UpperCAmelCase : List[str] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = reshaped_hidden_states[0].shape _UpperCAmelCase : Tuple = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Dict = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase__ ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Union[str, Any] = 3 _UpperCAmelCase : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _UpperCAmelCase : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Dict = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[str] = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: _UpperCAmelCase : List[str] = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.default_image_processor _UpperCAmelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase : List[str] = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase__ ) # verify the logits _UpperCAmelCase : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class lowerCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase : List[Any] = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase : List[Any] = FocalNetConfig lowerCAmelCase : Optional[Any] = False def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = FocalNetModelTester(self )
366
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): while a != 0: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = b % a, a return b def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if gcd(UpperCamelCase__ , UpperCamelCase__ ) != 1: _UpperCAmelCase : str = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(UpperCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = 1, 0, a _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = 0, 1, m while va != 0: _UpperCAmelCase : Tuple = ua // va _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
367
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class lowerCAmelCase__ ( A_ ): lowerCAmelCase : int = "lxmert" lowerCAmelCase : List[Any] = {} def __init__( self : List[str] , lowerCamelCase__ : Any=3_05_22 , lowerCamelCase__ : str=7_68 , lowerCamelCase__ : List[str]=12 , lowerCamelCase__ : List[Any]=95_00 , lowerCamelCase__ : int=16_00 , lowerCamelCase__ : int=4_00 , lowerCamelCase__ : Dict=30_72 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : Union[str, Any]=5_12 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=0.0_2 , lowerCamelCase__ : Any=1E-12 , lowerCamelCase__ : List[str]=9 , lowerCamelCase__ : str=5 , lowerCamelCase__ : List[Any]=5 , lowerCamelCase__ : str=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : List[str]=6.6_7 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : str=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : str=True , **lowerCamelCase__ : List[str] , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : List[str] = num_attention_heads _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : Tuple = max_position_embeddings _UpperCAmelCase : Dict = type_vocab_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : Union[str, Any] = num_qa_labels _UpperCAmelCase : Optional[int] = num_object_labels _UpperCAmelCase : Any = num_attr_labels _UpperCAmelCase : Optional[Any] = l_layers _UpperCAmelCase : str = x_layers _UpperCAmelCase : List[str] = r_layers _UpperCAmelCase : str = visual_feat_dim _UpperCAmelCase : Union[str, Any] = visual_pos_dim _UpperCAmelCase : Optional[int] = visual_loss_normalizer _UpperCAmelCase : str = task_matched _UpperCAmelCase : str = task_mask_lm _UpperCAmelCase : str = task_obj_predict _UpperCAmelCase : List[Any] = task_qa _UpperCAmelCase : str = visual_obj_loss _UpperCAmelCase : List[Any] = visual_attr_loss _UpperCAmelCase : Union[str, Any] = visual_feat_loss _UpperCAmelCase : Optional[int] = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**_lowerCamelCase )
368
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
0
'''simple docstring''' import qiskit def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[str] = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase : Tuple = qiskit.QuantumCircuit(_snake_case , _snake_case ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase : int = qiskit.execute(_snake_case , _snake_case , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_snake_case ) if __name__ == "__main__": lowerCamelCase__ = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
369
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
0
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # noqa: E741 while r - l > 1: _UpperCAmelCase : Any = (l + r) // 2 if v[m] >= key: _UpperCAmelCase : Any = m else: _UpperCAmelCase : Optional[int] = m # noqa: E741 return r def __lowerCAmelCase (__lowerCAmelCase ): if len(__lowerCAmelCase ) == 0: return 0 _UpperCAmelCase : Tuple = [0] * len(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : Optional[Any] = v[0] for i in range(1 , len(__lowerCAmelCase ) ): if v[i] < tail[0]: _UpperCAmelCase : Union[str, Any] = v[i] elif v[i] > tail[length - 1]: _UpperCAmelCase : Optional[int] = v[i] length += 1 else: _UpperCAmelCase : Dict = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase__ ( _a ): def lowerCAmelCase__ ( self : int , lowerCamelCase__ : str ) ->int: '''simple docstring''' with open(snake_case_ , encoding="utf-8" ) as input_file: _UpperCAmelCase : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) _UpperCAmelCase : Union[str, Any] = input_file.read() _UpperCAmelCase : Dict = regexp.search(snake_case_ ) return match def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : str ) ->str: '''simple docstring''' with open(snake_case_ , encoding="utf-8" ) as input_file: _UpperCAmelCase : List[Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) _UpperCAmelCase : Dict = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _UpperCAmelCase : str = regexp.finditer(snake_case_ ) _UpperCAmelCase : Any = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' _UpperCAmelCase : int = Path("./datasets" ) _UpperCAmelCase : Optional[int] = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case_ ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def lowerCAmelCase__ ( self : Dict ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = Path("./datasets" ) _UpperCAmelCase : str = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case_ ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
371
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
0
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: _UpperCAmelCase : Optional[int] = json.load(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : str = [] _UpperCAmelCase : Tuple = [] for key, info in class_info.items(): _UpperCAmelCase : str = info['''name'''] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(__lowerCAmelCase ) ) _UpperCAmelCase : Tuple = thing_ids _UpperCAmelCase : int = class_names return metadata class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str=7 , lowerCamelCase__ : Any=3 , lowerCamelCase__ : Union[str, Any]=30 , lowerCamelCase__ : Optional[int]=4_00 , lowerCamelCase__ : int=None , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , lowerCamelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCamelCase__ : Dict=10 , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Tuple=2_55 , lowerCamelCase__ : Any="shi-labs/oneformer_demo" , lowerCamelCase__ : str="ade20k_panoptic.json" , lowerCamelCase__ : str=10 , ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = parent _UpperCAmelCase : Dict = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Union[str, Any] = min_resolution _UpperCAmelCase : Optional[Any] = max_resolution _UpperCAmelCase : str = do_resize _UpperCAmelCase : Any = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size _UpperCAmelCase : int = do_normalize _UpperCAmelCase : str = image_mean _UpperCAmelCase : List[Any] = image_std _UpperCAmelCase : str = class_info_file _UpperCAmelCase : Union[str, Any] = prepare_metadata(__lowercase , __lowercase ) _UpperCAmelCase : List[Any] = num_text _UpperCAmelCase : Any = repo_path # for the post_process_functions _UpperCAmelCase : List[str] = 2 _UpperCAmelCase : Tuple = 10 _UpperCAmelCase : List[str] = 10 _UpperCAmelCase : Tuple = 3 _UpperCAmelCase : int = 4 _UpperCAmelCase : Optional[int] = num_labels _UpperCAmelCase : Optional[Any] = do_reduce_labels _UpperCAmelCase : Dict = ignore_index def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : List[Any]=False ) ->Tuple: '''simple docstring''' if not batched: _UpperCAmelCase : Any = image_inputs[0] if isinstance(__lowercase , Image.Image ): _UpperCAmelCase : Optional[Any] = image.size else: _UpperCAmelCase : Optional[Any] = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase : Optional[Any] = int(self.size["shortest_edge"] * h / w ) _UpperCAmelCase : Union[str, Any] = self.size['''shortest_edge'''] elif w > h: _UpperCAmelCase : Optional[Any] = self.size['''shortest_edge'''] _UpperCAmelCase : Optional[Any] = int(self.size["shortest_edge"] * w / h ) else: _UpperCAmelCase : Tuple = self.size['''shortest_edge'''] _UpperCAmelCase : Optional[int] = self.size['''shortest_edge'''] else: _UpperCAmelCase : Union[str, Any] = [] for image in image_inputs: _UpperCAmelCase : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase : Optional[int] = max(__lowercase , key=lambda lowerCamelCase__ : item[0] )[0] _UpperCAmelCase : Union[str, Any] = max(__lowercase , key=lambda lowerCamelCase__ : item[1] )[1] return expected_height, expected_width def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase : str = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string lowerCAmelCase : List[Any] = image_processing_class def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = OneFormerImageProcessorTester(self ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Any: '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , "image_mean" ) ) self.assertTrue(hasattr(__lowercase , "image_std" ) ) self.assertTrue(hasattr(__lowercase , "do_normalize" ) ) self.assertTrue(hasattr(__lowercase , "do_resize" ) ) self.assertTrue(hasattr(__lowercase , "size" ) ) self.assertTrue(hasattr(__lowercase , "ignore_index" ) ) self.assertTrue(hasattr(__lowercase , "class_info_file" ) ) self.assertTrue(hasattr(__lowercase , "num_text" ) ) self.assertTrue(hasattr(__lowercase , "repo_path" ) ) self.assertTrue(hasattr(__lowercase , "metadata" ) ) self.assertTrue(hasattr(__lowercase , "do_reduce_labels" ) ) def lowerCAmelCase__ ( self : Any ) ->Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Any = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values _UpperCAmelCase : str = self.image_processing_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase : Dict = self.image_processing_tester.get_expected_values(__lowercase , batched=__lowercase ) _UpperCAmelCase : Dict = image_processor( __lowercase , ["semantic"] * len(__lowercase ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input _UpperCAmelCase : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values _UpperCAmelCase : Any = self.image_processing_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase : Any = self.image_processing_tester.get_expected_values(__lowercase , batched=__lowercase ) _UpperCAmelCase : List[Any] = image_processor( __lowercase , ["semantic"] * len(__lowercase ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self : str ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input _UpperCAmelCase : Optional[int] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values _UpperCAmelCase : Optional[Any] = self.image_processing_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase : Any = self.image_processing_tester.get_expected_values(__lowercase , batched=__lowercase ) _UpperCAmelCase : Tuple = image_processor( __lowercase , ["semantic"] * len(__lowercase ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : str=False , lowerCamelCase__ : List[Any]="np" ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _UpperCAmelCase : Any = self.image_processing_tester.num_labels _UpperCAmelCase : List[str] = None _UpperCAmelCase : int = None _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowercase ) if with_segmentation_maps: _UpperCAmelCase : Tuple = num_labels if is_instance_map: _UpperCAmelCase : Optional[int] = list(range(__lowercase ) ) * 2 _UpperCAmelCase : Dict = dict(enumerate(__lowercase ) ) _UpperCAmelCase : Optional[Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _UpperCAmelCase : Tuple = [Image.fromarray(__lowercase ) for annotation in annotations] _UpperCAmelCase : str = image_processor( __lowercase , ["semantic"] * len(__lowercase ) , __lowercase , return_tensors="pt" , instance_id_to_semantic_id=__lowercase , pad_and_return_pixel_mask=__lowercase , ) return inputs def lowerCAmelCase__ ( self : Any ) ->int: '''simple docstring''' pass def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' def common(lowerCamelCase__ : int=False , lowerCamelCase__ : Tuple=None ): _UpperCAmelCase : List[Any] = self.comm_get_image_processor_inputs( with_segmentation_maps=__lowercase , is_instance_map=__lowercase , segmentation_type=__lowercase ) _UpperCAmelCase : List[str] = inputs['''mask_labels'''] _UpperCAmelCase : Tuple = inputs['''class_labels'''] _UpperCAmelCase : Any = inputs['''pixel_values'''] _UpperCAmelCase : str = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(__lowercase , __lowercase , __lowercase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(__lowercase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=__lowercase ) common(is_instance_map=__lowercase , segmentation_type="pil" ) common(is_instance_map=__lowercase , segmentation_type="pil" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = np.zeros((20, 50) ) _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : Any = 1 _UpperCAmelCase : int = 1 _UpperCAmelCase : Dict = binary_mask_to_rle(__lowercase ) self.assertEqual(len(__lowercase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def lowerCAmelCase__ ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) _UpperCAmelCase : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() _UpperCAmelCase : Optional[int] = fature_extractor.post_process_semantic_segmentation(__lowercase ) self.assertEqual(len(__lowercase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _UpperCAmelCase : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _UpperCAmelCase : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(__lowercase , target_sizes=__lowercase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) _UpperCAmelCase : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() _UpperCAmelCase : List[str] = image_processor.post_process_instance_segmentation(__lowercase , threshold=0 ) self.assertTrue(len(__lowercase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , __lowercase ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowerCAmelCase__ ( self : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) _UpperCAmelCase : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _UpperCAmelCase : Optional[int] = image_processor.post_process_panoptic_segmentation(__lowercase , threshold=0 ) self.assertTrue(len(__lowercase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , __lowercase ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
350
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
0
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase = None ): if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) _UpperCAmelCase : Optional[int] = nums[0] for i in range(1 , len(_UpperCAmelCase ) ): _UpperCAmelCase : Dict = nums[i] _UpperCAmelCase : Optional[Any] = max(_UpperCAmelCase , ans + num , _UpperCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase__ = int(input('Enter number of elements : ').strip()) lowerCamelCase__ = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
351
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( lowerCAmelCase_ ): lowerCAmelCase : Dict = """speech_to_text_2""" lowerCAmelCase : Any = ["""past_key_values"""] lowerCAmelCase : Optional[Any] = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , lowerCamelCase__ : List[str]=1_00_00 , lowerCamelCase__ : str=6 , lowerCamelCase__ : Optional[int]=20_48 , lowerCamelCase__ : List[str]=4 , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : Dict=True , lowerCamelCase__ : str="relu" , lowerCamelCase__ : Union[str, Any]=2_56 , lowerCamelCase__ : Optional[Any]=0.1 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Tuple=0.0_2 , lowerCamelCase__ : List[Any]=2 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Optional[int]=1 , lowerCamelCase__ : Union[str, Any]=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=10_24 , **lowerCamelCase__ : Union[str, Any] , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : Dict = d_model _UpperCAmelCase : Tuple = decoder_ffn_dim _UpperCAmelCase : Optional[int] = decoder_layers _UpperCAmelCase : List[str] = decoder_attention_heads _UpperCAmelCase : Optional[Any] = dropout _UpperCAmelCase : Optional[Any] = attention_dropout _UpperCAmelCase : str = activation_dropout _UpperCAmelCase : str = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : Optional[int] = decoder_layerdrop _UpperCAmelCase : int = use_cache _UpperCAmelCase : List[str] = decoder_layers _UpperCAmelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Tuple = max_target_positions super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
352
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: _UpperCAmelCase : Dict = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=UpperCAmelCase__ ): lowerCAmelCase : List[str] = ["torch", "scipy"] def __init__( self : Union[str, Any] , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Tuple ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ["torch", "scipy"] ) @classmethod def lowerCAmelCase__ ( cls : Dict , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->List[str]: '''simple docstring''' requires_backends(cls , ["torch", "scipy"] ) @classmethod def lowerCAmelCase__ ( cls : List[Any] , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' requires_backends(cls , ["torch", "scipy"] )
354
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
0
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowerCAmelCase__ ( lowerCAmelCase__ ): def __init__( self : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any]=13 , lowerCamelCase__ : Dict=7 , lowerCamelCase__ : int=True , lowerCamelCase__ : str=True , lowerCamelCase__ : Dict=False , lowerCamelCase__ : int=True , lowerCamelCase__ : List[str]=99 , lowerCamelCase__ : Union[str, Any]=32 , lowerCamelCase__ : Tuple=5 , lowerCamelCase__ : int=4 , lowerCamelCase__ : Union[str, Any]=37 , lowerCamelCase__ : Union[str, Any]="gelu" , lowerCamelCase__ : Optional[Any]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : int=5_12 , lowerCamelCase__ : Union[str, Any]=16 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : Optional[Any]=0.0_2 , lowerCamelCase__ : str=3 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : Optional[int]=None , ) ->Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : List[str] = seq_length _UpperCAmelCase : Tuple = is_training _UpperCAmelCase : Tuple = use_input_mask _UpperCAmelCase : Tuple = use_token_type_ids _UpperCAmelCase : Tuple = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Optional[Any] = type_vocab_size _UpperCAmelCase : Union[str, Any] = type_sequence_label_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Optional[int] = num_labels _UpperCAmelCase : Any = num_choices _UpperCAmelCase : List[Any] = scope def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Optional[Any] = None if self.use_input_mask: _UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : int = None _UpperCAmelCase : Tuple = None _UpperCAmelCase : List[str] = None if self.use_labels: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self : Tuple ) ->Tuple: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = DistilBertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Any = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = DistilBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[int] = DistilBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : Tuple = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.num_labels _UpperCAmelCase : List[Any] = DistilBertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = self.num_labels _UpperCAmelCase : Union[str, Any] = DistilBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : Any = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : int = self.num_choices _UpperCAmelCase : Tuple = DistilBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Optional[Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self : Dict ) ->str: '''simple docstring''' _UpperCAmelCase : Any = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : Tuple = config_and_inputs _UpperCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Dict = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCAmelCase : Optional[Any] = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : Tuple = True lowerCAmelCase : List[Any] = True lowerCAmelCase : Any = True lowerCAmelCase : str = True def lowerCAmelCase__ ( self : Optional[Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Tuple = DistilBertModelTester(self ) _UpperCAmelCase : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , dim=37 ) def lowerCAmelCase__ ( self : int ) ->Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Union[str, Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self : int ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self : Tuple ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def lowerCAmelCase__ ( self : List[str] ) ->Dict: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : int = DistilBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _UpperCAmelCase : List[str] = True _UpperCAmelCase : Optional[Any] = model_class(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Any = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Tuple = torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , "traced_model.pt" ) ) _UpperCAmelCase : Tuple = torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , "traced_model.pt" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["input_ids"].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["attention_mask"].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : int ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) _UpperCAmelCase : Tuple = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase : str = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] _UpperCAmelCase : List[str] = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase : int = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
355
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _UpperCAmelCase : int = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _UpperCAmelCase : int = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) _UpperCAmelCase : List[str] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _UpperCAmelCase : Optional[Any] = {'unk_token': '<unk>'} _UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[int] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , lowerCamelCase__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] , **lowerCamelCase__ : Optional[Any] ) ->Any: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any , **lowerCamelCase__ : List[str] ) ->Union[str, Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Any ) ->Optional[int]: '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] ) ->Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : int ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _UpperCAmelCase : Optional[Any] = [Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self : Union[str, Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : List[str] = self.get_rust_tokenizer() _UpperCAmelCase : str = self.get_image_processor() _UpperCAmelCase : Tuple = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCAmelCase : str = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase__ ) _UpperCAmelCase : List[str] = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCAmelCase : List[Any] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : List[str] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase : Dict = self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 ) _UpperCAmelCase : List[Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->Dict: '''simple docstring''' _UpperCAmelCase : int = self.get_image_processor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Dict = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) _UpperCAmelCase : Any = self.prepare_image_inputs() _UpperCAmelCase : str = image_processor(lowerCamelCase__ , return_tensors="np" ) _UpperCAmelCase : Tuple = processor(images=lowerCamelCase__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase__ ( self : Tuple ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.get_image_processor() _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Dict = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = 'lower newer' _UpperCAmelCase : Union[str, Any] = processor(text=lowerCamelCase__ ) _UpperCAmelCase : Dict = tokenizer(lowerCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_image_processor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : List[Any] = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = 'lower newer' _UpperCAmelCase : Optional[Any] = self.prepare_image_inputs() _UpperCAmelCase : Union[str, Any] = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.get_image_processor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase : str = processor.batch_decode(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.get_image_processor() _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : Any = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) _UpperCAmelCase : Any = 'lower newer' _UpperCAmelCase : str = self.prepare_image_inputs() _UpperCAmelCase : List[str] = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
356
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
0
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCamelCase__ : int = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCamelCase__ : List[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowerCAmelCase ): lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Dict = {"hidden_size": "mask_feature_size"} lowerCAmelCase : List[str] = ["resnet", "swin"] lowerCAmelCase : Any = ["detr"] def __init__( self : Dict , lowerCamelCase__ : int = 2_56 , lowerCamelCase__ : int = 2_56 , lowerCamelCase__ : float = 0.1 , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[Dict] = None , lowerCamelCase__ : Optional[Dict] = None , lowerCamelCase__ : float = 0.0_2 , lowerCamelCase__ : float = 1.0 , lowerCamelCase__ : float = 1.0 , lowerCamelCase__ : float = 1.0 , lowerCamelCase__ : float = 2_0.0 , lowerCamelCase__ : Optional[bool] = None , **lowerCamelCase__ : str , ) ->Any: '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _UpperCAmelCase : int = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = backbone_config.pop("model_type" ) _UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase : str = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ F"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _UpperCAmelCase : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported _UpperCAmelCase : Optional[Any] = ( decoder_config.pop("model_type" ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"""Transformer Decoder {decoder_type} not supported, please use one of""" F""" {','.join(self.decoders_supported )}""" ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[decoder_type] _UpperCAmelCase : List[str] = config_class.from_dict(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = backbone_config _UpperCAmelCase : List[str] = decoder_config # main feature dimension for the model _UpperCAmelCase : Dict = fpn_feature_size _UpperCAmelCase : Optional[Any] = mask_feature_size # initializer _UpperCAmelCase : List[str] = init_std _UpperCAmelCase : Optional[Any] = init_xavier_std # Hungarian matcher && loss _UpperCAmelCase : Optional[int] = cross_entropy_weight _UpperCAmelCase : Dict = dice_weight _UpperCAmelCase : Optional[Any] = mask_weight _UpperCAmelCase : int = use_auxiliary_loss _UpperCAmelCase : int = no_object_weight _UpperCAmelCase : Optional[Any] = output_auxiliary_logits _UpperCAmelCase : Dict = self.decoder_config.encoder_attention_heads _UpperCAmelCase : int = self.decoder_config.num_hidden_layers super().__init__(**lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Any , lowerCamelCase__ : PretrainedConfig , lowerCamelCase__ : PretrainedConfig , **lowerCamelCase__ : List[str] ) ->Tuple: '''simple docstring''' return cls( backbone_config=lowerCamelCase__ , decoder_config=lowerCamelCase__ , **lowerCamelCase__ , ) def lowerCAmelCase__ ( self : List[str] ) ->Dict[str, any]: '''simple docstring''' _UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Optional[int] = self.backbone_config.to_dict() _UpperCAmelCase : Dict = self.decoder_config.to_dict() _UpperCAmelCase : str = self.__class__.model_type return output
357
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowerCAmelCase : str = IFInpaintingSuperResolutionPipeline lowerCAmelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowerCAmelCase : Dict = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict=0 ) ->str: '''simple docstring''' if str(lowercase__ ).startswith("mps" ): _UpperCAmelCase : List[str] = torch.manual_seed(lowercase__ ) else: _UpperCAmelCase : int = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) _UpperCAmelCase : List[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) _UpperCAmelCase : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) _UpperCAmelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) _UpperCAmelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase__ ( self : List[str] ) ->Dict: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self : Tuple ) ->List[str]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self : str ) ->Optional[int]: '''simple docstring''' self._test_save_load_local() def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
358
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[Any] = "focalnet" def __init__( self : Any , lowerCamelCase__ : Any=2_24 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : Any=96 , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : List[Any]=[1_92, 3_84, 7_68, 7_68] , lowerCamelCase__ : Optional[Any]=[2, 2, 6, 2] , lowerCamelCase__ : Dict=[2, 2, 2, 2] , lowerCamelCase__ : Dict=[3, 3, 3, 3] , lowerCamelCase__ : Optional[int]="gelu" , lowerCamelCase__ : List[Any]=4.0 , lowerCamelCase__ : str=0.0 , lowerCamelCase__ : List[str]=0.1 , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Optional[Any]=1E-4 , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : Optional[int]=0.0_2 , lowerCamelCase__ : Optional[Any]=1E-5 , lowerCamelCase__ : List[Any]=32 , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Union[str, Any]=None , **lowerCamelCase__ : Optional[Any] , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = image_size _UpperCAmelCase : Optional[int] = patch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : List[Any] = embed_dim _UpperCAmelCase : List[Any] = use_conv_embed _UpperCAmelCase : Optional[int] = hidden_sizes _UpperCAmelCase : List[str] = depths _UpperCAmelCase : int = focal_levels _UpperCAmelCase : Union[str, Any] = focal_windows _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : Any = mlp_ratio _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : List[Any] = drop_path_rate _UpperCAmelCase : Tuple = use_layerscale _UpperCAmelCase : List[str] = layerscale_value _UpperCAmelCase : int = use_post_layernorm _UpperCAmelCase : Union[str, Any] = use_post_layernorm_in_modulation _UpperCAmelCase : int = normalize_modulator _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : int = layer_norm_eps _UpperCAmelCase : List[str] = encoder_stride _UpperCAmelCase : Dict = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] _UpperCAmelCase : Dict = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
359
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 1_000 ): _UpperCAmelCase : List[str] = 2**power _UpperCAmelCase : List[Any] = 0 while n: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
360
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
0
'''simple docstring''' import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCamelCase__ = get_logger(__name__) lowerCamelCase__ = Path(__file__).parent / 'model_card_template.md' lowerCamelCase__ = uuida().hex lowerCamelCase__ = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES lowerCamelCase__ = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES lowerCamelCase__ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __lowerCAmelCase (__lowerCAmelCase = None ): _UpperCAmelCase : List[Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): ua += "; " + user_agent return ua def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None ): if token is None: _UpperCAmelCase : Dict = HfFolder.get_token() if organization is None: _UpperCAmelCase : str = whoami(__lowerCAmelCase )["name"] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__lowerCAmelCase , "local_rank" ) and args.local_rank not in [-1, 0]: return _UpperCAmelCase : List[Any] = args.hub_token if hasattr(__lowerCAmelCase , "hub_token" ) else None _UpperCAmelCase : Tuple = get_full_repo_name(__lowerCAmelCase , token=__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__lowerCAmelCase , model_name=__lowerCAmelCase , repo_name=__lowerCAmelCase , dataset_name=args.dataset_name if hasattr(__lowerCAmelCase , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__lowerCAmelCase , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(__lowerCAmelCase , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(__lowerCAmelCase , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__lowerCAmelCase , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(__lowerCAmelCase , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(__lowerCAmelCase , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__lowerCAmelCase , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__lowerCAmelCase , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(__lowerCAmelCase , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(__lowerCAmelCase , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) _UpperCAmelCase : Dict = os.path.join(args.output_dir , "README.md" ) model_card.save(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = None ): if resolved_file is None or commit_hash is not None: return commit_hash _UpperCAmelCase : Optional[int] = str(Path(__lowerCAmelCase ).as_posix() ) _UpperCAmelCase : List[Any] = re.search(R"snapshots/([^/]+)/" , __lowerCAmelCase ) if search is None: return None _UpperCAmelCase : int = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__lowerCAmelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCamelCase__ = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) lowerCamelCase__ = os.path.join(hf_cache_home, 'diffusers') def __lowerCAmelCase (__lowerCAmelCase = None , __lowerCAmelCase = None ): if new_cache_dir is None: _UpperCAmelCase : Optional[int] = DIFFUSERS_CACHE if old_cache_dir is None: _UpperCAmelCase : List[Any] = old_diffusers_cache _UpperCAmelCase : Optional[Any] = Path(__lowerCAmelCase ).expanduser() _UpperCAmelCase : Tuple = Path(__lowerCAmelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): _UpperCAmelCase : Dict = new_cache_dir / old_blob_path.relative_to(__lowerCAmelCase ) new_blob_path.parent.mkdir(parents=__lowerCAmelCase , exist_ok=__lowerCAmelCase ) os.replace(__lowerCAmelCase , __lowerCAmelCase ) try: os.symlink(__lowerCAmelCase , __lowerCAmelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCamelCase__ = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): lowerCamelCase__ = 0 else: with open(cache_version_file) as f: try: lowerCamelCase__ = int(f.read()) except ValueError: lowerCamelCase__ = 0 if cache_version < 1: lowerCamelCase__ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: lowerCamelCase__ = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' 'the directory exists and can be written to.' ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = None ): if variant is not None: _UpperCAmelCase : List[str] = weights_name.split("." ) _UpperCAmelCase : str = splits[:-1] + [variant] + splits[-1:] _UpperCAmelCase : int = ".".join(__lowerCAmelCase ) return weights_name def __lowerCAmelCase (__lowerCAmelCase , *, __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , ): _UpperCAmelCase : Optional[int] = str(__lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ): return pretrained_model_name_or_path elif os.path.isdir(__lowerCAmelCase ): if os.path.isfile(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ): # Load from a PyTorch checkpoint _UpperCAmelCase : List[str] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ): _UpperCAmelCase : str = os.path.join(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__lowerCAmelCase ).base_version ) >= version.parse("0.20.0" ) ): try: _UpperCAmelCase : Optional[Any] = hf_hub_download( __lowerCAmelCase , filename=_add_variant(__lowerCAmelCase , __lowerCAmelCase ) , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , local_files_only=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , user_agent=__lowerCAmelCase , subfolder=__lowerCAmelCase , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.""" , __lowerCAmelCase , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__lowerCAmelCase , __lowerCAmelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__lowerCAmelCase , __lowerCAmelCase )}\' so that the correct variant file can be added.""" , __lowerCAmelCase , ) try: # 2. Load model file as usual _UpperCAmelCase : Any = hf_hub_download( __lowerCAmelCase , filename=__lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , local_files_only=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , user_agent=__lowerCAmelCase , subfolder=__lowerCAmelCase , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ "listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ "this model name. Check the model page at " F"""\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" " \nCheckout your internet connection or see how to run the library in" " offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'." ) except EnvironmentError: raise EnvironmentError( F"""Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from """ "\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. " F"""Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
361
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
0
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def __lowerCAmelCase (__lowerCAmelCase ): if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
362
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if len(lowercase__ ) < 2: return collection def circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: _UpperCAmelCase : List[Any] = False if low == high: return swapped _UpperCAmelCase : Tuple = low _UpperCAmelCase : Optional[int] = high while left < right: if collection[left] > collection[right]: _UpperCAmelCase , _UpperCAmelCase : Dict = ( collection[right], collection[left], ) _UpperCAmelCase : int = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _UpperCAmelCase , _UpperCAmelCase : Any = ( collection[right + 1], collection[left], ) _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Union[str, Any] = low + int((high - low) / 2 ) _UpperCAmelCase : Union[str, Any] = circle_sort_util(lowercase__ , lowercase__ , lowercase__ ) _UpperCAmelCase : Dict = circle_sort_util(lowercase__ , mid + 1 , lowercase__ ) return swapped or left_swap or right_swap _UpperCAmelCase : int = True while is_not_sorted is True: _UpperCAmelCase : int = circle_sort_util(lowercase__ , 0 , len(lowercase__ ) - 1 ) return collection if __name__ == "__main__": lowerCamelCase__ = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase__ = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
363
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
0
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets lowerCamelCase__ = '\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n' lowerCamelCase__ = '\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results[\'matthews_correlation\'], 2))\n -0.25\n' lowerCamelCase__ = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str=None ) ->Dict: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sample_weight=_SCREAMING_SNAKE_CASE ) ), }
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): @property def lowerCAmelCase__ ( self : List[str] ) ->Tuple: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : List[str] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Dict ) ->str: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.dummy_uncond_unet _UpperCAmelCase : Optional[int] = DDIMScheduler() _UpperCAmelCase : Dict = self.dummy_vq_model _UpperCAmelCase : Optional[int] = LDMPipeline(unet=lowerCamelCase_ , vqvae=lowerCamelCase_ , scheduler=lowerCamelCase_ ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = ldm(generator=lowerCamelCase_ , num_inference_steps=2 , output_type="numpy" ).images _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = ldm(generator=lowerCamelCase_ , num_inference_steps=2 , output_type="numpy" , return_dict=lowerCamelCase_ )[0] _UpperCAmelCase : int = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[Any] = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) _UpperCAmelCase : Optional[int] = 1E-2 if torch_device != """mps""" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : str = ldm(generator=lowerCamelCase_ , num_inference_steps=5 , output_type="numpy" ).images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _UpperCAmelCase : Dict = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) _UpperCAmelCase : Optional[int] = 1E-2 if torch_device != """mps""" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
365
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = False ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase : List[Any] = F"""Expected string as input, found {type(SCREAMING_SNAKE_CASE_ )}""" raise ValueError(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase : Dict = F"""Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE_ )}""" raise ValueError(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Dict = input_str.split("_" ) _UpperCAmelCase : Dict = 0 if use_pascal else 1 _UpperCAmelCase : Tuple = words[start_index:] _UpperCAmelCase : List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] _UpperCAmelCase : Any = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
366
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
0
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCAmelCase (__lowerCAmelCase = "https://www.worldometers.info/coronavirus" ): _UpperCAmelCase : Optional[Any] = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE__ ).text , "html.parser" ) _UpperCAmelCase : List[Any] = soup.findAll("h1" ) _UpperCAmelCase : Union[str, Any] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
367
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : list[list[int]] = [] _UpperCAmelCase : list[int] = [] _UpperCAmelCase : str = 0 _UpperCAmelCase : Dict = sum(__lowerCAmelCase ) create_state_space_tree(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return result def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): if sum(__lowerCAmelCase ) > max_sum or (remaining_nums_sum + sum(__lowerCAmelCase )) < max_sum: return if sum(__lowerCAmelCase ) == max_sum: result.append(__lowerCAmelCase ) return for index in range(__lowerCAmelCase , len(__lowerCAmelCase ) ): create_state_space_tree( __lowerCAmelCase , __lowerCAmelCase , index + 1 , [*path, nums[index]] , __lowerCAmelCase , remaining_nums_sum - nums[index] , ) lowerCamelCase__ = [3, 34, 4, 12, 5, 2] lowerCamelCase__ = 9 lowerCamelCase__ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
368
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
0
'''simple docstring''' import os from distutils.util import strtobool def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for e in env_keys: _UpperCAmelCase : Tuple = int(os.environ.get(a__ , -1 ) ) if val >= 0: return val return default def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=False ): _UpperCAmelCase : str = os.environ.get(a__ , str(a__ ) ) return strtobool(a__ ) == 1 # As its name indicates `strtobool` actually returns an int... def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase="no" ): _UpperCAmelCase : Any = os.environ.get(a__ , str(a__ ) ) return value
369
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
0
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCamelCase__ = 300 # TEMPERATURE (unit = K) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } lowerCamelCase__ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } lowerCamelCase__ = '▁' # Segments (not really needed) lowerCamelCase__ = 0 lowerCamelCase__ = 1 lowerCamelCase__ = 2 lowerCamelCase__ = 3 lowerCamelCase__ = 4 class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[Any] = "left" lowerCAmelCase : Tuple = XLNetTokenizer def __init__( self : Tuple , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : int=False , lowerCamelCase__ : List[str]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Optional[int]="<unk>" , lowerCamelCase__ : Dict="<sep>" , lowerCamelCase__ : Dict="<pad>" , lowerCamelCase__ : Any="<cls>" , lowerCamelCase__ : Any="<mask>" , lowerCamelCase__ : int=["<eop>", "<eod>"] , **lowerCamelCase__ : Any , ) ->Dict: '''simple docstring''' _UpperCAmelCase : Tuple = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase : Optional[Any] = 3 _UpperCAmelCase : List[Any] = do_lower_case _UpperCAmelCase : Optional[Any] = remove_space _UpperCAmelCase : Tuple = keep_accents _UpperCAmelCase : str = vocab_file _UpperCAmelCase : List[str] = False if not self.vocab_file else True def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [self.sep_token_id] _UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : str = [self.sep_token_id] _UpperCAmelCase : List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : int = None ) ->Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Union[str, Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
371
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : int ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base" ) _UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained("xlm-roberta-base" ) _UpperCAmelCase : Optional[Any] = "The dog is cute and lives in the garden house" _UpperCAmelCase : Optional[int] = jnp.array([tokenizer.encode(lowerCamelCase__ )] ) _UpperCAmelCase : str = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim _UpperCAmelCase : Union[str, Any] = jnp.array( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) _UpperCAmelCase : List[str] = model(lowerCamelCase__ )["last_hidden_state"] self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , lowerCamelCase__ , atol=1E-3 ) )
350
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
0
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): lowerCAmelCase : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
351
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 1_000_000 ) -> Dict: _UpperCAmelCase : Any = 1 _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : Any = {1: 1} for inputa in range(2 , UpperCAmelCase_ ): _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Union[str, Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _UpperCAmelCase : Optional[int] = (3 * number) + 1 counter += 1 if inputa not in counters: _UpperCAmelCase : Any = counter if counter > pre_counter: _UpperCAmelCase : Optional[int] = inputa _UpperCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
353
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
0
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCamelCase__ = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): lowerCAmelCase : Optional[int] = None lowerCAmelCase : str = "utf-8" lowerCAmelCase : List[Any] = None lowerCAmelCase : int = None lowerCAmelCase : int = True # deprecated lowerCAmelCase : List[Any] = None # deprecated lowerCAmelCase : int = 10 << 20 # 10MB lowerCAmelCase : Any = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): lowerCAmelCase : Tuple = JsonConfig def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) _UpperCAmelCase : List[str] = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Tuple ) ->List[str]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase__ , (str, list, tuple) ): _UpperCAmelCase : Dict = data_files if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : List[str] = [files] _UpperCAmelCase : str = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Dict = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : List[Any] = [files] _UpperCAmelCase : Dict = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase__ , gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : pa.Table ) ->Optional[int]: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _UpperCAmelCase : List[Any] = self.config.features.arrow_schema.field(lowerCamelCase__ ).type _UpperCAmelCase : Optional[int] = pa_table.append_column(lowerCamelCase__ , pa.array([None] * len(lowerCamelCase__ ) , type=lowerCamelCase__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _UpperCAmelCase : List[str] = table_cast(lowerCamelCase__ , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Optional[Any] ) ->Any: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowerCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _UpperCAmelCase : str = json.load(lowerCamelCase__ ) # We keep only the field we are interested in _UpperCAmelCase : Optional[Any] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowerCamelCase__ , (list, tuple) ): _UpperCAmelCase : int = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase : List[Any] = {col: [row.get(lowerCamelCase__ ) for row in dataset] for col in keys} else: _UpperCAmelCase : Dict = dataset _UpperCAmelCase : Tuple = pa.Table.from_pydict(lowerCamelCase__ ) yield file_idx, self._cast_table(lowerCamelCase__ ) # If the file has one json object per line else: with open(lowerCamelCase__ , "rb" ) as f: _UpperCAmelCase : Dict = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _UpperCAmelCase : Optional[int] = max(self.config.chunksize // 32 , 16 << 10 ) _UpperCAmelCase : List[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: _UpperCAmelCase : str = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowerCamelCase__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _UpperCAmelCase : Optional[int] = batch.decode(self.config.encoding , errors=lowerCamelCase__ ).encode("utf-8" ) try: while True: try: _UpperCAmelCase : Tuple = paj.read_json( io.BytesIO(lowerCamelCase__ ) , read_options=paj.ReadOptions(block_size=lowerCamelCase__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowerCamelCase__ , pa.ArrowInvalid ) and "straddling" not in str(lowerCamelCase__ ) or block_size > len(lowerCamelCase__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(lowerCamelCase__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowerCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _UpperCAmelCase : Any = json.load(lowerCamelCase__ ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # list is the only sequence type supported in JSON try: _UpperCAmelCase : Optional[int] = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase : Dict = {col: [row.get(lowerCamelCase__ ) for row in dataset] for col in keys} _UpperCAmelCase : List[str] = pa.Table.from_pydict(lowerCamelCase__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(lowerCamelCase__ ) break else: logger.error(F"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase__ ) batch_idx += 1
354
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
355
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = [False] * len(__UpperCAmelCase ) _UpperCAmelCase : int = [] queue.append(__UpperCAmelCase ) _UpperCAmelCase : List[str] = True while queue: _UpperCAmelCase : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__UpperCAmelCase ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[str] = u return visited[t] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = [-1] * (len(__UpperCAmelCase )) _UpperCAmelCase : int = 0 while bfs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _UpperCAmelCase : List[Any] = float("Inf" ) _UpperCAmelCase : str = sink while s != source: # Find the minimum value in select path _UpperCAmelCase : Any = min(__UpperCAmelCase , graph[parent[s]][s] ) _UpperCAmelCase : Optional[int] = parent[s] max_flow += path_flow _UpperCAmelCase : Optional[int] = sink while v != source: _UpperCAmelCase : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCAmelCase : Dict = parent[v] return max_flow lowerCamelCase__ : List[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCamelCase__ : Tuple = 0, 5 print(ford_fulkerson(graph, source, sink))
356
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if digit_amount > 0: return round(number - int(lowercase_ ) , lowercase_ ) return number - int(lowercase_ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
357
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
0
import qiskit def __lowerCAmelCase (__lowerCAmelCase = 2 ): _UpperCAmelCase : int = qubits # Using Aer's simulator _UpperCAmelCase : str = qiskit.Aer.get_backend("aer_simulator" ) # Creating a Quantum Circuit acting on the q register _UpperCAmelCase : str = qiskit.QuantumCircuit(A_ , A_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , A_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , A_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(A_ ) ) , list(range(A_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator _UpperCAmelCase : List[Any] = qiskit.execute(A_ , A_ , shots=1_000 ) return job.result().get_counts(A_ ) if __name__ == "__main__": print(F'''Total count for various states are: {quantum_entanglement(3)}''')
358
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
0
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _UpperCAmelCase : Any = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowercase ): os.makedirs(_lowercase ) _UpperCAmelCase : Any = model.state_dict() def to_tf_var_name(__lowerCAmelCase ): for patt, repl in iter(_lowercase ): _UpperCAmelCase : Dict = name.replace(_lowercase , _lowercase ) return F"""bert/{name}""" def create_tf_var(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = tf.dtypes.as_dtype(tensor.dtype ) _UpperCAmelCase : List[str] = tf.get_variable(dtype=_lowercase , shape=tensor.shape , name=_lowercase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowercase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _UpperCAmelCase : Union[str, Any] = to_tf_var_name(_lowercase ) _UpperCAmelCase : List[Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _UpperCAmelCase : str = torch_tensor.T _UpperCAmelCase : Any = create_tf_var(tensor=_lowercase , name=_lowercase , session=_lowercase ) tf.keras.backend.set_value(_lowercase , _lowercase ) _UpperCAmelCase : Tuple = session.run(_lowercase ) print(F"""Successfully created {tf_name}: {np.allclose(_lowercase , _lowercase )}""" ) _UpperCAmelCase : Dict = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowercase , os.path.join(_lowercase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def __lowerCAmelCase (__lowerCAmelCase=None ): _UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowercase , required=_lowercase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowercase , default=_lowercase , required=_lowercase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowercase , required=_lowercase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowercase , required=_lowercase , help="Directory in which to save tensorflow model" ) _UpperCAmelCase : str = parser.parse_args(_lowercase ) _UpperCAmelCase : Optional[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowercase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
359
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
0
'''simple docstring''' import requests def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = {"""Content-Type""": """application/json"""} _UpperCAmelCase : int = requests.post(__lowerCAmelCase , json={"text": message_body} , headers=__lowerCAmelCase ) if response.status_code != 200: _UpperCAmelCase : Tuple = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
360
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
0
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _UpperCAmelCase : int = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : List[str] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Any = F"""\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n """.split() _UpperCAmelCase : List[str] = [sys.executable] + distributed_args execute_subprocess_async(lowerCamelCase_ , env=os.environ.copy() )
361
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCamelCase__ ): def __init__( self : Tuple , *lowerCamelCase__ : Optional[Any] , **lowerCamelCase__ : Any ) ->None: '''simple docstring''' warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
362
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
0
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports lowerCamelCase__ = ''' import os ''' lowerCamelCase__ = ''' def foo(): import os return False ''' lowerCamelCase__ = ''' def foo(): def bar(): if True: import os return False return bar() ''' lowerCamelCase__ = ''' import os try: import bar except ImportError: raise ValueError() ''' lowerCamelCase__ = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' lowerCamelCase__ = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' lowerCamelCase__ = ''' import os try: import bar except ImportError as e: raise ValueError() ''' lowerCamelCase__ = ''' import os try: import bar except: raise ValueError() ''' lowerCamelCase__ = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' lowerCamelCase__ = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' lowerCamelCase__ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , _lowercase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = os.path.join(_lowercase , "test_file.py" ) with open(_lowercase , "w" ) as _tmp_file: _tmp_file.write(_lowercase ) _UpperCAmelCase : Optional[int] = get_imports(_lowercase ) assert parsed_imports == ["os"]
363
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
0
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') lowerCamelCase__ = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCamelCase__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCamelCase__ = sorted(arg_to_scheduler.keys()) lowerCamelCase__ = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class lowerCAmelCase__ ( pl.LightningModule ): def __init__( self : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str="base" , lowerCamelCase__ : str=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Union[str, Any]=None , **lowerCamelCase__ : Dict , ) ->Optional[int]: '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(a__ ) _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : Optional[int] = Path(self.hparams.output_dir ) _UpperCAmelCase : Optional[int] = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _UpperCAmelCase : List[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=a__ , **a__ , ) else: _UpperCAmelCase : str = config _UpperCAmelCase : Dict = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , a__ , a__ ): assert hasattr(self.config , a__ ), F"""model config doesn\'t have a `{p}` attribute""" setattr(self.config , a__ , getattr(self.hparams , a__ ) ) if tokenizer is None: _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=a__ , ) else: _UpperCAmelCase : Optional[int] = tokenizer _UpperCAmelCase : Union[str, Any] = MODEL_MODES[mode] if model is None: _UpperCAmelCase : int = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=a__ , ) else: _UpperCAmelCase : Union[str, Any] = model def lowerCAmelCase__ ( self : int , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : str = self.model_type.from_pretrained(*a__ , **a__ ) def lowerCAmelCase__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple = arg_to_scheduler[self.hparams.lr_scheduler] _UpperCAmelCase : Optional[Any] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _UpperCAmelCase : Tuple = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Any = self.model _UpperCAmelCase : Any = ["bias", "LayerNorm.weight"] _UpperCAmelCase : Optional[int] = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: _UpperCAmelCase : Any = Adafactor( a__ , lr=self.hparams.learning_rate , scale_parameter=a__ , relative_step=a__ ) else: _UpperCAmelCase : Any = AdamW( a__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _UpperCAmelCase : Tuple = optimizer _UpperCAmelCase : Union[str, Any] = self.get_lr_scheduler() return [optimizer], [scheduler] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' return self.validation_step(a__ , a__ ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : List[Any] ) ->List[Any]: '''simple docstring''' return self.validation_end(a__ ) def lowerCAmelCase__ ( self : List[Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _UpperCAmelCase : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' if stage == "test": _UpperCAmelCase : Any = len(self.test_dataloader().dataset ) else: _UpperCAmelCase : List[str] = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=a__ ) _UpperCAmelCase : Any = len(self.train_dataloader().dataset ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str = False ) ->int: '''simple docstring''' raise NotImplementedError("You must implement this for your task" ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' return self.train_loader def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=a__ ) def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=a__ ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Dict ) ->Union[str, Any]: '''simple docstring''' return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( a__ , list(filter(a__ , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.output_dir.joinpath("best_tfmr" ) _UpperCAmelCase : str = self.step_count self.model.save_pretrained(a__ ) self.tokenizer.save_pretrained(a__ ) @staticmethod def lowerCAmelCase__ ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Any ) ->Optional[int]: '''simple docstring''' parser.add_argument( "--model_name_or_path" , default=a__ , type=a__ , required=a__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=a__ , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=a__ , type=a__ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(a__ ).parent / "test_run" / "cache" ) , type=a__ , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=a__ , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=a__ , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=a__ , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=a__ , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5E-5 , type=a__ , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=a__ , metavar=a__ , type=a__ , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=a__ , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=a__ , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=a__ , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=a__ , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=a__ ) parser.add_argument("--train_batch_size" , default=32 , type=a__ ) parser.add_argument("--eval_batch_size" , default=32 , type=a__ ) parser.add_argument("--adafactor" , action="store_true" ) class lowerCAmelCase__ ( pl.Callback ): def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int ) ->Any: '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCAmelCase__ ( pl.Callback ): def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(a__ ) class lowerCAmelCase__ ( pl.Callback ): def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = trainer.lr_schedulers[0]["scheduler"] _UpperCAmelCase : Optional[int] = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(a__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any ) ->Dict: '''simple docstring''' rank_zero_info("***** Validation results *****" ) _UpperCAmelCase : Dict = trainer.callback_metrics # Log results for key in sorted(a__ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(a__ , str(metrics[key] ) ) ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict ) ->int: '''simple docstring''' rank_zero_info("***** Test results *****" ) _UpperCAmelCase : Tuple = trainer.callback_metrics # Log and save results to file _UpperCAmelCase : int = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(a__ , "w" ) as writer: for key in sorted(a__ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(a__ , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(a__ , str(metrics[key] ) ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir" , default=str(Path(__lowerCAmelCase ).parent / "test_run" / "model_checkpoints" ) , type=__lowerCAmelCase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__lowerCAmelCase , default="O2" , help=( "For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=__lowerCAmelCase ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=__lowerCAmelCase , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=__lowerCAmelCase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=__lowerCAmelCase , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(__lowerCAmelCase ).parent / "test_run" / "dummy-train-data" ) , type=__lowerCAmelCase , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=[] , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ): pl.seed_everything(args.seed ) # init model _UpperCAmelCase : Tuple = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: _UpperCAmelCase : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__lowerCAmelCase ) if logging_callback is None: _UpperCAmelCase : Any = LoggingCallback() _UpperCAmelCase : Optional[Any] = {} if args.fpaa: _UpperCAmelCase : Tuple = 16 if args.gpus > 1: _UpperCAmelCase : int = "auto" _UpperCAmelCase : List[Any] = "ddp" _UpperCAmelCase : Optional[int] = args.accumulate_grad_batches _UpperCAmelCase : str = None _UpperCAmelCase : int = "auto" _UpperCAmelCase : Dict = pl.Trainer.from_argparse_args( __lowerCAmelCase , weights_summary=__lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **__lowerCAmelCase , ) if args.do_train: trainer.fit(__lowerCAmelCase ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class lowerCAmelCase__ ( __lowerCAmelCase ): lowerCAmelCase : List[str] = '''instructblip_vision_model''' def __init__( self : int , lowerCamelCase__ : Tuple=14_08 , lowerCamelCase__ : Tuple=61_44 , lowerCamelCase__ : List[Any]=39 , lowerCamelCase__ : List[Any]=16 , lowerCamelCase__ : Optional[Any]=2_24 , lowerCamelCase__ : List[str]=14 , lowerCamelCase__ : int="gelu" , lowerCamelCase__ : Optional[Any]=1E-6 , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : Any=1E-10 , lowerCamelCase__ : int=True , **lowerCamelCase__ : List[Any] , ) ->Any: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : List[Any] = patch_size _UpperCAmelCase : List[str] = image_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Union[str, Any] = qkv_bias @classmethod def lowerCAmelCase__ ( cls : Optional[int] , lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Dict ) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCAmelCase_ ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _UpperCAmelCase : str = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class lowerCAmelCase__ ( __lowerCAmelCase ): lowerCAmelCase : Union[str, Any] = '''instructblip_qformer''' def __init__( self : Any , lowerCamelCase__ : List[str]=3_05_22 , lowerCamelCase__ : int=7_68 , lowerCamelCase__ : Tuple=12 , lowerCamelCase__ : Tuple=12 , lowerCamelCase__ : Optional[Any]=30_72 , lowerCamelCase__ : int="gelu" , lowerCamelCase__ : str=0.1 , lowerCamelCase__ : List[str]=0.1 , lowerCamelCase__ : Dict=5_12 , lowerCamelCase__ : Optional[Any]=0.0_2 , lowerCamelCase__ : Dict=1E-12 , lowerCamelCase__ : Tuple=0 , lowerCamelCase__ : List[Any]="absolute" , lowerCamelCase__ : List[Any]=2 , lowerCamelCase__ : Union[str, Any]=14_08 , **lowerCamelCase__ : List[str] , ) ->Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _UpperCAmelCase : int = vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : List[str] = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : str = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : str = position_embedding_type _UpperCAmelCase : List[Any] = cross_attention_frequency _UpperCAmelCase : Tuple = encoder_hidden_size @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] , lowerCamelCase__ : int , **lowerCamelCase__ : List[str] ) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCAmelCase_ ) _UpperCAmelCase , _UpperCAmelCase : Tuple = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _UpperCAmelCase : Union[str, Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class lowerCAmelCase__ ( __lowerCAmelCase ): lowerCAmelCase : Any = '''instructblip''' lowerCAmelCase : int = True def __init__( self : List[str] , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Union[str, Any]=32 , **lowerCamelCase__ : Optional[Any] ) ->Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if vision_config is None: _UpperCAmelCase : Union[str, Any] = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: _UpperCAmelCase : Union[str, Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: _UpperCAmelCase : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) _UpperCAmelCase : int = InstructBlipVisionConfig(**lowerCAmelCase_ ) _UpperCAmelCase : Any = InstructBlipQFormerConfig(**lowerCAmelCase_ ) _UpperCAmelCase : int = text_config["model_type"] if "model_type" in text_config else "opt" _UpperCAmelCase : Optional[int] = CONFIG_MAPPING[text_model_type](**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = self.text_config.tie_word_embeddings _UpperCAmelCase : int = self.text_config.is_encoder_decoder _UpperCAmelCase : Any = num_query_tokens _UpperCAmelCase : Any = self.vision_config.hidden_size _UpperCAmelCase : Optional[int] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCAmelCase : Tuple = 1.0 _UpperCAmelCase : List[str] = 0.0_2 @classmethod def lowerCAmelCase__ ( cls : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] , **lowerCamelCase__ : Optional[int] , ) ->Any: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase_ , ) def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : List[Any] = self.vision_config.to_dict() _UpperCAmelCase : List[Any] = self.qformer_config.to_dict() _UpperCAmelCase : Optional[Any] = self.text_config.to_dict() _UpperCAmelCase : Optional[int] = self.__class__.model_type return output
365
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
0
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[str] = OmegaConf.load(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.load(lowerCAmelCase__ , map_location="cpu" )["""model"""] _UpperCAmelCase : List[str] = list(state_dict.keys() ) # extract state_dict for VQVAE _UpperCAmelCase : Dict = {} _UpperCAmelCase : Dict = """first_stage_model.""" for key in keys: if key.startswith(lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = state_dict[key] # extract state_dict for UNetLDM _UpperCAmelCase : List[str] = {} _UpperCAmelCase : List[str] = """model.diffusion_model.""" for key in keys: if key.startswith(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = state_dict[key] _UpperCAmelCase : Dict = config.model.params.first_stage_config.params _UpperCAmelCase : List[Any] = config.model.params.unet_config.params _UpperCAmelCase : Optional[int] = VQModel(**lowerCAmelCase__ ).eval() vqvae.load_state_dict(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = UNetLDMModel(**lowerCAmelCase__ ).eval() unet.load_state_dict(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=lowerCAmelCase__ , ) _UpperCAmelCase : Union[str, Any] = LDMPipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) pipeline.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) lowerCamelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
366
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCamelCase__ = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } lowerCamelCase__ = { 'camembert-base': 512, } lowerCamelCase__ = '▁' class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Tuple = ["input_ids", "attention_mask"] def __init__( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Union[str, Any]="<s>" , lowerCamelCase__ : Any="<unk>" , lowerCamelCase__ : Optional[Any]="<pad>" , lowerCamelCase__ : Dict="<mask>" , lowerCamelCase__ : int=["<s>NOTUSED", "</s>NOTUSED"] , lowerCamelCase__ : Optional[Dict[str, Any]] = None , **lowerCamelCase__ : str , ) ->None: '''simple docstring''' _UpperCAmelCase : int = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token _UpperCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) _UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) _UpperCAmelCase : List[Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> _UpperCAmelCase : List[Any] = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} _UpperCAmelCase : Union[str, Any] = len(self.fairseq_tokens_to_ids ) _UpperCAmelCase : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) _UpperCAmelCase : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.cls_token_id] _UpperCAmelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : int = [self.sep_token_id] _UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self : int , lowerCamelCase__ : str ) ->List[str]: '''simple docstring''' return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Any ) ->Dict: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCamelCase__ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : int ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : str = [] _UpperCAmelCase : Dict = '''''' _UpperCAmelCase : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token _UpperCAmelCase : Tuple = True _UpperCAmelCase : int = [] else: current_sub_tokens.append(UpperCamelCase__ ) _UpperCAmelCase : Any = False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def __getstate__( self : int ) ->Tuple: '''simple docstring''' _UpperCAmelCase : str = self.__dict__.copy() _UpperCAmelCase : str = None return state def __setstate__( self : Optional[int] , lowerCamelCase__ : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : Dict = {} _UpperCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Tuple = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: _UpperCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
367
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Return True if there is node that has not iterated. _UpperCAmelCase : Optional[int] = [False] * len(lowerCamelCase_ ) _UpperCAmelCase : Union[str, Any] = [] queue.append(lowerCamelCase_ ) _UpperCAmelCase : Any = True while queue: _UpperCAmelCase : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase_ ) _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : int = u return visited[t] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # This array is filled by BFS and to store path _UpperCAmelCase : Optional[Any] = [-1] * (len(lowerCamelCase_ )) _UpperCAmelCase : Optional[Any] = 0 while bfs(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): _UpperCAmelCase : Optional[int] = float("Inf" ) _UpperCAmelCase : List[Any] = sink while s != source: # Find the minimum value in select path _UpperCAmelCase : Any = min(lowerCamelCase_ , graph[parent[s]][s] ) _UpperCAmelCase : List[str] = parent[s] max_flow += path_flow _UpperCAmelCase : Optional[Any] = sink while v != source: _UpperCAmelCase : Optional[int] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCAmelCase : str = parent[v] return max_flow lowerCamelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCamelCase__ = 0, 5 print(ford_fulkerson(graph, source, sink))
368
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowerCAmelCase__ ( __a ): def __init__( self : Dict ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = [] def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , **lowerCamelCase__ : List[str] ) ->Optional[Any]: '''simple docstring''' self.events.append("on_init_end" ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict , **lowerCamelCase__ : List[Any] ) ->int: '''simple docstring''' self.events.append("on_train_begin" ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple , **lowerCamelCase__ : str ) ->Optional[Any]: '''simple docstring''' self.events.append("on_train_end" ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , **lowerCamelCase__ : List[Any] ) ->Dict: '''simple docstring''' self.events.append("on_epoch_begin" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple , **lowerCamelCase__ : Optional[Any] ) ->str: '''simple docstring''' self.events.append("on_epoch_end" ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , **lowerCamelCase__ : int ) ->Optional[Any]: '''simple docstring''' self.events.append("on_step_begin" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : str , **lowerCamelCase__ : Dict ) ->List[Any]: '''simple docstring''' self.events.append("on_step_end" ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : str , **lowerCamelCase__ : int ) ->Optional[Any]: '''simple docstring''' self.events.append("on_evaluate" ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Tuple ) ->Dict: '''simple docstring''' self.events.append("on_predict" ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Any ) ->Optional[int]: '''simple docstring''' self.events.append("on_save" ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Optional[Any] ) ->List[Any]: '''simple docstring''' self.events.append("on_log" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : Tuple ) ->Optional[int]: '''simple docstring''' self.events.append("on_prediction_step" ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = tempfile.mkdtemp() def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' shutil.rmtree(self.output_dir ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[int]=0 , lowerCamelCase__ : Any=0 , lowerCamelCase__ : Union[str, Any]=64 , lowerCamelCase__ : Union[str, Any]=64 , lowerCamelCase__ : Any=None , lowerCamelCase__ : Union[str, Any]=False , **lowerCamelCase__ : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = RegressionDataset(length=UpperCamelCase__ ) _UpperCAmelCase : str = RegressionDataset(length=UpperCamelCase__ ) _UpperCAmelCase : Any = RegressionModelConfig(a=UpperCamelCase__ , b=UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = RegressionPreTrainedModel(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = TrainingArguments(self.output_dir , disable_tqdm=UpperCamelCase__ , report_to=[] , **UpperCamelCase__ ) return Trainer( UpperCamelCase__ , UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , callbacks=UpperCamelCase__ , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) # Order doesn't matter _UpperCAmelCase : Any = sorted(UpperCamelCase__ , key=lambda lowerCamelCase__ : cb.__name__ if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cb.__class__.__name__ ) _UpperCAmelCase : Dict = sorted(UpperCamelCase__ , key=lambda lowerCamelCase__ : cb.__name__ if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cb.__class__.__name__ ) for cba, cba in zip(UpperCamelCase__ , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and not isinstance(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(UpperCamelCase__ , cba.__class__ ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(cba.__class__ , UpperCamelCase__ ) else: self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = ["on_init_end", "on_train_begin"] _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : int = len(trainer.get_eval_dataloader() ) _UpperCAmelCase : str = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(UpperCamelCase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowerCAmelCase__ ( self : Optional[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.get_trainer() _UpperCAmelCase : Dict = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase__ ) # Callbacks passed at init are added to the default callbacks _UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(UpperCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _UpperCAmelCase : List[Any] = self.get_trainer(disable_tqdm=UpperCamelCase__ ) _UpperCAmelCase : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase__ ) def lowerCAmelCase__ ( self : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[int] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] _UpperCAmelCase : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCamelCase__ ) expected_callbacks.remove(UpperCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase__ ) _UpperCAmelCase : List[str] = self.get_trainer() _UpperCAmelCase : Optional[int] = trainer.pop_callback(UpperCamelCase__ ) self.assertEqual(cb.__class__ , UpperCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase__ ) trainer.add_callback(UpperCamelCase__ ) expected_callbacks.insert(0 , UpperCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase__ ) # We can also add, pop, or remove by instance _UpperCAmelCase : Optional[int] = self.get_trainer() _UpperCAmelCase : str = trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCamelCase__ ) expected_callbacks.remove(UpperCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase__ ) _UpperCAmelCase : Optional[int] = self.get_trainer() _UpperCAmelCase : Optional[Any] = trainer.callback_handler.callbacks[0] _UpperCAmelCase : Tuple = trainer.pop_callback(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase__ ) trainer.add_callback(UpperCamelCase__ ) expected_callbacks.insert(0 , UpperCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->Dict: '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=UpperCamelCase__ ) _UpperCAmelCase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _UpperCAmelCase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase__ , self.get_expected_events(UpperCamelCase__ ) ) # Independent log/save/eval _UpperCAmelCase : str = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() _UpperCAmelCase : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase__ , self.get_expected_events(UpperCamelCase__ ) ) _UpperCAmelCase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() _UpperCAmelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase__ , self.get_expected_events(UpperCamelCase__ ) ) _UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() _UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase__ , self.get_expected_events(UpperCamelCase__ ) ) _UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() _UpperCAmelCase : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase__ , self.get_expected_events(UpperCamelCase__ ) ) # A bit of everything _UpperCAmelCase : List[str] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() _UpperCAmelCase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase__ , self.get_expected_events(UpperCamelCase__ ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: _UpperCAmelCase : List[str] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCamelCase__ ) in warn_mock.call_args[0][0]
369
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 10**9 ): _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Dict = 0 _UpperCAmelCase : int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _UpperCAmelCase : int = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
370
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
0
lowerCamelCase__ = [0, 2, 4, 6, 8] lowerCamelCase__ = [1, 3, 5, 7, 9] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _UpperCAmelCase : Optional[Any] = 0 for digit in range(10 ): _UpperCAmelCase : Dict = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , a__ , a__ ) return result _UpperCAmelCase : Dict = 0 for digita in range(10 ): _UpperCAmelCase : int = digita if (remainder + digita) % 2 == 0: _UpperCAmelCase : List[Any] = ODD_DIGITS else: _UpperCAmelCase : int = EVEN_DIGITS for digita in other_parity_digits: _UpperCAmelCase : Any = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , a__ , a__ , ) return result def __lowerCAmelCase (__lowerCAmelCase = 9 ): _UpperCAmelCase : Union[str, Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(a__ , 0 , [0] * length , a__ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
371
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCamelCase__ = get_tests_dir('fixtures') lowerCamelCase__ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCamelCase__ = get_tests_dir('fixtures/dummy-config.json') class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Tuple ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = 0 def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(_A , _A ) def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Dict = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _UpperCAmelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained(_A ).to_dict() config_dict.pop("feature_extractor_type" ) _UpperCAmelCase : List[str] = WavaVecaFeatureExtractor(**_A ) # save in new folder model_config.save_pretrained(_A ) config.save_pretrained(_A ) _UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_A ) # make sure private variable is not incorrectly saved _UpperCAmelCase : Optional[Any] = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(_A , _A ) def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' with self.assertRaisesRegex( _A , "bert-base is not a local folder and is not a valid model identifier" ): _UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained("bert-base" ) def lowerCAmelCase__ ( self : Dict ) ->Optional[int]: '''simple docstring''' with self.assertRaisesRegex( _A , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained(_A , revision="aaaaaa" ) def lowerCAmelCase__ ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( _A , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): _UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' with self.assertRaises(_A ): _UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): _UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=_A ) _UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_A ) _UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(_A , trust_remote_code=_A ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' try: AutoConfig.register("custom" , _A ) AutoFeatureExtractor.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoFeatureExtractor.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API _UpperCAmelCase : Tuple = CustomFeatureExtractor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_A ) _UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase__ ( self : Dict ) ->List[Any]: '''simple docstring''' class lowerCAmelCase__ ( snake_case_ ): lowerCAmelCase : Dict = True try: AutoConfig.register("custom" , _A ) AutoFeatureExtractor.register(_A , _A ) # If remote code is not set, the default is to use local _UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(_A , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
350
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
351
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
0
'''simple docstring''' import os import sys import unittest lowerCamelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCamelCase__ = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowerCamelCase__ = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : str = get_test_to_tester_mapping(snake_case_ ) _UpperCAmelCase : Tuple = get_test_to_tester_mapping(snake_case_ ) _UpperCAmelCase : Union[str, Any] = {'''BertModelTest''': '''BertModelTester'''} _UpperCAmelCase : Tuple = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : str ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = get_model_to_test_mapping(snake_case_ ) _UpperCAmelCase : Any = get_model_to_test_mapping(snake_case_ ) _UpperCAmelCase : List[Any] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } _UpperCAmelCase : Dict = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Any = get_model_to_tester_mapping(snake_case_ ) _UpperCAmelCase : List[str] = get_model_to_tester_mapping(snake_case_ ) _UpperCAmelCase : Any = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } _UpperCAmelCase : int = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ )
352
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
0
'''simple docstring''' import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCAmelCase (__lowerCAmelCase ) -> Dict: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCAmelCase (__lowerCAmelCase ) -> Any: _UpperCAmelCase : str = create_tensor(__lowerCAmelCase ) _UpperCAmelCase : Dict = gather(__lowerCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __lowerCAmelCase (__lowerCAmelCase ) -> Dict: _UpperCAmelCase : List[str] = [state.process_index] _UpperCAmelCase : Any = gather_object(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == state.num_processes, F"""{gathered_obj}, {len(__lowerCAmelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def __lowerCAmelCase (__lowerCAmelCase ) -> Dict: _UpperCAmelCase : List[str] = create_tensor(__lowerCAmelCase ) _UpperCAmelCase : Any = broadcast(__lowerCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __lowerCAmelCase (__lowerCAmelCase ) -> Optional[int]: if state.is_main_process: _UpperCAmelCase : List[str] = torch.arange(state.num_processes + 1 ).to(state.device ) else: _UpperCAmelCase : Union[str, Any] = torch.arange(state.num_processes ).to(state.device ) _UpperCAmelCase : str = pad_across_processes(__lowerCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __lowerCAmelCase (__lowerCAmelCase ) -> Union[str, Any]: if state.num_processes != 2: return _UpperCAmelCase : Any = create_tensor(__lowerCAmelCase ) _UpperCAmelCase : int = reduce(__lowerCAmelCase , "sum" ) _UpperCAmelCase : Any = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ), F"""{reduced_tensor} != {truth_tensor}""" def __lowerCAmelCase (__lowerCAmelCase ) -> Dict: if state.num_processes != 2: return _UpperCAmelCase : List[Any] = create_tensor(__lowerCAmelCase ) _UpperCAmelCase : Dict = reduce(__lowerCAmelCase , "mean" ) _UpperCAmelCase : List[str] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ), F"""{reduced_tensor} != {truth_tensor}""" def __lowerCAmelCase (__lowerCAmelCase ) -> Tuple: main() def __lowerCAmelCase () -> int: _UpperCAmelCase : Optional[Any] = PartialState() state.print(F"""State: {state}""" ) state.print("testing gather" ) test_gather(__lowerCAmelCase ) state.print("testing gather_object" ) test_gather_object(__lowerCAmelCase ) state.print("testing broadcast" ) test_broadcast(__lowerCAmelCase ) state.print("testing pad_across_processes" ) test_pad_across_processes(__lowerCAmelCase ) state.print("testing reduce_sum" ) test_reduce_sum(__lowerCAmelCase ) state.print("testing reduce_mean" ) test_reduce_mean(__lowerCAmelCase ) if __name__ == "__main__": main()
353
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __lowerCAmelCase (): _UpperCAmelCase : Dict = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=__lowerCAmelCase , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=__lowerCAmelCase , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=__lowerCAmelCase ) return parser.parse_args() def __lowerCAmelCase (): _UpperCAmelCase : List[Any] = parse_args() # Import training_script as a module. _UpperCAmelCase : str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Any = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(__lowerCAmelCase ) # Patch sys.argv _UpperCAmelCase : Optional[int] = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
354
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 10 , __lowerCAmelCase = 22 ): _UpperCAmelCase : str = range(1 , __lowerCAmelCase ) _UpperCAmelCase : List[Any] = range(1 , __lowerCAmelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F'''{solution(10, 22) = }''')
355
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = len(lowerCamelCase_ ) _UpperCAmelCase : str = len(lowerCamelCase_ ) _UpperCAmelCase : Union[str, Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _UpperCAmelCase : List[Any] = True for i in range(lowerCamelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _UpperCAmelCase : int = True if a[i].islower(): _UpperCAmelCase : int = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
0
'''simple docstring''' from __future__ import annotations import math lowerCamelCase__ : str = "2020.9.26" lowerCamelCase__ : str = "xcodz-dot, cclaus, dhruvmanila" def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not all(isinstance(UpperCAmelCase_ , (float, int) ) for val in locals().values() ): _UpperCAmelCase : Union[str, Any] = F"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(UpperCAmelCase_ ) _UpperCAmelCase : List[Any] = ((x * distance) / (z + distance)) * scale _UpperCAmelCase : List[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError("Axis must be a str" ) _UpperCAmelCase : Tuple = locals() del input_variables["axis"] if not all(isinstance(UpperCAmelCase_ , (float, int) ) for val in input_variables.values() ): _UpperCAmelCase : Optional[Any] = ( 'Input values except axis must either be float or int: ' F"""{list(input_variables.values() )}""" ) raise TypeError(UpperCAmelCase_ ) _UpperCAmelCase : Dict = (angle % 360) / 450 * 180 / math.pi if axis == "z": _UpperCAmelCase : List[str] = x * math.cos(UpperCAmelCase_ ) - y * math.sin(UpperCAmelCase_ ) _UpperCAmelCase : str = y * math.cos(UpperCAmelCase_ ) + x * math.sin(UpperCAmelCase_ ) _UpperCAmelCase : str = z elif axis == "x": _UpperCAmelCase : Union[str, Any] = y * math.cos(UpperCAmelCase_ ) - z * math.sin(UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = z * math.cos(UpperCAmelCase_ ) + y * math.sin(UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = x elif axis == "y": _UpperCAmelCase : Tuple = x * math.cos(UpperCAmelCase_ ) - z * math.sin(UpperCAmelCase_ ) _UpperCAmelCase : List[str] = z * math.cos(UpperCAmelCase_ ) + x * math.sin(UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = y else: raise ValueError("not a valid axis, choose one of \'x\', \'y\', \'z\'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, "y", 90.0) = }''')
357
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
0
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0 while b > 0: if b & 1: _UpperCAmelCase : Any = ((res % c) + (a % c)) % c a += a b >>= 1 return res
358
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Dict = '''mctct''' def __init__( self : Union[str, Any] , lowerCamelCase__ : Union[str, Any]=80_65 , lowerCamelCase__ : List[Any]=15_36 , lowerCamelCase__ : List[str]=36 , lowerCamelCase__ : str=61_44 , lowerCamelCase__ : List[str]=4 , lowerCamelCase__ : Dict=3_84 , lowerCamelCase__ : Any=9_20 , lowerCamelCase__ : List[str]=1E-5 , lowerCamelCase__ : Any=0.3 , lowerCamelCase__ : List[Any]="relu" , lowerCamelCase__ : List[str]=0.0_2 , lowerCamelCase__ : Any=0.3 , lowerCamelCase__ : Any=0.3 , lowerCamelCase__ : Any=1 , lowerCamelCase__ : Any=0 , lowerCamelCase__ : Optional[int]=2 , lowerCamelCase__ : List[Any]=1 , lowerCamelCase__ : str=0.3 , lowerCamelCase__ : Optional[Any]=1 , lowerCamelCase__ : Any=(7,) , lowerCamelCase__ : Dict=(3,) , lowerCamelCase__ : Union[str, Any]=80 , lowerCamelCase__ : List[Any]=1 , lowerCamelCase__ : int=None , lowerCamelCase__ : Optional[Any]="sum" , lowerCamelCase__ : List[Any]=False , **lowerCamelCase__ : Tuple , ) ->Dict: '''simple docstring''' super().__init__(**A__ , pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : int = attention_head_dim _UpperCAmelCase : str = max_position_embeddings _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : Tuple = layerdrop _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = pad_token_id _UpperCAmelCase : str = bos_token_id _UpperCAmelCase : Optional[int] = eos_token_id _UpperCAmelCase : int = conv_glu_dim _UpperCAmelCase : Optional[Any] = conv_dropout _UpperCAmelCase : Optional[int] = num_conv_layers _UpperCAmelCase : List[Any] = input_feat_per_channel _UpperCAmelCase : int = input_channels _UpperCAmelCase : Any = conv_channels _UpperCAmelCase : Tuple = ctc_loss_reduction _UpperCAmelCase : List[Any] = ctc_zero_infinity # prevents config testing fail with exporting to json _UpperCAmelCase : List[str] = list(A__ ) _UpperCAmelCase : Any = list(A__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
359
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase__ = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Optional[int] = filter(lambda __lowerCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase : Union[str, Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCamelCase__ = logging.getLogger(__name__) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if metric == "rouge2": _UpperCAmelCase : List[Any] = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _UpperCAmelCase : List[Any] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _UpperCAmelCase : Tuple = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": _UpperCAmelCase : Tuple = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) _UpperCAmelCase : Optional[int] = ModelCheckpoint( dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=F"""val_{metric}""" , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return EarlyStopping( monitor=F"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , ) class lowerCAmelCase__ ( pl.Callback ): def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__A ) @rank_zero_only def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule , lowerCamelCase__ : str , lowerCamelCase__ : List[Any]=True ) ->List[str]: '''simple docstring''' logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _UpperCAmelCase : Optional[Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _UpperCAmelCase : Dict = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase : int = od / '''test_results.txt''' _UpperCAmelCase : int = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase : Dict = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _UpperCAmelCase : int = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__A ) generations_file.parent.mkdir(exist_ok=__A ) with open(__A , "a+" ) as writer: for key in sorted(__A ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase : List[str] = metrics[key] if isinstance(__A , torch.Tensor ): _UpperCAmelCase : str = val.item() _UpperCAmelCase : List[Any] = F"""{key}: {val:.6f}\n""" writer.write(__A ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase : Dict = '''\n'''.join(metrics["preds"] ) generations_file.open("w+" ).write(__A ) @rank_zero_only def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] ) ->Optional[Any]: '''simple docstring''' try: _UpperCAmelCase : Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase : Optional[Any] = pl_module.model.num_parameters() _UpperCAmelCase : List[Any] = count_trainable_parameters(__A ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule ) ->int: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__A , __A , "test" ) @rank_zero_only def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : Any ) ->Dict: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
361
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
0
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=False ): try: _UpperCAmelCase : Any = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase : Any = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase : Dict = strtobool(__snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value lowerCamelCase__ = parse_flag_from_env('RUN_SLOW', default=False) lowerCamelCase__ = parse_flag_from_env('RUN_REMOTE', default=False) lowerCamelCase__ = parse_flag_from_env('RUN_LOCAL', default=True) lowerCamelCase__ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression lowerCamelCase__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') lowerCamelCase__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') lowerCamelCase__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio lowerCamelCase__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam lowerCamelCase__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility lowerCamelCase__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows lowerCamelCase__ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __lowerCAmelCase (__lowerCAmelCase ): try: import faiss # noqa except ImportError: _UpperCAmelCase : Tuple = unittest.skip("test requires faiss" )(__snake_case ) return test_case def __lowerCAmelCase (__lowerCAmelCase ): try: import regex # noqa except ImportError: _UpperCAmelCase : Optional[int] = unittest.skip("test requires regex" )(__snake_case ) return test_case def __lowerCAmelCase (__lowerCAmelCase ): try: import elasticsearch # noqa except ImportError: _UpperCAmelCase : Optional[Any] = unittest.skip("test requires elasticsearch" )(__snake_case ) return test_case def __lowerCAmelCase (__lowerCAmelCase ): try: import sqlalchemy # noqa except ImportError: _UpperCAmelCase : Optional[int] = unittest.skip("test requires sqlalchemy" )(__snake_case ) return test_case def __lowerCAmelCase (__lowerCAmelCase ): if not config.TORCH_AVAILABLE: _UpperCAmelCase : Any = unittest.skip("test requires PyTorch" )(__snake_case ) return test_case def __lowerCAmelCase (__lowerCAmelCase ): if not config.TF_AVAILABLE: _UpperCAmelCase : List[str] = unittest.skip("test requires TensorFlow" )(__snake_case ) return test_case def __lowerCAmelCase (__lowerCAmelCase ): if not config.JAX_AVAILABLE: _UpperCAmelCase : Dict = unittest.skip("test requires JAX" )(__snake_case ) return test_case def __lowerCAmelCase (__lowerCAmelCase ): if not config.PIL_AVAILABLE: _UpperCAmelCase : Union[str, Any] = unittest.skip("test requires Pillow" )(__snake_case ) return test_case def __lowerCAmelCase (__lowerCAmelCase ): try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(__snake_case ) else: return test_case def __lowerCAmelCase (__lowerCAmelCase ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(__snake_case ) else: return test_case def __lowerCAmelCase (__lowerCAmelCase ): try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(__snake_case ) else: return test_case def __lowerCAmelCase (__lowerCAmelCase ): def _require_spacy_model(__lowerCAmelCase ): try: import spacy # noqa F401 spacy.load(__snake_case ) except ImportError: return unittest.skip("test requires spacy" )(__snake_case ) except OSError: return unittest.skip("test requires spacy model \'{}\'".format(__snake_case ) )(__snake_case ) else: return test_case return _require_spacy_model def __lowerCAmelCase (__lowerCAmelCase ): try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(__snake_case ) else: return test_case def __lowerCAmelCase (__lowerCAmelCase ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(__snake_case ) else: return test_case def __lowerCAmelCase (__lowerCAmelCase ): if not _run_slow_tests or _run_slow_tests == 0: _UpperCAmelCase : str = unittest.skip("test is slow" )(__snake_case ) return test_case def __lowerCAmelCase (__lowerCAmelCase ): if not _run_local_tests or _run_local_tests == 0: _UpperCAmelCase : Dict = unittest.skip("test is local" )(__snake_case ) return test_case def __lowerCAmelCase (__lowerCAmelCase ): if not _run_packaged_tests or _run_packaged_tests == 0: _UpperCAmelCase : List[Any] = unittest.skip("test is packaged" )(__snake_case ) return test_case def __lowerCAmelCase (__lowerCAmelCase ): if not _run_remote_tests or _run_remote_tests == 0: _UpperCAmelCase : Union[str, Any] = unittest.skip("test requires remote" )(__snake_case ) return test_case def __lowerCAmelCase (*__lowerCAmelCase ): def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__snake_case ) and name.startswith("test" ): for decorator in decorators: _UpperCAmelCase : Optional[Any] = decorator(__snake_case ) setattr(cls , __snake_case , __snake_case ) return cls return decorate class lowerCAmelCase__ ( UpperCAmelCase__ ): pass class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Optional[Any] = 1 lowerCAmelCase : Dict = 2 @contextmanager def __lowerCAmelCase (__lowerCAmelCase=OfflineSimulationMode.CONNECTION_FAILS , __lowerCAmelCase=1e-16 ): _UpperCAmelCase : Tuple = requests.Session().request def timeout_request(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): # Change the url to an invalid url so that the connection hangs _UpperCAmelCase : List[Any] = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) _UpperCAmelCase : Optional[Any] = timeout try: return online_request(__snake_case , __snake_case , **__snake_case ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _UpperCAmelCase : List[str] = url _UpperCAmelCase : List[Any] = e.args[0] _UpperCAmelCase : int = (max_retry_error.args[0].replace("10.255.255.1" , F"""OfflineMock[{url}]""" ),) _UpperCAmelCase : Any = (max_retry_error,) raise def raise_connection_error(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): raise requests.ConnectionError("Offline mode is enabled." , request=__snake_case ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , __snake_case ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , __snake_case ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , __snake_case ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def __lowerCAmelCase (*__lowerCAmelCase , **__lowerCAmelCase ): _UpperCAmelCase : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__snake_case , **__snake_case ) as tmp_dir: try: os.chdir(__snake_case ) yield finally: os.chdir(__snake_case ) @contextmanager def __lowerCAmelCase (): import gc gc.collect() _UpperCAmelCase : List[str] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __lowerCAmelCase (): import gc gc.collect() _UpperCAmelCase : str = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return deepcopy(__snake_case ).integers(0 , 100 , 10 ).tolist() == deepcopy(__snake_case ).integers(0 , 100 , 10 ).tolist() def __lowerCAmelCase (__lowerCAmelCase ): import decorator from requests.exceptions import HTTPError def _wrapper(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): try: return func(*__snake_case , **__snake_case ) except HTTPError as err: if str(__snake_case ).startswith("500" ) or str(__snake_case ).startswith("502" ): pytest.xfail(str(__snake_case ) ) raise err return decorator.decorator(_wrapper , __snake_case ) class lowerCAmelCase__ : def __init__( self : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = returncode _UpperCAmelCase : List[Any] = stdout _UpperCAmelCase : Any = stderr async def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): while True: _UpperCAmelCase : Dict = await stream.readline() if line: callback(__snake_case ) else: break async def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=False ): if echo: print("\nRunning: " , " ".join(__snake_case ) ) _UpperCAmelCase : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase : Any = [] _UpperCAmelCase : Dict = [] def tee(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="" ): _UpperCAmelCase : Dict = line.decode("utf-8" ).rstrip() sink.append(__snake_case ) if not quiet: print(__snake_case , __snake_case , file=__snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __lowerCAmelCase : tee(__snake_case , __snake_case , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda __lowerCAmelCase : tee(__snake_case , __snake_case , sys.stderr , label="stderr:" ) ), ] , timeout=__snake_case , ) return _RunOutput(await p.wait() , __snake_case , __snake_case ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=180 , __lowerCAmelCase=False , __lowerCAmelCase=True ): _UpperCAmelCase : Dict = asyncio.get_event_loop() _UpperCAmelCase : Optional[int] = loop.run_until_complete( _stream_subprocess(__snake_case , env=__snake_case , stdin=__snake_case , timeout=__snake_case , quiet=__snake_case , echo=__snake_case ) ) _UpperCAmelCase : int = " ".join(__snake_case ) if result.returncode > 0: _UpperCAmelCase : Any = "\n".join(result.stderr ) raise RuntimeError( F"""\'{cmd_str}\' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""\'{cmd_str}\' produced no output.""" ) return result def __lowerCAmelCase (): _UpperCAmelCase : List[Any] = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) _UpperCAmelCase : int = re.sub(R"^gw" , "" , __snake_case , 0 , re.M ) return int(__snake_case ) def __lowerCAmelCase (): _UpperCAmelCase : List[Any] = 29_500 _UpperCAmelCase : Dict = pytest_xdist_worker_id() return port + uniq_delta
362
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return number | (1 << position) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return number & ~(1 << position) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return number ^ (1 << position) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return ((number >> position) & 1) == 1 def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
0
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = '▁' lowerCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( snake_case__ , unittest.TestCase ): lowerCAmelCase : List[str] = BigBirdTokenizer lowerCAmelCase : int = BigBirdTokenizerFast lowerCAmelCase : Optional[int] = True lowerCAmelCase : Any = True def lowerCAmelCase__ ( self : int ) ->Dict: '''simple docstring''' super().setUp() _UpperCAmelCase : Union[str, Any] = self.tokenizer_class(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = "<s>" _UpperCAmelCase : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(_A ) , 10_04 ) def lowerCAmelCase__ ( self : Dict ) ->List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCAmelCase : Dict = self.get_tokenizer() _UpperCAmelCase : str = self.get_rust_tokenizer() _UpperCAmelCase : Union[str, Any] = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(_A ) _UpperCAmelCase : Tuple = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCAmelCase : Optional[Any] = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCAmelCase : List[str] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = tokenizer.encode(_A ) _UpperCAmelCase : List[Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : str = BigBirdTokenizer(_A , keep_accents=_A ) _UpperCAmelCase : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(_A , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) _UpperCAmelCase : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowerCAmelCase__ ( self : Union[str, Any] ) ->Dict: '''simple docstring''' return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def lowerCAmelCase__ ( self : Dict ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[int] = "Hello World!" _UpperCAmelCase : str = [65, 1_85_36, 22_60, 1_01, 66] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off _UpperCAmelCase : Optional[Any] = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231 # fmt: on self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _UpperCAmelCase : int = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCAmelCase : str = " ".join(_A ) _UpperCAmelCase : Optional[int] = self.big_tokenizer.encode_plus(_A , return_tensors="pt" , return_token_type_ids=_A ) _UpperCAmelCase : List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=_A ) _UpperCAmelCase : int = BigBirdConfig(attention_type="original_full" ) _UpperCAmelCase : int = BigBirdModel(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def lowerCAmelCase__ ( self : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase : str = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def lowerCAmelCase__ ( self : Tuple ) ->int: '''simple docstring''' _UpperCAmelCase : Any = {"input_ids": [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
0
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase = None ): if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) _UpperCAmelCase : str = nums[0] for i in range(1 , len(snake_case__ ) ): _UpperCAmelCase : Dict = nums[i] _UpperCAmelCase : Dict = max(snake_case__ , ans + num , snake_case__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase__ = int(input('Enter number of elements : ').strip()) lowerCamelCase__ = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
365
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
0
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class lowerCAmelCase__ : def __init__( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple ) ->None: '''simple docstring''' if len(lowerCamelCase__ ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) _UpperCAmelCase : List[str] = list(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = degree def __add__( self : Optional[Any] , lowerCamelCase__ : List[str] ) ->Polynomial: '''simple docstring''' if self.degree > polynomial_a.degree: _UpperCAmelCase : Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCamelCase__ ) else: _UpperCAmelCase : Dict = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCamelCase__ ) def __sub__( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Polynomial: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Optional[int] ) ->Polynomial: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : int , lowerCamelCase__ : Any ) ->Polynomial: '''simple docstring''' _UpperCAmelCase : Dict = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCamelCase__ ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Dict ) ->int | float: '''simple docstring''' _UpperCAmelCase : Dict = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCamelCase__ ) return polynomial def __repr__( self : Any ) ->str: '''simple docstring''' return self.__str__() def lowerCAmelCase__ ( self : int ) ->Polynomial: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [0] * self.degree for i in range(self.degree ): _UpperCAmelCase : Optional[int] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Any = 0 ) ->Polynomial: '''simple docstring''' _UpperCAmelCase : List[Any] = [0] * (self.degree + 2) _UpperCAmelCase : List[str] = constant for i in range(self.degree + 1 ): _UpperCAmelCase : str = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCamelCase__ ) def __eq__( self : Optional[Any] , lowerCamelCase__ : Tuple ) ->bool: '''simple docstring''' if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , lowerCamelCase__ : List[str] ) ->bool: '''simple docstring''' return not self.__eq__(lowerCamelCase__ )
366
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
0
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowerCAmelCase__ ( UpperCAmelCase_ ): lowerCAmelCase : Any = """""" lowerCAmelCase : str = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self : Any , lowerCamelCase__ : Union[str, Any] = None , lowerCamelCase__ : Tuple = None , **lowerCamelCase__ : int , ) ->str: '''simple docstring''' super().__init__(self , **__lowercase ) _UpperCAmelCase : Tuple = repo_info _UpperCAmelCase : Dict = token _UpperCAmelCase : Optional[Any] = None def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' if self.dir_cache is None: _UpperCAmelCase : int = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _UpperCAmelCase : Any = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(__lowercase ): {"name": str(__lowercase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] = "rb" , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if not isinstance(self.repo_info , __lowercase ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) _UpperCAmelCase : str = hf_hub_url(self.repo_info.id , __lowercase , revision=self.repo_info.sha ) return fsspec.open( __lowercase , mode=__lowercase , headers=get_authentication_headers_for_url(__lowercase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Tuple ) ->Dict: '''simple docstring''' self._get_dirs() _UpperCAmelCase : Optional[Any] = self._strip_protocol(__lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__lowercase ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str=False , **lowerCamelCase__ : List[Any] ) ->Union[str, Any]: '''simple docstring''' self._get_dirs() _UpperCAmelCase : Tuple = PurePosixPath(path.strip("/" ) ) _UpperCAmelCase : Optional[int] = {} for p, f in self.dir_cache.items(): _UpperCAmelCase : Any = PurePosixPath(p.strip("/" ) ) _UpperCAmelCase : List[str] = p.parent if root == path: _UpperCAmelCase : Union[str, Any] = f _UpperCAmelCase : Tuple = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
367
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( UpperCamelCase__ ): lowerCAmelCase : Optional[int] = """Speech2TextFeatureExtractor""" lowerCAmelCase : Optional[int] = """Speech2TextTokenizer""" def __init__( self : str , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict ) ->Tuple: '''simple docstring''' super().__init__(__a , __a ) _UpperCAmelCase : List[str] = self.feature_extractor _UpperCAmelCase : int = False def __call__( self : str , *lowerCamelCase__ : Any , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__a , **__a ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _UpperCAmelCase : List[str] = kwargs.pop("raw_speech" ) else: _UpperCAmelCase : List[Any] = kwargs.pop("audio" , __a ) _UpperCAmelCase : List[Any] = kwargs.pop("sampling_rate" , __a ) _UpperCAmelCase : List[Any] = kwargs.pop("text" , __a ) if len(__a ) > 0: _UpperCAmelCase : str = args[0] _UpperCAmelCase : Any = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _UpperCAmelCase : List[str] = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) if text is not None: _UpperCAmelCase : Any = self.tokenizer(__a , **__a ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase : Optional[Any] = encodings["input_ids"] return inputs def lowerCAmelCase__ ( self : Any , *lowerCamelCase__ : Dict , **lowerCamelCase__ : Tuple ) ->Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a ) def lowerCAmelCase__ ( self : List[Any] , *lowerCamelCase__ : Tuple , **lowerCamelCase__ : int ) ->List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a ) @contextmanager def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = self.tokenizer yield _UpperCAmelCase : List[Any] = self.feature_extractor _UpperCAmelCase : Tuple = False
368
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
0
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCamelCase__ = logging.getLogger() def __lowerCAmelCase (): _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) _UpperCAmelCase : Optional[int] = parser.parse_args() return args.f def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = {} _UpperCAmelCase : Dict = os.path.join(lowerCAmelCase_ , "all_results.json" ) if os.path.exists(lowerCAmelCase_ ): with open(lowerCAmelCase_ , "r" ) as f: _UpperCAmelCase : str = json.load(lowerCAmelCase_ ) else: raise ValueError(F"""can't find {path}""" ) return results def __lowerCAmelCase (): _UpperCAmelCase : List[Any] = torch.cuda.is_available() and torch_device == 'cuda' return is_using_cuda and is_apex_available() lowerCamelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase__ ( _UpperCamelCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase : int = tempfile.mkdtemp() _UpperCAmelCase : List[Any] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) _UpperCAmelCase : Union[str, Any] = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def lowerCAmelCase__ ( cls : Tuple ) ->int: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : Any = F""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) _UpperCAmelCase : List[str] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : Any = F""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _UpperCAmelCase : Optional[Any] = get_results(_UpperCAmelCase ) self.assertLess(result["perplexity"] , 1_00 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCAmelCase__ ( self : Dict ) ->str: '''simple docstring''' _UpperCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : Dict = F""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCAmelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertLess(result["perplexity"] , 42 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[int] = 7 if get_gpu_count() > 1 else 2 _UpperCAmelCase : Tuple = self.get_auto_remove_tmp_dir() _UpperCAmelCase : Any = F""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCAmelCase : Any = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCAmelCase__ ( self : int ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : int = F""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCAmelCase : List[str] = get_results(_UpperCAmelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 28 ) self.assertGreaterEqual(result["eval_exact"] , 28 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCAmelCase__ ( self : Tuple ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = F""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCAmelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCAmelCase__ ( self : str ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = F""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCAmelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_rouge1"] , 10 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' _UpperCAmelCase : Any = self.get_auto_remove_tmp_dir() _UpperCAmelCase : Optional[Any] = F""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCAmelCase : List[str] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_bleu"] , 30 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "translation_no_trainer" ) ) ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[int] = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCAmelCase ) _UpperCAmelCase : List[str] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = F""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) _UpperCAmelCase : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.1_0 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = F""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) _UpperCAmelCase : Any = get_results(_UpperCAmelCase ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "image_classification_no_trainer" ) ) )
369
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
0
'''simple docstring''' import math import sys def __lowerCAmelCase (__lowerCAmelCase ): if number != int(__SCREAMING_SNAKE_CASE ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 _UpperCAmelCase : int = [-1] * (number + 1) _UpperCAmelCase : Optional[Any] = 0 for i in range(1 , number + 1 ): _UpperCAmelCase : List[str] = sys.maxsize _UpperCAmelCase : int = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): _UpperCAmelCase : Optional[Any] = 1 + answers[i - (j**2)] _UpperCAmelCase : List[Any] = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
0