code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = analyze_text(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = list(" " + ascii_lowercase ) # what is our total sum of probabilities. _UpperCAmelCase : Optional[int] = sum(single_char_strings.values() ) # one length string _UpperCAmelCase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _UpperCAmelCase : Tuple = single_char_strings[ch] _UpperCAmelCase : List[str] = my_str / all_sum my_fir_sum += prob * math.loga(__lowerCAmelCase ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string _UpperCAmelCase : Tuple = sum(two_char_strings.values() ) _UpperCAmelCase : List[str] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _UpperCAmelCase : str = cha + cha if sequence in two_char_strings: _UpperCAmelCase : List[str] = two_char_strings[sequence] _UpperCAmelCase : Any = int(__lowerCAmelCase ) / all_sum my_sec_sum += prob * math.loga(__lowerCAmelCase ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = Counter() # type: ignore _UpperCAmelCase : Union[str, Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__lowerCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __lowerCAmelCase (): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
361
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
0
'''simple docstring''' import datasets from .evaluate import evaluate lowerCamelCase__ = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' lowerCamelCase__ = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' lowerCamelCase__ = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} _UpperCAmelCase : Any = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] _UpperCAmelCase : Tuple = evaluate(dataset=lowerCamelCase__ , predictions=lowerCamelCase__ ) return score
362
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
0
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : UNetaDModel , lowerCamelCase__ : UNetaDModel , lowerCamelCase__ : DDPMScheduler , lowerCamelCase__ : Optional[Any] , ) ->Dict: '''simple docstring''' super().__init__() _UpperCAmelCase : List[str] = value_function _UpperCAmelCase : Dict = unet _UpperCAmelCase : Dict = scheduler _UpperCAmelCase : Optional[Any] = env _UpperCAmelCase : Optional[Any] = env.get_dataset() _UpperCAmelCase : int = {} for key in self.data.keys(): try: _UpperCAmelCase : Optional[int] = self.data[key].mean() except: # noqa: E722 pass _UpperCAmelCase : Union[str, Any] = {} for key in self.data.keys(): try: _UpperCAmelCase : Tuple = self.data[key].std() except: # noqa: E722 pass _UpperCAmelCase : Optional[Any] = env.observation_space.shape[0] _UpperCAmelCase : Tuple = env.action_space.shape[0] def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any] ) ->List[str]: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ) ->int: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : Any ) ->Optional[int]: '''simple docstring''' for key, val in cond.items(): _UpperCAmelCase : Optional[int] = val.clone() return x_in def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = x.shape[0] _UpperCAmelCase : int = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _UpperCAmelCase : Optional[int] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _UpperCAmelCase : str = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample _UpperCAmelCase : Any = torch.autograd.grad([y.sum()] , [x] )[0] _UpperCAmelCase : Optional[int] = self.scheduler._get_variance(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = torch.exp(0.5 * posterior_variance ) _UpperCAmelCase : Tuple = model_std * grad _UpperCAmelCase : int = 0 _UpperCAmelCase : Tuple = x.detach() _UpperCAmelCase : Optional[Any] = x + scale * grad _UpperCAmelCase : List[str] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) _UpperCAmelCase : Optional[int] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg _UpperCAmelCase : Any = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["prev_sample"] # apply conditions to the trajectory (set the initial state) _UpperCAmelCase : List[str] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) _UpperCAmelCase : int = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int]=64 , lowerCamelCase__ : List[str]=32 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : List[Any]=0.1 ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = self.normalize(lowerCamelCase__ , "observations" ) _UpperCAmelCase : Tuple = obs[None].repeat(lowerCamelCase__ , axis=0 ) _UpperCAmelCase : Union[str, Any] = {0: self.to_torch(lowerCamelCase__ )} _UpperCAmelCase : Tuple = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _UpperCAmelCase : List[str] = randn_tensor(lowerCamelCase__ , device=self.unet.device ) _UpperCAmelCase : int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) _UpperCAmelCase : Union[str, Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process _UpperCAmelCase : List[str] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value _UpperCAmelCase : Any = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() _UpperCAmelCase : Dict = x[sorted_idx] _UpperCAmelCase : Tuple = sorted_values[:, :, : self.action_dim] _UpperCAmelCase : List[str] = actions.detach().cpu().numpy() _UpperCAmelCase : int = self.de_normalize(lowerCamelCase__ , key="actions" ) # select the action with the highest value if y is not None: _UpperCAmelCase : str = 0 else: # if we didn't run value guiding, select a random action _UpperCAmelCase : int = np.random.randint(0 , lowerCamelCase__ ) _UpperCAmelCase : str = denorm_actions[selected_index, 0] return denorm_actions
363
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : Optional[int] , lowerCamelCase__ : int = 7_68 , ) ->List[Any]: '''simple docstring''' super().__init__() _UpperCAmelCase : List[Any] = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) _UpperCAmelCase : Any = nn.Parameter(torch.ones(1 , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[Union[str, torch.device]] = None , lowerCamelCase__ : Optional[torch.dtype] = None , ) ->str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.Parameter(self.mean.to(lowerCamelCase__ ).to(lowerCamelCase__ ) ) _UpperCAmelCase : str = nn.Parameter(self.std.to(lowerCamelCase__ ).to(lowerCamelCase__ ) ) return self def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : List[str] ) ->Any: '''simple docstring''' _UpperCAmelCase : str = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Any ) ->Dict: '''simple docstring''' _UpperCAmelCase : Any = (embeds * self.std) + self.mean return embeds
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
365
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase : int = [image] _UpperCAmelCase : str = [trans(img.convert("RGB" ) ) for img in image] _UpperCAmelCase : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) ->int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->Union[str, Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = min(int(num_inference_steps * strength ) , lowerCamelCase__ ) _UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=None ) ->str: '''simple docstring''' if not isinstance(lowerCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}""" ) _UpperCAmelCase : Union[str, Any] = image.to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : List[str] = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) # get latents print("add noise to latents at timestep" , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.scheduler.add_noise(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : Any , lowerCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase__ : float = 0.8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowerCamelCase__ ) # 2. Preprocess image _UpperCAmelCase : Dict = preprocess(lowerCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) _UpperCAmelCase , _UpperCAmelCase : Any = self.get_timesteps(lowerCamelCase__ , lowerCamelCase__ , self.device ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(lowerCamelCase__ ) # 4. Prepare latent variables _UpperCAmelCase : Optional[int] = self.prepare_latents(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.unet.dtype , self.device , lowerCamelCase__ ) _UpperCAmelCase : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase__ ): # 1. predict noise model_output _UpperCAmelCase : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase__ )
322
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } lowerCamelCase__ = {'allegro/herbert-base-cased': 514} lowerCamelCase__ = {} class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Any = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[Any] = HerbertTokenizer def __init__( self : Dict , lowerCamelCase__ : str=None , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Optional[int]="<s>" , lowerCamelCase__ : Optional[Any]="<unk>" , lowerCamelCase__ : Union[str, Any]="<pad>" , lowerCamelCase__ : Tuple="<mask>" , lowerCamelCase__ : str="</s>" , **lowerCamelCase__ : List[str] , ) ->Union[str, Any]: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , **lowerCamelCase__ , ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [self.cls_token_id] _UpperCAmelCase : List[str] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self : str , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def lowerCAmelCase__ ( self : str , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : int = [self.sep_token_id] _UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
366
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
0
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : float ) ->float: '''simple docstring''' return 0.0 def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _UpperCAmelCase : str = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = 512 _UpperCAmelCase : str = [1] + [0] * (size - 1) _UpperCAmelCase : int = [filter_type.process(__lowerCAmelCase ) for item in inputs] _UpperCAmelCase : int = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase : Any = np.abs(np.fft.fft(__lowerCAmelCase ) ) _UpperCAmelCase : Any = 20 * np.logaa(__lowerCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds _UpperCAmelCase : Tuple = get_bounds(__lowerCAmelCase , __lowerCAmelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCAmelCase ) plt.show() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = 512 _UpperCAmelCase : Union[str, Any] = [1] + [0] * (size - 1) _UpperCAmelCase : Union[str, Any] = [filter_type.process(__lowerCAmelCase ) for item in inputs] _UpperCAmelCase : Tuple = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase : List[Any] = np.angle(np.fft.fft(__lowerCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCAmelCase , -2 * pi ) ) plt.show()
367
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) lowerCamelCase__ = 299_792_458 # Symbols lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = symbols('ct x y z') def __lowerCAmelCase (__lowerCAmelCase ): if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def __lowerCAmelCase (__lowerCAmelCase ): return 1 / sqrt(1 - beta(__lowerCAmelCase ) ** 2 ) def __lowerCAmelCase (__lowerCAmelCase ): return np.array( [ [gamma(__lowerCAmelCase ), -gamma(__lowerCAmelCase ) * beta(__lowerCAmelCase ), 0, 0], [-gamma(__lowerCAmelCase ) * beta(__lowerCAmelCase ), gamma(__lowerCAmelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = None ): # Ensure event is not empty if event is None: _UpperCAmelCase : Union[str, Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__lowerCAmelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: lowerCamelCase__ = transform(29_979_245) print('Example of four vector: ') print(F'''ct\' = {four_vector[0]}''') print(F'''x\' = {four_vector[1]}''') print(F'''y\' = {four_vector[2]}''') print(F'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values lowerCamelCase__ = {ct: c, x: 1, y: 1, z: 1} lowerCamelCase__ = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'''\n{numerical_vector}''')
368
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
0
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ : def __init__( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[Any]=2 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Any=4 , lowerCamelCase__ : int=2 , lowerCamelCase__ : int=7 , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=36 , lowerCamelCase__ : Any=2 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Any=37 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Any=5_12 , lowerCamelCase__ : List[Any]=16 , lowerCamelCase__ : int=2 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Dict=6 , lowerCamelCase__ : Union[str, Any]=6 , lowerCamelCase__ : Any=3 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : int=None , lowerCamelCase__ : Dict=10_00 , ) ->str: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[str] = batch_size _UpperCAmelCase : Union[str, Any] = num_channels _UpperCAmelCase : Dict = image_size _UpperCAmelCase : List[str] = patch_size _UpperCAmelCase : str = is_training _UpperCAmelCase : Union[str, Any] = use_input_mask _UpperCAmelCase : str = use_token_type_ids _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Dict = type_vocab_size _UpperCAmelCase : int = type_sequence_label_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Any = coordinate_size _UpperCAmelCase : Optional[int] = shape_size _UpperCAmelCase : int = num_labels _UpperCAmelCase : Tuple = num_choices _UpperCAmelCase : str = scope _UpperCAmelCase : Optional[int] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _UpperCAmelCase : Tuple = text_seq_length _UpperCAmelCase : List[Any] = (image_size // patch_size) ** 2 + 1 _UpperCAmelCase : int = self.text_seq_length + self.image_seq_length def lowerCAmelCase__ ( self : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) _UpperCAmelCase : List[Any] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase : List[Any] = bbox[i, j, 3] _UpperCAmelCase : Any = bbox[i, j, 1] _UpperCAmelCase : Optional[int] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase : Union[str, Any] = bbox[i, j, 2] _UpperCAmelCase : str = bbox[i, j, 0] _UpperCAmelCase : List[str] = tmp_coordinate _UpperCAmelCase : Union[str, Any] = tf.constant(lowerCamelCase__ ) _UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : str = None if self.use_input_mask: _UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) _UpperCAmelCase : List[str] = None if self.use_token_type_ids: _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _UpperCAmelCase : Any = None _UpperCAmelCase : Tuple = None if self.use_labels: _UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _UpperCAmelCase : List[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict ) ->Any: '''simple docstring''' _UpperCAmelCase : Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image _UpperCAmelCase : str = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) _UpperCAmelCase : Optional[int] = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _UpperCAmelCase : List[str] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _UpperCAmelCase : Optional[Any] = model({"pixel_values": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = self.num_labels _UpperCAmelCase : Any = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) _UpperCAmelCase : Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : Tuple = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) _UpperCAmelCase : Dict = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Union[str, Any] = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) _UpperCAmelCase : Dict = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self : Dict ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() (_UpperCAmelCase) : Union[str, Any] = config_and_inputs _UpperCAmelCase : List[str] = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase : List[str] = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCAmelCase : Tuple = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Optional[Any] = False def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int ) ->Tuple: '''simple docstring''' return True def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Dict=False ) ->dict: '''simple docstring''' _UpperCAmelCase : List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): _UpperCAmelCase : List[str] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): _UpperCAmelCase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) _UpperCAmelCase : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Dict = TFLayoutLMvaModelTester(self ) _UpperCAmelCase : Tuple = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , "hf_compute_loss" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label _UpperCAmelCase : Optional[int] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] _UpperCAmelCase : str = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _UpperCAmelCase : List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = prepared_for_class.pop("input_ids" ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions _UpperCAmelCase : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: _UpperCAmelCase : List[str] = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: _UpperCAmelCase : Union[str, Any] = -1_00 _UpperCAmelCase : List[str] = tf.convert_to_tensor(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict _UpperCAmelCase : int = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : Any = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple _UpperCAmelCase : Any = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function _UpperCAmelCase : Dict = prepared_for_class.keys() - inputs_dict.keys() _UpperCAmelCase : List[str] = inspect.signature(model.call ).parameters _UpperCAmelCase : Optional[Any] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple _UpperCAmelCase : Optional[Any] = {0: "input_ids"} for label_key in label_keys: _UpperCAmelCase : Any = signature_names.index(lowerCamelCase__ ) _UpperCAmelCase : Dict = label_key _UpperCAmelCase : Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple _UpperCAmelCase : int = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: _UpperCAmelCase : Union[str, Any] = prepared_for_class[value] _UpperCAmelCase : str = tuple(lowerCamelCase__ ) # Send to model _UpperCAmelCase : Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' ( _UpperCAmelCase ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' ( _UpperCAmelCase ) : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : Any = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' ( _UpperCAmelCase ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->Any: '''simple docstring''' ( _UpperCAmelCase ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' ( _UpperCAmelCase ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Tuple ) ->List[Any]: '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Any = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowerCAmelCase (): _UpperCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : Tuple ) ->Dict: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) _UpperCAmelCase : List[Any] = self.default_image_processor _UpperCAmelCase : Optional[int] = prepare_img() _UpperCAmelCase : int = image_processor(images=lowerCamelCase__ , return_tensors="tf" ).pixel_values _UpperCAmelCase : Optional[int] = tf.constant([[1, 2]] ) _UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass _UpperCAmelCase : List[Any] = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits _UpperCAmelCase : Dict = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) )
369
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : int = "speech_to_text_2" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , lowerCamelCase__ : Tuple=1_00_00 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="relu" , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : List[Any]=10_24 , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Dict = decoder_layerdrop _UpperCAmelCase : str = use_cache _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Any = max_target_positions super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
322
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['MaskFormerFeatureExtractor'] lowerCamelCase__ = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] lowerCamelCase__ = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
370
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ): _UpperCAmelCase : Any = text.split(__lowerCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowerCAmelCase ): titles.append(title if title is not None else "" ) texts.append(__lowerCAmelCase ) return {"title": titles, "text": texts} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase : Optional[int] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase : Dict = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase : int = dataset.map( partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , ) # And finally save your dataset _UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowerCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase ) # And save the index _UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowerCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) lowerCAmelCase : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) lowerCAmelCase : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) lowerCAmelCase : Optional[str] = field( default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowerCAmelCase : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
322
0
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCAmelCase (__lowerCAmelCase ): return (data["data"], data["target"]) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[str] = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCAmelCase (): _UpperCAmelCase : Optional[Any] = load_iris() _UpperCAmelCase : Union[str, Any] = data_handling(__lowerCAmelCase ) _UpperCAmelCase : Any = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.2_5 ) _UpperCAmelCase : List[Any] = iris["target_names"] # Create an XGBoost Classifier from the training data _UpperCAmelCase : List[Any] = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
371
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def SCREAMING_SNAKE_CASE__ ( ) -> tuple[list[int], int]: '''simple docstring''' lowerCAmelCase : List[str] = [randint(-1_000, 1_000 ) for i in range(10 )] lowerCAmelCase : Optional[int] = randint(-5_000, 5_000 ) return (arr, r) __A : Union[str, Any] = make_dataset() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> tuple[int, ...]: '''simple docstring''' for triplet in permutations(_UpperCAmelCase, 3 ): if sum(_UpperCAmelCase ) == target: return tuple(sorted(_UpperCAmelCase ) ) return (0, 0, 0) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> tuple[int, int, int]: '''simple docstring''' arr.sort() lowerCAmelCase : Dict = len(_UpperCAmelCase ) for i in range(n - 1 ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def SCREAMING_SNAKE_CASE__ ( ) -> tuple[float, float]: '''simple docstring''' lowerCAmelCase : Optional[Any] = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' lowerCAmelCase : List[str] = '\ntriplet_sum1(*dataset)\n' lowerCAmelCase : str = '\ntriplet_sum2(*dataset)\n' lowerCAmelCase : Optional[int] = repeat(setup=_UpperCAmelCase, stmt=_UpperCAmelCase, repeat=5, number=10_000 ) lowerCAmelCase : Optional[Any] = repeat(setup=_UpperCAmelCase, stmt=_UpperCAmelCase, repeat=5, number=10_000 ) return (min(_UpperCAmelCase ), min(_UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() __A : Dict = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
323
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : Tuple = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "align_text_model" def __init__( self : Dict , UpperCAmelCase_ : int=30522 , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Any=3072 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Tuple=1E-12 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Optional[Any]="absolute" , UpperCAmelCase_ : Dict=True , **UpperCAmelCase_ : List[Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : str = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Tuple = use_cache lowerCAmelCase : int = pad_token_id @classmethod def lowercase__ ( cls : str , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : Optional[Any] ): cls._set_token_in_kwargs(UpperCAmelCase_ ) lowerCAmelCase , lowerCAmelCase : Any = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": lowerCAmelCase : List[str] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __A ( lowerCAmelCase ): lowerCAmelCase_ : int = "align_vision_model" def __init__( self : Optional[int] , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 600 , UpperCAmelCase_ : float = 2.0 , UpperCAmelCase_ : float = 3.1 , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCAmelCase_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCAmelCase_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCAmelCase_ : List[int] = [] , UpperCAmelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCAmelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCAmelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCAmelCase_ : float = 0.25 , UpperCAmelCase_ : str = "swish" , UpperCAmelCase_ : int = 2560 , UpperCAmelCase_ : str = "mean" , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 0.0_01 , UpperCAmelCase_ : float = 0.99 , UpperCAmelCase_ : float = 0.2 , **UpperCAmelCase_ : Optional[int] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : str = num_channels lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : Any = width_coefficient lowerCAmelCase : Optional[Any] = depth_coefficient lowerCAmelCase : List[str] = depth_divisor lowerCAmelCase : Tuple = kernel_sizes lowerCAmelCase : Any = in_channels lowerCAmelCase : List[Any] = out_channels lowerCAmelCase : Union[str, Any] = depthwise_padding lowerCAmelCase : List[Any] = strides lowerCAmelCase : Tuple = num_block_repeats lowerCAmelCase : Optional[Any] = expand_ratios lowerCAmelCase : int = squeeze_expansion_ratio lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : Tuple = hidden_dim lowerCAmelCase : Tuple = pooling_type lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Union[str, Any] = batch_norm_eps lowerCAmelCase : List[Any] = batch_norm_momentum lowerCAmelCase : int = drop_connect_rate lowerCAmelCase : Union[str, Any] = sum(UpperCAmelCase_ ) * 4 @classmethod def lowercase__ ( cls : int , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : Any ): cls._set_token_in_kwargs(UpperCAmelCase_ ) lowerCAmelCase , lowerCAmelCase : Any = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": lowerCAmelCase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __A ( lowerCAmelCase ): lowerCAmelCase_ : int = "align" lowerCAmelCase_ : str = True def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=640 , UpperCAmelCase_ : Optional[int]=1.0 , UpperCAmelCase_ : Optional[int]=0.02 , **UpperCAmelCase_ : str , ): super().__init__(**UpperCAmelCase_ ) if text_config is None: lowerCAmelCase : Tuple = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: lowerCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) lowerCAmelCase : int = AlignTextConfig(**UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = AlignVisionConfig(**UpperCAmelCase_ ) lowerCAmelCase : Tuple = projection_dim lowerCAmelCase : Optional[Any] = temperature_init_value lowerCAmelCase : int = initializer_range @classmethod def lowercase__ ( cls : List[Any] , UpperCAmelCase_ : AlignTextConfig , UpperCAmelCase_ : AlignVisionConfig , **UpperCAmelCase_ : Dict ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase : Tuple = self.text_config.to_dict() lowerCAmelCase : Union[str, Any] = self.vision_config.to_dict() lowerCAmelCase : Any = self.__class__.model_type return output
323
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((lowerCAmelCase) , (lowerCAmelCase)) : Union[str, Any] = extended_euclid(_UpperCAmelCase, a % b ) lowerCAmelCase : Optional[int] = a // b return (y, x - k * y) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' ((lowerCAmelCase) , (lowerCAmelCase)) : Tuple = extended_euclid(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : Tuple = na * na lowerCAmelCase : Optional[int] = ra * x * na + ra * y * na return (n % m + m) % m def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' ((lowerCAmelCase) , (lowerCAmelCase)) : int = extended_euclid(_UpperCAmelCase, _UpperCAmelCase ) if b < 0: lowerCAmelCase : Union[str, Any] = (b % n + n) % n return b def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase , lowerCAmelCase : int = invert_modulo(_UpperCAmelCase, _UpperCAmelCase ), invert_modulo(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : int = na * na lowerCAmelCase : Dict = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
323
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __A : Optional[Any] = logging.get_logger(__name__) __A : Optional[int] = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowerCAmelCase : Dict = k.replace(_UpperCAmelCase, _UpperCAmelCase ) if k.startswith('encoder' ): lowerCAmelCase : List[str] = k.replace('.attn', '.self_attn' ) lowerCAmelCase : str = k.replace('norm1', 'self_attn_layer_norm' ) lowerCAmelCase : Union[str, Any] = k.replace('norm2', 'final_layer_norm' ) elif k.startswith('decoder' ): lowerCAmelCase : Any = k.replace('norm1', 'self_attn_layer_norm' ) lowerCAmelCase : Optional[int] = k.replace('norm2', 'encoder_attn_layer_norm' ) lowerCAmelCase : Any = k.replace('norm3', 'final_layer_norm' ) return k def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: lowerCAmelCase : int = sd.pop(_UpperCAmelCase ) lowerCAmelCase : int = k.replace('layernorm_embedding', 'layer_norm' ) assert new_k not in sd lowerCAmelCase : Optional[int] = v __A : Optional[int] = ['''START'''] @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Tuple = torch.load(_UpperCAmelCase, map_location='cpu' ) lowerCAmelCase : Optional[Any] = model['model'] lowerCAmelCase : Optional[Any] = BlenderbotConfig.from_json_file(_UpperCAmelCase ) lowerCAmelCase : List[str] = BlenderbotForConditionalGeneration(_UpperCAmelCase ) lowerCAmelCase : str = m.model.state_dict().keys() lowerCAmelCase : int = [] lowerCAmelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowerCAmelCase : int = rename_state_dict_key(_UpperCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowerCAmelCase : List[str] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_UpperCAmelCase ) m.model.load_state_dict(_UpperCAmelCase, strict=_UpperCAmelCase ) m.half() m.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) __A : Dict = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
323
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> np.array: '''simple docstring''' lowerCAmelCase : Tuple = f"{sampling_rate}" lowerCAmelCase : Union[str, Any] = '1' lowerCAmelCase : Tuple = 'f32le' lowerCAmelCase : Optional[Any] = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(_UpperCAmelCase, stdin=subprocess.PIPE, stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase : Optional[int] = ffmpeg_process.communicate(_UpperCAmelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowerCAmelCase : str = output_stream[0] lowerCAmelCase : List[str] = np.frombuffer(_UpperCAmelCase, np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = "f32le", ) -> str: '''simple docstring''' lowerCAmelCase : List[str] = f"{sampling_rate}" lowerCAmelCase : Union[str, Any] = '1' if format_for_conversion == "s16le": lowerCAmelCase : Optional[int] = 2 elif format_for_conversion == "f32le": lowerCAmelCase : Tuple = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) lowerCAmelCase : Optional[int] = platform.system() if system == "Linux": lowerCAmelCase : Union[str, Any] = 'alsa' lowerCAmelCase : Optional[Any] = 'default' elif system == "Darwin": lowerCAmelCase : Optional[int] = 'avfoundation' lowerCAmelCase : str = ':0' elif system == "Windows": lowerCAmelCase : Optional[Any] = 'dshow' lowerCAmelCase : List[Any] = 'default' lowerCAmelCase : Optional[Any] = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowerCAmelCase : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase : Any = _ffmpeg_stream(_UpperCAmelCase, _UpperCAmelCase ) for item in iterator: yield item def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = "f32le", ) -> Dict: '''simple docstring''' if stream_chunk_s is not None: lowerCAmelCase : Union[str, Any] = stream_chunk_s else: lowerCAmelCase : Tuple = chunk_length_s lowerCAmelCase : Union[str, Any] = ffmpeg_microphone(_UpperCAmelCase, _UpperCAmelCase, format_for_conversion=_UpperCAmelCase ) if format_for_conversion == "s16le": lowerCAmelCase : Any = np.intaa lowerCAmelCase : str = 2 elif format_for_conversion == "f32le": lowerCAmelCase : Tuple = np.floataa lowerCAmelCase : int = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: lowerCAmelCase : int = chunk_length_s / 6 lowerCAmelCase : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_UpperCAmelCase, (int, float) ): lowerCAmelCase : List[str] = [stride_length_s, stride_length_s] lowerCAmelCase : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase : Tuple = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase : List[Any] = datetime.datetime.now() lowerCAmelCase : Optional[Any] = datetime.timedelta(seconds=_UpperCAmelCase ) for item in chunk_bytes_iter(_UpperCAmelCase, _UpperCAmelCase, stride=(stride_left, stride_right), stream=_UpperCAmelCase ): # Put everything back in numpy scale lowerCAmelCase : Optional[int] = np.frombuffer(item['raw'], dtype=_UpperCAmelCase ) lowerCAmelCase : List[Any] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowerCAmelCase : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = False ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Any = b'' lowerCAmelCase , lowerCAmelCase : Any = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) lowerCAmelCase : Optional[Any] = 0 for raw in iterator: acc += raw if stream and len(_UpperCAmelCase ) < chunk_len: lowerCAmelCase : Any = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_UpperCAmelCase ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase : Optional[int] = (_stride_left, stride_right) lowerCAmelCase : int = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowerCAmelCase : Any = False yield item lowerCAmelCase : Optional[int] = stride_left lowerCAmelCase : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_UpperCAmelCase ) > stride_left: lowerCAmelCase : Any = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowerCAmelCase : Dict = False yield item def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Tuple = 2**24 # 16Mo try: with subprocess.Popen(_UpperCAmelCase, stdout=subprocess.PIPE, bufsize=_UpperCAmelCase ) as ffmpeg_process: while True: lowerCAmelCase : int = ffmpeg_process.stdout.read(_UpperCAmelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
323
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
1
from collections import defaultdict from math import ceil, sqrt def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 1_000_000, _UpperCAmelCase = 10 ) -> int: '''simple docstring''' lowerCAmelCase : defaultdict = defaultdict(_UpperCAmelCase ) for outer_width in range(3, (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCAmelCase : Dict = max( ceil(sqrt(outer_width * outer_width - t_limit ) ), 1 ) else: lowerCAmelCase : Optional[Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_UpperCAmelCase, outer_width - 1, 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'{solution() = }')
323
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
1
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __A : Tuple = logging.getLogger(__name__) @dataclass class __A : lowerCAmelCase_ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCAmelCase_ : bool = field( default=lowerCAmelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCAmelCase_ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase_ : bool = field( default=lowerCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __A : lowerCAmelCase_ : Optional[str] = field(default=lowerCAmelCase , metadata={"help": "The input training data file (a text file)."} ) lowerCAmelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCAmelCase_ : bool = field( default=lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCAmelCase_ : Optional[int] = field( default=lowerCAmelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCAmelCase_ : Optional[int] = field( default=lowerCAmelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCAmelCase_ : bool = field( default=lowerCAmelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCAmelCase_ : Optional[int] = field( default=lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase_ : Optional[int] = field( default=lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase__ ( self : List[str] ): if self.train_file is not None: lowerCAmelCase : int = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCAmelCase : Union[str, Any] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __A : lowerCAmelCase_ : PreTrainedTokenizerBase lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = True lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[int] = None def __call__( self : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : Union[str, Any] = 'label' if 'label' in features[0].keys() else 'labels' lowerCAmelCase : str = [feature.pop(UpperCAmelCase_ ) for feature in features] lowerCAmelCase : int = len(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = len(features[0]['input_ids'] ) lowerCAmelCase : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(UpperCAmelCase_ )] for feature in features ] lowerCAmelCase : Tuple = list(chain(*UpperCAmelCase_ ) ) lowerCAmelCase : Tuple = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten lowerCAmelCase : Any = {k: v.view(UpperCAmelCase_ , UpperCAmelCase_ , -1 ) for k, v in batch.items()} # Add back labels lowerCAmelCase : str = torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) return batch def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: '''simple docstring''' lowerCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag', _UpperCAmelCase, _UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) datasets.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCAmelCase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: lowerCAmelCase : Dict = data_args.train_file if data_args.validation_file is not None: lowerCAmelCase : List[str] = data_args.validation_file lowerCAmelCase : Any = data_args.train_file.split('.' )[-1] lowerCAmelCase : List[str] = load_dataset( _UpperCAmelCase, data_files=_UpperCAmelCase, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. lowerCAmelCase : List[str] = load_dataset( 'swag', 'regular', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) lowerCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=_UpperCAmelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCAmelCase : str = [f"ending{i}" for i in range(4 )] lowerCAmelCase : List[Any] = 'sent1' lowerCAmelCase : Optional[int] = 'sent2' if data_args.max_seq_length is None: lowerCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) lowerCAmelCase : List[Any] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCAmelCase : Optional[Any] = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_UpperCAmelCase ): lowerCAmelCase : str = [[context] * 4 for context in examples[context_name]] lowerCAmelCase : Optional[int] = examples[question_header_name] lowerCAmelCase : Optional[Any] = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(_UpperCAmelCase ) ] # Flatten out lowerCAmelCase : List[Any] = list(chain(*_UpperCAmelCase ) ) lowerCAmelCase : str = list(chain(*_UpperCAmelCase ) ) # Tokenize lowerCAmelCase : int = tokenizer( _UpperCAmelCase, _UpperCAmelCase, truncation=_UpperCAmelCase, max_length=_UpperCAmelCase, padding='max_length' if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(_UpperCAmelCase ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) lowerCAmelCase : List[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: lowerCAmelCase : Tuple = min(len(_UpperCAmelCase ), data_args.max_train_samples ) lowerCAmelCase : Dict = train_dataset.select(range(_UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): lowerCAmelCase : Union[str, Any] = train_dataset.map( _UpperCAmelCase, batched=_UpperCAmelCase, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) lowerCAmelCase : Dict = raw_datasets['validation'] if data_args.max_eval_samples is not None: lowerCAmelCase : Optional[int] = min(len(_UpperCAmelCase ), data_args.max_eval_samples ) lowerCAmelCase : Tuple = eval_dataset.select(range(_UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): lowerCAmelCase : str = eval_dataset.map( _UpperCAmelCase, batched=_UpperCAmelCase, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator lowerCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_UpperCAmelCase, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_UpperCAmelCase ): lowerCAmelCase , lowerCAmelCase : int = eval_predictions lowerCAmelCase : Optional[int] = np.argmax(_UpperCAmelCase, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCAmelCase : Union[str, Any] = Trainer( model=_UpperCAmelCase, args=_UpperCAmelCase, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=_UpperCAmelCase, data_collator=_UpperCAmelCase, compute_metrics=_UpperCAmelCase, ) # Training if training_args.do_train: lowerCAmelCase : Dict = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase : Optional[Any] = last_checkpoint lowerCAmelCase : Optional[Any] = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCAmelCase : int = train_result.metrics lowerCAmelCase : Any = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCAmelCase ) ) lowerCAmelCase : Tuple = min(_UpperCAmelCase, len(_UpperCAmelCase ) ) trainer.log_metrics('train', _UpperCAmelCase ) trainer.save_metrics('train', _UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase : int = trainer.evaluate() lowerCAmelCase : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCAmelCase ) lowerCAmelCase : Any = min(_UpperCAmelCase, len(_UpperCAmelCase ) ) trainer.log_metrics('eval', _UpperCAmelCase ) trainer.save_metrics('eval', _UpperCAmelCase ) lowerCAmelCase : Any = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCAmelCase ) else: trainer.create_model_card(**_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' main() if __name__ == "__main__": main()
323
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A ( unittest.TestCase ): def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 250 lowerCAmelCase : Dict = ids_tensor((batch_size, length) , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = torch.ones((batch_size, length) , device=UpperCAmelCase_ , dtype=torch.float ) / length return input_ids, scores def lowercase__ ( self : Tuple ): lowerCAmelCase , lowerCAmelCase : Any = self._get_tensors(5 ) lowerCAmelCase : Any = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase , lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase , lowerCAmelCase : Tuple = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = MaxLengthCriteria(max_length=10 ) lowerCAmelCase , lowerCAmelCase : Any = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase , lowerCAmelCase : Dict = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase , lowerCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase , lowerCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase , lowerCAmelCase : Dict = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Dict = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase , lowerCAmelCase : Any = self._get_tensors(5 ) lowerCAmelCase : int = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : Optional[int] ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCAmelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowerCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCAmelCase_ ) , 1 )
323
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __A ( unittest.TestCase ): def lowercase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowerCAmelCase : Dict = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase : List[str] = 'A painting of a squirrel eating a burger' lowerCAmelCase : List[Any] = torch.manual_seed(0 ) lowerCAmelCase : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) lowerCAmelCase : Any = output.images lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Any = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase : List[Any] = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase : int = 'A painting of a squirrel eating a burger' lowerCAmelCase : Optional[Any] = torch.manual_seed(0 ) lowerCAmelCase : Tuple = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) lowerCAmelCase : str = output.images lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Tuple = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Any = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase : str = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) lowerCAmelCase : List[str] = 'A painting of a squirrel eating a burger' lowerCAmelCase : Tuple = torch.manual_seed(0 ) lowerCAmelCase : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=UpperCAmelCase_ , ) lowerCAmelCase : Tuple = output.images lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Tuple = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
323
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __A : Union[str, Any] = '''bart''' __A : Optional[int] = True @st.cache(allow_output_mutation=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' if LOAD_DENSE_INDEX: lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) lowerCAmelCase : List[str] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) lowerCAmelCase : Union[str, Any] = qar_model.eval() else: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = (None, None) if MODEL_TYPE == "bart": lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) lowerCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) lowerCAmelCase : Optional[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) lowerCAmelCase : List[Any] = sas_model.eval() else: lowerCAmelCase , lowerCAmelCase : str = make_qa_sas_model( model_name='t5-small', from_file='seq2seq_models/eli5_t5_model_1024_4.pth', device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: '''simple docstring''' if LOAD_DENSE_INDEX: lowerCAmelCase : Optional[Any] = faiss.StandardGpuResources() lowerCAmelCase : List[Any] = datasets.load_dataset(path='wiki_snippets', name='wiki40b_en_100_0' )['train'] lowerCAmelCase : Optional[int] = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat', dtype='float32', mode='r', shape=(wikiaab_passages.num_rows, 128), ) lowerCAmelCase : List[Any] = faiss.IndexFlatIP(128 ) lowerCAmelCase : Tuple = faiss.index_cpu_to_gpu(_UpperCAmelCase, 1, _UpperCAmelCase ) wikiaab_gpu_index_flat.add(_UpperCAmelCase ) # TODO fix for larger GPU else: lowerCAmelCase , lowerCAmelCase : Dict = (None, None) lowerCAmelCase : Any = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Optional[Any] = datasets.load_dataset('eli5', name='LFQA_reddit' ) lowerCAmelCase : Optional[Any] = elia['train_eli5'] lowerCAmelCase : Optional[int] = np.memmap( 'eli5_questions_reps.dat', dtype='float32', mode='r', shape=(elia_train.num_rows, 128) ) lowerCAmelCase : Optional[int] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_UpperCAmelCase ) return (elia_train, eli5_train_q_index) __A , __A , __A : Any = load_indexes() __A , __A , __A , __A : Optional[int] = load_models() __A , __A : List[Any] = load_train_data() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=10 ) -> Tuple: '''simple docstring''' lowerCAmelCase : List[str] = embed_questions_for_retrieval([question], _UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase , lowerCAmelCase : List[Any] = eli5_train_q_index.search(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : Tuple = [elia_train[int(_UpperCAmelCase )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase="wiki40b", _UpperCAmelCase="dense", _UpperCAmelCase=10 ) -> str: '''simple docstring''' if source == "none": lowerCAmelCase , lowerCAmelCase : str = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": lowerCAmelCase , lowerCAmelCase : Optional[int] = query_qa_dense_index( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) else: lowerCAmelCase , lowerCAmelCase : str = query_es_index( _UpperCAmelCase, _UpperCAmelCase, index_name='english_wiki40b_snippets_100w', n_results=_UpperCAmelCase, ) lowerCAmelCase : Union[str, Any] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] lowerCAmelCase : Dict = 'question: {} context: {}'.format(_UpperCAmelCase, _UpperCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _UpperCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _UpperCAmelCase : None), } ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=64, _UpperCAmelCase=256, _UpperCAmelCase=False, _UpperCAmelCase=2, _UpperCAmelCase=0.9_5, _UpperCAmelCase=0.8 ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): lowerCAmelCase : Tuple = qa_sas_generate( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, num_answers=1, num_beams=_UpperCAmelCase, min_len=_UpperCAmelCase, max_len=_UpperCAmelCase, do_sample=_UpperCAmelCase, temp=_UpperCAmelCase, top_p=_UpperCAmelCase, top_k=_UpperCAmelCase, max_input_length=1_024, device='cuda:0', )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar __A : int = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' __A : str = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __A : int = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) __A : Union[str, Any] = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] __A : int = st.sidebar.checkbox('''Demo options''') if demo_options: __A : Any = st.sidebar.selectbox( '''''', action_list, index=3, ) __A : Optional[int] = action_list.index(action_st) __A : Optional[Any] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) __A : Tuple = show_type == '''Show full text of passages''' else: __A : Dict = 3 __A : Dict = True __A : Optional[int] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: __A : Tuple = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) __A : Optional[int] = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) __A : Any = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: __A : Any = '''wiki40b''' __A : Optional[int] = '''dense''' __A : Union[str, Any] = '''beam''' __A : Optional[Any] = 2 __A : Union[str, Any] = 64 __A : Dict = 256 __A : Dict = None __A : Optional[Any] = None __A : List[str] = st.sidebar.checkbox('''Generation options''') if generate_options: __A : Tuple = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) __A : str = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) __A : List[Any] = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __A : str = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __A : Optional[Any] = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __A : Tuple = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __A : Any = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __A : List[str] = None # start main text __A : int = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] __A : List[str] = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": __A : Tuple = st.text_input('''Enter your question here:''', '''''') else: __A : List[str] = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": __A , __A : Optional[Any] = make_support(question, source=wiki_source, method='''dense''', n_results=10) __A , __A : Tuple = make_support(question, source=wiki_source, method='''sparse''', n_results=10) __A : Optional[int] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __A : Optional[Any] = support_list[:10] __A : Union[str, Any] = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: __A , __A : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __A , __A : str = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): __A : Any = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) __A : Any = res[1].strip() if sec_titles == "": __A : Any = '''[{}]({})'''.format(res[0], wiki_url) else: __A : Tuple = sec_titles.split(''' & ''') __A : Tuple = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: __A : Tuple = find_nearest_training(question) __A : str = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) __A : Tuple = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) __A : str = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
323
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __A : Union[str, Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' print('Loading config file...' ) def flatten_yaml_as_dict(_UpperCAmelCase, _UpperCAmelCase="", _UpperCAmelCase="." ): lowerCAmelCase : Any = [] for k, v in d.items(): lowerCAmelCase : int = parent_key + sep + k if parent_key else k if isinstance(_UpperCAmelCase, collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(_UpperCAmelCase, _UpperCAmelCase, sep=_UpperCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(_UpperCAmelCase ) lowerCAmelCase : str = argparse.Namespace() with open(_UpperCAmelCase, 'r' ) as yaml_file: try: lowerCAmelCase : Tuple = yaml.load(_UpperCAmelCase, Loader=yaml.FullLoader ) lowerCAmelCase : int = flatten_yaml_as_dict(_UpperCAmelCase ) for k, v in flat_cfg.items(): setattr(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(_UpperCAmelCase, str(_UpperCAmelCase ) ) ) return config def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[int] = MobileViTVaConfig() lowerCAmelCase : Union[str, Any] = False # dataset if task_name.startswith('imagenet1k_' ): lowerCAmelCase : Tuple = 1_000 if int(task_name.strip().split('_' )[-1] ) == 384: lowerCAmelCase : Optional[int] = 384 else: lowerCAmelCase : Dict = 256 lowerCAmelCase : Union[str, Any] = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): lowerCAmelCase : Optional[Any] = 21_000 if int(task_name.strip().split('_' )[-1] ) == 384: lowerCAmelCase : Dict = 384 else: lowerCAmelCase : Optional[Any] = 256 lowerCAmelCase : Dict = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): lowerCAmelCase : Any = 151 lowerCAmelCase : Dict = 512 lowerCAmelCase : List[str] = 'ade20k-id2label.json' lowerCAmelCase : Any = True elif task_name.startswith('voc_' ): lowerCAmelCase : Dict = 21 lowerCAmelCase : str = 512 lowerCAmelCase : List[Any] = 'pascal-voc-id2label.json' lowerCAmelCase : Dict = True # orig_config lowerCAmelCase : List[str] = load_orig_config_file(_UpperCAmelCase ) assert getattr(_UpperCAmelCase, 'model.classification.name', -1 ) == "mobilevit_v2", "Invalid model" lowerCAmelCase : Dict = getattr(_UpperCAmelCase, 'model.classification.mitv2.width_multiplier', 1.0 ) assert ( getattr(_UpperCAmelCase, 'model.classification.mitv2.attn_norm_layer', -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowerCAmelCase : List[Any] = getattr(_UpperCAmelCase, 'model.classification.activation.name', 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowerCAmelCase : Any = getattr(_UpperCAmelCase, 'model.segmentation.output_stride', 16 ) if "_deeplabv3" in task_name: lowerCAmelCase : str = getattr(_UpperCAmelCase, 'model.segmentation.deeplabv3.aspp_rates', [12, 24, 36] ) lowerCAmelCase : Optional[int] = getattr(_UpperCAmelCase, 'model.segmentation.deeplabv3.aspp_out_channels', 512 ) lowerCAmelCase : List[str] = getattr(_UpperCAmelCase, 'model.segmentation.deeplabv3.aspp_dropout', 0.1 ) # id2label lowerCAmelCase : Optional[Any] = 'huggingface/label-files' lowerCAmelCase : str = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase, repo_type='dataset' ), 'r' ) ) lowerCAmelCase : List[str] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[Any] = idalabel lowerCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Union[str, Any] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' if base_model: lowerCAmelCase : Union[str, Any] = '' else: lowerCAmelCase : Union[str, Any] = 'mobilevitv2.' lowerCAmelCase : Optional[Any] = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowerCAmelCase : Optional[Any] = k[8:] else: lowerCAmelCase : Optional[Any] = k if ".block." in k: lowerCAmelCase : Any = k_new.replace('.block.', '.' ) if ".conv." in k: lowerCAmelCase : str = k_new.replace('.conv.', '.convolution.' ) if ".norm." in k: lowerCAmelCase : List[str] = k_new.replace('.norm.', '.normalization.' ) if "conv_1." in k: lowerCAmelCase : List[str] = k_new.replace('conv_1.', f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: lowerCAmelCase : int = k_new.replace(f"layer_{i}.", f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: lowerCAmelCase : Dict = k_new.replace('.exp_1x1.', '.expand_1x1.' ) if ".red_1x1." in k: lowerCAmelCase : Optional[int] = k_new.replace('.red_1x1.', '.reduce_1x1.' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: lowerCAmelCase : List[str] = k_new.replace(f"layer_{i}.0.", f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: lowerCAmelCase : Optional[Any] = k_new.replace(f"layer_{i}.1.local_rep.0.", f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: lowerCAmelCase : Optional[int] = k_new.replace(f"layer_{i}.1.local_rep.1.", f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: lowerCAmelCase : Optional[Any] = [0, 1] elif i == 4: lowerCAmelCase : List[str] = [0, 1, 2, 3] elif i == 5: lowerCAmelCase : Tuple = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: lowerCAmelCase : str = k_new.replace( f"layer_{i}.1.global_rep.{j}.", f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: lowerCAmelCase : str = k_new.replace( f"layer_{i}.1.global_rep.{j+1}.", f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: lowerCAmelCase : str = k_new.replace(f"layer_{i}.1.conv_proj.", f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: lowerCAmelCase : Dict = k_new.replace('pre_norm_attn.0.', 'layernorm_before.' ) if "pre_norm_attn.1." in k: lowerCAmelCase : int = k_new.replace('pre_norm_attn.1.', 'attention.' ) if "pre_norm_ffn.0." in k: lowerCAmelCase : List[Any] = k_new.replace('pre_norm_ffn.0.', 'layernorm_after.' ) if "pre_norm_ffn.1." in k: lowerCAmelCase : int = k_new.replace('pre_norm_ffn.1.', 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: lowerCAmelCase : List[str] = k_new.replace('pre_norm_ffn.3.', 'ffn.conv2.' ) if "classifier.1." in k: lowerCAmelCase : Optional[int] = k_new.replace('classifier.1.', 'classifier.' ) if "seg_head." in k: lowerCAmelCase : Any = k_new.replace('seg_head.', 'segmentation_head.' ) if ".aspp_layer." in k: lowerCAmelCase : Union[str, Any] = k_new.replace('.aspp_layer.', '.' ) if ".aspp_pool." in k: lowerCAmelCase : Tuple = k_new.replace('.aspp_pool.', '.' ) rename_keys.append((k, k_new) ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Optional[int] = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(_UpperCAmelCase ) for k in keys_to_ignore: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowerCAmelCase : str = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Tuple = get_mobilevitva_config(_UpperCAmelCase, _UpperCAmelCase ) # load original state_dict lowerCAmelCase : Optional[int] = torch.load(_UpperCAmelCase, map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): lowerCAmelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ).eval() lowerCAmelCase : Optional[int] = False else: lowerCAmelCase : str = MobileViTVaForImageClassification(_UpperCAmelCase ).eval() lowerCAmelCase : Tuple = False # remove and rename some keys of load the original model lowerCAmelCase : Dict = checkpoint remove_unused_keys(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # load modified state_dict model.load_state_dict(_UpperCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCAmelCase : Any = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) lowerCAmelCase : Dict = image_processor(images=prepare_img(), return_tensors='pt' ) lowerCAmelCase : Optional[int] = model(**_UpperCAmelCase ) # verify classification model if task_name.startswith('imagenet' ): lowerCAmelCase : List[str] = outputs.logits lowerCAmelCase : Union[str, Any] = logits.argmax(-1 ).item() print('Predicted class:', model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant lowerCAmelCase : List[str] = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3], _UpperCAmelCase, atol=1e-4 ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) __A : str = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __A : List[Any] = logging.get_logger(__name__) class __A ( lowerCAmelCase ): def __init__( self : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
323
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
323
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
1
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __A ( lowerCAmelCase ): lowerCAmelCase_ : Tuple = (CMStochasticIterativeScheduler,) lowerCAmelCase_ : List[Any] = 10 def lowercase__ ( self : Optional[Any] , **UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Dict = { 'num_train_timesteps': 201, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } config.update(**UpperCAmelCase_ ) return config def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = 10 lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0](**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = scheduler.timesteps[0] lowerCAmelCase : List[str] = scheduler.timesteps[1] lowerCAmelCase : Union[str, Any] = self.dummy_sample lowerCAmelCase : List[Any] = 0.1 * sample lowerCAmelCase : str = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample lowerCAmelCase : Any = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : Any ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def lowercase__ ( self : str ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=UpperCAmelCase_ ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Union[str, Any] = self.get_scheduler_config() lowerCAmelCase : List[Any] = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Tuple = 1 scheduler.set_timesteps(UpperCAmelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps lowerCAmelCase : Any = torch.manual_seed(0 ) lowerCAmelCase : Dict = self.dummy_model() lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(UpperCAmelCase_ ): # 1. scale model input lowerCAmelCase : str = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict noise residual lowerCAmelCase : List[Any] = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 3. predict previous sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : Dict = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowerCAmelCase : Any = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 1_92.76_14 ) < 1E-2 assert abs(result_mean.item() - 0.25_10 ) < 1E-3 def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = self.scheduler_classes[0] lowerCAmelCase : int = self.get_scheduler_config() lowerCAmelCase : Any = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [106, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) lowerCAmelCase : Any = scheduler.timesteps lowerCAmelCase : int = torch.manual_seed(0 ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input lowerCAmelCase : Optional[Any] = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict noise residual lowerCAmelCase : Dict = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 3. predict previous sample x_t-1 lowerCAmelCase : str = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample lowerCAmelCase : List[str] = pred_prev_sample lowerCAmelCase : List[Any] = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowerCAmelCase : List[str] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 3_47.63_57 ) < 1E-2 assert abs(result_mean.item() - 0.45_27 ) < 1E-3 def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [39, 30, 12, 15, 0] with self.assertRaises(UpperCAmelCase_ , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : int = self.get_scheduler_config() lowerCAmelCase : Union[str, Any] = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Dict = [39, 30, 12, 1, 0] lowerCAmelCase : str = len(UpperCAmelCase_ ) with self.assertRaises(UpperCAmelCase_ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : Optional[Any] = self.get_scheduler_config() lowerCAmelCase : List[Any] = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ )
323
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
1
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 __A : Optional[Any] = get_tests_dir('''fixtures/dummy-config.json''') class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Any ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def lowercase__ ( self : Dict ): lowerCAmelCase : Dict = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = AutoConfig.for_model('roberta' ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. lowerCAmelCase : Optional[int] = os.path.join(UpperCAmelCase_ , 'fake-roberta' ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) lowerCAmelCase : int = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(type(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): try: AutoConfig.register('custom' , UpperCAmelCase_ ) # Wrong model type will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register('model' , UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register('bert' , UpperCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase : Optional[int] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowercase__ ( self : Tuple ): with self.assertRaisesRegex( UpperCAmelCase_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained('bert-base' ) def lowercase__ ( self : Tuple ): with self.assertRaisesRegex( UpperCAmelCase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCAmelCase : int = AutoConfig.from_pretrained(UpperCAmelCase_ , revision='aaaaaa' ) def lowercase__ ( self : List[Any] ): with self.assertRaisesRegex( UpperCAmelCase_ , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): lowerCAmelCase : str = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def lowercase__ ( self : str ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase_ ): lowerCAmelCase : int = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=UpperCAmelCase_ ) lowerCAmelCase : Dict = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def lowercase__ ( self : Optional[int] ): class __A ( lowerCAmelCase ): lowerCAmelCase_ : Any = "new-model" try: AutoConfig.register('new-model' , UpperCAmelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase : List[Any] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. lowerCAmelCase : List[Any] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
323
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __A : Tuple = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __A : int = 25_0004 __A : Tuple = 25_0020 @require_sentencepiece @require_tokenizers class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = MBartTokenizer lowerCAmelCase_ : List[Any] = MBartTokenizerFast lowerCAmelCase_ : int = True lowerCAmelCase_ : Tuple = True def lowercase__ ( self : int ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Any = MBartTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Dict = MBartTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) lowerCAmelCase : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase : Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase : Any = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def lowercase__ ( self : Tuple ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase : str = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : int = tempfile.mkdtemp() lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCAmelCase : List[Any] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase : List[Any] = tempfile.mkdtemp() lowerCAmelCase : int = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) lowerCAmelCase : Dict = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase : Union[str, Any] = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase : Optional[int] = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): lowerCAmelCase_ : str = "facebook/mbart-large-en-ro" lowerCAmelCase_ : List[Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] lowerCAmelCase_ : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] lowerCAmelCase_ : List[Any] = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE] @classmethod def lowercase__ ( cls : int ): lowerCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCAmelCase : int = 1 return cls def lowercase__ ( self : str ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) def lowercase__ ( self : str ): lowerCAmelCase : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) def lowercase__ ( self : int ): self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids ) lowerCAmelCase : Optional[int] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCAmelCase : List[str] = self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , UpperCAmelCase_ ) lowerCAmelCase : Any = 10 lowerCAmelCase : str = self.tokenizer(UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250026, 250001] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = tempfile.mkdtemp() lowerCAmelCase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = MBartTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase_ ) @require_torch def lowercase__ ( self : Optional[int] ): lowerCAmelCase : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , return_tensors='pt' ) lowerCAmelCase : str = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = self.tokenizer(self.src_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=3 , return_tensors='pt' ) lowerCAmelCase : Any = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=10 , return_tensors='pt' ) lowerCAmelCase : List[Any] = targets['input_ids'] lowerCAmelCase : List[str] = shift_tokens_right(UpperCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : str ): lowerCAmelCase : Tuple = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , { # A, test, EOS, en_XX 'input_ids': [[62, 3034, 2, 250004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
# flake8: noqa # Lint as: python3 __A : List[str] = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
323
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A : List[Any] = '''pt''' elif is_tf_available(): __A : List[str] = '''tf''' else: __A : Optional[Any] = '''jax''' class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : str = PerceiverTokenizer lowerCAmelCase_ : int = False def lowercase__ ( self : List[str] ): super().setUp() lowerCAmelCase : List[str] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Union[str, Any] ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase__ ( self : Optional[Any] , **UpperCAmelCase_ : List[str] ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : str=20 , UpperCAmelCase_ : List[str]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCAmelCase : Dict = [] for i in range(len(UpperCAmelCase_ ) ): try: lowerCAmelCase : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase : Optional[Any] = list(filter(lambda UpperCAmelCase_ : re.match(R'^[ a-zA-Z]+$' , t[1] ) , UpperCAmelCase_ ) ) lowerCAmelCase : Union[str, Any] = list(filter(lambda UpperCAmelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase_ ) , UpperCAmelCase_ ) ) if max_length is not None and len(UpperCAmelCase_ ) > max_length: lowerCAmelCase : Optional[int] = toks[:max_length] if min_length is not None and len(UpperCAmelCase_ ) < min_length and len(UpperCAmelCase_ ) > 0: while len(UpperCAmelCase_ ) < min_length: lowerCAmelCase : List[Any] = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase : Union[str, Any] = [t[0] for t in toks] # Ensure consistency lowerCAmelCase : Optional[Any] = tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) if " " not in output_txt and len(UpperCAmelCase_ ) > 1: lowerCAmelCase : List[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase_ ) ) if with_prefix_space: lowerCAmelCase : List[str] = ' ' + output_txt lowerCAmelCase : Tuple = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) return output_txt, output_ids def lowercase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.perceiver_tokenizer lowerCAmelCase : Optional[int] = 'Unicode €.' lowerCAmelCase : str = tokenizer(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , UpperCAmelCase_ ) # decoding lowerCAmelCase : List[Any] = tokenizer.decode(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , '[CLS]Unicode €.[SEP]' ) lowerCAmelCase : Union[str, Any] = tokenizer('e è é ê ë' ) lowerCAmelCase : int = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , UpperCAmelCase_ ) # decoding lowerCAmelCase : List[Any] = tokenizer.decode(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.perceiver_tokenizer lowerCAmelCase : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCAmelCase : Optional[int] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on lowerCAmelCase : Optional[Any] = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) if FRAMEWORK != "jax": lowerCAmelCase : Dict = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.perceiver_tokenizer lowerCAmelCase : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCAmelCase_ ) self.assertIn('attention_mask' , UpperCAmelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = self.perceiver_tokenizer lowerCAmelCase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] lowerCAmelCase : List[str] = tokenizer( text_target=UpperCAmelCase_ , max_length=32 , padding='max_length' , truncation=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase__ ( self : Union[str, Any] ): # safety check on max_len default value so we are sure the test works lowerCAmelCase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase : List[str] = tempfile.mkdtemp() lowerCAmelCase : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' lowerCAmelCase : Optional[int] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : str = tokenizer.__class__.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : int = after_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) shutil.rmtree(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase : List[str] = tempfile.mkdtemp() lowerCAmelCase : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCAmelCase : List[Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCAmelCase : Tuple = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.__class__.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = after_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase : Tuple = tokenizer.__class__.from_pretrained(UpperCAmelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase : List[Any] = json.load(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase : List[Any] = json.load(UpperCAmelCase_ ) lowerCAmelCase : str = [f"<extra_id_{i}>" for i in range(125 )] lowerCAmelCase : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCAmelCase : Union[str, Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCAmelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase : str = tokenizer_class.from_pretrained( UpperCAmelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase : Dict = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCAmelCase_ )] lowerCAmelCase : List[str] = tokenizer_class.from_pretrained( UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase__ ( self : Dict ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : Union[str, Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : List[Any] ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens lowerCAmelCase : Optional[int] = self.get_tokenizers(fast=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase : int = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_string(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
323
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
1
from __future__ import annotations import bisect def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = 0, _UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: lowerCAmelCase : str = len(_UpperCAmelCase ) while lo < hi: lowerCAmelCase : int = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowerCAmelCase : int = mid + 1 else: lowerCAmelCase : int = mid return lo def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = 0, _UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: lowerCAmelCase : str = len(_UpperCAmelCase ) while lo < hi: lowerCAmelCase : Any = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowerCAmelCase : Optional[Any] = mid + 1 else: lowerCAmelCase : Optional[Any] = mid return lo def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = 0, _UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = 0, _UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int | None: '''simple docstring''' lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : List[Any] = len(_UpperCAmelCase ) - 1 while left <= right: lowerCAmelCase : Tuple = left + (right - left) // 2 lowerCAmelCase : str = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowerCAmelCase : Tuple = midpoint - 1 else: lowerCAmelCase : Optional[Any] = midpoint + 1 return None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int | None: '''simple docstring''' lowerCAmelCase : Dict = bisect.bisect_left(_UpperCAmelCase, _UpperCAmelCase ) if index != len(_UpperCAmelCase ) and sorted_collection[index] == item: return index return None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int | None: '''simple docstring''' if right < left: return None lowerCAmelCase : Tuple = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, midpoint - 1 ) else: return binary_search_by_recursion(_UpperCAmelCase, _UpperCAmelCase, midpoint + 1, _UpperCAmelCase ) if __name__ == "__main__": __A : Union[str, Any] = input('''Enter numbers separated by comma:\n''').strip() __A : Dict = sorted(int(item) for item in user_input.split(''',''')) __A : List[str] = int(input('''Enter a single number to be found in the list:\n''')) __A : List[str] = binary_search(collection, target) if result is None: print(F'{target} was not found in {collection}.') else: print(F'{target} was found at position {result} in {collection}.')
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
323
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2], unknown_args[1::2] )} def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[Any] = ArgumentParser( 'HuggingFace Datasets CLI tool', usage='datasets-cli <command> [<args>]', allow_abbrev=_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_UpperCAmelCase ) EnvironmentCommand.register_subcommand(_UpperCAmelCase ) TestCommand.register_subcommand(_UpperCAmelCase ) RunBeamCommand.register_subcommand(_UpperCAmelCase ) DummyDataCommand.register_subcommand(_UpperCAmelCase ) # Parse args lowerCAmelCase , lowerCAmelCase : Optional[int] = parser.parse_known_args() if not hasattr(_UpperCAmelCase, 'func' ): parser.print_help() exit(1 ) lowerCAmelCase : str = parse_unknown_args(_UpperCAmelCase ) # Run lowerCAmelCase : List[str] = args.func(_UpperCAmelCase, **_UpperCAmelCase ) service.run() if __name__ == "__main__": main()
323
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> bool: '''simple docstring''' lowerCAmelCase : int = int(number**0.5 ) return number == sq * sq def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> tuple[int, int]: '''simple docstring''' lowerCAmelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowerCAmelCase : int = x_den * y_den * z_den lowerCAmelCase : int = gcd(_UpperCAmelCase, _UpperCAmelCase ) top //= hcf bottom //= hcf return top, bottom def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 35 ) -> int: '''simple docstring''' lowerCAmelCase : set = set() lowerCAmelCase : int lowerCAmelCase : Fraction = Fraction(0 ) lowerCAmelCase : tuple[int, int] for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 lowerCAmelCase : Dict = x_num * y_den + x_den * y_num lowerCAmelCase : List[Any] = x_den * y_den lowerCAmelCase : Tuple = gcd(_UpperCAmelCase, _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase : Tuple = add_three( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=2 lowerCAmelCase : Any = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowerCAmelCase : int = x_den * x_den * y_den * y_den if is_sq(_UpperCAmelCase ) and is_sq(_UpperCAmelCase ): lowerCAmelCase : Optional[Any] = int(sqrt(_UpperCAmelCase ) ) lowerCAmelCase : List[Any] = int(sqrt(_UpperCAmelCase ) ) lowerCAmelCase : List[Any] = gcd(_UpperCAmelCase, _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase : str = add_three( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=-1 lowerCAmelCase : int = x_num * y_num lowerCAmelCase : Tuple = x_den * y_num + x_num * y_den lowerCAmelCase : Any = gcd(_UpperCAmelCase, _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase : List[str] = add_three( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=2 lowerCAmelCase : str = x_num * x_num * y_num * y_num lowerCAmelCase : Tuple = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_UpperCAmelCase ) and is_sq(_UpperCAmelCase ): lowerCAmelCase : Dict = int(sqrt(_UpperCAmelCase ) ) lowerCAmelCase : Union[str, Any] = int(sqrt(_UpperCAmelCase ) ) lowerCAmelCase : Any = gcd(_UpperCAmelCase, _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase : Dict = add_three( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) for num, den in unique_s: total += Fraction(_UpperCAmelCase, _UpperCAmelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'{solution() = }')
323
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
1
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A : Dict = 16 __A : Optional[int] = 32 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = 16 ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase : Union[str, Any] = DatasetDict( { 'train': dataset['train'].select(_UpperCAmelCase ), 'validation': dataset['train'].select(_UpperCAmelCase ), 'test': dataset['validation'], } ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase : Union[str, Any] = tokenizer(examples['sentence1'], examples['sentence2'], truncation=_UpperCAmelCase, max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase : Optional[Any] = datasets.map( _UpperCAmelCase, batched=_UpperCAmelCase, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase : Any = tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase : Optional[Any] = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase : Union[str, Any] = 8 else: lowerCAmelCase : int = None return tokenizer.pad( _UpperCAmelCase, padding='longest', max_length=_UpperCAmelCase, pad_to_multiple_of=_UpperCAmelCase, return_tensors='pt', ) # Instantiate dataloaders. lowerCAmelCase : Optional[Any] = DataLoader( tokenized_datasets['train'], shuffle=_UpperCAmelCase, collate_fn=_UpperCAmelCase, batch_size=_UpperCAmelCase ) lowerCAmelCase : List[Any] = DataLoader( tokenized_datasets['validation'], shuffle=_UpperCAmelCase, collate_fn=_UpperCAmelCase, batch_size=_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets['test'], shuffle=_UpperCAmelCase, collate_fn=_UpperCAmelCase, batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader, test_dataloader def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : int = [] # Download the dataset lowerCAmelCase : Optional[Any] = load_dataset('glue', 'mrpc' ) # Create our splits lowerCAmelCase : List[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCAmelCase : List[Any] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase : Any = config['lr'] lowerCAmelCase : str = int(config['num_epochs'] ) lowerCAmelCase : Tuple = int(config['seed'] ) lowerCAmelCase : Optional[Any] = int(config['batch_size'] ) lowerCAmelCase : Optional[Any] = evaluate.load('glue', 'mrpc' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase : List[str] = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) # New Code # # Create our folds: lowerCAmelCase : Optional[int] = kfold.split(np.zeros(datasets['train'].num_rows ), datasets['train']['label'] ) lowerCAmelCase : int = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_UpperCAmelCase ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = get_fold_dataloaders( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase : str = AdamW(params=model.parameters(), lr=_UpperCAmelCase ) # Instantiate scheduler lowerCAmelCase : Optional[Any] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase, num_warmup_steps=100, num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = accelerator.prepare( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : Any = outputs.loss lowerCAmelCase : Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**_UpperCAmelCase ) lowerCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase , lowerCAmelCase : Tuple = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_UpperCAmelCase, references=_UpperCAmelCase, ) lowerCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", _UpperCAmelCase ) # New Code # # We also run predictions on the test set at the very end lowerCAmelCase : Optional[int] = [] for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase : List[str] = model(**_UpperCAmelCase ) lowerCAmelCase : List[Any] = outputs.logits lowerCAmelCase , lowerCAmelCase : str = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_UpperCAmelCase, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCAmelCase : List[str] = torch.cat(_UpperCAmelCase, dim=0 ) lowerCAmelCase : List[Any] = torch.stack(_UpperCAmelCase, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCAmelCase : List[str] = metric.compute(predictions=_UpperCAmelCase, references=_UpperCAmelCase ) accelerator.print('Average test metrics from all folds:', _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=_UpperCAmelCase, default=_UpperCAmelCase, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds', type=_UpperCAmelCase, default=3, help='The number of splits to perform across the dataset' ) lowerCAmelCase : List[Any] = parser.parse_args() lowerCAmelCase : Any = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_UpperCAmelCase, _UpperCAmelCase ) if __name__ == "__main__": main()
323
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : Dict = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=None ) -> Tuple: '''simple docstring''' require_version(deps[pkg], _UpperCAmelCase )
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
from copy import deepcopy class __A : def __init__( self : Tuple , UpperCAmelCase_ : list[int] | None = None , UpperCAmelCase_ : int | None = None ): if arr is None and size is not None: lowerCAmelCase : Union[str, Any] = size lowerCAmelCase : str = [0] * size elif arr is not None: self.init(UpperCAmelCase_ ) else: raise ValueError('Either arr or size must be specified' ) def lowercase__ ( self : Any , UpperCAmelCase_ : list[int] ): lowerCAmelCase : Tuple = len(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = deepcopy(UpperCAmelCase_ ) for i in range(1 , self.size ): lowerCAmelCase : Any = self.next_(UpperCAmelCase_ ) if j < self.size: self.tree[j] += self.tree[i] def lowercase__ ( self : int ): lowerCAmelCase : int = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): lowerCAmelCase : List[str] = self.next_(UpperCAmelCase_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def lowercase__ ( UpperCAmelCase_ : int ): return index + (index & (-index)) @staticmethod def lowercase__ ( UpperCAmelCase_ : int ): return index - (index & (-index)) def lowercase__ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value lowerCAmelCase : Tuple = self.next_(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.add(UpperCAmelCase_ , value - self.get(UpperCAmelCase_ ) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : int ): if right == 0: return 0 lowerCAmelCase : Optional[int] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] lowerCAmelCase : Optional[int] = self.prev(UpperCAmelCase_ ) return result def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): return self.prefix(UpperCAmelCase_ ) - self.prefix(UpperCAmelCase_ ) def lowercase__ ( self : str , UpperCAmelCase_ : int ): return self.query(UpperCAmelCase_ , index + 1 ) def lowercase__ ( self : str , UpperCAmelCase_ : int ): value -= self.tree[0] if value < 0: return -1 lowerCAmelCase : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 lowerCAmelCase : Optional[int] = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
323
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return round(float(moles / volume ) * nfactor ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
323
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : str ): lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : str = BlipImageProcessor() lowerCAmelCase : int = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowerCAmelCase : Dict = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) lowerCAmelCase : int = InstructBlipProcessor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).tokenizer def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : List[str] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor def lowercase__ ( self : List[str] , **UpperCAmelCase_ : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).qformer_tokenizer def lowercase__ ( self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : int ): lowerCAmelCase : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Dict = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : int = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : List[Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : int = self.get_tokenizer() lowerCAmelCase : Tuple = self.get_qformer_tokenizer() lowerCAmelCase : Optional[int] = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : int = self.prepare_image_inputs() lowerCAmelCase : Optional[int] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : Dict = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : Any = self.get_qformer_tokenizer() lowerCAmelCase : int = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : List[str] = 'lower newer' lowerCAmelCase : int = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Dict = tokenizer(UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = qformer_tokenizer(UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def lowercase__ ( self : int ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : List[Any] = self.get_qformer_tokenizer() lowerCAmelCase : Union[str, Any] = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : Any ): lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : List[Any] = self.get_qformer_tokenizer() lowerCAmelCase : List[Any] = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : str = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : List[Any] = self.get_tokenizer() lowerCAmelCase : Any = self.get_qformer_tokenizer() lowerCAmelCase : Tuple = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = 'lower newer' lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : Optional[int] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
323
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __A ( lowerCAmelCase ): lowerCAmelCase_ : str = (PNDMScheduler,) lowerCAmelCase_ : str = (("num_inference_steps", 50),) def lowercase__ ( self : int , **UpperCAmelCase_ : List[Any] ): lowerCAmelCase : List[str] = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**UpperCAmelCase_ ) return config def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : List[str]=0 , **UpperCAmelCase_ : Dict ): lowerCAmelCase : Union[str, Any] = dict(self.forward_default_kwargs ) lowerCAmelCase : Optional[int] = kwargs.pop('num_inference_steps' , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.dummy_sample lowerCAmelCase : int = 0.1 * sample lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase : Any = self.get_scheduler_config(**UpperCAmelCase_ ) lowerCAmelCase : List[Any] = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals lowerCAmelCase : Tuple = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_ ) lowerCAmelCase : List[str] = scheduler_class.from_pretrained(UpperCAmelCase_ ) new_scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals lowerCAmelCase : List[str] = dummy_past_residuals[:] lowerCAmelCase : List[str] = scheduler.step_prk(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample lowerCAmelCase : Dict = new_scheduler.step_prk(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase : List[str] = scheduler.step_plms(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample lowerCAmelCase : str = new_scheduler.step_plms(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : Optional[int] ): pass def lowercase__ ( self : int , UpperCAmelCase_ : Any=0 , **UpperCAmelCase_ : List[str] ): lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase : Dict = kwargs.pop('num_inference_steps' , UpperCAmelCase_ ) lowerCAmelCase : str = self.dummy_sample lowerCAmelCase : Union[str, Any] = 0.1 * sample lowerCAmelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(UpperCAmelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase : Union[str, Any] = dummy_past_residuals[:] lowerCAmelCase : Dict = scheduler.step_prk(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample lowerCAmelCase : Tuple = new_scheduler.step_prk(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase : Optional[int] = scheduler.step_plms(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample lowerCAmelCase : List[str] = new_scheduler.step_plms(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : Optional[Any] , **UpperCAmelCase_ : Tuple ): lowerCAmelCase : int = self.scheduler_classes[0] lowerCAmelCase : Optional[Any] = self.get_scheduler_config(**UpperCAmelCase_ ) lowerCAmelCase : Tuple = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 10 lowerCAmelCase : Optional[Any] = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase_ ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCAmelCase : str = model(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = scheduler.step_prk(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCAmelCase : str = model(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Tuple = scheduler.step_plms(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample return sample def lowercase__ ( self : Dict ): lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase : Any = kwargs.pop('num_inference_steps' , UpperCAmelCase_ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Any = self.dummy_sample lowerCAmelCase : int = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCAmelCase_ , 'set_timesteps' ): scheduler.set_timesteps(UpperCAmelCase_ ) elif num_inference_steps is not None and not hasattr(UpperCAmelCase_ , 'set_timesteps' ): lowerCAmelCase : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase : Optional[int] = dummy_past_residuals[:] lowerCAmelCase : str = scheduler.step_prk(UpperCAmelCase_ , 0 , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample lowerCAmelCase : Optional[Any] = scheduler.step_prk(UpperCAmelCase_ , 1 , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase : List[str] = scheduler.step_plms(UpperCAmelCase_ , 0 , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample lowerCAmelCase : Any = scheduler.step_plms(UpperCAmelCase_ , 1 , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : Dict ): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def lowercase__ ( self : str ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase_ ) lowerCAmelCase : int = self.scheduler_classes[0] lowerCAmelCase : Union[str, Any] = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase : Tuple = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowercase__ ( self : Optional[int] ): for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_ ) def lowercase__ ( self : Any ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def lowercase__ ( self : Dict ): for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCAmelCase_ ) def lowercase__ ( self : Dict ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowerCAmelCase : Dict = 27 for scheduler_class in self.scheduler_classes: lowerCAmelCase : List[Any] = self.dummy_sample lowerCAmelCase : List[Any] = 0.1 * sample lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCAmelCase : List[str] = scheduler.step_prk(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample def lowercase__ ( self : Optional[Any] ): with self.assertRaises(UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCAmelCase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.full_loop() lowerCAmelCase : Tuple = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowerCAmelCase : str = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def lowercase__ ( self : Tuple ): lowerCAmelCase : List[str] = self.full_loop(prediction_type='v_prediction' ) lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[int] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def lowercase__ ( self : Dict ): # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase : Any = self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01 ) lowerCAmelCase : Tuple = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def lowercase__ ( self : Optional[int] ): # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase : Any = self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01 ) lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[int] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
323
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
1
# Imports import numpy as np class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None ): self.set_matricies(red=UpperCAmelCase_ , green=UpperCAmelCase_ , blue=UpperCAmelCase_ , red_edge=UpperCAmelCase_ , nir=UpperCAmelCase_ ) def lowercase__ ( self : str , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Tuple=None ): if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Union[str, Any] = green if blue is not None: lowerCAmelCase : Tuple = blue if red_edge is not None: lowerCAmelCase : Union[str, Any] = red_edge if nir is not None: lowerCAmelCase : Tuple = nir return True def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple="" , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Dict=None ): self.set_matricies(red=UpperCAmelCase_ , green=UpperCAmelCase_ , blue=UpperCAmelCase_ , red_edge=UpperCAmelCase_ , nir=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def lowercase__ ( self : str ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def lowercase__ ( self : str ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def lowercase__ ( self : str ): return self.nir * (self.red / (self.green**2)) def lowercase__ ( self : Union[str, Any] ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def lowercase__ ( self : Optional[int] ): return (self.nir - self.red) / (self.nir + self.red) def lowercase__ ( self : int ): return (self.nir - self.blue) / (self.nir + self.blue) def lowercase__ ( self : int ): return (self.redEdge - self.red) / (self.redEdge + self.red) def lowercase__ ( self : Optional[Any] ): return (self.nir - self.green) / (self.nir + self.green) def lowercase__ ( self : Dict ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def lowercase__ ( self : List[Any] ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def lowercase__ ( self : Union[str, Any] ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def lowercase__ ( self : int ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[Any]=0.08 , UpperCAmelCase_ : str=1.22 , UpperCAmelCase_ : List[Any]=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def lowercase__ ( self : Union[str, Any] ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def lowercase__ ( self : Union[str, Any] ): return (self.nir / self.green) - 1 def lowercase__ ( self : Dict ): return (self.nir / self.redEdge) - 1 def lowercase__ ( self : Any ): return (self.red - self.blue) / self.red def lowercase__ ( self : int ): lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def lowercase__ ( self : int ): return self.nir - self.green def lowercase__ ( self : int ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def lowercase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : List[Any]=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def lowercase__ ( self : Tuple ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def lowercase__ ( self : str , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None ): return (self.nir - b) / (a * self.red) def lowercase__ ( self : Dict ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def lowercase__ ( self : int ): return (self.red + self.green + self.blue) / 30.5 def lowercase__ ( self : int ): return self.nir / self.red def lowercase__ ( self : Optional[int] ): return (self.rvi() - 1) / (self.rvi() + 1) def lowercase__ ( self : List[Any] ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def lowercase__ ( self : List[Any] ): return self.green / (self.nir + self.red + self.green) def lowercase__ ( self : int ): return self.nir / (self.nir + self.red + self.green) def lowercase__ ( self : Any ): return self.red / (self.nir + self.red + self.green) def lowercase__ ( self : int ): return (self.green - self.red) / (self.green + self.red) def lowercase__ ( self : int ): return (self.red - self.green) / (self.red + self.green) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Optional[int] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def lowercase__ ( self : Optional[Any] ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def lowercase__ ( self : int ): return self.nir / self.red def lowercase__ ( self : Tuple ): return (self.ndvi() + 0.5) ** (1 / 2) def lowercase__ ( self : Any ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
323
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : def __init__( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Any=[10, 20, 30, 40] , UpperCAmelCase_ : Union[str, Any]=[2, 2, 3, 2] , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Union[str, Any]=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[Any]=[2, 3, 4] , UpperCAmelCase_ : int=None , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : int = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : List[Any] = num_stages lowerCAmelCase : Optional[int] = hidden_sizes lowerCAmelCase : Dict = depths lowerCAmelCase : str = is_training lowerCAmelCase : Tuple = use_labels lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : str = initializer_range lowerCAmelCase : int = out_features lowerCAmelCase : Optional[Any] = out_indices lowerCAmelCase : List[Any] = scope def lowercase__ ( self : int ): lowerCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : List[str] = None if self.use_labels: lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def lowercase__ ( self : str ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ): lowerCAmelCase : Optional[int] = ConvNextVaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : int ): lowerCAmelCase : Dict = ConvNextVaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : List[str] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Dict = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Any = model(UpperCAmelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : List[Any] = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase__ ( self : int ): lowerCAmelCase : Any = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = config_and_inputs lowerCAmelCase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Any = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = config_and_inputs lowerCAmelCase : int = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ : Tuple = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Any = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : str = False def lowercase__ ( self : Tuple ): lowerCAmelCase : Dict = ConvNextVaModelTester(self ) lowerCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[Any] ): return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def lowercase__ ( self : Any ): pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def lowercase__ ( self : Any ): pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def lowercase__ ( self : Union[str, Any] ): pass def lowercase__ ( self : int ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase : List[str] = True if model_class.__name__ in [ *get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ ), ]: continue lowerCAmelCase : List[Any] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() lowerCAmelCase : Optional[int] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) lowerCAmelCase : int = model(**UpperCAmelCase_ ).loss loss.backward() def lowercase__ ( self : Dict ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase , lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase : Any = False lowerCAmelCase : Any = True if ( model_class.__name__ in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase : List[Any] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.gradient_checkpointing_enable() model.train() lowerCAmelCase : Tuple = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) lowerCAmelCase : List[str] = model(**UpperCAmelCase_ ).loss loss.backward() def lowercase__ ( self : int ): lowerCAmelCase , lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(UpperCAmelCase_ ) lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Tuple = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : str ): def check_hidden_states_output(UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : str = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Any = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[Any] = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Dict = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Any ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[str] = ConvNextVaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: '''simple docstring''' lowerCAmelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): @cached_property def lowercase__ ( self : str ): return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.default_image_processor lowerCAmelCase : List[Any] = prepare_img() lowerCAmelCase : int = preprocessor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**UpperCAmelCase_ ) # verify the logits lowerCAmelCase : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) lowerCAmelCase : Tuple = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
323
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __A : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __A ( lowerCAmelCase ): def __init__( self : str , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int ): super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None ): lowerCAmelCase : int = {} lowerCAmelCase : str = {} if prompt is not None: lowerCAmelCase : Tuple = prompt if generate_kwargs is not None: lowerCAmelCase : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowerCAmelCase : str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) lowerCAmelCase : Tuple = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[int] , UpperCAmelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase_ : Dict ): return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple=None ): lowerCAmelCase : Dict = load_image(UpperCAmelCase_ ) if prompt is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError( f"Received an invalid text input, got - {type(UpperCAmelCase_ )} - but expected a single string. " 'Note also that one single text can be provided for conditional image to text generation.' ) lowerCAmelCase : Dict = self.model.config.model_type if model_type == "git": lowerCAmelCase : Union[str, Any] = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework ) lowerCAmelCase : str = self.tokenizer(text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids lowerCAmelCase : int = [self.tokenizer.cls_token_id] + input_ids lowerCAmelCase : Optional[int] = torch.tensor(UpperCAmelCase_ ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": lowerCAmelCase : Tuple = self.image_processor(images=UpperCAmelCase_ , header_text=UpperCAmelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowerCAmelCase : Dict = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework ) lowerCAmelCase : Optional[Any] = self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCAmelCase_ ) else: raise ValueError(f"Model type {model_type} does not support conditional text generation" ) else: lowerCAmelCase : Optional[Any] = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowerCAmelCase : str = None return model_inputs def lowercase__ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , UpperCAmelCase_ ) and all(x is None for x in model_inputs['input_ids'] ) ): lowerCAmelCase : str = None if generate_kwargs is None: lowerCAmelCase : int = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowerCAmelCase : Optional[int] = model_inputs.pop(self.model.main_input_name ) lowerCAmelCase : int = self.model.generate(UpperCAmelCase_ , **UpperCAmelCase_ , **UpperCAmelCase_ ) return model_outputs def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = [] for output_ids in model_outputs: lowerCAmelCase : List[str] = { 'generated_text': self.tokenizer.decode( UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , ) } records.append(UpperCAmelCase_ ) return records
323
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __A : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name __A : List[str] = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[PIL.Image.Image, np.ndarray] class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : PriorTransformer , UpperCAmelCase_ : CLIPVisionModel , UpperCAmelCase_ : CLIPImageProcessor , UpperCAmelCase_ : HeunDiscreteScheduler , UpperCAmelCase_ : ShapERenderer , ): super().__init__() self.register_modules( prior=UpperCAmelCase_ , image_encoder=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , renderer=UpperCAmelCase_ , ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ): if latents is None: lowerCAmelCase : Tuple = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) lowerCAmelCase : Dict = latents.to(UpperCAmelCase_ ) lowerCAmelCase : int = latents * scheduler.init_noise_sigma return latents def lowercase__ ( self : int , UpperCAmelCase_ : Tuple=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCAmelCase : Union[str, Any] = torch.device(f"cuda:{gpu_id}" ) lowerCAmelCase : Optional[Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase_ , UpperCAmelCase_ ) @property def lowercase__ ( self : Optional[int] ): if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCAmelCase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(UpperCAmelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCAmelCase_ , axis=0 ) if not isinstance(UpperCAmelCase_ , torch.Tensor ): lowerCAmelCase : Any = self.image_processor(UpperCAmelCase_ , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) lowerCAmelCase : List[str] = image.to(dtype=self.image_encoder.dtype , device=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.image_encoder(UpperCAmelCase_ )['last_hidden_state'] lowerCAmelCase : Dict = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCAmelCase : Optional[int] = image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase : Optional[Any] = torch.zeros_like(UpperCAmelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : Dict = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCAmelCase_ ) def __call__( self : Tuple , UpperCAmelCase_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 25 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : float = 4.0 , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ): if isinstance(UpperCAmelCase_ , PIL.Image.Image ): lowerCAmelCase : Optional[Any] = 1 elif isinstance(UpperCAmelCase_ , torch.Tensor ): lowerCAmelCase : Any = image.shape[0] elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCAmelCase : Optional[Any] = len(UpperCAmelCase_ ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCAmelCase_ )}" ) lowerCAmelCase : int = self._execution_device lowerCAmelCase : Dict = batch_size * num_images_per_prompt lowerCAmelCase : Tuple = guidance_scale > 1.0 lowerCAmelCase : Optional[int] = self._encode_image(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # prior self.scheduler.set_timesteps(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = self.scheduler.timesteps lowerCAmelCase : Union[str, Any] = self.prior.config.num_embeddings lowerCAmelCase : Union[str, Any] = self.prior.config.embedding_dim lowerCAmelCase : str = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCAmelCase : Tuple = latents.reshape(latents.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ ) for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : List[Any] = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.prior( UpperCAmelCase_ , timestep=UpperCAmelCase_ , proj_embedding=UpperCAmelCase_ , ).predicted_image_embedding # remove the variance lowerCAmelCase , lowerCAmelCase : str = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCAmelCase , lowerCAmelCase : Any = noise_pred.chunk(2 ) lowerCAmelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCAmelCase : Dict = self.scheduler.step( UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = [] for i, latent in enumerate(UpperCAmelCase_ ): print() lowerCAmelCase : List[str] = self.renderer.decode( latent[None, :] , UpperCAmelCase_ , size=UpperCAmelCase_ , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCAmelCase_ ) lowerCAmelCase : str = torch.stack(UpperCAmelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) lowerCAmelCase : str = images.cpu().numpy() if output_type == "pil": lowerCAmelCase : Dict = [self.numpy_to_pil(UpperCAmelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCAmelCase_ )
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A : Optional[int] = '''.''' if __name__ == "__main__": __A : Dict = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') __A : List[Any] = [] __A : Tuple = [] with open(doctest_file_path) as fp: for line in fp: __A : List[str] = line.strip() __A : Optional[int] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A : Any = '''\n'''.join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
323
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
1
import os from distutils.util import strtobool def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for e in env_keys: lowerCAmelCase : List[str] = int(os.environ.get(_UpperCAmelCase, -1 ) ) if val >= 0: return val return default def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Any: '''simple docstring''' lowerCAmelCase : str = os.environ.get(_UpperCAmelCase, str(_UpperCAmelCase ) ) return strtobool(_UpperCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase="no" ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Optional[int] = os.environ.get(_UpperCAmelCase, str(_UpperCAmelCase ) ) return value
323
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A : int = logging.get_logger(__name__) __A : Tuple = Dict[str, Any] __A : Union[str, Any] = List[Prediction] @add_end_docstrings(lowerCAmelCase ) class __A ( lowerCAmelCase ): def __init__( self : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def lowercase__ ( self : int , **UpperCAmelCase_ : List[str] ): lowerCAmelCase : Union[str, Any] = {} if "threshold" in kwargs: lowerCAmelCase : Union[str, Any] = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Any ): return super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def lowercase__ ( self : int , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Tuple = load_image(UpperCAmelCase_ ) lowerCAmelCase : Dict = torch.IntTensor([[image.height, image.width]] ) lowerCAmelCase : Optional[int] = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: lowerCAmelCase : int = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) lowerCAmelCase : Union[str, Any] = target_size return inputs def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : List[str] ): lowerCAmelCase : Tuple = model_inputs.pop('target_size' ) lowerCAmelCase : Dict = self.model(**UpperCAmelCase_ ) lowerCAmelCase : List[str] = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: lowerCAmelCase : Optional[Any] = model_inputs['bbox'] return model_outputs def lowercase__ ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple=0.9 ): lowerCAmelCase : Tuple = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowerCAmelCase , lowerCAmelCase : Dict = target_size[0].tolist() def unnormalize(UpperCAmelCase_ : Dict ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowerCAmelCase : List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowerCAmelCase : Optional[int] = [unnormalize(UpperCAmelCase_ ) for bbox in model_outputs['bbox'].squeeze(0 )] lowerCAmelCase : List[str] = ['score', 'label', 'box'] lowerCAmelCase : Union[str, Any] = [dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) for vals in zip(scores.tolist() , UpperCAmelCase_ , UpperCAmelCase_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowerCAmelCase : str = self.image_processor.post_process_object_detection(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : str = raw_annotations[0] lowerCAmelCase : Optional[Any] = raw_annotation['scores'] lowerCAmelCase : Tuple = raw_annotation['labels'] lowerCAmelCase : List[Any] = raw_annotation['boxes'] lowerCAmelCase : Optional[int] = scores.tolist() lowerCAmelCase : Tuple = [self.model.config.idalabel[label.item()] for label in labels] lowerCAmelCase : Union[str, Any] = [self._get_bounding_box(UpperCAmelCase_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowerCAmelCase : Optional[Any] = ['score', 'label', 'box'] lowerCAmelCase : Any = [ dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def lowercase__ ( self : Tuple , UpperCAmelCase_ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = box.int().tolist() lowerCAmelCase : Optional[Any] = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
323
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = "laptop" ) -> DataFrame: '''simple docstring''' lowerCAmelCase : List[str] = f"https://www.amazon.in/laptop/s?k={product}" lowerCAmelCase : Any = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } lowerCAmelCase : str = BeautifulSoup(requests.get(_UpperCAmelCase, headers=_UpperCAmelCase ).text ) # Initialize a Pandas dataframe with the column titles lowerCAmelCase : Optional[int] = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div', attrs={'class': 's-result-item', 'data-component-type': 's-search-result'}, ), soup.find_all('div', attrs={'class': 'a-row a-size-base a-color-base'} ), ): try: lowerCAmelCase : str = item.ha.text lowerCAmelCase : Optional[Any] = 'https://www.amazon.in/' + item.ha.a['href'] lowerCAmelCase : Tuple = item.find('span', attrs={'class': 'a-offscreen'} ).text try: lowerCAmelCase : str = item.find('span', attrs={'class': 'a-icon-alt'} ).text except AttributeError: lowerCAmelCase : Any = 'Not available' try: lowerCAmelCase : str = ( '₹' + item.find( 'span', attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: lowerCAmelCase : Tuple = '' try: lowerCAmelCase : List[str] = float( ( ( float(product_mrp.strip('₹' ).replace(',', '' ) ) - float(product_price.strip('₹' ).replace(',', '' ) ) ) / float(product_mrp.strip('₹' ).replace(',', '' ) ) ) * 100 ) except ValueError: lowerCAmelCase : Optional[Any] = float('nan' ) except AttributeError: pass lowerCAmelCase : Dict = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowerCAmelCase : List[str] = ' ' lowerCAmelCase : Dict = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": __A : Optional[int] = '''headphones''' get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
323
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[Any] = StableUnCLIPImgaImgPipeline lowerCAmelCase_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase_ : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase_ : Any = frozenset([] ) def lowercase__ ( self : int ): lowerCAmelCase : str = 32 lowerCAmelCase : List[str] = embedder_hidden_size # image encoding components lowerCAmelCase : List[Any] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase_ , projection_dim=UpperCAmelCase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase : Dict = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase_ ) lowerCAmelCase : List[str] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) lowerCAmelCase : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase_ , layers_per_block=1 , upcast_attention=UpperCAmelCase_ , use_linear_projection=UpperCAmelCase_ , ) torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = AutoencoderKL() lowerCAmelCase : Optional[int] = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def lowercase__ ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Optional[int]=True ): if str(UpperCAmelCase_ ).startswith('mps' ): lowerCAmelCase : Union[str, Any] = torch.manual_seed(UpperCAmelCase_ ) else: lowerCAmelCase : Optional[Any] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if pil_image: lowerCAmelCase : str = input_image * 0.5 + 0.5 lowerCAmelCase : str = input_image.clamp(0 , 1 ) lowerCAmelCase : Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase : Any = DiffusionPipeline.numpy_to_pil(UpperCAmelCase_ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def lowercase__ ( self : Any ): lowerCAmelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Any = self.get_dummy_components() lowerCAmelCase : Any = StableUnCLIPImgaImgPipeline(**UpperCAmelCase_ ) lowerCAmelCase : int = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(UpperCAmelCase_ ) inputs.update({'image_embeds': None} ) lowerCAmelCase : Tuple = sd_pipe(**UpperCAmelCase_ ).images lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase : Tuple = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): lowerCAmelCase : int = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : Any = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase_ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase__ ( self : str ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase_ ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def lowercase__ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int ): lowerCAmelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) lowerCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) lowerCAmelCase : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase : Tuple = pipe(UpperCAmelCase_ , 'anime turle' , generator=UpperCAmelCase_ , output_type='np' ) lowerCAmelCase : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) lowerCAmelCase : Dict = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase : Any = pipe(UpperCAmelCase_ , 'anime turle' , generator=UpperCAmelCase_ , output_type='np' ) lowerCAmelCase : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase : Optional[int] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) lowerCAmelCase : Optional[Any] = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase : Union[str, Any] = pipe( UpperCAmelCase_ , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase : int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = 0, _UpperCAmelCase = 0 ) -> list: '''simple docstring''' lowerCAmelCase : Optional[Any] = end or len(_UpperCAmelCase ) for i in range(_UpperCAmelCase, _UpperCAmelCase ): lowerCAmelCase : List[Any] = i lowerCAmelCase : List[Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCAmelCase : Dict = array[temp_index - 1] temp_index -= 1 lowerCAmelCase : Tuple = temp_index_value return array def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> None: # Max Heap '''simple docstring''' lowerCAmelCase : List[Any] = index lowerCAmelCase : int = 2 * index + 1 # Left Node lowerCAmelCase : Dict = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCAmelCase : Any = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCAmelCase : Tuple = right_index if largest != index: lowerCAmelCase , lowerCAmelCase : Dict = array[largest], array[index] heapify(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list: '''simple docstring''' lowerCAmelCase : Dict = len(_UpperCAmelCase ) for i in range(n // 2, -1, -1 ): heapify(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) for i in range(n - 1, 0, -1 ): lowerCAmelCase , lowerCAmelCase : Dict = array[0], array[i] heapify(_UpperCAmelCase, 0, _UpperCAmelCase ) return array def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Tuple = low lowerCAmelCase : Optional[Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCAmelCase , lowerCAmelCase : int = array[j], array[i] i += 1 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return array lowerCAmelCase : Optional[Any] = 2 * math.ceil(math.loga(len(_UpperCAmelCase ) ) ) lowerCAmelCase : Tuple = 16 return intro_sort(_UpperCAmelCase, 0, len(_UpperCAmelCase ), _UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> list: '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_UpperCAmelCase ) max_depth -= 1 lowerCAmelCase : List[str] = median_of_a(_UpperCAmelCase, _UpperCAmelCase, start + ((end - start) // 2) + 1, end - 1 ) lowerCAmelCase : Dict = partition(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) intro_sort(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : str = p return insertion_sort(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() __A : Any = input('''Enter numbers separated by a comma : ''').strip() __A : Optional[int] = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
323
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
1
from collections import defaultdict def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> bool: '''simple docstring''' lowerCAmelCase : Any = first_str.lower().strip() lowerCAmelCase : List[str] = second_str.lower().strip() # Remove whitespace lowerCAmelCase : Optional[Any] = first_str.replace(' ', '' ) lowerCAmelCase : str = second_str.replace(' ', '' ) # Strings of different lengths are not anagrams if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False # Default values for count should be 0 lowerCAmelCase : defaultdict[str, int] = defaultdict(_UpperCAmelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_UpperCAmelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __A : Any = input('''Enter the first string ''').strip() __A : Union[str, Any] = input('''Enter the second string ''').strip() __A : Any = check_anagrams(input_a, input_b) print(F'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
323
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : torch.FloatTensor class __A ( nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=("DownEncoderBlock2D",) , UpperCAmelCase_ : Optional[int]=(64,) , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : int="silu" , UpperCAmelCase_ : Union[str, Any]=True , ): super().__init__() lowerCAmelCase : List[str] = layers_per_block lowerCAmelCase : Dict = torch.nn.Convad( UpperCAmelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Any = nn.ModuleList([] ) # down lowerCAmelCase : List[Any] = block_out_channels[0] for i, down_block_type in enumerate(UpperCAmelCase_ ): lowerCAmelCase : List[str] = output_channel lowerCAmelCase : int = block_out_channels[i] lowerCAmelCase : str = i == len(UpperCAmelCase_ ) - 1 lowerCAmelCase : Any = get_down_block( UpperCAmelCase_ , num_layers=self.layers_per_block , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=UpperCAmelCase_ , resnet_groups=UpperCAmelCase_ , attention_head_dim=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) self.down_blocks.append(UpperCAmelCase_ ) # mid lowerCAmelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) # out lowerCAmelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCAmelCase_ , eps=1E-6 ) lowerCAmelCase : Any = nn.SiLU() lowerCAmelCase : List[Any] = 2 * out_channels if double_z else out_channels lowerCAmelCase : Optional[int] = nn.Convad(block_out_channels[-1] , UpperCAmelCase_ , 3 , padding=1 ) lowerCAmelCase : Union[str, Any] = False def lowercase__ ( self : List[str] , UpperCAmelCase_ : int ): lowerCAmelCase : Any = x lowerCAmelCase : Dict = self.conv_in(UpperCAmelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase_ : List[Any] ): def custom_forward(*UpperCAmelCase_ : List[Any] ): return module(*UpperCAmelCase_ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: lowerCAmelCase : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) # middle lowerCAmelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) else: for down_block in self.down_blocks: lowerCAmelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ ) # middle lowerCAmelCase : Optional[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCAmelCase_ ) else: # down for down_block in self.down_blocks: lowerCAmelCase : str = down_block(UpperCAmelCase_ ) # middle lowerCAmelCase : Tuple = self.mid_block(UpperCAmelCase_ ) # post-process lowerCAmelCase : int = self.conv_norm_out(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = self.conv_act(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.conv_out(UpperCAmelCase_ ) return sample class __A ( nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : str=("UpDecoderBlock2D",) , UpperCAmelCase_ : Any=(64,) , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : Optional[int]="silu" , UpperCAmelCase_ : Dict="group" , ): super().__init__() lowerCAmelCase : Tuple = layers_per_block lowerCAmelCase : str = nn.Convad( UpperCAmelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowerCAmelCase : str = None lowerCAmelCase : Dict = nn.ModuleList([] ) lowerCAmelCase : Optional[int] = in_channels if norm_type == 'spatial' else None # mid lowerCAmelCase : Dict = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) # up lowerCAmelCase : Any = list(reversed(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = output_channel lowerCAmelCase : Dict = reversed_block_out_channels[i] lowerCAmelCase : Any = i == len(UpperCAmelCase_ ) - 1 lowerCAmelCase : Tuple = get_up_block( UpperCAmelCase_ , num_layers=self.layers_per_block + 1 , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , prev_output_channel=UpperCAmelCase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase_ , resnet_groups=UpperCAmelCase_ , attention_head_dim=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , resnet_time_scale_shift=UpperCAmelCase_ , ) self.up_blocks.append(UpperCAmelCase_ ) lowerCAmelCase : List[str] = output_channel # out if norm_type == "spatial": lowerCAmelCase : str = SpatialNorm(block_out_channels[0] , UpperCAmelCase_ ) else: lowerCAmelCase : Union[str, Any] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCAmelCase_ , eps=1E-6 ) lowerCAmelCase : int = nn.SiLU() lowerCAmelCase : str = nn.Convad(block_out_channels[0] , UpperCAmelCase_ , 3 , padding=1 ) lowerCAmelCase : Union[str, Any] = False def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=None ): lowerCAmelCase : Any = z lowerCAmelCase : str = self.conv_in(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase_ : Optional[Any] ): def custom_forward(*UpperCAmelCase_ : Union[str, Any] ): return module(*UpperCAmelCase_ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle lowerCAmelCase : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase_ , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) lowerCAmelCase : Dict = sample.to(UpperCAmelCase_ ) # up for up_block in self.up_blocks: lowerCAmelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) else: # middle lowerCAmelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = sample.to(UpperCAmelCase_ ) # up for up_block in self.up_blocks: lowerCAmelCase : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) else: # middle lowerCAmelCase : str = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : int = sample.to(UpperCAmelCase_ ) # up for up_block in self.up_blocks: lowerCAmelCase : int = up_block(UpperCAmelCase_ , UpperCAmelCase_ ) # post-process if latent_embeds is None: lowerCAmelCase : Dict = self.conv_norm_out(UpperCAmelCase_ ) else: lowerCAmelCase : str = self.conv_norm_out(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = self.conv_act(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = self.conv_out(UpperCAmelCase_ ) return sample class __A ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Dict="random" , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]=True ): super().__init__() lowerCAmelCase : Dict = n_e lowerCAmelCase : Optional[int] = vq_embed_dim lowerCAmelCase : Optional[Any] = beta lowerCAmelCase : List[Any] = legacy lowerCAmelCase : Union[str, Any] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowerCAmelCase : Optional[Any] = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) lowerCAmelCase : Any = self.used.shape[0] lowerCAmelCase : Union[str, Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCAmelCase : List[Any] = self.re_embed lowerCAmelCase : int = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: lowerCAmelCase : Any = n_e lowerCAmelCase : str = sane_index_shape def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : List[str] ): lowerCAmelCase : Union[str, Any] = inds.shape assert len(UpperCAmelCase_ ) > 1 lowerCAmelCase : Optional[int] = inds.reshape(ishape[0] , -1 ) lowerCAmelCase : Optional[Any] = self.used.to(UpperCAmelCase_ ) lowerCAmelCase : Any = (inds[:, :, None] == used[None, None, ...]).long() lowerCAmelCase : int = match.argmax(-1 ) lowerCAmelCase : List[Any] = match.sum(2 ) < 1 if self.unknown_index == "random": lowerCAmelCase : Optional[Any] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowerCAmelCase : List[str] = self.unknown_index return new.reshape(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : str ): lowerCAmelCase : Tuple = inds.shape assert len(UpperCAmelCase_ ) > 1 lowerCAmelCase : Dict = inds.reshape(ishape[0] , -1 ) lowerCAmelCase : Optional[int] = self.used.to(UpperCAmelCase_ ) if self.re_embed > self.used.shape[0]: # extra token lowerCAmelCase : List[Any] = 0 # simply set to zero lowerCAmelCase : List[str] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCAmelCase_ ) return back.reshape(UpperCAmelCase_ ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] ): # reshape z -> (batch, height, width, channel) and flatten lowerCAmelCase : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous() lowerCAmelCase : Tuple = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCAmelCase : List[str] = torch.argmin(torch.cdist(UpperCAmelCase_ , self.embedding.weight ) , dim=1 ) lowerCAmelCase : str = self.embedding(UpperCAmelCase_ ).view(z.shape ) lowerCAmelCase : Dict = None lowerCAmelCase : Optional[Any] = None # compute loss for embedding if not self.legacy: lowerCAmelCase : int = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCAmelCase : Optional[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCAmelCase : Dict = z + (z_q - z).detach() # reshape back to match original input shape lowerCAmelCase : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowerCAmelCase : Any = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowerCAmelCase : Optional[Any] = self.remap_to_used(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowerCAmelCase : Optional[Any] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowercase__ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int ): # shape specifying (batch, height, width, channel) if self.remap is not None: lowerCAmelCase : Union[str, Any] = indices.reshape(shape[0] , -1 ) # add batch axis lowerCAmelCase : Tuple = self.unmap_to_all(UpperCAmelCase_ ) lowerCAmelCase : Tuple = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCAmelCase : Any = self.embedding(UpperCAmelCase_ ) if shape is not None: lowerCAmelCase : Optional[Any] = z_q.view(UpperCAmelCase_ ) # reshape back to match original input shape lowerCAmelCase : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]=False ): lowerCAmelCase : Tuple = parameters lowerCAmelCase , lowerCAmelCase : Union[str, Any] = torch.chunk(UpperCAmelCase_ , 2 , dim=1 ) lowerCAmelCase : Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) lowerCAmelCase : str = deterministic lowerCAmelCase : Union[str, Any] = torch.exp(0.5 * self.logvar ) lowerCAmelCase : Any = torch.exp(self.logvar ) if self.deterministic: lowerCAmelCase : Any = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowercase__ ( self : int , UpperCAmelCase_ : Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype lowerCAmelCase : Dict = randn_tensor( self.mean.shape , generator=UpperCAmelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) lowerCAmelCase : Any = self.mean + self.std * sample return x def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any]=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) lowerCAmelCase : int = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): return self.mean
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list[int]: '''simple docstring''' if num <= 0: lowerCAmelCase : List[str] = f"{num}: Invalid input, please enter a positive integer." raise ValueError(_UpperCAmelCase ) lowerCAmelCase : Any = [True] * (num + 1) lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : List[str] = 2 lowerCAmelCase : List[str] = int(math.sqrt(_UpperCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_UpperCAmelCase ) # Set multiples of start be False for i in range(start * start, num + 1, _UpperCAmelCase ): if sieve[i] is True: lowerCAmelCase : str = False start += 1 for j in range(end + 1, num + 1 ): if sieve[j] is True: prime.append(_UpperCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
323
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
1
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
1
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __A ( unittest.TestCase ): def lowercase__ ( self : Dict ): lowerCAmelCase : List[Any] = logging.get_logger() # the current default level is logging.WARNING lowerCAmelCase : str = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(UpperCAmelCase_ ) def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = logging.get_verbosity() lowerCAmelCase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowerCAmelCase : str = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(UpperCAmelCase_ ) as cl: logger.warning(UpperCAmelCase_ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(UpperCAmelCase_ ) as cl: logger.warning(UpperCAmelCase_ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(UpperCAmelCase_ ) as cl: logger.warning(UpperCAmelCase_ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(UpperCAmelCase_ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def lowercase__ ( self : Any ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var lowerCAmelCase : Tuple = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowerCAmelCase : Any = os.getenv('TRANSFORMERS_VERBOSITY' , UpperCAmelCase_ ) lowerCAmelCase : Any = logging.log_levels[env_level_str] lowerCAmelCase : int = logging.get_verbosity() self.assertEqual( UpperCAmelCase_ , UpperCAmelCase_ , f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level lowerCAmelCase : Tuple = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def lowercase__ ( self : int ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() lowerCAmelCase : Dict = logging.logging.getLogger() with CaptureLogger(UpperCAmelCase_ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def lowercase__ ( self : Optional[int] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() lowerCAmelCase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowerCAmelCase : Tuple = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(UpperCAmelCase_ ) as cl: logger.warning_advice(UpperCAmelCase_ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(UpperCAmelCase_ ) as cl: logger.warning_advice(UpperCAmelCase_ ) self.assertEqual(cl.out , msg + '\n' ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
323
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
1
from dataclasses import dataclass, field from typing import Optional @dataclass class __A : lowerCAmelCase_ : Optional[str] = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) lowerCAmelCase_ : Optional[str] = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) lowerCAmelCase_ : Optional[str] = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) lowerCAmelCase_ : Optional[str] = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) lowerCAmelCase_ : Optional[int] = field(default=2 , metadata={"help": "Batch size for training."} ) lowerCAmelCase_ : Optional[int] = field(default=2 , metadata={"help": "Batch size for evaluation."} ) lowerCAmelCase_ : Optional[float] = field(default=0.1 , metadata={"help": "Value of weight decay."} ) lowerCAmelCase_ : Optional[int] = field( default=1_0000 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) lowerCAmelCase_ : Optional[float] = field(default=2E-4 , metadata={"help": "Learning rate fo training."} ) lowerCAmelCase_ : Optional[str] = field(default="cosine" , metadata={"help": "Learning rate."} ) lowerCAmelCase_ : Optional[int] = field( default=750 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) lowerCAmelCase_ : Optional[int] = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) lowerCAmelCase_ : Optional[bool] = field( default=lowerCAmelCase , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) lowerCAmelCase_ : Optional[int] = field(default=5_0000 , metadata={"help": "Maximum number of training steps."} ) lowerCAmelCase_ : Optional[int] = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) lowerCAmelCase_ : Optional[int] = field(default=1024 , metadata={"help": "Sequence lengths used for training."} ) lowerCAmelCase_ : Optional[int] = field(default=1 , metadata={"help": "Training seed."} ) lowerCAmelCase_ : Optional[int] = field( default=1024 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) lowerCAmelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) lowerCAmelCase_ : Optional[bool] = field(default=lowerCAmelCase , metadata={"help": "If True the data is pretokenized."} ) @dataclass class __A : lowerCAmelCase_ : Optional[str] = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) lowerCAmelCase_ : Optional[str] = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) lowerCAmelCase_ : Optional[int] = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) lowerCAmelCase_ : Optional[int] = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) lowerCAmelCase_ : Optional[int] = field(default=1024 , metadata={"help": "Length of sequences to be evaluated."} ) lowerCAmelCase_ : Optional[int] = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class __A : lowerCAmelCase_ : Optional[str] = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) lowerCAmelCase_ : Optional[int] = field(default=lowerCAmelCase , metadata={"help": "Number of workers used for code evaluation."} ) lowerCAmelCase_ : Optional[int] = field( default=lowerCAmelCase , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) lowerCAmelCase_ : Optional[bool] = field( default=lowerCAmelCase , metadata={"help": "Sample from the language model's output distribution."} ) lowerCAmelCase_ : Optional[float] = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) lowerCAmelCase_ : Optional[int] = field(default=256 , metadata={"help": "Maximum number of newly generated tokens."} ) lowerCAmelCase_ : Optional[int] = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) lowerCAmelCase_ : Optional[float] = field(default=0.9_5 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) lowerCAmelCase_ : Optional[int] = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) lowerCAmelCase_ : Optional[int] = field( default=200 , metadata={"help": "Number of completions to generate for each sample."} ) lowerCAmelCase_ : Optional[int] = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) lowerCAmelCase_ : Optional[str] = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) lowerCAmelCase_ : Optional[str] = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) lowerCAmelCase_ : Optional[int] = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class __A : lowerCAmelCase_ : Optional[int] = field( default=lowerCAmelCase , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) lowerCAmelCase_ : Optional[str] = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) lowerCAmelCase_ : Optional[str] = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) lowerCAmelCase_ : Optional[int] = field( default=10_0000 , metadata={"help": "Number of files to save per JSON output file."} ) lowerCAmelCase_ : Optional[str] = field(default="content" , metadata={"help": "Column containing text data to process."} ) lowerCAmelCase_ : Optional[float] = field( default=1000 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) lowerCAmelCase_ : Optional[float] = field( default=100 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) lowerCAmelCase_ : Optional[float] = field( default=0.2_5 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) lowerCAmelCase_ : Optional[float] = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) lowerCAmelCase_ : Optional[float] = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) lowerCAmelCase_ : Optional[str] = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) lowerCAmelCase_ : Optional[bool] = field( default=lowerCAmelCase , metadata={"help": "If True, near-duplicate samples are removed."} ) lowerCAmelCase_ : Optional[float] = field( default=0.8_5 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class __A : lowerCAmelCase_ : Optional[str] = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) lowerCAmelCase_ : Optional[str] = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) lowerCAmelCase_ : Optional[str] = field(default="content" , metadata={"help": "Column containing text data to process."} ) lowerCAmelCase_ : Optional[int] = field(default=20_0000 , metadata={"help": "Number of examples to train tokenizer on."} ) lowerCAmelCase_ : Optional[int] = field( default=3_2768 , metadata={"help": "Number of examples to train the tokenizer on."} ) lowerCAmelCase_ : Optional[str] = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) lowerCAmelCase_ : Optional[bool] = field(default=lowerCAmelCase , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class __A : lowerCAmelCase_ : Optional[str] = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) lowerCAmelCase_ : Optional[str] = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) lowerCAmelCase_ : Optional[str] = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) lowerCAmelCase_ : Optional[int] = field(default=lowerCAmelCase , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class __A : lowerCAmelCase_ : Optional[str] = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) lowerCAmelCase_ : Optional[str] = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) lowerCAmelCase_ : Optional[str] = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) lowerCAmelCase_ : Optional[bool] = field(default=lowerCAmelCase , metadata={"help": "Push saved tokenizer to the hub."} )
323
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __A : Optional[Any] = random.Random() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=1.0, _UpperCAmelCase=None, _UpperCAmelCase=None ) -> List[str]: '''simple docstring''' if rng is None: lowerCAmelCase : Tuple = global_rng lowerCAmelCase : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __A ( unittest.TestCase ): def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Dict=400 , UpperCAmelCase_ : str=2000 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : str=24 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=16000 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=True , ): lowerCAmelCase : List[str] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : List[str] = min_seq_length lowerCAmelCase : Union[str, Any] = max_seq_length lowerCAmelCase : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase : List[str] = feature_size lowerCAmelCase : Union[str, Any] = num_mel_bins lowerCAmelCase : Tuple = padding_value lowerCAmelCase : Dict = sampling_rate lowerCAmelCase : int = return_attention_mask lowerCAmelCase : List[str] = do_normalize def lowercase__ ( self : Any ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self : Dict , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Tuple=False ): def _flatten(UpperCAmelCase_ : Any ): return list(itertools.chain(*UpperCAmelCase_ ) ) if equal_length: lowerCAmelCase : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase : Optional[int] = [np.asarray(UpperCAmelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = SpeechaTextFeatureExtractionTester(self ) def lowercase__ ( self : Dict , UpperCAmelCase_ : str ): self.assertTrue(np.all(np.mean(UpperCAmelCase_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase_ , axis=0 ) - 1 ) < 1E-3 ) ) def lowercase__ ( self : Dict ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase : Optional[Any] = [np.asarray(UpperCAmelCase_ ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase : int = feature_extractor(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowerCAmelCase : Any = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features lowerCAmelCase : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # Test batched lowerCAmelCase : str = feature_extractor(UpperCAmelCase_ , return_tensors='np' ).input_features lowerCAmelCase : List[str] = feature_extractor(UpperCAmelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase : str = np.asarray(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = feature_extractor(UpperCAmelCase_ , return_tensors='np' ).input_features lowerCAmelCase : Any = feature_extractor(UpperCAmelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase : Dict = ['longest', 'max_length', 'do_not_pad'] lowerCAmelCase : Optional[int] = [None, 16, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : List[Any] = feature_extractor( UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ ) lowerCAmelCase : str = inputs.input_features lowerCAmelCase : Tuple = inputs.attention_mask lowerCAmelCase : Dict = [np.sum(UpperCAmelCase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self : str ): lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase : Optional[Any] = ['longest', 'max_length', 'do_not_pad'] lowerCAmelCase : Union[str, Any] = [None, 16, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Dict = feature_extractor( UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors='np' , return_attention_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = inputs.input_features lowerCAmelCase : int = inputs.attention_mask lowerCAmelCase : Union[str, Any] = [np.sum(UpperCAmelCase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase : str = feature_extractor( UpperCAmelCase_ , padding='max_length' , max_length=4 , truncation=UpperCAmelCase_ , return_tensors='np' , return_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Any = inputs.input_features lowerCAmelCase : Dict = inputs.attention_mask lowerCAmelCase : List[str] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase__ ( self : Any ): lowerCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase : str = feature_extractor( UpperCAmelCase_ , padding='longest' , max_length=4 , truncation=UpperCAmelCase_ , return_tensors='np' , return_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : str = inputs.input_features lowerCAmelCase : Tuple = inputs.attention_mask lowerCAmelCase : Union[str, Any] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) lowerCAmelCase : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase : List[Any] = feature_extractor( UpperCAmelCase_ , padding='longest' , max_length=16 , truncation=UpperCAmelCase_ , return_tensors='np' , return_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : List[Any] = inputs.input_features lowerCAmelCase : List[str] = inputs.attention_mask lowerCAmelCase : Optional[int] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def lowercase__ ( self : Tuple ): import torch lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : str = np.random.rand(100 , 32 ).astype(np.floataa ) lowerCAmelCase : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase : List[Any] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCAmelCase : List[Any] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[str] ): from datasets import load_dataset lowerCAmelCase : Union[str, Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase : int = ds.sort('id' ).select(range(UpperCAmelCase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowercase__ ( self : Union[str, Any] ): # fmt: off lowerCAmelCase : int = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ] ) # fmt: on lowerCAmelCase : List[Any] = self._load_datasamples(1 ) lowerCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Union[str, Any] = feature_extractor(UpperCAmelCase_ , return_tensors='pt' ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , UpperCAmelCase_ , atol=1E-4 ) )
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
323
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
1
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Tuple = emb.weight.shape lowerCAmelCase : Tuple = nn.Linear(_UpperCAmelCase, _UpperCAmelCase, bias=_UpperCAmelCase ) lowerCAmelCase : Any = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Union[str, Any] = torch.load(_UpperCAmelCase, map_location='cpu' ) lowerCAmelCase : Optional[int] = Namespace(**checkpoint['cfg']['model'] ) lowerCAmelCase : Dict = checkpoint['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCAmelCase : str = state_dict['decoder.embed_tokens.weight'].shape[0] lowerCAmelCase : Tuple = {key.replace('decoder', 'model' ): val for key, val in state_dict.items()} lowerCAmelCase : Dict = XGLMConfig( vocab_size=_UpperCAmelCase, max_position_embeddings=args.max_target_positions, num_layers=args.decoder_layers, attention_heads=args.decoder_attention_heads, ffn_dim=args.decoder_ffn_embed_dim, d_model=args.decoder_embed_dim, layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='gelu', scale_embedding=not args.no_scale_embedding, tie_word_embeddings=args.share_decoder_input_output_embed, ) lowerCAmelCase : List[Any] = XGLMForCausalLM(_UpperCAmelCase ) lowerCAmelCase : List[Any] = model.load_state_dict(_UpperCAmelCase, strict=_UpperCAmelCase ) print(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __A : Optional[int] = parser.parse_args() __A : List[Any] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
323
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self : Tuple , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int = None , UpperCAmelCase_ : int = None ): super().__init__() lowerCAmelCase : int = pad_token_id lowerCAmelCase : int = max_length lowerCAmelCase : Optional[Any] = vocab lowerCAmelCase : List[Any] = merges lowerCAmelCase : Tuple = BytePairTokenizer(UpperCAmelCase_ , UpperCAmelCase_ , sequence_length=UpperCAmelCase_ ) @classmethod def lowercase__ ( cls : Any , UpperCAmelCase_ : GPTaTokenizer , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : List[Any] = [' '.join(UpperCAmelCase_ ) for m in tokenizer.bpe_ranks.keys()] lowerCAmelCase : Union[str, Any] = tokenizer.get_vocab() return cls(UpperCAmelCase_ , UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def lowercase__ ( cls : Any , UpperCAmelCase_ : Union[str, os.PathLike] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = GPTaTokenizer.from_pretrained(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) return cls.from_tokenizer(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def lowercase__ ( cls : str , UpperCAmelCase_ : int ): return cls(**UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int = None ): lowerCAmelCase : Union[str, Any] = self.tf_tokenizer(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tf.ones_like(UpperCAmelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCAmelCase : Any = max_length if max_length is not None else self.max_length if max_length is not None: lowerCAmelCase , lowerCAmelCase : Tuple = pad_model_inputs( UpperCAmelCase_ , max_seq_length=UpperCAmelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
323
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : torch.FloatTensor class __A ( lowerCAmelCase , lowerCAmelCase ): @register_to_config def __init__( self : List[Any] , UpperCAmelCase_ : int = 16 , UpperCAmelCase_ : int = 88 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = "geglu" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ): super().__init__() lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Optional[Any] = attention_head_dim lowerCAmelCase : int = num_attention_heads * attention_head_dim lowerCAmelCase : List[Any] = in_channels lowerCAmelCase : int = torch.nn.GroupNorm(num_groups=UpperCAmelCase_ , num_channels=UpperCAmelCase_ , eps=1E-6 , affine=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ ) # 3. Define transformers blocks lowerCAmelCase : Any = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , dropout=UpperCAmelCase_ , cross_attention_dim=UpperCAmelCase_ , activation_fn=UpperCAmelCase_ , attention_bias=UpperCAmelCase_ , double_self_attention=UpperCAmelCase_ , norm_elementwise_affine=UpperCAmelCase_ , ) for d in range(UpperCAmelCase_ ) ] ) lowerCAmelCase : List[Any] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : bool = True , ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = hidden_states.shape lowerCAmelCase : int = batch_frames // num_frames lowerCAmelCase : Optional[Any] = hidden_states lowerCAmelCase : int = hidden_states[None, :].reshape(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : int = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCAmelCase : List[str] = self.norm(UpperCAmelCase_ ) lowerCAmelCase : Any = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.proj_in(UpperCAmelCase_ ) # 2. Blocks for block in self.transformer_blocks: lowerCAmelCase : int = block( UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , timestep=UpperCAmelCase_ , cross_attention_kwargs=UpperCAmelCase_ , class_labels=UpperCAmelCase_ , ) # 3. Output lowerCAmelCase : List[str] = self.proj_out(UpperCAmelCase_ ) lowerCAmelCase : str = ( hidden_states[None, None, :] .reshape(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCAmelCase : Dict = hidden_states.reshape(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[str] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase_ )
323
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
1
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' if "cls_token" in name: lowerCAmelCase : str = name.replace('cls_token', 'vit.embeddings.cls_token' ) if "mask_token" in name: lowerCAmelCase : str = name.replace('mask_token', 'decoder.mask_token' ) if "decoder_pos_embed" in name: lowerCAmelCase : List[str] = name.replace('decoder_pos_embed', 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase : Dict = name.replace('pos_embed', 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('patch_embed.proj', 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase : Union[str, Any] = name.replace('patch_embed.norm', 'vit.embeddings.norm' ) if "decoder_blocks" in name: lowerCAmelCase : Dict = name.replace('decoder_blocks', 'decoder.decoder_layers' ) if "blocks" in name: lowerCAmelCase : Tuple = name.replace('blocks', 'vit.encoder.layer' ) if "attn.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: lowerCAmelCase : Optional[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: lowerCAmelCase : Any = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: lowerCAmelCase : Dict = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase : Tuple = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase : Union[str, Any] = name.replace('mlp.fc2', 'output.dense' ) if "decoder_embed" in name: lowerCAmelCase : Dict = name.replace('decoder_embed', 'decoder.decoder_embed' ) if "decoder_norm" in name: lowerCAmelCase : Tuple = name.replace('decoder_norm', 'decoder.decoder_norm' ) if "decoder_pred" in name: lowerCAmelCase : Optional[Any] = name.replace('decoder_pred', 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: lowerCAmelCase : List[Any] = name.replace('norm.weight', 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: lowerCAmelCase : Optional[Any] = name.replace('norm.bias', 'vit.layernorm.bias' ) return name def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase : Union[str, Any] = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase : Any = key.split('.' ) lowerCAmelCase : Optional[Any] = int(key_split[1] ) if "decoder_blocks" in key: lowerCAmelCase : Optional[int] = config.decoder_hidden_size lowerCAmelCase : str = 'decoder.decoder_layers.' if "weight" in key: lowerCAmelCase : Tuple = val[:dim, :] lowerCAmelCase : Dict = val[dim : dim * 2, :] lowerCAmelCase : Optional[int] = val[-dim:, :] elif "bias" in key: lowerCAmelCase : List[Any] = val[:dim] lowerCAmelCase : Dict = val[dim : dim * 2] lowerCAmelCase : Any = val[-dim:] else: lowerCAmelCase : Optional[int] = config.hidden_size lowerCAmelCase : int = 'vit.encoder.layer.' if "weight" in key: lowerCAmelCase : Tuple = val[:dim, :] lowerCAmelCase : List[Any] = val[dim : dim * 2, :] lowerCAmelCase : List[str] = val[-dim:, :] elif "bias" in key: lowerCAmelCase : List[Any] = val[:dim] lowerCAmelCase : Tuple = val[dim : dim * 2] lowerCAmelCase : List[str] = val[-dim:] else: lowerCAmelCase : int = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[int] = ViTMAEConfig() if "large" in checkpoint_url: lowerCAmelCase : int = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : Dict = 24 lowerCAmelCase : str = 16 elif "huge" in checkpoint_url: lowerCAmelCase : Union[str, Any] = 14 lowerCAmelCase : str = 1_280 lowerCAmelCase : int = 5_120 lowerCAmelCase : Any = 32 lowerCAmelCase : Union[str, Any] = 16 lowerCAmelCase : Optional[int] = ViTMAEForPreTraining(_UpperCAmelCase ) lowerCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['model'] lowerCAmelCase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowerCAmelCase : List[Any] = convert_state_dict(_UpperCAmelCase, _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : List[Any] = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' lowerCAmelCase : int = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) lowerCAmelCase : int = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Optional[int] = model(**_UpperCAmelCase ) lowerCAmelCase : int = outputs.logits if "large" in checkpoint_url: lowerCAmelCase : str = torch.tensor( [[-0.7_3_0_9, -0.7_1_2_8, -1.0_1_6_9], [-1.0_1_6_1, -0.9_0_5_8, -1.1_8_7_8], [-1.0_4_7_8, -0.9_4_1_1, -1.1_9_1_1]] ) elif "huge" in checkpoint_url: lowerCAmelCase : Tuple = torch.tensor( [[-1.1_5_9_9, -0.9_1_9_9, -1.2_2_2_1], [-1.1_9_5_2, -0.9_2_6_9, -1.2_3_0_7], [-1.2_1_4_3, -0.9_3_3_7, -1.2_2_6_2]] ) else: lowerCAmelCase : List[Any] = torch.tensor( [[-0.9_1_9_2, -0.8_4_8_1, -1.1_2_5_9], [-1.1_3_4_9, -1.0_0_3_4, -1.2_5_9_9], [-1.1_7_5_7, -1.0_4_2_9, -1.2_7_2_6]] ) # verify logits assert torch.allclose(logits[0, :3, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : Tuple = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = 'ylacombe/bark-small' lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() lowerCAmelCase : int = 'en_speaker_1' lowerCAmelCase : Union[str, Any] = 'This is a test string' lowerCAmelCase : Any = 'speaker_embeddings_path.json' lowerCAmelCase : Any = 'speaker_embeddings' def lowercase__ ( self : Tuple , **UpperCAmelCase_ : Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = self.get_tokenizer() lowerCAmelCase : Dict = BarkProcessor(tokenizer=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase__ ( self : int ): lowerCAmelCase : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCAmelCase : str = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Dict = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCAmelCase : Dict = 35 lowerCAmelCase : Any = 2 lowerCAmelCase : str = 8 lowerCAmelCase : Optional[int] = { 'semantic_prompt': np.ones(UpperCAmelCase_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCAmelCase : List[str] = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) lowerCAmelCase : Any = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Tuple = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) lowerCAmelCase : Tuple = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCAmelCase : Optional[Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.get_tokenizer() lowerCAmelCase : Optional[int] = BarkProcessor(tokenizer=UpperCAmelCase_ ) lowerCAmelCase : int = processor(text=self.input_string ) lowerCAmelCase : str = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
323
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __A : lowerCAmelCase_ : int lowerCAmelCase_ : TreeNode | None = None lowerCAmelCase_ : TreeNode | None = None __A : Any = namedtuple('''CoinsDistribResult''', '''moves excess''') def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_UpperCAmelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_UpperCAmelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_UpperCAmelCase ) != count_coins(_UpperCAmelCase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(_UpperCAmelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0, 1 ) lowerCAmelCase , lowerCAmelCase : List[str] = get_distrib(node.left ) lowerCAmelCase , lowerCAmelCase : Optional[int] = get_distrib(node.right ) lowerCAmelCase : Tuple = 1 - left_distrib_excess lowerCAmelCase : List[str] = 1 - right_distrib_excess lowerCAmelCase : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(_UpperCAmelCase ) + abs(_UpperCAmelCase ) ) lowerCAmelCase : int = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_UpperCAmelCase, _UpperCAmelCase ) return get_distrib(_UpperCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __A : str = logging.get_logger(__name__) # pylint: disable=invalid-name class __A ( lowerCAmelCase ): def __init__( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]=768 ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = proj_size lowerCAmelCase : int = CLIPVisionModel(UpperCAmelCase_ ) lowerCAmelCase : Any = PaintByExampleMapper(UpperCAmelCase_ ) lowerCAmelCase : Any = nn.LayerNorm(config.hidden_size ) lowerCAmelCase : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling lowerCAmelCase : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]=False ): lowerCAmelCase : Optional[int] = self.model(pixel_values=UpperCAmelCase_ ) lowerCAmelCase : int = clip_output.pooler_output lowerCAmelCase : Any = self.mapper(latent_states[:, None] ) lowerCAmelCase : Any = self.final_layer_norm(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = self.proj_out(UpperCAmelCase_ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class __A ( nn.Module ): def __init__( self : str , UpperCAmelCase_ : List[Any] ): super().__init__() lowerCAmelCase : int = (config.num_hidden_layers + 1) // 5 lowerCAmelCase : Union[str, Any] = config.hidden_size lowerCAmelCase : List[str] = 1 lowerCAmelCase : Any = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , activation_fn='gelu' , attention_bias=UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ) ] ) def lowercase__ ( self : str , UpperCAmelCase_ : int ): for block in self.blocks: lowerCAmelCase : int = block(UpperCAmelCase_ ) return hidden_states
323
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
1
from ..utils import DummyObject, requires_backends class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[str] = ["torch"] def __init__( self : Tuple , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Tuple = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Dict = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Any = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : int = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = ["torch"] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Dict = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[str] = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> List[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[str] = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : int = ["torch"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Any = ["torch"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Tuple , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : str , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[int] = ["torch"] def __init__( self : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Any = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[int] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Tuple = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Any = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[str] = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Dict = ["torch"] def __init__( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : int = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Tuple = ["torch"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[int] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Any ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : str = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Dict = ["torch"] def __init__( self : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Tuple = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : int = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = ["torch"] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : int = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Any ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : int = ["torch"] def __init__( self : str , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Tuple , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : str = ["torch"] def __init__( self : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Any = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[str] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Tuple = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Tuple , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[int] = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = ["torch"] def __init__( self : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : str = ["torch"] def __init__( self : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any ): requires_backends(cls , ['torch'] )
323
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __A : List[Any] = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __A : List[Any] = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[Any] = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ), dtype=_UpperCAmelCase )[0] @deprecated(_UpperCAmelCase, 'Please use tf.data to implement this functionality.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' print('Extracting', f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: lowerCAmelCase : Tuple = _readaa(_UpperCAmelCase ) if magic != 2_051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) lowerCAmelCase : Optional[int] = _readaa(_UpperCAmelCase ) lowerCAmelCase : List[str] = _readaa(_UpperCAmelCase ) lowerCAmelCase : int = _readaa(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = bytestream.read(rows * cols * num_images ) lowerCAmelCase : Tuple = numpy.frombuffer(_UpperCAmelCase, dtype=numpy.uinta ) lowerCAmelCase : str = data.reshape(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, 1 ) return data @deprecated(_UpperCAmelCase, 'Please use tf.one_hot on tensors.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : int = labels_dense.shape[0] lowerCAmelCase : Union[str, Any] = numpy.arange(_UpperCAmelCase ) * num_classes lowerCAmelCase : List[str] = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase : Optional[int] = 1 return labels_one_hot @deprecated(_UpperCAmelCase, 'Please use tf.data to implement this functionality.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=10 ) -> Union[str, Any]: '''simple docstring''' print('Extracting', f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: lowerCAmelCase : List[Any] = _readaa(_UpperCAmelCase ) if magic != 2_049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) lowerCAmelCase : Any = _readaa(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = bytestream.read(_UpperCAmelCase ) lowerCAmelCase : int = numpy.frombuffer(_UpperCAmelCase, dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_UpperCAmelCase, _UpperCAmelCase ) return labels class __A : @deprecated( UpperCAmelCase_ , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=dtypes.floataa , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=None , ): lowerCAmelCase , lowerCAmelCase : Dict = random_seed.get_seed(UpperCAmelCase_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase : Tuple = dtypes.as_dtype(UpperCAmelCase_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: lowerCAmelCase : str = 10000 lowerCAmelCase : List[str] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"images.shape: {images.shape} labels.shape: {labels.shape}" lowerCAmelCase : Any = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase : Any = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase : Optional[Any] = images.astype(numpy.floataa ) lowerCAmelCase : Tuple = numpy.multiply(UpperCAmelCase_ , 1.0 / 2_55.0 ) lowerCAmelCase : Optional[Any] = images lowerCAmelCase : Union[str, Any] = labels lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[Any] = 0 @property def lowercase__ ( self : Tuple ): return self._images @property def lowercase__ ( self : List[str] ): return self._labels @property def lowercase__ ( self : Optional[int] ): return self._num_examples @property def lowercase__ ( self : int ): return self._epochs_completed def lowercase__ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : int=True ): if fake_data: lowerCAmelCase : Any = [1] * 784 lowerCAmelCase : List[Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(UpperCAmelCase_ )], [fake_label for _ in range(UpperCAmelCase_ )], ) lowerCAmelCase : Any = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase : Optional[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.images[perma] lowerCAmelCase : Union[str, Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase : Tuple = self._num_examples - start lowerCAmelCase : Dict = self._images[start : self._num_examples] lowerCAmelCase : Optional[Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase : Optional[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCAmelCase_ ) lowerCAmelCase : int = self.images[perm] lowerCAmelCase : Tuple = self.labels[perm] # Start next epoch lowerCAmelCase : List[str] = 0 lowerCAmelCase : int = batch_size - rest_num_examples lowerCAmelCase : str = self._index_in_epoch lowerCAmelCase : Optional[Any] = self._images[start:end] lowerCAmelCase : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase : List[str] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_UpperCAmelCase, 'Please write your own downloading logic.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' if not gfile.Exists(_UpperCAmelCase ): gfile.MakeDirs(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = os.path.join(_UpperCAmelCase, _UpperCAmelCase ) if not gfile.Exists(_UpperCAmelCase ): urllib.request.urlretrieve(_UpperCAmelCase, _UpperCAmelCase ) # noqa: S310 with gfile.GFile(_UpperCAmelCase ) as f: lowerCAmelCase : str = f.size() print('Successfully downloaded', _UpperCAmelCase, _UpperCAmelCase, 'bytes.' ) return filepath @deprecated( _UpperCAmelCase, 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=dtypes.floataa, _UpperCAmelCase=True, _UpperCAmelCase=5_000, _UpperCAmelCase=None, _UpperCAmelCase=DEFAULT_SOURCE_URL, ) -> int: '''simple docstring''' if fake_data: def fake(): return _DataSet( [], [], fake_data=_UpperCAmelCase, one_hot=_UpperCAmelCase, dtype=_UpperCAmelCase, seed=_UpperCAmelCase ) lowerCAmelCase : str = fake() lowerCAmelCase : Dict = fake() lowerCAmelCase : List[Any] = fake() return _Datasets(train=_UpperCAmelCase, validation=_UpperCAmelCase, test=_UpperCAmelCase ) if not source_url: # empty string check lowerCAmelCase : Optional[int] = DEFAULT_SOURCE_URL lowerCAmelCase : Any = 'train-images-idx3-ubyte.gz' lowerCAmelCase : int = 'train-labels-idx1-ubyte.gz' lowerCAmelCase : int = 't10k-images-idx3-ubyte.gz' lowerCAmelCase : str = 't10k-labels-idx1-ubyte.gz' lowerCAmelCase : Optional[int] = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + train_images_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : Optional[int] = _extract_images(_UpperCAmelCase ) lowerCAmelCase : Any = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + train_labels_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : int = _extract_labels(_UpperCAmelCase, one_hot=_UpperCAmelCase ) lowerCAmelCase : Tuple = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + test_images_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : Tuple = _extract_images(_UpperCAmelCase ) lowerCAmelCase : Any = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + test_labels_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : Tuple = _extract_labels(_UpperCAmelCase, one_hot=_UpperCAmelCase ) if not 0 <= validation_size <= len(_UpperCAmelCase ): lowerCAmelCase : int = ( 'Validation size should be between 0 and ' f"{len(_UpperCAmelCase )}. Received: {validation_size}." ) raise ValueError(_UpperCAmelCase ) lowerCAmelCase : int = train_images[:validation_size] lowerCAmelCase : Tuple = train_labels[:validation_size] lowerCAmelCase : int = train_images[validation_size:] lowerCAmelCase : Tuple = train_labels[validation_size:] lowerCAmelCase : List[Any] = {'dtype': dtype, 'reshape': reshape, 'seed': seed} lowerCAmelCase : Optional[Any] = _DataSet(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) lowerCAmelCase : Any = _DataSet(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = _DataSet(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) return _Datasets(train=_UpperCAmelCase, validation=_UpperCAmelCase, test=_UpperCAmelCase )
323
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
1
import baseaa def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode('utf-8' ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' return baseaa.baadecode(_UpperCAmelCase ).decode('utf-8' ) if __name__ == "__main__": __A : Any = '''Hello World!''' __A : Dict = baseaa_encode(test) print(encoded) __A : List[Any] = baseaa_decode(encoded) print(decoded)
323
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __A : Any = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class __A ( unittest.TestCase , lowerCAmelCase ): def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = load_tool('text-question-answering' ) self.tool.setup() lowerCAmelCase : Any = load_tool('text-question-answering' , remote=UpperCAmelCase_ ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.tool(UpperCAmelCase_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase_ , 'launched the BigScience Research Workshop' ) def lowercase__ ( self : str ): lowerCAmelCase : Any = self.remote_tool(UpperCAmelCase_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase_ , 'launched the BigScience Research Workshop' ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = self.tool(text=UpperCAmelCase_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase_ , 'launched the BigScience Research Workshop' ) def lowercase__ ( self : Any ): lowerCAmelCase : Dict = self.remote_tool(text=UpperCAmelCase_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase_ , 'launched the BigScience Research Workshop' )
323
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __A : Tuple = (3, 9, -11, 0, 7, 5, 1, -1) __A : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __A : lowerCAmelCase_ : int lowerCAmelCase_ : Node | None class __A : def __init__( self : int , UpperCAmelCase_ : Iterable[int] ): lowerCAmelCase : Node | None = None for i in sorted(UpperCAmelCase_ , reverse=UpperCAmelCase_ ): lowerCAmelCase : Dict = Node(UpperCAmelCase_ , self.head ) def __iter__( self : Optional[int] ): lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : int = node.next_node def __len__( self : Dict ): return sum(1 for _ in self ) def __str__( self : int ): return " -> ".join([str(UpperCAmelCase_ ) for node in self] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(_UpperCAmelCase ) + list(_UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
323
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __A ( lowerCAmelCase ): lowerCAmelCase_ : Optional[int] = CustomTokenizer pass
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Any = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : int = "ibert" def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any]=30522 , UpperCAmelCase_ : Optional[int]=768 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Optional[int]=12 , UpperCAmelCase_ : int=3072 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Any=1E-12 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]="absolute" , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : int="none" , **UpperCAmelCase_ : Dict , ): super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : Dict = hidden_act lowerCAmelCase : str = intermediate_size lowerCAmelCase : Any = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : List[Any] = type_vocab_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : str = position_embedding_type lowerCAmelCase : Any = quant_mode lowerCAmelCase : Union[str, Any] = force_dequant class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Tuple ): if self.task == "multiple-choice": lowerCAmelCase : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
323
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase ) class __A ( lowerCAmelCase ): lowerCAmelCase_ : str = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase_ : ClassVar[Features] = Features({"audio": Audio()} ) lowerCAmelCase_ : ClassVar[Features] = Features({"labels": ClassLabel} ) lowerCAmelCase_ : str = "audio" lowerCAmelCase_ : str = "labels" def lowercase__ ( self : Dict , UpperCAmelCase_ : List[str] ): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , UpperCAmelCase_ ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) lowerCAmelCase : Optional[int] = copy.deepcopy(self ) lowerCAmelCase : int = self.label_schema.copy() lowerCAmelCase : Any = features[self.label_column] lowerCAmelCase : Union[str, Any] = label_schema return task_template @property def lowercase__ ( self : Optional[int] ): return { self.audio_column: "audio", self.label_column: "labels", }
323
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
1
import heapq import sys import numpy as np __A : int = tuple[int, int] class __A : def __init__( self : Optional[int] ): lowerCAmelCase : Tuple = [] lowerCAmelCase : List[Any] = set() def lowercase__ ( self : Dict ): if not self.empty(): return self.elements[0][0] else: return float('inf' ) def lowercase__ ( self : str ): return len(self.elements ) == 0 def lowercase__ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(UpperCAmelCase_ ) else: # update # print("update", item) lowerCAmelCase : Any = [] ((lowerCAmelCase) , (lowerCAmelCase)) : List[str] = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowerCAmelCase) , (lowerCAmelCase)) : Optional[Any] = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def lowercase__ ( self : int , UpperCAmelCase_ : Any ): if item in self.set: self.set.remove(UpperCAmelCase_ ) lowerCAmelCase : Any = [] ((lowerCAmelCase) , (lowerCAmelCase)) : str = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowerCAmelCase) , (lowerCAmelCase)) : List[str] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def lowercase__ ( self : Optional[Any] ): return self.elements[0][1] def lowercase__ ( self : int ): ((lowerCAmelCase) , (lowerCAmelCase)) : List[str] = heapq.heappop(self.elements ) self.set.remove(UpperCAmelCase_ ) return (priority, item) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[Any] = np.array(_UpperCAmelCase ) lowerCAmelCase : Any = np.array(_UpperCAmelCase ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' return consistent_heuristic(_UpperCAmelCase, _UpperCAmelCase ) // t def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[str] = g_function[start] + Wa * heuristics[i](_UpperCAmelCase, _UpperCAmelCase ) return ans def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Any = np.chararray((n, n) ) for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCAmelCase : Optional[Any] = '*' for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (j, (n - 1) - i) in blocks: lowerCAmelCase : Tuple = '#' lowerCAmelCase : List[Any] = '-' lowerCAmelCase : Optional[Any] = back_pointer[goal] while x != start: ((lowerCAmelCase) , (lowerCAmelCase)) : Tuple = x # print(x) lowerCAmelCase : Tuple = '-' lowerCAmelCase : str = back_pointer[x] lowerCAmelCase : Optional[int] = '-' for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (i, j) == (0, n - 1): print(grid[i][j], end=' ' ) print('<-- End position', end=' ' ) else: print(grid[i][j], end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowerCAmelCase : Dict = back_pointer[goal] while x != start: print(_UpperCAmelCase, end=' ' ) lowerCAmelCase : List[Any] = back_pointer[x] print(_UpperCAmelCase ) sys.exit() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) -> int: '''simple docstring''' for itera in range(_UpperCAmelCase ): open_list[itera].remove_element(_UpperCAmelCase ) # print("s", s) # print("j", j) ((lowerCAmelCase) , (lowerCAmelCase)) : Union[str, Any] = s lowerCAmelCase : List[Any] = (x - 1, y) lowerCAmelCase : Optional[Any] = (x + 1, y) lowerCAmelCase : Optional[int] = (x, y + 1) lowerCAmelCase : str = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCAmelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Optional[int] = float('inf' ) if valid(_UpperCAmelCase ) and g_function[neighbours] > g_function[s] + 1: lowerCAmelCase : Any = g_function[s] + 1 lowerCAmelCase : Optional[Any] = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCAmelCase, key(_UpperCAmelCase, 0, _UpperCAmelCase, _UpperCAmelCase ) ) if neighbours not in close_list_inad: for var in range(1, _UpperCAmelCase ): if key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) <= Wa * key( _UpperCAmelCase, 0, _UpperCAmelCase, _UpperCAmelCase ): open_list[j].put( _UpperCAmelCase, key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Tuple = [] for x in range(1, 5 ): for y in range(1, 6 ): some_list.append((x, y) ) for x in range(15, 20 ): some_list.append((x, 17) ) for x in range(10, 19 ): for y in range(1, 15 ): some_list.append((x, y) ) # L block for x in range(1, 4 ): for y in range(12, 19 ): some_list.append((x, y) ) for x in range(3, 13 ): for y in range(16, 19 ): some_list.append((x, y) ) return some_list __A : Any = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __A : str = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __A : Any = make_common_ground() __A : List[Any] = blocks_blk # hyper parameters __A : Union[str, Any] = 1 __A : Dict = 1 __A : str = 20 __A : int = 3 # one consistent and two other inconsistent # start and end destination __A : str = (0, 0) __A : List[str] = (n - 1, n - 1) __A : int = 1 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[int] = {start: 0, goal: float('inf' )} lowerCAmelCase : List[str] = {start: -1, goal: -1} lowerCAmelCase : Dict = [] lowerCAmelCase : Any = set() for i in range(_UpperCAmelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCAmelCase, key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) ) lowerCAmelCase : list[int] = [] lowerCAmelCase : list[int] = [] while open_list[0].minkey() < float('inf' ): for i in range(1, _UpperCAmelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) else: lowerCAmelCase , lowerCAmelCase : int = open_list[i].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) close_list_inad.append(_UpperCAmelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) else: lowerCAmelCase : Tuple = open_list[0].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase, 0, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) close_list_anchor.append(_UpperCAmelCase ) print('No path found to goal' ) print() for i in range(n - 1, -1, -1 ): for j in range(_UpperCAmelCase ): if (j, i) in blocks: print('#', end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*', end=' ' ) else: print('-', end=' ' ) else: print('*', end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position', end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
323
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
1
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Dict = KandinskyVaaPipeline lowerCAmelCase_ : Any = [ "image_embeds", "negative_image_embeds", ] lowerCAmelCase_ : Any = ["image_embeds", "negative_image_embeds"] lowerCAmelCase_ : Union[str, Any] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCAmelCase_ : str = False @property def lowercase__ ( self : Dict ): return 32 @property def lowercase__ ( self : Optional[Any] ): return 32 @property def lowercase__ ( self : Dict ): return self.time_input_dim @property def lowercase__ ( self : Any ): return self.time_input_dim * 4 @property def lowercase__ ( self : Union[str, Any] ): return 100 @property def lowercase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCAmelCase : Any = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase : Dict = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def lowercase__ ( self : Tuple ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase : Any = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = self.dummy_unet lowerCAmelCase : Union[str, Any] = self.dummy_movq lowerCAmelCase : Optional[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCAmelCase_ , ) lowerCAmelCase : Tuple = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase__ ( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str=0 ): lowerCAmelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith('mps' ): lowerCAmelCase : Optional[Any] = torch.manual_seed(UpperCAmelCase_ ) else: lowerCAmelCase : List[str] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def lowercase__ ( self : List[str] ): lowerCAmelCase : Tuple = 'cpu' lowerCAmelCase : List[Any] = self.get_dummy_components() lowerCAmelCase : List[Any] = self.pipeline_class(**UpperCAmelCase_ ) lowerCAmelCase : Any = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : List[str] = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) lowerCAmelCase : Union[str, Any] = output.images lowerCAmelCase : Dict = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Tuple = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __A ( unittest.TestCase ): def lowercase__ ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) lowerCAmelCase : str = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) lowerCAmelCase : str = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : Any = 'red cat, 4k photo' lowerCAmelCase : int = torch.Generator(device='cuda' ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase : Dict = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase : List[str] = torch.Generator(device='cuda' ).manual_seed(0 ) lowerCAmelCase : int = pipeline( image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type='np' , ) lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
323
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Tuple = 0 while len(_UpperCAmelCase ) > 1: lowerCAmelCase : Optional[int] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): lowerCAmelCase : Optional[int] = files.index(min(_UpperCAmelCase ) ) temp += files[min_index] files.pop(_UpperCAmelCase ) files.append(_UpperCAmelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __A : str = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' __A : Dict = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' __A : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def lowercase__ ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=False ): if rouge_types is None: lowerCAmelCase : List[Any] = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] lowerCAmelCase : Dict = rouge_scorer.RougeScorer(rouge_types=UpperCAmelCase_ , use_stemmer=UpperCAmelCase_ ) if use_aggregator: lowerCAmelCase : List[str] = scoring.BootstrapAggregator() else: lowerCAmelCase : Union[str, Any] = [] for ref, pred in zip(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = scorer.score(UpperCAmelCase_ , UpperCAmelCase_ ) if use_aggregator: aggregator.add_scores(UpperCAmelCase_ ) else: scores.append(UpperCAmelCase_ ) if use_aggregator: lowerCAmelCase : Dict = aggregator.aggregate() else: lowerCAmelCase : List[Any] = {} for key in scores[0]: lowerCAmelCase : Optional[Any] = [score[key] for score in scores] return result
323
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
1
from collections.abc import Iterable from typing import Generic, TypeVar __A : Optional[int] = TypeVar('''_T''') class __A ( Generic[_T] ): def __init__( self : Any , UpperCAmelCase_ : Iterable[_T] | None = None ): lowerCAmelCase : list[_T] = list(iterable or [] ) lowerCAmelCase : list[_T] = [] def __len__( self : Dict ): return len(self._stacka ) + len(self._stacka ) def __repr__( self : int ): return f"Queue({tuple(self._stacka[::-1] + self._stacka )})" def lowercase__ ( self : Dict , UpperCAmelCase_ : _T ): self._stacka.append(UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : str = self._stacka.pop lowerCAmelCase : Tuple = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('Queue is empty' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
323
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Dict = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) lowerCAmelCase : List[str] = hex_num[0] == '-' if is_negative: lowerCAmelCase : List[Any] = hex_num[1:] try: lowerCAmelCase : List[str] = int(_UpperCAmelCase, 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) lowerCAmelCase : str = '' while int_num > 0: lowerCAmelCase : Tuple = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
323
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
1
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __A : Dict = False __A : Optional[Any] = logging.get_logger(__name__) __A : Tuple = '''ybelkada/fonts''' def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " 'Pix2StructImageProcessor. Please upgrade torch.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) _check_torch_version() lowerCAmelCase : str = image_tensor.unsqueeze(0 ) lowerCAmelCase : Union[str, Any] = torch.nn.functional.unfold(_UpperCAmelCase, (patch_height, patch_width), stride=(patch_height, patch_width) ) lowerCAmelCase : Union[str, Any] = patches.reshape(image_tensor.size(0 ), image_tensor.size(1 ), _UpperCAmelCase, _UpperCAmelCase, -1 ) lowerCAmelCase : Tuple = patches.permute(0, 4, 2, 3, 1 ).reshape( image_tensor.size(2 ) // patch_height, image_tensor.size(3 ) // patch_width, image_tensor.size(1 ) * patch_height * patch_width, ) return patches.unsqueeze(0 ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = 36, _UpperCAmelCase = "black", _UpperCAmelCase = "white", _UpperCAmelCase = 5, _UpperCAmelCase = 5, _UpperCAmelCase = 5, _UpperCAmelCase = 5, _UpperCAmelCase = None, _UpperCAmelCase = None, ) -> Image.Image: '''simple docstring''' requires_backends(_UpperCAmelCase, 'vision' ) # Add new lines so that each line is no more than 80 characters. lowerCAmelCase : int = textwrap.TextWrapper(width=80 ) lowerCAmelCase : Any = wrapper.wrap(text=_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = '\n'.join(_UpperCAmelCase ) if font_bytes is not None and font_path is None: lowerCAmelCase : int = io.BytesIO(_UpperCAmelCase ) elif font_path is not None: lowerCAmelCase : List[Any] = font_path else: lowerCAmelCase : str = hf_hub_download(_UpperCAmelCase, 'Arial.TTF' ) lowerCAmelCase : List[Any] = ImageFont.truetype(_UpperCAmelCase, encoding='UTF-8', size=_UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowerCAmelCase : str = ImageDraw.Draw(Image.new('RGB', (1, 1), _UpperCAmelCase ) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = temp_draw.textbbox((0, 0), _UpperCAmelCase, _UpperCAmelCase ) # Create the actual image with a bit of padding around the text. lowerCAmelCase : List[str] = text_width + left_padding + right_padding lowerCAmelCase : Dict = text_height + top_padding + bottom_padding lowerCAmelCase : Dict = Image.new('RGB', (image_width, image_height), _UpperCAmelCase ) lowerCAmelCase : Optional[int] = ImageDraw.Draw(_UpperCAmelCase ) draw.text(xy=(left_padding, top_padding), text=_UpperCAmelCase, fill=_UpperCAmelCase, font=_UpperCAmelCase ) return image def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase, 'vision' ) # Convert to PIL image if necessary lowerCAmelCase : List[Any] = to_pil_image(_UpperCAmelCase ) lowerCAmelCase : int = render_text(_UpperCAmelCase, **_UpperCAmelCase ) lowerCAmelCase : List[str] = max(header_image.width, image.width ) lowerCAmelCase : str = int(image.height * (new_width / image.width) ) lowerCAmelCase : Tuple = int(header_image.height * (new_width / header_image.width) ) lowerCAmelCase : str = Image.new('RGB', (new_width, new_height + new_header_height), 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ), (0, 0) ) new_image.paste(image.resize((new_width, new_height) ), (0, new_header_height) ) # Convert back to the original framework if necessary lowerCAmelCase : List[str] = to_numpy_array(_UpperCAmelCase ) if infer_channel_dimension_format(_UpperCAmelCase ) == ChannelDimension.LAST: lowerCAmelCase : Tuple = to_channel_dimension_format(_UpperCAmelCase, ChannelDimension.LAST ) return new_image class __A ( lowerCAmelCase ): lowerCAmelCase_ : str = ["flattened_patches"] def __init__( self : Optional[int] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : int = 2048 , UpperCAmelCase_ : bool = False , **UpperCAmelCase_ : Optional[int] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : List[Any] = patch_size if patch_size is not None else {'height': 16, 'width': 16} lowerCAmelCase : Dict = do_normalize lowerCAmelCase : Optional[Any] = do_convert_rgb lowerCAmelCase : List[str] = max_patches lowerCAmelCase : Any = is_vqa def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : dict , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self.extract_flattened_patches , 'torch' ) _check_torch_version() # convert to torch lowerCAmelCase : Dict = to_channel_dimension_format(UpperCAmelCase_ , ChannelDimension.FIRST ) lowerCAmelCase : Optional[Any] = torch.from_numpy(UpperCAmelCase_ ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = patch_size['height'], patch_size['width'] lowerCAmelCase , lowerCAmelCase : str = get_image_size(UpperCAmelCase_ ) # maximize scale s.t. lowerCAmelCase : str = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowerCAmelCase : List[str] = max(min(math.floor(scale * image_height / patch_height ) , UpperCAmelCase_ ) , 1 ) lowerCAmelCase : int = max(min(math.floor(scale * image_width / patch_width ) , UpperCAmelCase_ ) , 1 ) lowerCAmelCase : Dict = max(num_feasible_rows * patch_height , 1 ) lowerCAmelCase : str = max(num_feasible_cols * patch_width , 1 ) lowerCAmelCase : Tuple = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='bilinear' , align_corners=UpperCAmelCase_ , antialias=UpperCAmelCase_ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowerCAmelCase : Any = torch_extract_patches(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = patches.shape lowerCAmelCase : Union[str, Any] = patches_shape[1] lowerCAmelCase : List[str] = patches_shape[2] lowerCAmelCase : Optional[Any] = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowerCAmelCase : Tuple = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowerCAmelCase : Dict = torch.arange(UpperCAmelCase_ ).reshape([rows, 1] ).repeat(1 , UpperCAmelCase_ ).reshape([rows * columns, 1] ) lowerCAmelCase : Optional[Any] = torch.arange(UpperCAmelCase_ ).reshape([1, columns] ).repeat(UpperCAmelCase_ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowerCAmelCase : List[Any] = row_ids.to(torch.floataa ) lowerCAmelCase : Optional[int] = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowerCAmelCase : Optional[Any] = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowerCAmelCase : str = torch.nn.functional.pad(UpperCAmelCase_ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowerCAmelCase : Dict = to_numpy_array(UpperCAmelCase_ ) return result def lowercase__ ( self : List[str] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any] ): if image.dtype == np.uinta: lowerCAmelCase : List[str] = image.astype(np.floataa ) # take mean across the whole `image` lowerCAmelCase : Union[str, Any] = np.mean(UpperCAmelCase_ ) lowerCAmelCase : Dict = np.std(UpperCAmelCase_ ) lowerCAmelCase : List[str] = max(UpperCAmelCase_ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , **UpperCAmelCase_ ) def lowercase__ ( self : str , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : int , ): lowerCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase : Any = patch_size if patch_size is not None else self.patch_size lowerCAmelCase : Union[str, Any] = max_patches if max_patches is not None else self.max_patches lowerCAmelCase : Union[str, Any] = self.is_vqa if kwargs.get('data_format' , UpperCAmelCase_ ) is not None: raise ValueError('data_format is not an accepted input as the outputs are ' ) lowerCAmelCase : Optional[Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase : Optional[int] = [convert_to_rgb(UpperCAmelCase_ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase : str = [to_numpy_array(UpperCAmelCase_ ) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.' ) lowerCAmelCase : Tuple = kwargs.pop('font_bytes' , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = kwargs.pop('font_path' , UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Dict = [header_text] * len(UpperCAmelCase_ ) lowerCAmelCase : List[str] = [ render_header(UpperCAmelCase_ , header_text[i] , font_bytes=UpperCAmelCase_ , font_path=UpperCAmelCase_ ) for i, image in enumerate(UpperCAmelCase_ ) ] if do_normalize: lowerCAmelCase : Any = [self.normalize(image=UpperCAmelCase_ ) for image in images] # convert to torch tensor and permute lowerCAmelCase : List[Any] = [ self.extract_flattened_patches(image=UpperCAmelCase_ , max_patches=UpperCAmelCase_ , patch_size=UpperCAmelCase_ ) for image in images ] # create attention mask in numpy lowerCAmelCase : Dict = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowerCAmelCase : Dict = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} , tensor_type=UpperCAmelCase_ ) return encoded_outputs
323
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
1
import argparse import copy def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Tuple = {} with open(_UpperCAmelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowerCAmelCase : Tuple = [] _list.append([line.split()[1], line.split()[2]] ) lowerCAmelCase : Dict = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowerCAmelCase : Optional[int] = [] _list.append([line.split()[0], line.split()[2]] ) lowerCAmelCase : Tuple = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' with open(_UpperCAmelCase ) as f: lowerCAmelCase : Tuple = f.read(1 ) lowerCAmelCase : int = start_node lowerCAmelCase : str = [] lowerCAmelCase : Optional[Any] = start_node lowerCAmelCase : str = 0 while visiting not in first_solution: lowerCAmelCase : Any = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_UpperCAmelCase ) and k[0] not in first_solution: lowerCAmelCase : Union[str, Any] = k[1] lowerCAmelCase : Dict = k[0] first_solution.append(_UpperCAmelCase ) lowerCAmelCase : Tuple = distance_of_first_solution + int(_UpperCAmelCase ) lowerCAmelCase : List[Any] = best_node first_solution.append(_UpperCAmelCase ) lowerCAmelCase : List[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowerCAmelCase : List[Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[Any] = [] for n in solution[1:-1]: lowerCAmelCase : List[Any] = solution.index(_UpperCAmelCase ) for kn in solution[1:-1]: lowerCAmelCase : Any = solution.index(_UpperCAmelCase ) if n == kn: continue lowerCAmelCase : Optional[int] = copy.deepcopy(_UpperCAmelCase ) lowerCAmelCase : List[Any] = kn lowerCAmelCase : Any = n lowerCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: lowerCAmelCase : Optional[int] = _tmp[_tmp.index(_UpperCAmelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowerCAmelCase : int = distance + int(i[1] ) _tmp.append(_UpperCAmelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowerCAmelCase : Tuple = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _UpperCAmelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[Any] = 1 lowerCAmelCase : Union[str, Any] = first_solution lowerCAmelCase : Any = [] lowerCAmelCase : Tuple = distance_of_first_solution lowerCAmelCase : Any = solution while count <= iters: lowerCAmelCase : Tuple = find_neighborhood(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : str = 0 lowerCAmelCase : Tuple = neighborhood[index_of_best_solution] lowerCAmelCase : Dict = len(_UpperCAmelCase ) - 1 lowerCAmelCase : Tuple = False while not found: lowerCAmelCase : Dict = 0 while i < len(_UpperCAmelCase ): if best_solution[i] != solution[i]: lowerCAmelCase : Optional[int] = best_solution[i] lowerCAmelCase : int = solution[i] break lowerCAmelCase : Dict = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowerCAmelCase : Tuple = True lowerCAmelCase : List[str] = best_solution[:-1] lowerCAmelCase : Union[str, Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowerCAmelCase : int = cost lowerCAmelCase : Optional[Any] = solution else: lowerCAmelCase : int = index_of_best_solution + 1 lowerCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] if len(_UpperCAmelCase ) >= size: tabu_list.pop(0 ) lowerCAmelCase : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase=None ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[int] = generate_neighbours(args.File ) lowerCAmelCase , lowerCAmelCase : List[str] = generate_first_solution( args.File, _UpperCAmelCase ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = tabu_search( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, args.Iterations, args.Size, ) print(f"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
323
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __A : List[str] = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] __A : List[Any] = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Optional[int] = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCAmelCase : str = int(re.match(r'.*layer_(\d*).*', _UpperCAmelCase )[1] ) layer_number -= 3 return f"h.{layer_number}." + key def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if dtype == torch.bool: return 1 / 8 lowerCAmelCase : Tuple = re.search(r'[^\d](\d+)$', str(_UpperCAmelCase ) ) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}." ) lowerCAmelCase : Optional[Any] = int(bit_search.groups()[0] ) return bit_size // 8 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' if bloom_config_file == "": lowerCAmelCase : List[Any] = BloomConfig() else: lowerCAmelCase : Optional[Any] = BloomConfig.from_json_file(_UpperCAmelCase ) if shard_model: lowerCAmelCase : Union[str, Any] = os.listdir(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = sorted(filter(lambda _UpperCAmelCase : s.startswith('layer' ) and "model_00" in s, _UpperCAmelCase ) ) lowerCAmelCase : List[Any] = {'weight_map': {}, 'metadata': {}} lowerCAmelCase : int = 0 lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Optional[Any] = BloomConfig() for j, file in enumerate(_UpperCAmelCase ): print('Processing file: {}'.format(_UpperCAmelCase ) ) lowerCAmelCase : Optional[int] = None for i in range(_UpperCAmelCase ): # load all TP files lowerCAmelCase : Optional[int] = file.replace('model_00', f"model_0{i}" ) lowerCAmelCase : List[Any] = torch.load(os.path.join(_UpperCAmelCase, _UpperCAmelCase ), map_location='cpu' ) # Rename keys in the transformers names lowerCAmelCase : Union[str, Any] = list(temp.keys() ) for key in keys: lowerCAmelCase : List[Any] = temp.pop(_UpperCAmelCase ) if tensors is None: lowerCAmelCase : Union[str, Any] = temp else: for key in tensors.keys(): if any(key.endswith(_UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase : Optional[Any] = torch.cat([tensors[key], temp[key]], dim=_UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase : int = tensors[key] / pretraining_tp torch.save( _UpperCAmelCase, os.path.join( _UpperCAmelCase, 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ), str(len(_UpperCAmelCase ) ).zfill(5 ) ), ), ) for key in tensors.keys(): lowerCAmelCase : str = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCAmelCase : Union[str, Any] = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ), str(len(_UpperCAmelCase ) ).zfill(5 ) ) lowerCAmelCase : Optional[int] = BloomConfig() lowerCAmelCase : Dict = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCAmelCase : Union[str, Any] = total_size with open(_UpperCAmelCase, 'w', encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_UpperCAmelCase, WEIGHTS_NAME + '.index.json' ), 'w', encoding='utf-8' ) as f: lowerCAmelCase : Any = json.dumps(_UpperCAmelCase, indent=2, sort_keys=_UpperCAmelCase ) + '\n' f.write(_UpperCAmelCase ) else: lowerCAmelCase : Dict = BloomModel(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = os.listdir(_UpperCAmelCase ) lowerCAmelCase : Any = sorted(filter(lambda _UpperCAmelCase : s.startswith('layer' ) and "model_00" in s, _UpperCAmelCase ) ) lowerCAmelCase : Any = None for i, file in enumerate(_UpperCAmelCase ): lowerCAmelCase : str = None for i in range(_UpperCAmelCase ): # load all TP files lowerCAmelCase : List[str] = file.replace('model_00', f"model_0{i}" ) lowerCAmelCase : List[str] = torch.load(os.path.join(_UpperCAmelCase, _UpperCAmelCase ), map_location='cpu' ) # Rename keys in the transformers names lowerCAmelCase : str = list(temp.keys() ) for key in keys: lowerCAmelCase : Tuple = temp.pop(_UpperCAmelCase ) if tensors is None: lowerCAmelCase : Tuple = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase : List[str] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase : Optional[Any] = torch.cat([tensors[key], temp[key]], dim=_UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase : Union[str, Any] = tensors[key] / pretraining_tp lowerCAmelCase : List[str] = model.load_state_dict(_UpperCAmelCase, strict=_UpperCAmelCase ) assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: lowerCAmelCase : List[Any] = set(other_keys.missing_keys ) else: lowerCAmelCase : Optional[Any] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(_UpperCAmelCase, exist_ok=_UpperCAmelCase ) lowerCAmelCase : Tuple = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCAmelCase : Tuple = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: lowerCAmelCase : str = model.to(config.torch_dtype ) torch.save(model.state_dict(), _UpperCAmelCase ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_UpperCAmelCase, 'w', encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) __A : Optional[int] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
323
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
1
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
1
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __A : Any = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __A : List[str] = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[Any] = SavedModel() lowerCAmelCase : List[Any] = [] with open(os.path.join(_UpperCAmelCase, 'utils', 'tf_ops', 'onnx.json' ) ) as f: lowerCAmelCase : Union[str, Any] = json.load(_UpperCAmelCase )['opsets'] for i in range(1, opset + 1 ): onnx_ops.extend(onnx_opsets[str(_UpperCAmelCase )] ) with open(_UpperCAmelCase, 'rb' ) as f: saved_model.ParseFromString(f.read() ) lowerCAmelCase : Any = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want lowerCAmelCase : str = sorted(_UpperCAmelCase ) lowerCAmelCase : str = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_UpperCAmelCase ) if strict and len(_UpperCAmelCase ) > 0: raise Exception(f"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(_UpperCAmelCase ) > 0: print(f"Found the following incompatible ops for the opset {opset}:" ) print(*_UpperCAmelCase, sep='\n' ) else: print(f"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) __A : List[str] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
323
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A : int = logging.get_logger(__name__) __A : Union[str, Any] = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class __A ( lowerCAmelCase ): lowerCAmelCase_ : List[Any] = "git_vision_model" def __init__( self : int , UpperCAmelCase_ : Tuple=768 , UpperCAmelCase_ : Optional[int]=3072 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Any=224 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : int="quick_gelu" , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : List[str]=0.02 , **UpperCAmelCase_ : List[Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : str = hidden_size lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : str = num_channels lowerCAmelCase : Dict = patch_size lowerCAmelCase : List[Any] = image_size lowerCAmelCase : Optional[int] = initializer_range lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : int = layer_norm_eps lowerCAmelCase : Any = hidden_act @classmethod def lowercase__ ( cls : int , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : Optional[Any] ): cls._set_token_in_kwargs(UpperCAmelCase_ ) lowerCAmelCase , lowerCAmelCase : Any = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": lowerCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __A ( lowerCAmelCase ): lowerCAmelCase_ : List[str] = "git" def __init__( self : List[Any] , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=30522 , UpperCAmelCase_ : Optional[Any]=768 , UpperCAmelCase_ : int=6 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : List[Any]=3072 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Dict=1024 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Optional[int]=1E-12 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : int="absolute" , UpperCAmelCase_ : str=True , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Union[str, Any]=101 , UpperCAmelCase_ : str=102 , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : Any , ): super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) if vision_config is None: lowerCAmelCase : List[Any] = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) lowerCAmelCase : int = GitVisionConfig(**UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : Any = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : List[str] = use_cache lowerCAmelCase : Optional[Any] = tie_word_embeddings lowerCAmelCase : Any = num_image_with_embedding lowerCAmelCase : Dict = bos_token_id lowerCAmelCase : str = eos_token_id def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = copy.deepcopy(self.__dict__ ) lowerCAmelCase : List[Any] = self.vision_config.to_dict() lowerCAmelCase : List[str] = self.__class__.model_type return output
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 1_000 ) -> int: '''simple docstring''' lowerCAmelCase : Optional[int] = 2**power lowerCAmelCase : List[Any] = 0 while n: lowerCAmelCase , lowerCAmelCase : List[str] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
323
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
1
import re def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list: '''simple docstring''' return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]', str_ )] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : List[Any] = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' try: lowerCAmelCase : Any = split_input(_UpperCAmelCase ) if upper: lowerCAmelCase : Optional[int] = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowerCAmelCase : Dict = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' return to_simple_case(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' try: lowerCAmelCase : Optional[int] = to_simple_case(_UpperCAmelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' return to_complex_case(_UpperCAmelCase, _UpperCAmelCase, '_' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' return to_complex_case(_UpperCAmelCase, _UpperCAmelCase, '-' ) if __name__ == "__main__": __import__('''doctest''').testmod()
323
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
1
import copy import re class __A : lowerCAmelCase_ : Any = "hp" lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Dict = None @classmethod def lowercase__ ( cls : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ): lowerCAmelCase : Dict = prefix lowerCAmelCase : Optional[int] = defaults cls.build_naming_info() @staticmethod def lowercase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): if len(UpperCAmelCase_ ) == 0: return "" lowerCAmelCase : Tuple = None if any(char.isdigit() for char in word ): raise Exception(f"Parameters should not contain numbers: '{word}' contains a number" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(UpperCAmelCase_ ) + 1 ): lowerCAmelCase : Any = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowerCAmelCase : Optional[Any] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Dict = '' while integer != 0: lowerCAmelCase : int = chr(ord('A' ) + integer % 10 ) + s integer //= 10 return s lowerCAmelCase : str = 0 while True: lowerCAmelCase : List[Any] = word + '#' + int_to_alphabetic(UpperCAmelCase_ ) if sword in info["reverse_short_word"]: continue else: lowerCAmelCase : int = sword break lowerCAmelCase : Dict = short_word lowerCAmelCase : str = word return short_word @staticmethod def lowercase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ): lowerCAmelCase : Dict = param_name.split('_' ) lowerCAmelCase : List[Any] = [TrialShortNamer.shortname_for_word(UpperCAmelCase_ , UpperCAmelCase_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowerCAmelCase : Union[str, Any] = ['', '_'] for separator in separators: lowerCAmelCase : Tuple = separator.join(UpperCAmelCase_ ) if shortname not in info["reverse_short_param"]: lowerCAmelCase : Tuple = shortname lowerCAmelCase : Union[str, Any] = param_name return shortname return param_name @staticmethod def lowercase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any ): lowerCAmelCase : List[str] = TrialShortNamer.shortname_for_key(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = short_name lowerCAmelCase : Any = param_name @classmethod def lowercase__ ( cls : int ): if cls.NAMING_INFO is not None: return lowerCAmelCase : Optional[Any] = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } lowerCAmelCase : Any = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = info @classmethod def lowercase__ ( cls : int , UpperCAmelCase_ : List[Any] ): cls.build_naming_info() assert cls.PREFIX is not None lowerCAmelCase : Optional[Any] = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"You should provide a default value for the param name {k} with value {v}" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowerCAmelCase : Any = cls.NAMING_INFO['short_param'][k] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = 1 if v else 0 lowerCAmelCase : int = '' if isinstance(UpperCAmelCase_ , (int, float) ) else '-' lowerCAmelCase : Union[str, Any] = f"{key}{sep}{v}" name.append(UpperCAmelCase_ ) return "_".join(UpperCAmelCase_ ) @classmethod def lowercase__ ( cls : Optional[Any] , UpperCAmelCase_ : Dict ): lowerCAmelCase : List[Any] = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowerCAmelCase : Any = [] else: lowerCAmelCase : Optional[int] = repr.split('_' ) lowerCAmelCase : Dict = {} for value in values: if "-" in value: lowerCAmelCase , lowerCAmelCase : List[Any] = value.split('-' ) else: lowerCAmelCase : str = re.sub('[0-9.]' , '' , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = float(re.sub('[^0-9.]' , '' , UpperCAmelCase_ ) ) lowerCAmelCase : List[str] = cls.NAMING_INFO['reverse_short_param'][p_k] lowerCAmelCase : str = p_v for k in cls.DEFAULTS: if k not in parameters: lowerCAmelCase : Optional[Any] = cls.DEFAULTS[k] return parameters
323
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __A : Optional[Any] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __A : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __A : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> tuple[str, float]: '''simple docstring''' lowerCAmelCase : Optional[Any] = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> tuple[str, str]: '''simple docstring''' lowerCAmelCase : List[Any] = random.randint(0, len(_UpperCAmelCase ) - 1 ) lowerCAmelCase : str = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = list(_UpperCAmelCase ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: lowerCAmelCase : List[Any] = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) -> list[str]: '''simple docstring''' lowerCAmelCase : Optional[int] = [] # Generate more children proportionally to the fitness score. lowerCAmelCase : Optional[Any] = int(parent_a[1] * 100 ) + 1 lowerCAmelCase : Optional[int] = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase : Dict = population_score[random.randint(0, _UpperCAmelCase )][0] lowerCAmelCase , lowerCAmelCase : str = crossover(parent_a[0], _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase, _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase, _UpperCAmelCase ) ) return pop def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = True ) -> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: lowerCAmelCase : int = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase : Optional[int] = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase : Any = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase , lowerCAmelCase : Optional[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase : str = [evaluate(_UpperCAmelCase, _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase : Union[str, Any] = sorted(_UpperCAmelCase, key=lambda _UpperCAmelCase : x[1], reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase : Dict = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase : List[Any] = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )], _UpperCAmelCase, _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __A : int = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __A : Any = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __A , __A , __A : Union[str, Any] = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
323
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __A : Any = ['''text''', '''image''', '''audio'''] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Optional[Any] = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(_UpperCAmelCase, _UpperCAmelCase ): inputs.append(create_inputs(_UpperCAmelCase ) ) else: raise ValueError(f"Invalid type requested: {input_type}" ) return inputs def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : int = [] for output in outputs: if isinstance(_UpperCAmelCase, (str, AgentText) ): output_types.append('text' ) elif isinstance(_UpperCAmelCase, (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(_UpperCAmelCase, (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f"Invalid output: {output}" ) return output_types @is_tool_test class __A : def lowercase__ ( self : Tuple ): self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) lowerCAmelCase : str = self.tool.inputs for _input in inputs: if isinstance(_input , UpperCAmelCase_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase : int = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = create_inputs(self.tool.inputs ) lowerCAmelCase : Optional[int] = self.tool(*UpperCAmelCase_ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase : Tuple = [outputs] self.assertListEqual(output_types(UpperCAmelCase_ ) , self.tool.outputs ) def lowercase__ ( self : int ): self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = create_inputs(self.tool.inputs ) lowerCAmelCase : List[str] = self.tool(*UpperCAmelCase_ ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : List[Any] = [outputs] self.assertEqual(len(UpperCAmelCase_ ) , len(self.tool.outputs ) ) for output, output_type in zip(UpperCAmelCase_ , self.tool.outputs ): lowerCAmelCase : Dict = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : List[str] ): lowerCAmelCase : int = create_inputs(self.tool.inputs ) lowerCAmelCase : Union[str, Any] = [] for _input, input_type in zip(UpperCAmelCase_ , self.tool.inputs ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase : List[str] = self.tool(*UpperCAmelCase_ ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : int = [outputs] self.assertEqual(len(UpperCAmelCase_ ) , len(self.tool.outputs ) )
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A : Any = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __A : lowerCAmelCase_ : List[Any] = PegasusConfig lowerCAmelCase_ : Optional[int] = {} lowerCAmelCase_ : int = "gelu" def __init__( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Tuple=99 , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : List[Any]=5 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Tuple=20 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Tuple=0 , ): lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : Tuple = is_training lowerCAmelCase : Dict = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : Optional[Any] = eos_token_id lowerCAmelCase : List[str] = pad_token_id lowerCAmelCase : Optional[int] = bos_token_id def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowerCAmelCase : int = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase : int = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase : Tuple = prepare_pegasus_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def lowercase__ ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Union[str, Any] = 20 lowerCAmelCase : Tuple = model_class_name(UpperCAmelCase_ ) lowerCAmelCase : Tuple = model.encode(inputs_dict['input_ids'] ) lowerCAmelCase , lowerCAmelCase : Dict = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowerCAmelCase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) lowerCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : int = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCAmelCase : List[Any] = model.decode(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def lowercase__ ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = 20 lowerCAmelCase : Tuple = model_class_name(UpperCAmelCase_ ) lowerCAmelCase : Any = model.encode(inputs_dict['input_ids'] ) lowerCAmelCase , lowerCAmelCase : List[str] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowerCAmelCase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : str = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCAmelCase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase : Dict = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCAmelCase : int = model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ ) lowerCAmelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=None, ) -> List[Any]: '''simple docstring''' if attention_mask is None: lowerCAmelCase : Dict = np.not_equal(_UpperCAmelCase, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowerCAmelCase : str = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCAmelCase_ : Dict = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Union[str, Any] = False def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = FlaxPegasusModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Any = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : int = model_class(UpperCAmelCase_ ) @jax.jit def encode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Any ): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) with self.subTest('JIT Enabled' ): lowerCAmelCase : Optional[Any] = encode_jitted(**UpperCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase : Tuple = encode_jitted(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( self : List[str] ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Dict = model_class(UpperCAmelCase_ ) lowerCAmelCase : Tuple = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) lowerCAmelCase : Union[str, Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest('JIT Enabled' ): lowerCAmelCase : Optional[int] = decode_jitted(**UpperCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase : Optional[Any] = decode_jitted(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase__ ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase : Any = model_class_name.from_pretrained('google/pegasus-large' , from_pt=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = np.ones((1, 1) ) lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @slow def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : str = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) lowerCAmelCase : int = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) lowerCAmelCase : Optional[int] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] lowerCAmelCase : List[str] = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] lowerCAmelCase : List[Any] = tokenizer(UpperCAmelCase_ , return_tensors='np' , truncation=UpperCAmelCase_ , max_length=512 , padding=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = model.generate(**UpperCAmelCase_ , num_beams=2 ).sequences lowerCAmelCase : List[str] = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) assert tgt_text == decoded
323
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
1
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __A : def __init__( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=14 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[Any]=5 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int=None , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : List[Any] = use_token_type_ids lowerCAmelCase : Any = use_input_mask lowerCAmelCase : List[Any] = use_labels lowerCAmelCase : List[Any] = use_mc_token_ids lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = max_position_embeddings lowerCAmelCase : List[str] = type_vocab_size lowerCAmelCase : Optional[int] = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Union[str, Any] = num_labels lowerCAmelCase : Union[str, Any] = num_choices lowerCAmelCase : List[str] = scope lowerCAmelCase : List[str] = self.vocab_size - 1 def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[int] = None if self.use_input_mask: lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[Any] = None if self.use_mc_token_ids: lowerCAmelCase : str = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : int = self.get_config() lowerCAmelCase : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : List[str] ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowercase__ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , *UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Optional[Any] = CTRLModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , *UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = CTRLLMHeadModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Tuple = config_and_inputs lowerCAmelCase : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : Union[str, Any] = CTRLForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCAmelCase_ : List[Any] = (CTRLLMHeadModel,) if is_torch_available() else () lowerCAmelCase_ : str = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : str = False def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = CTRLModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=UpperCAmelCase_ , n_embd=37 ) def lowercase__ ( self : Tuple ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*UpperCAmelCase_ ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCAmelCase_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase__ ( self : Tuple ): pass @slow def lowercase__ ( self : List[str] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = CTRLModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : List[str] ): pass @require_torch class __A ( unittest.TestCase ): def lowercase__ ( self : Dict ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowercase__ ( self : Any ): lowerCAmelCase : str = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(UpperCAmelCase_ ) lowerCAmelCase : List[str] = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=UpperCAmelCase_ ) # Legal the president is lowerCAmelCase : Dict = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCAmelCase : int = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , UpperCAmelCase_ )
323
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
1
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files', [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md', 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md', 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json', 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowerCAmelCase : Dict = DatasetInfosDict.from_directory(_UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info', [ DatasetInfo(), DatasetInfo( description='foo', features=Features({'a': Value('int32' )} ), builder_name='builder', config_name='config', version='1.0.0', splits=[{'name': 'train'}], download_size=42, ), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = str(_UpperCAmelCase ) dataset_info.write_to_directory(_UpperCAmelCase ) lowerCAmelCase : int = DatasetInfo.from_directory(_UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_UpperCAmelCase, 'dataset_info.json' ) ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = DatasetInfo( description='foo', citation='bar', homepage='https://foo.bar', license='CC0', features=Features({'a': Value('int32' )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name='builder', config_name='config', version='1.0.0', splits=[{'name': 'train', 'num_examples': 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) lowerCAmelCase : Union[str, Any] = dataset_info._to_yaml_dict() assert sorted(_UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) lowerCAmelCase : Optional[Any] = yaml.safe_dump(_UpperCAmelCase ) lowerCAmelCase : Tuple = yaml.safe_load(_UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Optional[Any] = DatasetInfo() lowerCAmelCase : int = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict', [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo', features=Features({'a': Value('int32' )} ), builder_name='builder', config_name='config', version='1.0.0', splits=[{'name': 'train'}], download_size=42, ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1_337 ), } ), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : List[Any] = str(_UpperCAmelCase ) dataset_infos_dict.write_to_directory(_UpperCAmelCase ) lowerCAmelCase : List[str] = DatasetInfosDict.from_directory(_UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase : Optional[int] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_UpperCAmelCase, 'README.md' ) )
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : def __init__( self : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=32 , UpperCAmelCase_ : str=5 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Tuple=None , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = image_size lowerCAmelCase : int = patch_size lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Dict = is_training lowerCAmelCase : Any = use_labels lowerCAmelCase : str = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Dict = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Optional[int] = mask_ratio lowerCAmelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCAmelCase : Any = (image_size // patch_size) ** 2 lowerCAmelCase : Tuple = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowercase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : int ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ): lowerCAmelCase : int = ViTMAEModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Union[str, Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = ViTMAEForPreTraining(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : List[Any] = model(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = (self.image_size // self.patch_size) ** 2 lowerCAmelCase : Tuple = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCAmelCase : List[Any] = 1 lowerCAmelCase : int = ViTMAEForPreTraining(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Any = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = config_and_inputs lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : str = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase_ : Dict = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : List[Any] = False def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = ViTMAEModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def lowercase__ ( self : Dict ): pass def lowercase__ ( self : Optional[Any] ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def lowercase__ ( self : Tuple ): lowerCAmelCase , lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : str = model_class(UpperCAmelCase_ ) lowerCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_ ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ): # make masks reproducible np.random.seed(2 ) lowerCAmelCase : Dict = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowerCAmelCase : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase : Any = torch.from_numpy(UpperCAmelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCAmelCase : str = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Dict = outputs[0].cpu().numpy() lowerCAmelCase : str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model_class.from_pretrained(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Make sure we don't have nans lowerCAmelCase : List[Any] = after_outputs[0].cpu().numpy() lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase_ , 1E-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase__ ( self : List[str] ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase__ ( self : Optional[Any] ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase__ ( self : int ): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def lowercase__ ( self : List[str] ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase__ ( self : Dict ): pass @slow def lowercase__ ( self : List[str] ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[Any] = ViTMAEModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def lowercase__ ( self : Optional[int] ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCAmelCase : Optional[int] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(UpperCAmelCase_ ) lowerCAmelCase : Dict = self.default_image_processor lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : List[Any] = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCAmelCase : int = ViTMAEConfig() lowerCAmelCase : Dict = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCAmelCase : Union[str, Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowerCAmelCase : str = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) ) # verify the logits lowerCAmelCase : int = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_ ) , atol=1E-4 ) )
323
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
1