code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 10**9 ) -> int: '''simple docstring''' lowerCAmelCase : Any = 1 lowerCAmelCase : str = 2 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Tuple = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCAmelCase : Tuple = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'{solution() = }')
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __A : Optional[int] = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True lowerCAmelCase : Optional[Any] = 4 lowerCAmelCase : Any = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
323
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
1
from math import factorial def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if n < k or k < 0: raise ValueError('Please enter positive integers for n and k where n >= k' ) return factorial(_UpperCAmelCase ) // (factorial(_UpperCAmelCase ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', F'fifty-two card deck is: {combinations(52, 5)}\n', ) print( '''If a class of 40 students must be arranged into groups of''', F'4 for group projects, there are {combinations(40, 4)} ways', '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', F'are {combinations(10, 3)} ways that first, second and', '''third place can be awarded.''', )
323
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
1
import math import tensorflow as tf from packaging import version def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Any = tf.convert_to_tensor(_UpperCAmelCase ) lowerCAmelCase : Dict = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ), x.dtype ) )) return x * cdf def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Dict = tf.convert_to_tensor(_UpperCAmelCase ) lowerCAmelCase : Dict = tf.cast(math.pi, x.dtype ) lowerCAmelCase : int = tf.cast(0.0_4_4_7_1_5, x.dtype ) lowerCAmelCase : Union[str, Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(_UpperCAmelCase, 3 )) )) return x * cdf def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Tuple = tf.convert_to_tensor(_UpperCAmelCase ) return x * tf.tanh(tf.math.softplus(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : List[Any] = tf.convert_to_tensor(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = tf.cast(0.0_4_4_7_1_5, x.dtype ) lowerCAmelCase : List[Any] = tf.cast(0.7_9_7_8_8_4_5_6_0_8, x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : List[Any] = tf.convert_to_tensor(_UpperCAmelCase ) lowerCAmelCase : List[Any] = tf.cast(1.7_0_2, x.dtype ) return x * tf.math.sigmoid(coeff * x ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return tf.clip_by_value(_gelu(_UpperCAmelCase ), -10, 10 ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=-1 ) -> Optional[int]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Dict = tf.split(_UpperCAmelCase, 2, axis=_UpperCAmelCase ) return a * tf.math.sigmoid(_UpperCAmelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' return tf.keras.activations.gelu(_UpperCAmelCase, approximate=_UpperCAmelCase ) __A : Optional[int] = tf.keras.activations.gelu __A : Tuple = approximate_gelu_wrap else: __A : Any = _gelu __A : int = _gelu_new __A : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
323
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
1
from __future__ import annotations __A : Dict = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class __A : def __init__( self : int , UpperCAmelCase_ : dict[str, list[str]] , UpperCAmelCase_ : str ): lowerCAmelCase : Dict = graph # mapping node to its parent in resulting breadth first tree lowerCAmelCase : dict[str, str | None] = {} lowerCAmelCase : str = source_vertex def lowercase__ ( self : Any ): lowerCAmelCase : int = {self.source_vertex} lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : int = [self.source_vertex] # first in first out queue while queue: lowerCAmelCase : int = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = vertex queue.append(UpperCAmelCase_ ) def lowercase__ ( self : str , UpperCAmelCase_ : str ): if target_vertex == self.source_vertex: return self.source_vertex lowerCAmelCase : Optional[int] = self.parent.get(UpperCAmelCase_ ) if target_vertex_parent is None: lowerCAmelCase : Any = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(UpperCAmelCase_ ) return self.shortest_path(UpperCAmelCase_ ) + f"->{target_vertex}" if __name__ == "__main__": __A : int = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __A ( lowerCAmelCase ): def lowercase__ ( self : str , UpperCAmelCase_ : str ): with open(UpperCAmelCase_ , encoding='utf-8' ) as input_file: lowerCAmelCase : Optional[Any] = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) lowerCAmelCase : str = input_file.read() lowerCAmelCase : List[Any] = regexp.search(UpperCAmelCase_ ) return match def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : str ): with open(UpperCAmelCase_ , encoding='utf-8' ) as input_file: lowerCAmelCase : Optional[Any] = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) lowerCAmelCase : int = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowerCAmelCase : Any = regexp.finditer(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = Path('./datasets' ) lowerCAmelCase : Tuple = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCAmelCase_ ) ): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = Path('./datasets' ) lowerCAmelCase : Any = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCAmelCase_ ) ): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
323
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
1
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Union[str, Any] = PriorTransformer lowerCAmelCase_ : List[Any] = "hidden_states" @property def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = 4 lowerCAmelCase : str = 8 lowerCAmelCase : Optional[Any] = 7 lowerCAmelCase : Optional[int] = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : str = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase__ ( self : Dict , UpperCAmelCase_ : List[str]=0 ): torch.manual_seed(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 4 lowerCAmelCase : Any = 8 lowerCAmelCase : List[Any] = 7 lowerCAmelCase : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : str = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : str = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowercase__ ( self : Tuple ): return (4, 8) @property def lowercase__ ( self : int ): return (4, 8) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } lowerCAmelCase : Any = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : int ): lowerCAmelCase , lowerCAmelCase : List[str] = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(UpperCAmelCase_ ) lowerCAmelCase : int = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def lowercase__ ( self : Optional[int] ): lowerCAmelCase , lowerCAmelCase : List[str] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase : Dict = self.model_class(**UpperCAmelCase_ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : Tuple = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) lowerCAmelCase : Optional[int] = model.to(UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , 'set_default_attn_processor' ): model.set_default_attn_processor() lowerCAmelCase : Union[str, Any] = self.get_dummy_seed_input() with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**UpperCAmelCase_ )[0] lowerCAmelCase : List[Any] = output[0, :5].flatten().cpu() print(UpperCAmelCase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowerCAmelCase : int = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-2 ) ) @slow class __A ( unittest.TestCase ): def lowercase__ ( self : int , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : Tuple=77 , UpperCAmelCase_ : List[str]=0 ): torch.manual_seed(UpperCAmelCase_ ) lowerCAmelCase : Dict = batch_size lowerCAmelCase : Dict = embedding_dim lowerCAmelCase : Dict = num_embeddings lowerCAmelCase : Tuple = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : Tuple = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ): lowerCAmelCase : Dict = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.get_dummy_seed_input(seed=UpperCAmelCase_ ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**UpperCAmelCase_ )[0] assert list(sample.shape ) == [1, 768] lowerCAmelCase : Union[str, Any] = sample[0, :8].flatten().cpu() print(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = torch.tensor(UpperCAmelCase_ ) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 )
323
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if index == number_of_items: return 0 lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 lowerCAmelCase : Dict = knapsack(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, index + 1 ) if weights[index] <= max_weight: lowerCAmelCase : List[str] = values[index] + knapsack( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, max_weight - weights[index], index + 1 ) return max(_UpperCAmelCase, _UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) lowerCAmelCase : int = 0 lowerCAmelCase : str = str(_UpperCAmelCase ) while len(_UpperCAmelCase ) != 1: lowerCAmelCase : List[Any] = [int(_UpperCAmelCase ) for i in num_string] lowerCAmelCase : int = 1 for i in range(0, len(_UpperCAmelCase ) ): total *= numbers[i] lowerCAmelCase : Optional[Any] = str(_UpperCAmelCase ) steps += 1 return steps def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : str = str(_UpperCAmelCase ) while len(_UpperCAmelCase ) != 1: lowerCAmelCase : Optional[Any] = [int(_UpperCAmelCase ) for i in num_string] lowerCAmelCase : Dict = 0 for i in range(0, len(_UpperCAmelCase ) ): total += numbers[i] lowerCAmelCase : List[str] = str(_UpperCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
323
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = jnp.ones((batch_size, length) ) / length return scores def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = None lowerCAmelCase : Union[str, Any] = 20 lowerCAmelCase : int = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase_ ) # tweak scores to not be uniform anymore lowerCAmelCase : Optional[int] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCAmelCase : Union[str, Any] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCAmelCase : Optional[Any] = jax.nn.softmax(UpperCAmelCase_ , axis=-1 ) lowerCAmelCase : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase : Dict = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCAmelCase : List[Any] = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase_ , scores.copy() , cur_len=UpperCAmelCase_ ) , axis=-1 ) lowerCAmelCase : Dict = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase_ , scores.copy() , cur_len=UpperCAmelCase_ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Any = None lowerCAmelCase : List[str] = 10 lowerCAmelCase : int = 2 # create ramp distribution lowerCAmelCase : Any = np.broadcast_to(np.arange(UpperCAmelCase_ )[None, :] , (batch_size, vocab_size) ).copy() lowerCAmelCase : int = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCAmelCase : Optional[int] = FlaxTopKLogitsWarper(3 ) lowerCAmelCase : Any = top_k_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCAmelCase : Tuple = 5 lowerCAmelCase : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCAmelCase : Tuple = np.broadcast_to(np.arange(UpperCAmelCase_ )[None, :] , (batch_size, length) ).copy() lowerCAmelCase : Dict = top_k_warp_safety_check(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = 10 lowerCAmelCase : Optional[int] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCAmelCase : Optional[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCAmelCase : Any = FlaxTopPLogitsWarper(0.8 ) lowerCAmelCase : Optional[int] = np.exp(top_p_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCAmelCase : Tuple = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCAmelCase : Dict = np.broadcast_to(np.arange(UpperCAmelCase_ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCAmelCase : Optional[Any] = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept lowerCAmelCase : List[str] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCAmelCase : Dict = top_p_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : int = 20 lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase_ ) # check that min length is applied at length 5 lowerCAmelCase : List[Any] = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCAmelCase : Tuple = 5 lowerCAmelCase : str = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = min_dist_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 lowerCAmelCase : Tuple = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[str] = 15 lowerCAmelCase : Any = min_dist_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertFalse(jnp.isinf(UpperCAmelCase_ ).any() ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Union[str, Any] = 20 lowerCAmelCase : Optional[int] = 4 lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase_ ) # check that all scores are -inf except the bos_token_id score lowerCAmelCase : str = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Any = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : str = logits_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCAmelCase : Optional[Any] = 3 lowerCAmelCase : str = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = logits_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertFalse(jnp.isinf(UpperCAmelCase_ ).any() ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : int = 20 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Dict = 0 lowerCAmelCase : List[Any] = 5 lowerCAmelCase : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCAmelCase : Union[str, Any] = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCAmelCase : Any = 4 lowerCAmelCase : int = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[str] = logits_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCAmelCase : str = 3 lowerCAmelCase : int = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = logits_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertFalse(jnp.isinf(UpperCAmelCase_ ).any() ) def lowercase__ ( self : List[str] ): lowerCAmelCase : List[str] = 4 lowerCAmelCase : int = 10 lowerCAmelCase : int = 15 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Optional[Any] = 1 lowerCAmelCase : Optional[Any] = 15 # dummy input_ids and scores lowerCAmelCase : Tuple = ids_tensor((batch_size, sequence_length) , UpperCAmelCase_ ) lowerCAmelCase : Tuple = input_ids.copy() lowerCAmelCase : Optional[int] = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = scores.copy() # instantiate all dist processors lowerCAmelCase : int = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase : str = FlaxTopKLogitsWarper(3 ) lowerCAmelCase : List[str] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase_ ) lowerCAmelCase : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 10 # no processor list lowerCAmelCase : List[str] = temp_dist_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCAmelCase : int = top_k_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = top_p_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = min_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = bos_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = eos_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # with processor list lowerCAmelCase : Optional[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase : Union[str, Any] = processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = 4 lowerCAmelCase : List[Any] = 10 lowerCAmelCase : List[Any] = 15 lowerCAmelCase : Union[str, Any] = 2 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[str] = 15 # dummy input_ids and scores lowerCAmelCase : Optional[Any] = ids_tensor((batch_size, sequence_length) , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = input_ids.copy() lowerCAmelCase : Tuple = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = scores.copy() # instantiate all dist processors lowerCAmelCase : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase : List[str] = FlaxTopKLogitsWarper(3 ) lowerCAmelCase : List[str] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase_ ) lowerCAmelCase : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) lowerCAmelCase : str = 10 # no processor list def run_no_processor_list(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ): lowerCAmelCase : Optional[Any] = temp_dist_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCAmelCase : Any = top_k_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = top_p_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCAmelCase : List[str] = min_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCAmelCase : str = bos_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCAmelCase : str = eos_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) return scores # with processor list def run_processor_list(UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Any = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase : Any = processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) return scores lowerCAmelCase : Tuple = jax.jit(UpperCAmelCase_ ) lowerCAmelCase : Tuple = jax.jit(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = jitted_run_no_processor_list(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Any = jitted_run_processor_list(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
323
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
1
import mpmath # for roots of unity import numpy as np class __A : def __init__( self : Optional[int] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : str=None ): # Input as list lowerCAmelCase : str = list(poly_a or [0] )[:] lowerCAmelCase : Dict = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowerCAmelCase : Union[str, Any] = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowerCAmelCase : Optional[Any] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowerCAmelCase : Tuple = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowerCAmelCase : List[str] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowerCAmelCase : Optional[Any] = self.__multiply() def lowercase__ ( self : str , UpperCAmelCase_ : Tuple ): lowerCAmelCase : Dict = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase_ ) <= 1: return dft[0] # lowerCAmelCase : Dict = self.c_max_length // 2 while next_ncol > 0: lowerCAmelCase : Tuple = [[] for i in range(UpperCAmelCase_ )] lowerCAmelCase : List[str] = self.root**next_ncol # First half of next step lowerCAmelCase : Any = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowerCAmelCase : str = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowerCAmelCase : List[str] = new_dft lowerCAmelCase : int = next_ncol // 2 return dft[0] def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.__dft('A' ) lowerCAmelCase : Any = self.__dft('B' ) lowerCAmelCase : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowerCAmelCase : Optional[Any] = 2 while next_ncol <= self.c_max_length: lowerCAmelCase : Optional[Any] = [[] for i in range(UpperCAmelCase_ )] lowerCAmelCase : int = self.root ** (next_ncol // 2) lowerCAmelCase : str = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowerCAmelCase : List[str] = new_inverse_c next_ncol *= 2 # Unpack lowerCAmelCase : int = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Optional[int] ): lowerCAmelCase : str = 'A = ' + ' + '.join( f"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowerCAmelCase : List[str] = 'B = ' + ' + '.join( f"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowerCAmelCase : List[str] = 'A*B = ' + ' + '.join( f"{coef}*x^{i}" for coef, i in enumerate(self.product ) ) return f"{a}\n{b}\n{c}" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
323
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
1
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : List[Any] = prime_factors(_UpperCAmelCase ) if is_square_free(_UpperCAmelCase ): return -1 if len(_UpperCAmelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
323
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
1
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('xlm-roberta-base' ) lowerCAmelCase : int = 'The dog is cute and lives in the garden house' lowerCAmelCase : List[str] = jnp.array([tokenizer.encode(UpperCAmelCase_ )] ) lowerCAmelCase : List[str] = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase : str = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) lowerCAmelCase : str = model(UpperCAmelCase_ )['last_hidden_state'] self.assertEqual(output.shape , UpperCAmelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1E-3 ) )
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A : str = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = XGLMTokenizer lowerCAmelCase_ : str = XGLMTokenizerFast lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Tuple = True def lowercase__ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : str = XGLMTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : str = '<pad>' lowerCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase_ ) , 1008 ) def lowercase__ ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Any = XGLMTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) lowerCAmelCase : str = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase : str = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase : int = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ): return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def lowercase__ ( self : Optional[Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCAmelCase_ , f.name ) lowerCAmelCase : Dict = XGLMTokenizer(f.name , keep_accents=UpperCAmelCase_ ) lowerCAmelCase : Dict = pickle.dumps(UpperCAmelCase_ ) pickle.loads(UpperCAmelCase_ ) def lowercase__ ( self : Any ): if not self.test_rust_tokenizer: return lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : Any = self.get_rust_tokenizer() lowerCAmelCase : str = 'I was born in 92000, and this is falsé.' lowerCAmelCase : str = tokenizer.tokenize(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : Dict = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase : str = tokenizer.encode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def lowercase__ ( self : int ): lowerCAmelCase : str = 'Hello World!' lowerCAmelCase : Any = [2, 31227, 4447, 35] self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def lowercase__ ( self : str ): lowerCAmelCase : int = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowerCAmelCase : List[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def lowercase__ ( self : Any ): # fmt: off lowerCAmelCase : Dict = { 'input_ids': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='facebook/xglm-564M' , padding=UpperCAmelCase_ , )
323
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
1
from math import ceil def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 1_001 ) -> int: '''simple docstring''' lowerCAmelCase : Optional[Any] = 1 for i in range(1, int(ceil(n / 2.0 ) ) ): lowerCAmelCase : str = 2 * i + 1 lowerCAmelCase : str = 2 * i lowerCAmelCase : Tuple = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __A : int = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
323
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
1
__A : Tuple = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
323
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : List[str]=36 , UpperCAmelCase_ : Union[str, Any]=6 , UpperCAmelCase_ : Union[str, Any]=6 , UpperCAmelCase_ : List[str]=6 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : str=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : Optional[int] = seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : Tuple = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : str = vocab_size lowerCAmelCase : Optional[int] = embedding_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : str = num_hidden_groups lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = type_sequence_label_size lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = num_labels lowerCAmelCase : Any = num_choices lowerCAmelCase : Dict = scope def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Dict = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : str = None if self.use_token_type_ids: lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Dict = None lowerCAmelCase : Any = None lowerCAmelCase : List[str] = None if self.use_labels: lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Union[str, Any] ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowercase__ ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ): lowerCAmelCase : str = AlbertModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Any = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Dict = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ): lowerCAmelCase : str = AlbertForPreTraining(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Optional[Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , sentence_order_label=UpperCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[Any] = AlbertForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Union[str, Any] = AlbertForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : str = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : int = AlbertForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Tuple = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : int = self.num_labels lowerCAmelCase : List[str] = AlbertForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : List[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Dict = AlbertForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Dict = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Dict = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ : int = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : int = True def lowercase__ ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]=False ): lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if model_class in get_values(UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) return inputs_dict def lowercase__ ( self : int ): lowerCAmelCase : Any = AlbertModelTester(self ) lowerCAmelCase : Any = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : Any ): self.config_tester.run_common_tests() def lowercase__ ( self : int ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : Union[str, Any] = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) @slow def lowercase__ ( self : int ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = AlbertModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_torch class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Dict ): lowerCAmelCase : List[Any] = AlbertModel.from_pretrained('albert-base-v2' ) lowerCAmelCase : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCAmelCase : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase : Dict = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] lowerCAmelCase : str = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase_ ) lowerCAmelCase : Dict = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
323
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : Union[str, Any] = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class __A ( lowerCAmelCase ): lowerCAmelCase_ : List[Any] = "canine" def __init__( self : Tuple , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : str=3072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Dict=16384 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Tuple=1E-12 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : List[str]=0xe_000 , UpperCAmelCase_ : Dict=0xe_001 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : List[Any]=8 , UpperCAmelCase_ : List[Any]=16384 , UpperCAmelCase_ : Optional[int]=128 , **UpperCAmelCase_ : List[Any] , ): super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Any = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Any = type_vocab_size lowerCAmelCase : Tuple = layer_norm_eps # Character config: lowerCAmelCase : int = downsampling_rate lowerCAmelCase : Optional[int] = upsampling_kernel_size lowerCAmelCase : Optional[Any] = num_hash_functions lowerCAmelCase : Dict = num_hash_buckets lowerCAmelCase : Any = local_transformer_stride
323
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : Any = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } __A : List[Any] = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } __A : Any = '''</w>''' __A : Union[str, Any] = '''@@ ''' def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Any = set() lowerCAmelCase : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length __A : str = {'''facebook/s2t-wav2vec2-large-en-de''': 1024} class __A ( lowerCAmelCase ): lowerCAmelCase_ : int = VOCAB_FILES_NAMES lowerCAmelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]="<s>" , UpperCAmelCase_ : int="<pad>" , UpperCAmelCase_ : List[str]="</s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__( unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCAmelCase : Tuple = do_lower_case with open(UpperCAmelCase_ , encoding='utf-8' ) as vocab_handle: lowerCAmelCase : List[str] = json.load(UpperCAmelCase_ ) lowerCAmelCase : Dict = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"No merges files provided. {self.__class__.__name__} can only be used for decoding." ) lowerCAmelCase : str = None lowerCAmelCase : Tuple = None else: with open(UpperCAmelCase_ , encoding='utf-8' ) as merges_handle: lowerCAmelCase : Tuple = merges_handle.read().split('\n' )[:-1] lowerCAmelCase : Dict = [tuple(merge.split()[:2] ) for merge in merges] lowerCAmelCase : List[Any] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[int] = {} @property def lowercase__ ( self : str ): return len(self.decoder ) def lowercase__ ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Any = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowerCAmelCase : int = get_pairs(UpperCAmelCase_ ) if not pairs: return token while True: lowerCAmelCase : List[str] = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : self.bpe_ranks.get(UpperCAmelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase , lowerCAmelCase : Optional[Any] = bigram lowerCAmelCase : List[str] = [] lowerCAmelCase : Tuple = 0 while i < len(UpperCAmelCase_ ): try: lowerCAmelCase : List[str] = word.index(UpperCAmelCase_ , UpperCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase : Dict = j if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase : Optional[Any] = tuple(UpperCAmelCase_ ) lowerCAmelCase : Tuple = new_word if len(UpperCAmelCase_ ) == 1: break else: lowerCAmelCase : Dict = get_pairs(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = ' '.join(UpperCAmelCase_ ) if word == "\n " + BPE_TOKEN_MERGES: lowerCAmelCase : Dict = '\n' + BPE_TOKEN_MERGES if word.endswith(UpperCAmelCase_ ): lowerCAmelCase : Optional[int] = word.replace(UpperCAmelCase_ , '' ) lowerCAmelCase : Tuple = word.replace(' ' , UpperCAmelCase_ ) lowerCAmelCase : Dict = word return word def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : str ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: lowerCAmelCase : Optional[Any] = text.lower() lowerCAmelCase : Optional[Any] = text.split() lowerCAmelCase : Optional[int] = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCAmelCase_ ).split(' ' ) ) ) return split_tokens def lowercase__ ( self : List[str] , UpperCAmelCase_ : str ): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Any , UpperCAmelCase_ : int ): lowerCAmelCase : Union[str, Any] = self.decoder.get(UpperCAmelCase_ , self.unk_token ) return result def lowercase__ ( self : int , UpperCAmelCase_ : List[str] ): lowerCAmelCase : List[Any] = ' '.join(UpperCAmelCase_ ) # make sure @@ tokens are concatenated lowerCAmelCase : int = ''.join(string.split(UpperCAmelCase_ ) ) return string def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : int = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) + '\n' ) lowerCAmelCase : Union[str, Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) lowerCAmelCase : List[str] = token_index writer.write(' '.join(UpperCAmelCase_ ) + '\n' ) index += 1 return (vocab_file, merges_file)
323
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __A : @staticmethod def lowercase__ ( *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple ): pass def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Union[str, Any] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __A ( unittest.TestCase ): lowerCAmelCase_ : List[Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : List[Any] = DepthEstimationPipeline(model=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : str ): lowerCAmelCase : List[str] = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , UpperCAmelCase_ ) import datasets lowerCAmelCase : str = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowerCAmelCase : Union[str, Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , UpperCAmelCase_ , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def lowercase__ ( self : str ): pass @slow @require_torch def lowercase__ ( self : List[Any] ): lowerCAmelCase : Union[str, Any] = 'Intel/dpt-large' lowerCAmelCase : List[str] = pipeline('depth-estimation' , model=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowerCAmelCase : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.3_04 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.6_62 ) @require_torch def lowercase__ ( self : Union[str, Any] ): # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
323
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : str = 384 lowerCAmelCase : List[Any] = 7 if "tiny" in model_name: lowerCAmelCase : List[Any] = 96 lowerCAmelCase : Any = (2, 2, 6, 2) lowerCAmelCase : Dict = (3, 6, 12, 24) elif "small" in model_name: lowerCAmelCase : Union[str, Any] = 96 lowerCAmelCase : Dict = (2, 2, 18, 2) lowerCAmelCase : Any = (3, 6, 12, 24) elif "base" in model_name: lowerCAmelCase : Optional[int] = 128 lowerCAmelCase : str = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (4, 8, 16, 32) lowerCAmelCase : Optional[Any] = 12 lowerCAmelCase : int = 512 elif "large" in model_name: lowerCAmelCase : Optional[int] = 192 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Optional[Any] = (6, 12, 24, 48) lowerCAmelCase : Tuple = 12 lowerCAmelCase : Union[str, Any] = 768 # set label information lowerCAmelCase : int = 150 lowerCAmelCase : int = 'huggingface/label-files' lowerCAmelCase : Tuple = 'ade20k-id2label.json' lowerCAmelCase : Tuple = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase, repo_type='dataset' ), 'r' ) ) lowerCAmelCase : Union[str, Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : Any = {v: k for k, v in idalabel.items()} lowerCAmelCase : Optional[Any] = SwinConfig( embed_dim=_UpperCAmelCase, depths=_UpperCAmelCase, num_heads=_UpperCAmelCase, window_size=_UpperCAmelCase, out_features=['stage1', 'stage2', 'stage3', 'stage4'], ) lowerCAmelCase : str = UperNetConfig( backbone_config=_UpperCAmelCase, auxiliary_in_channels=_UpperCAmelCase, num_labels=_UpperCAmelCase, idalabel=_UpperCAmelCase, labelaid=_UpperCAmelCase, ) return config def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Dict = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.stages.{i}.downsample.reduction.weight", f"backbone.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.weight", f"backbone.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.bias", f"backbone.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Union[str, Any] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCAmelCase : Dict = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCAmelCase : str = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight" ) lowerCAmelCase : List[str] = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : List[Any] = in_proj_weight[:dim, :] lowerCAmelCase : List[str] = in_proj_bias[: dim] lowerCAmelCase : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] lowerCAmelCase : Optional[Any] = in_proj_bias[ dim : dim * 2 ] lowerCAmelCase : Optional[int] = in_proj_weight[ -dim :, : ] lowerCAmelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase : List[Any] = x.shape lowerCAmelCase : Dict = x.reshape(_UpperCAmelCase, 4, in_channel // 4 ) lowerCAmelCase : int = x[:, [0, 2, 1, 3], :].transpose(1, 2 ).reshape(_UpperCAmelCase, _UpperCAmelCase ) return x def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Tuple = x.shape lowerCAmelCase : Optional[int] = x.reshape(_UpperCAmelCase, in_channel // 4, 4 ) lowerCAmelCase : Any = x[:, :, [0, 2, 1, 3]].transpose(1, 2 ).reshape(_UpperCAmelCase, _UpperCAmelCase ) return x def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Any = x.shape[0] lowerCAmelCase : Tuple = x.reshape(4, in_channel // 4 ) lowerCAmelCase : Optional[int] = x[[0, 2, 1, 3], :].transpose(0, 1 ).reshape(_UpperCAmelCase ) return x def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Optional[int] = x.shape[0] lowerCAmelCase : Dict = x.reshape(in_channel // 4, 4 ) lowerCAmelCase : Any = x[:, [0, 2, 1, 3]].transpose(0, 1 ).reshape(_UpperCAmelCase ) return x def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[Any] = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } lowerCAmelCase : Optional[Any] = model_name_to_url[model_name] lowerCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu', file_name=_UpperCAmelCase )[ 'state_dict' ] for name, param in state_dict.items(): print(_UpperCAmelCase, param.shape ) lowerCAmelCase : Optional[Any] = get_upernet_config(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = UperNetForSemanticSegmentation(_UpperCAmelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = state_dict.pop(_UpperCAmelCase ) if "bn" in key: lowerCAmelCase : Any = key.replace('bn', 'batch_norm' ) lowerCAmelCase : List[Any] = val # rename keys lowerCAmelCase : List[str] = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowerCAmelCase : str = reverse_correct_unfold_reduction_order(_UpperCAmelCase ) if "norm" in key: lowerCAmelCase : Optional[Any] = reverse_correct_unfold_norm_order(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) # verify on image lowerCAmelCase : Optional[int] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' lowerCAmelCase : int = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase : int = SegformerImageProcessor() lowerCAmelCase : str = processor(_UpperCAmelCase, return_tensors='pt' ).pixel_values with torch.no_grad(): lowerCAmelCase : List[Any] = model(_UpperCAmelCase ) lowerCAmelCase : List[Any] = outputs.logits print(logits.shape ) print('First values of logits:', logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowerCAmelCase : Dict = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": lowerCAmelCase : Tuple = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": lowerCAmelCase : List[Any] = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": lowerCAmelCase : Dict = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print('Logits:', outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], _UpperCAmelCase, atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print(f"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(f"openmmlab/{model_name}" ) processor.push_to_hub(f"openmmlab/{model_name}" ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[F'upernet-swin-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A : Tuple = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
323
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[str] = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
__A : str = '''Tobias Carryer''' from time import time class __A : def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=int(time() ) ): # noqa: B008 lowerCAmelCase : Optional[int] = multiplier lowerCAmelCase : Dict = increment lowerCAmelCase : Optional[Any] = modulo lowerCAmelCase : Optional[int] = seed def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[str] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __A : Optional[Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
323
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __A : Optional[Any] = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' lowerCAmelCase : Any = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path', type=_UpperCAmelCase, default='data/dump.txt', help='The path to the data.' ) parser.add_argument('--tokenizer_type', type=_UpperCAmelCase, default='bert', choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name', type=_UpperCAmelCase, default='bert-base-uncased', help='The tokenizer to use.' ) parser.add_argument('--dump_file', type=_UpperCAmelCase, default='data/dump', help='The dump file prefix.' ) lowerCAmelCase : List[str] = parser.parse_args() logger.info(f"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": lowerCAmelCase : int = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase : Tuple = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase : List[str] = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase : List[str] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase : int = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase : List[str] = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase : Any = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase : List[Any] = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(f"Loading text from {args.file_path}" ) with open(args.file_path, 'r', encoding='utf8' ) as fp: lowerCAmelCase : Union[str, Any] = fp.readlines() logger.info('Start encoding' ) logger.info(f"{len(_UpperCAmelCase )} examples to process." ) lowerCAmelCase : List[str] = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : Union[str, Any] = 10_000 lowerCAmelCase : Dict = time.time() for text in data: lowerCAmelCase : Dict = f"{bos} {text.strip()} {sep}" lowerCAmelCase : Optional[int] = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase : List[str] = time.time() logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) lowerCAmelCase : int = time.time() logger.info('Finished binarization' ) logger.info(f"{len(_UpperCAmelCase )} examples processed." ) lowerCAmelCase : str = f"{args.dump_file}.{args.tokenizer_name}.pickle" lowerCAmelCase : Optional[int] = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase : Dict = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase : Tuple = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"Dump to {dp_file}" ) with open(_UpperCAmelCase, 'wb' ) as handle: pickle.dump(rslt_, _UpperCAmelCase, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
323
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
1
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __A ( lowerCAmelCase ): def __init__( self : List[str] , UpperCAmelCase_ : NestedDataStructureLike[PathLike] , UpperCAmelCase_ : Optional[NamedSplit] = None , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Any , ): super().__init__( UpperCAmelCase_ , split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , num_proc=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCAmelCase : str = path_or_paths if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else {self.split: path_or_paths} lowerCAmelCase : str = Text( cache_dir=UpperCAmelCase_ , data_files=UpperCAmelCase_ , features=UpperCAmelCase_ , **UpperCAmelCase_ , ) def lowercase__ ( self : str ): # Build iterable dataset if self.streaming: lowerCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCAmelCase : Tuple = None lowerCAmelCase : Dict = None lowerCAmelCase : List[Any] = None lowerCAmelCase : List[Any] = None self.builder.download_and_prepare( download_config=UpperCAmelCase_ , download_mode=UpperCAmelCase_ , verification_mode=UpperCAmelCase_ , base_path=UpperCAmelCase_ , num_proc=self.num_proc , ) lowerCAmelCase : int = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase_ , in_memory=self.keep_in_memory ) return dataset
323
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Union[str, Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : int = StableDiffusionLatentUpscalePipeline lowerCAmelCase_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } lowerCAmelCase_ : Optional[int] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} lowerCAmelCase_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase_ : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase_ : Optional[Any] = frozenset([] ) lowerCAmelCase_ : List[Any] = True @property def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 1 lowerCAmelCase : int = 4 lowerCAmelCase : Tuple = (16, 16) lowerCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase_ ) return image def lowercase__ ( self : List[Any] ): torch.manual_seed(0 ) lowerCAmelCase : Tuple = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=UpperCAmelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=UpperCAmelCase_ , only_cross_attention=UpperCAmelCase_ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) lowerCAmelCase : Dict = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) lowerCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type='sample' ) lowerCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='quick_gelu' , projection_dim=512 , ) lowerCAmelCase : Optional[int] = CLIPTextModel(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : int = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=0 ): if str(UpperCAmelCase_ ).startswith('mps' ): lowerCAmelCase : Dict = torch.manual_seed(UpperCAmelCase_ ) else: lowerCAmelCase : int = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowercase__ ( self : str ): lowerCAmelCase : Tuple = 'cpu' lowerCAmelCase : List[Any] = self.get_dummy_components() lowerCAmelCase : Optional[int] = self.pipeline_class(**UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(UpperCAmelCase_ ) lowerCAmelCase : int = pipe(**UpperCAmelCase_ ).images lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) lowerCAmelCase : Any = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) lowerCAmelCase : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase_ , 1E-3 ) def lowercase__ ( self : int ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowercase__ ( self : Any ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowercase__ ( self : Optional[Any] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowercase__ ( self : Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowercase__ ( self : str ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowercase__ ( self : Optional[Any] ): super().test_save_load_local(expected_max_difference=3E-3 ) def lowercase__ ( self : Any ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] lowerCAmelCase : Dict = self.get_dummy_components() lowerCAmelCase : List[Any] = self.pipeline_class(**UpperCAmelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.get_dummy_inputs(UpperCAmelCase_ ) lowerCAmelCase : int = 2 lowerCAmelCase : Any = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowerCAmelCase : Any = getattr(UpperCAmelCase_ , scheduler_enum.name ) lowerCAmelCase : Optional[Any] = scheduler_cls.from_config(pipe.scheduler.config ) lowerCAmelCase : List[Any] = pipe(**UpperCAmelCase_ )[0] outputs.append(UpperCAmelCase_ ) assert check_same_shape(UpperCAmelCase_ ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ): lowerCAmelCase : str = torch.manual_seed(33 ) lowerCAmelCase : str = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCAmelCase : Dict = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) lowerCAmelCase : List[Any] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' lowerCAmelCase : Dict = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type='latent' ).images lowerCAmelCase : Tuple = upscaler( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase_ , output_type='np' , ).images[0] lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowercase__ ( self : Tuple ): lowerCAmelCase : int = torch.manual_seed(33 ) lowerCAmelCase : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) lowerCAmelCase : List[str] = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' lowerCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) lowerCAmelCase : Optional[int] = upscaler( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase_ , output_type='np' , ).images[0] lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __A : List[str] = logging.get_logger(__name__) __A : Tuple = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase : int = model_type_to_module_name(_UpperCAmelCase ) lowerCAmelCase : Any = importlib.import_module(f".{module_name}", 'transformers.models' ) try: return getattr(_UpperCAmelCase, _UpperCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase, '__name__', _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase : List[Any] = importlib.import_module('transformers' ) if hasattr(_UpperCAmelCase, _UpperCAmelCase ): return getattr(_UpperCAmelCase, _UpperCAmelCase ) return None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, **_UpperCAmelCase, ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = get_file_from_repo( _UpperCAmelCase, _UpperCAmelCase, cache_dir=_UpperCAmelCase, force_download=_UpperCAmelCase, resume_download=_UpperCAmelCase, proxies=_UpperCAmelCase, use_auth_token=_UpperCAmelCase, revision=_UpperCAmelCase, local_files_only=_UpperCAmelCase, ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_UpperCAmelCase, encoding='utf-8' ) as reader: return json.load(_UpperCAmelCase ) class __A : def __init__( self : Tuple ): raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(UpperCAmelCase_ ) def lowercase__ ( cls : Any , UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = kwargs.pop('config' , UpperCAmelCase_ ) lowerCAmelCase : int = kwargs.pop('trust_remote_code' , UpperCAmelCase_ ) lowerCAmelCase : int = True lowerCAmelCase , lowerCAmelCase : str = FeatureExtractionMixin.get_feature_extractor_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = config_dict.get('feature_extractor_type' , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): lowerCAmelCase : List[str] = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : str = AutoConfig.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) # It could be in `config.feature_extractor_type`` lowerCAmelCase : Any = getattr(UpperCAmelCase_ , 'feature_extractor_type' , UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: lowerCAmelCase : Optional[int] = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: lowerCAmelCase : Optional[int] = feature_extractor_class_from_name(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = feature_extractor_auto_map is not None lowerCAmelCase : Dict = feature_extractor_class is not None or type(UpperCAmelCase_ ) in FEATURE_EXTRACTOR_MAPPING lowerCAmelCase : Dict = resolve_trust_remote_code( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if has_remote_code and trust_remote_code: lowerCAmelCase : Any = get_class_from_dynamic_module( UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = kwargs.pop('code_revision' , UpperCAmelCase_ ) if os.path.isdir(UpperCAmelCase_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(UpperCAmelCase_ ) in FEATURE_EXTRACTOR_MAPPING: lowerCAmelCase : Union[str, Any] = FEATURE_EXTRACTOR_MAPPING[type(UpperCAmelCase_ )] return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) raise ValueError( f"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " f"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}" ) @staticmethod def lowercase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ): FEATURE_EXTRACTOR_MAPPING.register(UpperCAmelCase_ , UpperCAmelCase_ )
323
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=[] ) -> List[Any]: '''simple docstring''' lowerCAmelCase : str = size[0] - overlap_pixels * 2 lowerCAmelCase : str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowerCAmelCase : List[str] = np.ones((size_y, size_x), dtype=np.uinta ) * 255 lowerCAmelCase : Any = np.pad(_UpperCAmelCase, mode='linear_ramp', pad_width=_UpperCAmelCase, end_values=0 ) if "l" in remove_borders: lowerCAmelCase : List[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowerCAmelCase : Optional[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowerCAmelCase : int = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowerCAmelCase : Any = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return max(_UpperCAmelCase, min(_UpperCAmelCase, _UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' return ( clamp(rect[0], min[0], max[0] ), clamp(rect[1], min[1], max[1] ), clamp(rect[2], min[0], max[0] ), clamp(rect[3], min[1], max[1] ), ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Optional[Any] = list(_UpperCAmelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowerCAmelCase : Optional[Any] = clamp_rect(_UpperCAmelCase, [0, 0], [image_size[0], image_size[1]] ) return rect def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Tuple = Image.new('RGB', (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]), Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ), (0, 0), ) result.paste(_UpperCAmelCase, (original_slice, 0) ) return result def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : List[str] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowerCAmelCase : Optional[int] = tile.crop(_UpperCAmelCase ) return tile def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[Any] = n % d return n - divisor class __A ( lowerCAmelCase ): def __init__( self : List[str] , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : DDPMScheduler , UpperCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase_ : int = 350 , ): super().__init__( vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , low_res_scheduler=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , max_noise_level=UpperCAmelCase_ , ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str] ): torch.manual_seed(0 ) lowerCAmelCase : List[Any] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) lowerCAmelCase : Tuple = add_overlap_rect(UpperCAmelCase_ , UpperCAmelCase_ , image.size ) lowerCAmelCase : Optional[Any] = image.crop(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowerCAmelCase : Tuple = translated_slice_x - (original_image_slice / 2) lowerCAmelCase : int = max(0 , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = squeeze_tile(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = to_input.size lowerCAmelCase : Tuple = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) lowerCAmelCase : int = super(UpperCAmelCase_ , self ).__call__(image=UpperCAmelCase_ , **UpperCAmelCase_ ).images[0] lowerCAmelCase : Union[str, Any] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) lowerCAmelCase : str = unsqueeze_tile(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) lowerCAmelCase : str = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) lowerCAmelCase : str = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase_ ) , mode='L' , ) final_image.paste( UpperCAmelCase_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase_ ) @torch.no_grad() def __call__( self : Any , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase_ : int = 75 , UpperCAmelCase_ : float = 9.0 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 128 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 32 , ): lowerCAmelCase : int = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) lowerCAmelCase : Optional[Any] = math.ceil(image.size[0] / tile_size ) lowerCAmelCase : Union[str, Any] = math.ceil(image.size[1] / tile_size ) lowerCAmelCase : Union[str, Any] = tcx * tcy lowerCAmelCase : Union[str, Any] = 0 for y in range(UpperCAmelCase_ ): for x in range(UpperCAmelCase_ ): self._process_tile( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , prompt=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , noise_level=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[Any] = 'stabilityai/stable-diffusion-x4-upscaler' lowerCAmelCase : Union[str, Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(_UpperCAmelCase, revision='fp16', torch_dtype=torch.floataa ) lowerCAmelCase : str = pipe.to('cuda' ) lowerCAmelCase : List[str] = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(_UpperCAmelCase ): print(f"progress: {obj['progress']:.4f}" ) obj["image"].save('diffusers_library_progress.jpg' ) lowerCAmelCase : Union[str, Any] = pipe(image=_UpperCAmelCase, prompt='Black font, white background, vector', noise_level=40, callback=_UpperCAmelCase ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
323
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
1
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
from __future__ import annotations from scipy.special import comb # type: ignore class __A : def __init__( self : int , UpperCAmelCase_ : list[tuple[float, float]] ): lowerCAmelCase : List[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowerCAmelCase : Union[str, Any] = len(__a ) - 1 def lowercase__ ( self : str , UpperCAmelCase_ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCAmelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __a ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__a ) , 5 ) == 1 return output_values def lowercase__ ( self : List[Any] , UpperCAmelCase_ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCAmelCase : List[Any] = self.basis_function(__a ) lowerCAmelCase : List[Any] = 0.0 lowerCAmelCase : List[Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowercase__ ( self : Any , UpperCAmelCase_ : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore lowerCAmelCase : list[float] = [] # x coordinates of points to plot lowerCAmelCase : list[float] = [] # y coordinates of points to plot lowerCAmelCase : Dict = 0.0 while t <= 1: lowerCAmelCase : Optional[Any] = self.bezier_curve_function(__a ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowerCAmelCase : List[Any] = [i[0] for i in self.list_of_points] lowerCAmelCase : Optional[int] = [i[1] for i in self.list_of_points] plt.plot( __a , __a , color='blue' , label='Curve of Degree ' + str(self.degree ) , ) plt.scatter(__a , __a , color='red' , label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
350
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Tuple = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase : int = state_dict.pop(lowercase__ ) lowerCAmelCase : Tuple = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase : Dict = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCAmelCase : Optional[Any] = key.replace('backbone.0.body', 'backbone.conv_encoder.model' ) lowerCAmelCase : Dict = value else: lowerCAmelCase : Optional[Any] = value return new_state_dict def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ): '''simple docstring''' lowerCAmelCase : str = """""" if is_panoptic: lowerCAmelCase : Optional[int] = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase : Tuple = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) lowerCAmelCase : Tuple = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : int = in_proj_weight[:256, :] lowerCAmelCase : int = in_proj_bias[:256] lowerCAmelCase : int = in_proj_weight[256:512, :] lowerCAmelCase : Any = in_proj_bias[256:512] lowerCAmelCase : Dict = in_proj_weight[-256:, :] lowerCAmelCase : Any = in_proj_bias[-256:] def SCREAMING_SNAKE_CASE__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase : Dict = Image.open(requests.get(lowercase__, stream=lowercase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase : Tuple = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowerCAmelCase : Dict = """resnet101""" if "dc5" in model_name: lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : int = """panoptic""" in model_name if is_panoptic: lowerCAmelCase : int = 250 else: lowerCAmelCase : Any = 91 lowerCAmelCase : Any = """huggingface/label-files""" lowerCAmelCase : Any = """coco-detection-id2label.json""" lowerCAmelCase : Optional[Any] = json.load(open(hf_hub_download(lowercase__, lowercase__, repo_type='dataset' ), 'r' ) ) lowerCAmelCase : List[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase : Optional[Any] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} # load image processor lowerCAmelCase : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" lowerCAmelCase : Optional[int] = ConditionalDetrImageProcessor(format=lowercase__ ) # prepare image lowerCAmelCase : Dict = prepare_img() lowerCAmelCase : Union[str, Any] = image_processor(images=lowercase__, return_tensors='pt' ) lowerCAmelCase : List[str] = encoding["""pixel_values"""] logger.info(f"Converting model {model_name}..." ) # load original model from torch hub lowerCAmelCase : Optional[int] = torch.hub.load('DeppMeng/ConditionalDETR', lowercase__, pretrained=lowercase__ ).eval() lowerCAmelCase : Optional[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowerCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(lowercase__, lowercase__, lowercase__ ) lowerCAmelCase : List[str] = rename_backbone_keys(lowercase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase__, is_panoptic=lowercase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): lowerCAmelCase : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase : Any = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCAmelCase : Dict = state_dict.pop(lowercase__ ) lowerCAmelCase : Optional[int] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: lowerCAmelCase : Optional[Any] = state_dict.pop(lowercase__ ) lowerCAmelCase : Optional[int] = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): lowerCAmelCase : str = state_dict.pop(lowercase__ ) lowerCAmelCase : Tuple = val # finally, create HuggingFace model and load state dict lowerCAmelCase : Optional[int] = ConditionalDetrForSegmentation(lowercase__ ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() model.push_to_hub(repo_id=lowercase__, organization='DepuMeng', commit_message='Add model' ) # verify our conversion lowerCAmelCase : int = conditional_detr(lowercase__ ) lowerCAmelCase : str = model(lowercase__ ) assert torch.allclose(outputs.logits, original_outputs['pred_logits'], atol=1e-4 ) assert torch.allclose(outputs.pred_boxes, original_outputs['pred_boxes'], atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs['pred_masks'], atol=1e-4 ) # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __A : Union[str, Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
351
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __A : List[Any] = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) __A : Tuple = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) __A : List[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) __A : Optional[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) __A : Optional[int] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) __A : List[str] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) __A : Optional[int] = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def SCREAMING_SNAKE_CASE__ ( ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = randrange(len(__UpperCAmelCase ) ), randrange(len(__UpperCAmelCase ) ) lowerCAmelCase : Optional[int] = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowerCAmelCase : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> Dict: '''simple docstring''' return (generate_random_hand() for _ in range(__UpperCAmelCase )) @pytest.mark.parametrize('hand, expected', __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected', __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values', __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Tuple = PokerHand(__UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected', __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected', __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected', __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert PokerHand(__UpperCAmelCase ).compare_with(PokerHand(__UpperCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected', generate_random_hands() ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' assert PokerHand(__UpperCAmelCase ).compare_with(PokerHand(__UpperCAmelCase ) ) == expected def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase : Union[str, Any] = [PokerHand(__UpperCAmelCase ) for hand in SORTED_HANDS] lowerCAmelCase : Any = poker_hands.copy() shuffle(__UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = chain(sorted(__UpperCAmelCase ) ) for index, hand in enumerate(__UpperCAmelCase ): assert hand == poker_hands[index] def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase : str = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase : Any = PokerHand('2C 4S AS 3D 5C' ) lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = os.path.abspath(os.path.dirname(__UpperCAmelCase ) ) lowerCAmelCase : List[str] = os.path.join(__UpperCAmelCase, 'poker_hands.txt' ) with open(__UpperCAmelCase ) as file_hand: for line in file_hand: lowerCAmelCase : Union[str, Any] = line[:14].strip() lowerCAmelCase : Optional[int] = line[15:].strip() lowerCAmelCase : List[Any] = PokerHand(__UpperCAmelCase ), PokerHand(__UpperCAmelCase ) lowerCAmelCase : List[str] = player.compare_with(__UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 376
352
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
0
from collections import deque class __A : def __init__( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): lowerCAmelCase : Dict = process_name # process name lowerCAmelCase : Optional[int] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCAmelCase : Optional[int] = arrival_time lowerCAmelCase : Tuple = burst_time # remaining burst time lowerCAmelCase : List[Any] = 0 # total time of the process wait in ready queue lowerCAmelCase : Dict = 0 # time from arrival time to completion time class __A : def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : deque[Process] , UpperCAmelCase_ : int , ): # total number of mlfq's queues lowerCAmelCase : str = number_of_queues # time slice of queues that round robin algorithm applied lowerCAmelCase : Union[str, Any] = time_slices # unfinished process is in this ready_queue lowerCAmelCase : str = queue # current time lowerCAmelCase : int = current_time # finished process is in this sequence queue lowerCAmelCase : str = deque() def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowercase__ ( self : int , UpperCAmelCase_ : list[Process] ): lowerCAmelCase : List[Any] = [] for i in range(len(__snake_case ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : list[Process] ): lowerCAmelCase : Any = [] for i in range(len(__snake_case ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : list[Process] ): lowerCAmelCase : int = [] for i in range(len(__snake_case ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : deque[Process] ): return [q.burst_time for q in queue] def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : deque[Process] ): lowerCAmelCase : Any = deque() # sequence deque of finished process while len(__snake_case ) != 0: lowerCAmelCase : Union[str, Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__snake_case ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCAmelCase : Union[str, Any] = 0 # set the process's turnaround time because it is finished lowerCAmelCase : Tuple = self.current_time - cp.arrival_time # set the completion time lowerCAmelCase : str = self.current_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowercase__ ( self : List[str] , UpperCAmelCase_ : deque[Process] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[Any] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__snake_case ) ): lowerCAmelCase : List[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__snake_case ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCAmelCase : Dict = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__snake_case ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCAmelCase : Dict = 0 # set the finish time lowerCAmelCase : Any = self.current_time # update the process' turnaround time because it is finished lowerCAmelCase : List[Any] = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowercase__ ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCAmelCase , lowerCAmelCase : int = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __A : Dict = Process('''P1''', 0, 53) __A : Any = Process('''P2''', 0, 17) __A : Union[str, Any] = Process('''P3''', 0, 68) __A : List[str] = Process('''P4''', 0, 24) __A : str = 3 __A : str = [17, 25] __A : Any = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) __A : str = Process('''P1''', 0, 53) __A : int = Process('''P2''', 0, 17) __A : Optional[Any] = Process('''P3''', 0, 68) __A : List[Any] = Process('''P4''', 0, 24) __A : Union[str, Any] = 3 __A : str = [17, 25] __A : List[str] = deque([Pa, Pa, Pa, Pa]) __A : str = MLFQ(number_of_queues, time_slices, queue, 0) __A : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\\n \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\\n \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\\n \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\\n {mlfq.calculate_sequence_of_finish_queue()}' )
353
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=99 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Dict=5 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Dict=36 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Dict=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : List[Any]=None , ): lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : Dict = batch_size lowerCAmelCase : str = seq_length lowerCAmelCase : Any = is_training lowerCAmelCase : List[Any] = use_input_mask lowerCAmelCase : Union[str, Any] = use_token_type_ids lowerCAmelCase : Optional[int] = use_labels lowerCAmelCase : Any = vocab_size lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : int = num_labels lowerCAmelCase : Optional[Any] = num_choices lowerCAmelCase : Union[str, Any] = scope def lowercase__ ( self : str ): lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : List[Any] = None if self.use_token_type_ids: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[Any] = None lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : str ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def lowercase__ ( self : Any ): lowerCAmelCase : List[Any] = self.get_config() lowerCAmelCase : str = 300 return config def lowercase__ ( self : Dict ): ( lowerCAmelCase ) : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase : List[str] = True lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase__ ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict ): lowerCAmelCase : List[str] = MraModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) lowerCAmelCase : Any = model(_lowerCamelCase , token_type_ids=_lowerCamelCase ) lowerCAmelCase : Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ): lowerCAmelCase : Dict = True lowerCAmelCase : str = MraModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase : Union[str, Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , ) lowerCAmelCase : str = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , ) lowerCAmelCase : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ): lowerCAmelCase : List[Any] = MraForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase : Optional[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[int] = MraForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase : List[str] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[Any] = self.num_labels lowerCAmelCase : Any = MraForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : int = self.num_labels lowerCAmelCase : Optional[int] = MraForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase : Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Union[str, Any] = self.num_choices lowerCAmelCase : str = MraForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Any = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( lowerCAmelCase ) : Optional[Any] = config_and_inputs lowerCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( a__ , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : List[str] = () def lowercase__ ( self : str ): lowerCAmelCase : List[str] = MraModelTester(self ) lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : str ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def lowercase__ ( self : int ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[Any] = MraModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase__ ( self : Union[str, Any] ): return @require_torch class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) lowerCAmelCase : int = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowerCAmelCase : List[str] = model(_lowerCamelCase )[0] lowerCAmelCase : List[str] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) lowerCAmelCase : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) ) @slow def lowercase__ ( self : Tuple ): lowerCAmelCase : Dict = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) lowerCAmelCase : int = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowerCAmelCase : Tuple = model(_lowerCamelCase )[0] lowerCAmelCase : List[str] = 50265 lowerCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCamelCase ) lowerCAmelCase : Optional[int] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) ) @slow def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : int = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) lowerCAmelCase : Optional[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): lowerCAmelCase : str = model(_lowerCamelCase )[0] lowerCAmelCase : Dict = 50265 lowerCAmelCase : Any = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , _lowerCamelCase ) lowerCAmelCase : List[Any] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) )
354
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from functools import lru_cache @lru_cache def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
355
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : str = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
0
__A : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } __A : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: lowerCAmelCase : Optional[Any] = ( f"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n" f"Valid values are: {', '.join(__A )}" ) raise ValueError(__A ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to], 3 ) if __name__ == "__main__": import doctest doctest.testmod()
357
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected', [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(lowerCamelCase_, i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0, 4 ), range(4, 7 ), range(7, 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0, 1 ), range(1, 2 ), range(2, 3 )]), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : List[Any] = _distribute_shards(**lowerCamelCase_ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected', [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Tuple = _split_gen_kwargs(lowerCamelCase_, lowerCamelCase_ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected', [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if expected is RuntimeError: with pytest.raises(lowerCamelCase_ ): _number_of_shards_in_gen_kwargs(lowerCamelCase_ ) else: lowerCAmelCase : Dict = _number_of_shards_in_gen_kwargs(lowerCamelCase_ ) assert out == expected
358
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
0
"""simple docstring""" class __A : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any ): lowerCAmelCase : Tuple = len(__lowercase ) lowerCAmelCase : List[Any] = [0] * len_array if len_array > 0: lowerCAmelCase : Tuple = array[0] for i in range(1 , __lowercase ): lowerCAmelCase : List[str] = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Union[str, Any] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__lowercase ) return False if __name__ == "__main__": import doctest doctest.testmod()
359
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __A ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Union[str, Any]=30 , UpperCAmelCase_ : int=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Union[str, Any]=0.9 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=[0.5, 0.5, 0.5] , UpperCAmelCase_ : int=[0.5, 0.5, 0.5] , ): lowerCAmelCase : Dict = size if size is not None else {"shortest_edge": 30} lowerCAmelCase : str = crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCAmelCase : Dict = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : int = max_resolution lowerCAmelCase : Union[str, Any] = do_resize_and_center_crop lowerCAmelCase : List[str] = size lowerCAmelCase : str = crop_pct lowerCAmelCase : Dict = crop_size lowerCAmelCase : List[Any] = do_normalize lowerCAmelCase : List[Any] = image_mean lowerCAmelCase : Union[str, Any] = image_std def lowercase__ ( self : str ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __A ( A_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ : Tuple = PoolFormerImageProcessor if is_vision_available() else None def lowercase__ ( self : Tuple ): lowerCAmelCase : List[Any] = PoolFormerImageProcessingTester(self ) @property def lowercase__ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(snake_case__ , 'size' ) ) self.assertTrue(hasattr(snake_case__ , 'crop_pct' ) ) self.assertTrue(hasattr(snake_case__ , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case__ , 'image_mean' ) ) self.assertTrue(hasattr(snake_case__ , 'image_std' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) lowerCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : Union[str, Any] ): pass def lowercase__ ( self : int ): lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Union[str, Any] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Tuple = image_processing(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Any = image_processing(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
360
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = False ) -> str: '''simple docstring''' if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ): lowerCAmelCase : Tuple = f"Expected string as input, found {type(lowerCAmelCase__ )}" raise ValueError(lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ): lowerCAmelCase : List[str] = f"Expected boolean as use_pascal parameter, found {type(lowerCAmelCase__ )}" raise ValueError(lowerCAmelCase__ ) lowerCAmelCase : Optional[int] = input_str.split('_' ) lowerCAmelCase : List[Any] = 0 if use_pascal else 1 lowerCAmelCase : List[Any] = words[start_index:] lowerCAmelCase : str = [word[0].upper() + word[1:] for word in words_to_capitalize] lowerCAmelCase : Optional[Any] = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
361
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : str = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A ( lowerCAmelCase ): lowerCAmelCase_ : str = "speech_to_text_2" lowerCAmelCase_ : List[Any] = ["past_key_values"] lowerCAmelCase_ : Any = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , UpperCAmelCase_ : Union[str, Any]=10000 , UpperCAmelCase_ : int=6 , UpperCAmelCase_ : str=2048 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any="relu" , UpperCAmelCase_ : Tuple=256 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Dict=1024 , **UpperCAmelCase_ : Optional[int] , ): lowerCAmelCase : Any = vocab_size lowerCAmelCase : Optional[Any] = d_model lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : Tuple = decoder_layers lowerCAmelCase : str = decoder_attention_heads lowerCAmelCase : Dict = dropout lowerCAmelCase : Union[str, Any] = attention_dropout lowerCAmelCase : Any = activation_dropout lowerCAmelCase : Optional[Any] = activation_function lowerCAmelCase : Dict = init_std lowerCAmelCase : Union[str, Any] = decoder_layerdrop lowerCAmelCase : Any = use_cache lowerCAmelCase : Dict = decoder_layers lowerCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase : Optional[int] = max_target_positions super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , )
362
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __A : str = Mapping[str, np.ndarray] __A : Dict = Mapping[str, Any] # Is a nested dict. __A : str = 0.01 @dataclasses.dataclass(frozen=__lowercase ) class __A : lowerCAmelCase_ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase_ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase_ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase_ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase_ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase_ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase_ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase_ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCAmelCase_ : Optional[Sequence[int]] = None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Protein: '''simple docstring''' lowerCAmelCase : List[str] = R"""(\[[A-Z]+\]\n)""" lowerCAmelCase : List[str] = [tag.strip() for tag in re.split(_lowerCamelCase, _lowerCamelCase ) if len(_lowerCamelCase ) > 0] lowerCAmelCase : Iterator[Tuple[str, List[str]]] = zip(tags[0::2], [l.split('\n' ) for l in tags[1::2]] ) lowerCAmelCase : List[str] = ["N", "CA", "C"] lowerCAmelCase : Dict = None lowerCAmelCase : Any = None lowerCAmelCase : Optional[int] = None for g in groups: if "[PRIMARY]" == g[0]: lowerCAmelCase : Union[str, Any] = g[1][0].strip() for i in range(len(_lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: lowerCAmelCase : Any = """X""" # FIXME: strings are immutable lowerCAmelCase : int = np.array( [residue_constants.restype_order.get(_lowerCamelCase, residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowerCAmelCase : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_lowerCamelCase, g[1][axis].split() ) ) ) lowerCAmelCase : int = np.array(_lowerCamelCase ) lowerCAmelCase : Optional[int] = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_lowerCamelCase ): lowerCAmelCase : Union[str, Any] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowerCAmelCase : List[Any] = np.array(list(map({'-': 0, '+': 1}.get, g[1][0].strip() ) ) ) lowerCAmelCase : Tuple = np.zeros( ( len(_lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_lowerCamelCase ): lowerCAmelCase : List[str] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_lowerCamelCase, atom_mask=_lowerCamelCase, aatype=_lowerCamelCase, residue_index=np.arange(len(_lowerCamelCase ) ), b_factors=_lowerCamelCase, ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = 0 ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = [] lowerCAmelCase : Optional[int] = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) lowerCAmelCase : List[str] = prot.parents lowerCAmelCase : List[str] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowerCAmelCase : str = [p for i, p in zip(_lowerCamelCase, _lowerCamelCase ) if i == chain_id] if parents is None or len(_lowerCamelCase ) == 0: lowerCAmelCase : Optional[int] = ["""N/A"""] pdb_headers.append(f"PARENT {' '.join(_lowerCamelCase )}" ) return pdb_headers def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : List[str] = [] lowerCAmelCase : Dict = pdb_str.split('\n' ) lowerCAmelCase : Dict = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) lowerCAmelCase : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: lowerCAmelCase : Dict = [] if prot.parents_chain_index is not None: lowerCAmelCase : Dict[str, List[str]] = {} for p, i in zip(prot.parents, prot.parents_chain_index ): parent_dict.setdefault(str(_lowerCamelCase ), [] ) parent_dict[str(_lowerCamelCase )].append(_lowerCamelCase ) lowerCAmelCase : Optional[Any] = max([int(_lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowerCAmelCase : Any = parent_dict.get(str(_lowerCamelCase ), ['N/A'] ) parents_per_chain.append(_lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: lowerCAmelCase : str = [["""N/A"""]] def make_parent_line(_UpperCAmelCase ) -> str: return f"PARENT {' '.join(_lowerCamelCase )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowerCAmelCase : str = 0 for i, l in enumerate(_lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_lowerCamelCase ): lowerCAmelCase : Any = parents_per_chain[chain_counter] else: lowerCAmelCase : Any = ["""N/A"""] out_pdb_lines.append(make_parent_line(_lowerCamelCase ) ) return "\n".join(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Tuple = residue_constants.restypes + ["""X"""] def res_atoa(_UpperCAmelCase ) -> str: return residue_constants.restype_atoa.get(restypes[r], 'UNK' ) lowerCAmelCase : int = residue_constants.atom_types lowerCAmelCase : List[str] = [] lowerCAmelCase : str = prot.atom_mask lowerCAmelCase : int = prot.aatype lowerCAmelCase : Optional[Any] = prot.atom_positions lowerCAmelCase : int = prot.residue_index.astype(np.intaa ) lowerCAmelCase : List[str] = prot.b_factors lowerCAmelCase : str = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) lowerCAmelCase : List[Any] = get_pdb_headers(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: pdb_lines.extend(_lowerCamelCase ) lowerCAmelCase : Any = aatype.shape[0] lowerCAmelCase : str = 1 lowerCAmelCase : Any = 0 lowerCAmelCase : List[Any] = string.ascii_uppercase lowerCAmelCase : Union[str, Any] = None # Add all atom sites. for i in range(_lowerCamelCase ): lowerCAmelCase : Optional[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_lowerCamelCase, atom_positions[i], atom_mask[i], b_factors[i] ): if mask < 0.5: continue lowerCAmelCase : List[str] = """ATOM""" lowerCAmelCase : Dict = atom_name if len(_lowerCamelCase ) == 4 else f" {atom_name}" lowerCAmelCase : int = """""" lowerCAmelCase : List[Any] = """""" lowerCAmelCase : Optional[Any] = 1.0_0 lowerCAmelCase : str = atom_name[0] # Protein supports only C, N, O, S, this works. lowerCAmelCase : Tuple = """""" lowerCAmelCase : List[str] = """A""" if chain_index is not None: lowerCAmelCase : Union[str, Any] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowerCAmelCase : Optional[Any] = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(_lowerCamelCase ) atom_index += 1 lowerCAmelCase : str = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowerCAmelCase : int = True lowerCAmelCase : List[Any] = chain_index[i + 1] if should_terminate: # Close the chain. lowerCAmelCase : Optional[Any] = """TER""" lowerCAmelCase : Optional[Any] = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(_lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_lowerCamelCase, _lowerCamelCase ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, ) -> Protein: '''simple docstring''' return Protein( aatype=features['aatype'], atom_positions=result['final_atom_positions'], atom_mask=result['final_atom_mask'], residue_index=features['residue_index'] + 1, b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ), chain_index=_lowerCamelCase, remark=_lowerCamelCase, parents=_lowerCamelCase, parents_chain_index=_lowerCamelCase, )
363
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __A : List[str] = logging.get_logger(__name__) __A : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __A : int = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __A : Tuple = { '''RUCAIBox/mvp''': 1024, } class __A ( a_ ): lowerCAmelCase_ : Dict = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[str] = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ : List[str] = MvpTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : str="replace" , UpperCAmelCase_ : Optional[Any]="<s>" , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : Any="<s>" , UpperCAmelCase_ : Optional[Any]="<unk>" , UpperCAmelCase_ : Union[str, Any]="<pad>" , UpperCAmelCase_ : Dict="<mask>" , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : int=True , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ , **lowercase_ , ) lowerCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: lowerCAmelCase : List[str] = getattr(lowercase_ , pre_tok_state.pop('type' ) ) lowerCAmelCase : str = add_prefix_space lowerCAmelCase : List[str] = pre_tok_class(**lowercase_ ) lowerCAmelCase : Union[str, Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase : Tuple = 'post_processor' lowerCAmelCase : str = getattr(self.backend_tokenizer , lowercase_ , lowercase_ ) if tokenizer_component_instance: lowerCAmelCase : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase : Dict = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase : int = tuple(state['cls'] ) lowerCAmelCase : Union[str, Any] = False if state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: lowerCAmelCase : Union[str, Any] = add_prefix_space lowerCAmelCase : List[str] = True if state.get('trim_offsets' , lowercase_ ) != trim_offsets: lowerCAmelCase : Tuple = trim_offsets lowerCAmelCase : int = True if changes_to_apply: lowerCAmelCase : int = getattr(lowercase_ , state.pop('type' ) ) lowerCAmelCase : Optional[int] = component_class(**lowercase_ ) setattr(self.backend_tokenizer , lowercase_ , lowercase_ ) @property def lowercase__ ( self : str ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : List[Any] , UpperCAmelCase_ : str ): lowerCAmelCase : str = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else value lowerCAmelCase : List[Any] = value def lowercase__ ( self : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[str] ): lowerCAmelCase : List[str] = kwargs.get('is_split_into_words' , lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_ , **lowercase_ ) def lowercase__ ( self : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Any = kwargs.get('is_split_into_words' , lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_ , **lowercase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] = None ): lowerCAmelCase : List[Any] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str]=None ): lowerCAmelCase : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] = None ): lowerCAmelCase : Any = [self.sep_token_id] lowerCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
364
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def lowercase__ ( self : int ): debug_launcher(test_script.main ) def lowercase__ ( self : Dict ): debug_launcher(test_ops.main )
365
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Optional[int] = set() lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n + 1 # maximum limit for a in range(2, lowerCAmelCase__ ): for b in range(2, lowerCAmelCase__ ): lowerCAmelCase : Tuple = a**b # calculates the current power collect_powers.add(lowerCAmelCase__ ) # adds the result to the set return len(lowerCAmelCase__ ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
366
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
0
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __A ( lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ['''image_processor'''] lowerCAmelCase_ : int = '''SamImageProcessor''' def __init__( self : Optional[int] , UpperCAmelCase_ : List[str] ): super().__init__(lowerCAmelCase__ ) lowerCAmelCase : Tuple = self.image_processor lowerCAmelCase : Any = -10 lowerCAmelCase : Dict = self.image_processor.size["longest_edge"] def __call__( self : Any , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : List[str] , ): lowerCAmelCase : Union[str, Any] = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # pop arguments that are not used in the foward but used nevertheless lowerCAmelCase : Optional[int] = encoding_image_processor["original_sizes"] if hasattr(lowerCAmelCase__ , 'numpy' ): # Checks if Torch or TF tensor lowerCAmelCase : List[Any] = original_sizes.numpy() lowerCAmelCase : Union[str, Any] = self._check_and_preprocess_points( input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , ) lowerCAmelCase : Union[str, Any] = self._normalize_and_convert( lowerCAmelCase__ , lowerCAmelCase__ , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , ) return encoding_image_processor def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]="pt" , ): if input_points is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): lowerCAmelCase : str = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] ) for point in input_points ] else: lowerCAmelCase : Tuple = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ ) for point, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: lowerCAmelCase : Optional[Any] = self._pad_points_and_labels(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase : int = np.array(lowerCAmelCase__ ) if input_labels is not None: lowerCAmelCase : Union[str, Any] = np.array(lowerCAmelCase__ ) if input_boxes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): lowerCAmelCase : Dict = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] , is_bounding_box=lowerCAmelCase__ ) for box in input_boxes ] else: lowerCAmelCase : Dict = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ , is_bounding_box=lowerCAmelCase__ ) for box, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] lowerCAmelCase : Tuple = np.array(lowerCAmelCase__ ) if input_boxes is not None: if return_tensors == "pt": lowerCAmelCase : Optional[int] = torch.from_numpy(lowerCAmelCase__ ) # boxes batch size of 1 by default lowerCAmelCase : int = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": lowerCAmelCase : Optional[int] = tf.convert_to_tensor(lowerCAmelCase__ ) # boxes batch size of 1 by default lowerCAmelCase : Union[str, Any] = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": lowerCAmelCase : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ) # point batch size of 1 by default lowerCAmelCase : str = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": lowerCAmelCase : Optional[int] = tf.convert_to_tensor(lowerCAmelCase__ ) # point batch size of 1 by default lowerCAmelCase : int = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": lowerCAmelCase : Dict = torch.from_numpy(lowerCAmelCase__ ) # point batch size of 1 by default lowerCAmelCase : List[str] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": lowerCAmelCase : Any = tf.convert_to_tensor(lowerCAmelCase__ ) # point batch size of 1 by default lowerCAmelCase : Optional[Any] = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def lowercase__ ( self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ): lowerCAmelCase : Optional[Any] = max([point.shape[0] for point in input_points] ) lowerCAmelCase : List[str] = [] for i, point in enumerate(lowerCAmelCase__ ): if point.shape[0] != expected_nb_points: lowerCAmelCase : Any = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) lowerCAmelCase : Dict = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(lowerCAmelCase__ ) lowerCAmelCase : List[str] = processed_input_points return input_points, input_labels def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=False ): lowerCAmelCase : List[Any] = original_size lowerCAmelCase : int = self.image_processor._get_preprocess_shape(lowerCAmelCase__ , longest_edge=lowerCAmelCase__ ) lowerCAmelCase : Optional[int] = deepcopy(lowerCAmelCase__ ).astype(lowerCAmelCase__ ) if is_bounding_box: lowerCAmelCase : List[Any] = coords.reshape(-1 , 2 , 2 ) lowerCAmelCase : Optional[Any] = coords[..., 0] * (new_w / old_w) lowerCAmelCase : List[str] = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCAmelCase : Any = coords.reshape(-1 , 4 ) return coords def lowercase__ ( self : List[Any] , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , ): if input_points is not None: if hasattr(lowerCAmelCase__ , 'numpy' ): # Checks for TF or Torch tensor lowerCAmelCase : Tuple = input_points.numpy().tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_points[0] , lowerCAmelCase__ ): raise ValueError('Input points must be a list of list of floating points.' ) lowerCAmelCase : List[Any] = [np.array(lowerCAmelCase__ ) for input_point in input_points] else: lowerCAmelCase : Union[str, Any] = None if input_labels is not None: if hasattr(lowerCAmelCase__ , 'numpy' ): lowerCAmelCase : Dict = input_labels.numpy().tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_labels[0] , lowerCAmelCase__ ): raise ValueError('Input labels must be a list of list integers.' ) lowerCAmelCase : str = [np.array(lowerCAmelCase__ ) for label in input_labels] else: lowerCAmelCase : str = None if input_boxes is not None: if hasattr(lowerCAmelCase__ , 'numpy' ): lowerCAmelCase : Union[str, Any] = input_boxes.numpy().tolist() if ( not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_boxes[0] , lowerCAmelCase__ ) or not isinstance(input_boxes[0][0] , lowerCAmelCase__ ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) lowerCAmelCase : List[str] = [np.array(lowerCAmelCase__ ).astype(np.floataa ) for box in input_boxes] else: lowerCAmelCase : str = None return input_points, input_labels, input_boxes @property def lowercase__ ( self : Any ): lowerCAmelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(lowerCAmelCase__ ) ) def lowercase__ ( self : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ): return self.image_processor.post_process_masks(*lowerCAmelCase__ , **lowerCAmelCase__ )
367
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
0
import random from typing import Any def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list[Any]: '''simple docstring''' for _ in range(len(_UpperCamelCase ) ): lowerCAmelCase : int = random.randint(0, len(_UpperCamelCase ) - 1 ) lowerCAmelCase : int = random.randint(0, len(_UpperCamelCase ) - 1 ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": __A : List[Any] = [0, 1, 2, 3, 4, 5, 6, 7] __A : Optional[int] = ['python', 'says', 'hello', '!'] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict', [ SplitDict(), SplitDict({'train': SplitInfo(name='train', num_bytes=1_337, num_examples=42, dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train', num_bytes=1_337, num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Union[str, Any] = split_dict._to_yaml_list() assert len(a__ ) == len(a__ ) lowerCAmelCase : Optional[int] = SplitDict._from_yaml_list(a__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase : Optional[int] = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase : Union[str, Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info', [SplitInfo(), SplitInfo(dataset_name=a__ ), SplitInfo(dataset_name='my_dataset' )] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : List[str] = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
369
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
0
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __A : Dict = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') __A : Optional[Any] = F'https://www.google.com/search?q={query}&num=100' __A : List[Any] = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: __A : Any = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: __A : Tuple = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
370
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __A : Tuple = False, False, False @dataclass class __A : lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : int = True lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : List[Any] = None # Automatically constructed lowerCAmelCase_ : int = "dict" lowerCAmelCase_ : Any = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowerCAmelCase_ : Optional[Any] = field(default="Audio" , init=_UpperCAmelCase , repr=_UpperCAmelCase ) def __call__( self : List[Any] ): return self.pa_type def lowercase__ ( self : int , UpperCAmelCase_ : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(lowercase_ , lowercase_ ): return {"bytes": None, "path": value} elif isinstance(lowercase_ , lowercase_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCAmelCase : List[str] = BytesIO() sf.write(lowercase_ , value['array'] , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCAmelCase : int = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: lowerCAmelCase : Tuple = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 32767 lowerCAmelCase : Tuple = BytesIO(bytes() ) sf.write(lowercase_ , lowercase_ , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( f"An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}." ) def lowercase__ ( self : Any , UpperCAmelCase_ : dict , UpperCAmelCase_ : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) lowerCAmelCase : str = (value["""path"""], BytesIO(value['bytes'] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err lowerCAmelCase : str = xsplitext(lowercase_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ' ) if file is None: lowerCAmelCase : Union[str, Any] = token_per_repo_id or {} lowerCAmelCase : Optional[Any] = path.split('::' )[-1] try: lowerCAmelCase : Optional[int] = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowerCAmelCase : Optional[Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCAmelCase : int = None with xopen(lowercase_ , 'rb' , use_auth_token=lowercase_ ) as f: lowerCAmelCase : Optional[int] = sf.read(lowercase_ ) else: lowerCAmelCase : List[str] = sf.read(lowercase_ ) lowerCAmelCase : int = array.T if self.mono: lowerCAmelCase : List[Any] = librosa.to_mono(lowercase_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCAmelCase : Any = librosa.resample(lowercase_ , orig_sr=lowercase_ , target_sr=self.sampling_rate ) lowerCAmelCase : List[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowercase__ ( self : Optional[Any] ): from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): lowerCAmelCase : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowerCAmelCase : List[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCAmelCase : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowerCAmelCase : Dict = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): lowerCAmelCase : Optional[Any] = pa.array([Audio().encode_example(lowercase_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: lowerCAmelCase : Optional[int] = storage.field('bytes' ) else: lowerCAmelCase : int = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: lowerCAmelCase : Any = storage.field('path' ) else: lowerCAmelCase : List[str] = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowerCAmelCase : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowercase__ ( self : Dict , UpperCAmelCase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase_ : str ): with xopen(lowercase_ , 'rb' ) as f: lowerCAmelCase : Optional[Any] = f.read() return bytes_ lowerCAmelCase : Any = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) lowerCAmelCase : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type )
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __A : str = parse(importlib.metadata.version('''torch''')) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}" ) lowerCAmelCase : Any = STR_OPERATION_TO_FUNC[operation] if isinstance(__a, __a ): lowerCAmelCase : Optional[int] = parse(importlib.metadata.version(__a ) ) return operation(__a, parse(__a ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' return compare_versions(__a, __a, __a )
350
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
0
import logging import os from .state import PartialState class __A ( logging.LoggerAdapter ): @staticmethod def lowercase__ ( UpperCAmelCase_ : List[str] ): lowerCAmelCase : Any = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int] ): if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) lowerCAmelCase : Dict = kwargs.pop('main_process_only' , lowercase_ ) lowerCAmelCase : Optional[Any] = kwargs.pop('in_order' , lowercase_ ) if self.isEnabledFor(lowercase_ ): if self._should_log(lowercase_ ): lowerCAmelCase : str = self.process(lowercase_ , lowercase_ ) self.logger.log(lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ) elif in_order: lowerCAmelCase : int = PartialState() for i in range(state.num_processes ): if i == state.process_index: lowerCAmelCase : Dict = self.process(lowercase_ , lowercase_ ) self.logger.log(lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ) state.wait_for_everyone() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' if log_level is None: lowerCAmelCase : str = os.environ.get('ACCELERATE_LOG_LEVEL', __lowerCamelCase ) lowerCAmelCase : Dict = logging.getLogger(__lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__lowerCamelCase, {} )
351
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> bool: '''simple docstring''' lowerCAmelCase : Optional[int] = len(_snake_case ) + 1 lowerCAmelCase : Optional[int] = len(_snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowerCAmelCase : Tuple = [[0 for i in range(_snake_case )] for j in range(_snake_case )] # since string of zero length match pattern of zero length lowerCAmelCase : Tuple = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1, _snake_case ): lowerCAmelCase : List[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1, _snake_case ): lowerCAmelCase : Optional[int] = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1, _snake_case ): for j in range(1, _snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowerCAmelCase : List[str] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowerCAmelCase : Union[str, Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowerCAmelCase : str = dp[i - 1][j] else: lowerCAmelCase : str = 0 else: lowerCAmelCase : Tuple = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __A : Any = """aab""" __A : str = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'{input_string} matches the given pattern {pattern}') else: print(F'{input_string} does not match with the given pattern {pattern}')
352
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[str] = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
353
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __A : Any = 637_8137.0 __A : str = 635_6752.31_4245 __A : List[str] = 637_8137 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : int = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowerCAmelCase : Optional[int] = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) lowerCAmelCase : Union[str, Any] = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowerCAmelCase : str = haversine_distance(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowerCAmelCase : int = (b_lata + b_lata) / 2 lowerCAmelCase : Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowerCAmelCase : Dict = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) lowerCAmelCase : Dict = cos(sigma / 2 ) ** 2 lowerCAmelCase : List[Any] = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowerCAmelCase : Optional[Any] = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) lowerCAmelCase : Optional[Any] = sin(sigma / 2 ) ** 2 lowerCAmelCase : str = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
354
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __A : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class __A : lowerCAmelCase_ : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) lowerCAmelCase_ : Optional[str] = field( default=_UpperCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase_ : Optional[str] = field( default=_UpperCAmelCase , metadata={"help": "The column name of the images in the files."} ) lowerCAmelCase_ : Optional[str] = field(default=_UpperCAmelCase , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase_ : Optional[str] = field(default=_UpperCAmelCase , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase_ : Optional[float] = field( default=0.1_5 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase_ : Optional[int] = field( default=_UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase_ : Optional[int] = field( default=_UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase__ ( self : str ): lowerCAmelCase : List[str] = {} if self.train_dir is not None: lowerCAmelCase : List[str] = self.train_dir if self.validation_dir is not None: lowerCAmelCase : int = self.validation_dir lowerCAmelCase : List[Any] = data_files if data_files else None @dataclass class __A : lowerCAmelCase_ : str = field( default=_UpperCAmelCase , metadata={ "help": ( "The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch." ) } , ) lowerCAmelCase_ : Optional[str] = field( default=_UpperCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) lowerCAmelCase_ : Optional[str] = field( default=_UpperCAmelCase , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) lowerCAmelCase_ : Optional[str] = field( default=_UpperCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase_ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase_ : str = field(default=_UpperCAmelCase , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase_ : bool = field( default=_UpperCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase_ : float = field( default=0.7_5 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) lowerCAmelCase_ : bool = field( default=_UpperCAmelCase , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class __A ( _UpperCAmelCase ): lowerCAmelCase_ : float = field( default=1E-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Any = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae', snake_case_, snake_case_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase : List[Any] = training_args.get_process_log_level() logger.setLevel(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCAmelCase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. lowerCAmelCase : Dict = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, snake_case_ ) and data_args.train_val_split > 0.0: lowerCAmelCase : Any = ds["""train"""].train_test_split(data_args.train_val_split ) lowerCAmelCase : int = split["""train"""] lowerCAmelCase : str = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[Any] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCAmelCase : Tuple = ViTMAEConfig.from_pretrained(model_args.config_name, **snake_case_ ) elif model_args.model_name_or_path: lowerCAmelCase : Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path, **snake_case_ ) else: lowerCAmelCase : Any = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowerCAmelCase : List[str] = ViTImageProcessor.from_pretrained(model_args.image_processor_name, **snake_case_ ) elif model_args.model_name_or_path: lowerCAmelCase : Tuple = ViTImageProcessor.from_pretrained(model_args.model_name_or_path, **snake_case_ ) else: lowerCAmelCase : Optional[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCAmelCase : Union[str, Any] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=snake_case_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) lowerCAmelCase : str = ViTMAEForPreTraining(snake_case_ ) if training_args.do_train: lowerCAmelCase : List[Any] = ds["""train"""].column_names else: lowerCAmelCase : Optional[Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: lowerCAmelCase : List[Any] = data_args.image_column_name elif "image" in column_names: lowerCAmelCase : int = """image""" elif "img" in column_names: lowerCAmelCase : Optional[int] = """img""" else: lowerCAmelCase : List[str] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCAmelCase : Optional[Any] = image_processor.size["""shortest_edge"""] else: lowerCAmelCase : List[str] = (image_processor.size["""height"""], image_processor.size["""width"""]) lowerCAmelCase : List[str] = Compose( [ Lambda(lambda _UpperCAmelCase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(snake_case_, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) def preprocess_images(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = [transforms(snake_case_ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowerCAmelCase : int = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(snake_case_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowerCAmelCase : Union[str, Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(snake_case_ ) # Compute absolute learning rate lowerCAmelCase : List[Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCAmelCase : int = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowerCAmelCase : int = Trainer( model=snake_case_, args=snake_case_, train_dataset=ds['train'] if training_args.do_train else None, eval_dataset=ds['validation'] if training_args.do_eval else None, tokenizer=snake_case_, data_collator=snake_case_, ) # Training if training_args.do_train: lowerCAmelCase : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase : int = last_checkpoint lowerCAmelCase : str = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() trainer.log_metrics('train', train_result.metrics ) trainer.save_metrics('train', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase : str = trainer.evaluate() trainer.log_metrics('eval', snake_case_ ) trainer.save_metrics('eval', snake_case_ ) # Write model card and (optionally) push to hub lowerCAmelCase : List[Any] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' main() if __name__ == "__main__": main()
355
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
0
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 8 ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(lowercase__ ) for _ in range(lowercase__ ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' i -= len(lowercase__ ) lowerCAmelCase : Optional[int] = i // 3 lowerCAmelCase : Tuple = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCAmelCase : str = ( chars_incl + random(lowercase__, quotient + remainder ) + random(lowercase__, lowercase__ ) + random(lowercase__, lowercase__ ) ) lowerCAmelCase : Any = list(lowercase__ ) shuffle(lowercase__ ) return "".join(lowercase__ ) # random is a generalised function for letters, characters and numbers def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' return "".join(secrets.choice(lowercase__ ) for _ in range(lowercase__ ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' pass # Put your code here... def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' pass # Put your code here... def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' pass # Put your code here... def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = 8 ) -> bool: '''simple docstring''' if len(lowercase__ ) < min_length: # Your Password must be at least 8 characters long return False lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) lowerCAmelCase : Optional[Any] = any(char in ascii_lowercase for char in password ) lowerCAmelCase : Tuple = any(char in digits for char in password ) lowerCAmelCase : Optional[Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' lowerCAmelCase : int = int(input('Please indicate the max length of your password: ' ).strip() ) lowerCAmelCase : int = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:', password_generator(lowercase__ ) ) print( 'Alternative Password generated:', alternative_password_generator(lowercase__, lowercase__ ), ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
356
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
0
__A : List[Any] = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
357
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive', [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Dict = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } lowerCAmelCase , lowerCAmelCase : int = input_paths_and_base_extractors[compression_format] if input_path is None: lowerCAmelCase : Union[str, Any] = f"for \'{compression_format}\' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCAmelCase ) assert base_extractor.is_extractable(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(_UpperCAmelCase, _UpperCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowerCAmelCase : int = file_path.read_text(encoding='utf-8' ) else: lowerCAmelCase : Optional[Any] = output_path.read_text(encoding='utf-8' ) lowerCAmelCase : Optional[int] = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive', [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } lowerCAmelCase : str = input_paths[compression_format] if input_path is None: lowerCAmelCase : Optional[int] = f"for \'{compression_format}\' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCAmelCase ) lowerCAmelCase : Tuple = Extractor.infer_extractor_format(_UpperCAmelCase ) assert extractor_format is not None lowerCAmelCase : Optional[Any] = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowerCAmelCase : Tuple = file_path.read_text(encoding='utf-8' ) else: lowerCAmelCase : List[str] = output_path.read_text(encoding='utf-8' ) lowerCAmelCase : Optional[Any] = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' import tarfile lowerCAmelCase : Any = tmp_path / 'data_dot_dot' directory.mkdir() lowerCAmelCase : int = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(_UpperCAmelCase, 'w' ) as f: f.add(_UpperCAmelCase, arcname=os.path.join('..', text_file.name ) ) return path @pytest.fixture def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' import tarfile lowerCAmelCase : Union[str, Any] = tmp_path / 'data_sym_link' directory.mkdir() lowerCAmelCase : int = directory / 'tar_file_with_sym_link.tar' os.symlink('..', directory / 'subdir', target_is_directory=_UpperCAmelCase ) with tarfile.TarFile(_UpperCAmelCase, 'w' ) as f: f.add(str(directory / 'subdir' ), arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log', [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : int = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } lowerCAmelCase : Optional[Any] = insecure_tar_files[insecure_tar_file] lowerCAmelCase : Optional[Any] = tmp_path / 'extracted' TarExtractor.extract(_UpperCAmelCase, _UpperCAmelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Dict = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 lowerCAmelCase : List[Any] = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(_UpperCAmelCase ) assert zipfile.is_zipfile(str(_UpperCAmelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(_UpperCAmelCase ) # but we're right
358
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 1_000 ) -> int: '''simple docstring''' lowerCAmelCase : str = -1 lowerCAmelCase : int = 0 for a in range(1, n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowerCAmelCase : str = (n * n - 2 * a * n) // (2 * n - 2 * a) lowerCAmelCase : str = n - a - b if c * c == (a * a + b * b): lowerCAmelCase : List[str] = a * b * c if candidate >= product: lowerCAmelCase : List[Any] = candidate return product if __name__ == "__main__": print(F'{solution() = }')
359
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowerCAmelCase__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
360
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
0
from math import pow, sqrt def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase ) -> bool: '''simple docstring''' lowerCAmelCase : List[str] = len(a__ ) > 0 and all(value > 0.0 for value in values ) return result def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float | ValueError: '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ), 6 ) if validate(a__, a__ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ), 6 ) if validate(a__, a__, a__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ), 6 ) if validate(a__, a__, a__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float | ValueError: '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a, 2 ), 6 ) if validate(a__, a__, a__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float | ValueError: '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a, 2 ) / molar_mass, 6 ) if validate(a__, a__, a__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
361
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __A : str = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __A : Optional[Any] = logging.getLogger() def SCREAMING_SNAKE_CASE__ ( ): '''simple docstring''' lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCAmelCase : Tuple = parser.parse_args() return args.f def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase="eval" ): '''simple docstring''' lowerCAmelCase : int = os.path.join(lowercase_, f"{split}_results.json" ) if os.path.exists(lowercase_ ): with open(lowercase_, 'r' ) as f: return json.load(lowercase_ ) raise ValueError(f"can\'t find {path}" ) __A : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __A ( __snake_case ): def lowercase__ ( self : List[Any] ): lowerCAmelCase : str = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(UpperCAmelCase_ , 'argv' , UpperCAmelCase_ ): run_flax_glue.main() lowerCAmelCase : Union[str, Any] = get_results(UpperCAmelCase_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(UpperCAmelCase_ , 'argv' , UpperCAmelCase_ ): run_clm_flax.main() lowerCAmelCase : Optional[Any] = get_results(UpperCAmelCase_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : List[str] = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(UpperCAmelCase_ , 'argv' , UpperCAmelCase_ ): run_summarization_flax.main() lowerCAmelCase : int = get_results(UpperCAmelCase_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : int = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(UpperCAmelCase_ , 'argv' , UpperCAmelCase_ ): run_mlm_flax.main() lowerCAmelCase : int = get_results(UpperCAmelCase_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : str = self.get_auto_remove_tmp_dir() lowerCAmelCase : Optional[int] = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(UpperCAmelCase_ , 'argv' , UpperCAmelCase_ ): run_ta_mlm_flax.main() lowerCAmelCase : Dict = get_results(UpperCAmelCase_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def lowercase__ ( self : Optional[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu lowerCAmelCase : List[str] = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Optional[Any] = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(UpperCAmelCase_ , 'argv' , UpperCAmelCase_ ): run_flax_ner.main() lowerCAmelCase : Tuple = get_results(UpperCAmelCase_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def lowercase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Optional[Any] = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(UpperCAmelCase_ , 'argv' , UpperCAmelCase_ ): run_qa.main() lowerCAmelCase : int = get_results(UpperCAmelCase_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
362
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' if n == 1 or not isinstance(UpperCamelCase__, UpperCamelCase__ ): return 0 elif n == 2: return 1 else: lowerCAmelCase : str = [0, 1] for i in range(2, n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 2 while digits < n: index += 1 lowerCAmelCase : List[Any] = len(str(fibonacci(UpperCamelCase__ ) ) ) return index def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 1_000 ) -> Union[str, Any]: '''simple docstring''' return fibonacci_digits_index(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
363
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' if height >= 1: move_tower(height - 1, _a, _a, _a ) move_disk(_a, _a ) move_tower(height - 1, _a, _a, _a ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' print('moving disk from', _a, 'to', _a ) def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase : Any = int(input('Height of hanoi: ' ).strip() ) move_tower(_a, 'A', 'B', 'C' ) if __name__ == "__main__": main()
364
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
0
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase : Dict = SamImageProcessor() lowerCAmelCase : List[str] = SamProcessor(UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Dict , **UpperCAmelCase_ : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor def lowercase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : str = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Dict ): lowerCAmelCase : List[str] = self.get_image_processor() lowerCAmelCase : List[Any] = SamProcessor(image_processor=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = self.prepare_image_inputs() lowerCAmelCase : Any = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = SamProcessor(image_processor=UpperCAmelCase_ ) lowerCAmelCase : Tuple = [torch.ones((1, 3, 5, 5) )] lowerCAmelCase : str = [[1764, 2646]] lowerCAmelCase : Any = [[683, 1024]] lowerCAmelCase : Tuple = processor.post_process_masks(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : int = processor.post_process_masks( UpperCAmelCase_ , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np lowerCAmelCase : List[Any] = [np.ones((1, 3, 5, 5) )] lowerCAmelCase : List[Any] = processor.post_process_masks(UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : Tuple = [[1, 0], [0, 1]] with self.assertRaises(UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = processor.post_process_masks(UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) ) @require_vision @require_tf class __A ( unittest.TestCase ): def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() lowerCAmelCase : Dict = SamImageProcessor() lowerCAmelCase : Union[str, Any] = SamProcessor(UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor def lowercase__ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : List[Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : List[str] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Any ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : List[str] = SamProcessor(image_processor=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = self.prepare_image_inputs() lowerCAmelCase : Any = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : str = processor(images=UpperCAmelCase_ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def lowercase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : str = SamProcessor(image_processor=UpperCAmelCase_ ) lowerCAmelCase : Any = [tf.ones((1, 3, 5, 5) )] lowerCAmelCase : Tuple = [[1764, 2646]] lowerCAmelCase : List[Any] = [[683, 1024]] lowerCAmelCase : str = processor.post_process_masks(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : Union[str, Any] = processor.post_process_masks( UpperCAmelCase_ , tf.convert_to_tensor(UpperCAmelCase_ ) , tf.convert_to_tensor(UpperCAmelCase_ ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np lowerCAmelCase : List[str] = [np.ones((1, 3, 5, 5) )] lowerCAmelCase : List[Any] = processor.post_process_masks( UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : Any = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): lowerCAmelCase : List[Any] = processor.post_process_masks( UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) , return_tensors='tf' ) @require_vision @require_torchvision class __A ( unittest.TestCase ): def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() lowerCAmelCase : Dict = SamImageProcessor() lowerCAmelCase : Optional[Any] = SamProcessor(UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor def lowercase__ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : str ): lowerCAmelCase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Any = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Any = SamProcessor(image_processor=UpperCAmelCase_ ) lowerCAmelCase : int = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) lowerCAmelCase : str = [tf.convert_to_tensor(UpperCAmelCase_ )] lowerCAmelCase : List[Any] = [torch.tensor(UpperCAmelCase_ )] lowerCAmelCase : Optional[Any] = [[1764, 2646]] lowerCAmelCase : Dict = [[683, 1024]] lowerCAmelCase : Optional[Any] = processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='tf' ) lowerCAmelCase : Dict = processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def lowercase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : int = SamProcessor(image_processor=UpperCAmelCase_ ) lowerCAmelCase : Any = self.prepare_image_inputs() lowerCAmelCase : Optional[Any] = image_processor(UpperCAmelCase_ , return_tensors='pt' )["pixel_values"].numpy() lowerCAmelCase : Union[str, Any] = processor(images=UpperCAmelCase_ , return_tensors='pt' )["pixel_values"].numpy() lowerCAmelCase : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='tf' )["pixel_values"].numpy() lowerCAmelCase : Any = processor(images=UpperCAmelCase_ , return_tensors='tf' )["pixel_values"].numpy() self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) )
365
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
0
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Tuple = 1.5 lowerCAmelCase : Union[str, Any] = int(factor * num_class_images ) lowerCAmelCase : Any = ClipClient( url='https://knn.laion.ai/knn-service', indice_name='laion_400m', num_images=SCREAMING_SNAKE_CASE_, aesthetic_weight=0.1 ) os.makedirs(f"{class_data_dir}/images", exist_ok=SCREAMING_SNAKE_CASE_ ) if len(list(Path(f"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: lowerCAmelCase : str = client.query(text=SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) >= factor * num_class_images or num_images > 1e4: break else: lowerCAmelCase : str = int(factor * num_images ) lowerCAmelCase : str = ClipClient( url='https://knn.laion.ai/knn-service', indice_name='laion_400m', num_images=SCREAMING_SNAKE_CASE_, aesthetic_weight=0.1, ) lowerCAmelCase : Tuple = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Optional[int] = tqdm(desc='downloading real regularization images', total=SCREAMING_SNAKE_CASE_ ) with open(f"{class_data_dir}/caption.txt", 'w' ) as fa, open(f"{class_data_dir}/urls.txt", 'w' ) as fa, open( f"{class_data_dir}/images.txt", 'w' ) as fa: while total < num_class_images: lowerCAmelCase : Dict = class_images[count] count += 1 try: lowerCAmelCase : List[str] = requests.get(images['url'] ) if img.status_code == 200: lowerCAmelCase : int = Image.open(BytesIO(img.content ) ) with open(f"{class_data_dir}/images/{total}.jpg", 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(f"{class_data_dir}/images/{total}.jpg" + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: '''simple docstring''' lowerCAmelCase : int = argparse.ArgumentParser('', add_help=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--class_prompt', help='text prompt to retrieve images', required=SCREAMING_SNAKE_CASE_, type=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--class_data_dir', help='path to save images', required=SCREAMING_SNAKE_CASE_, type=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--num_class_images', help='number of images to download', default=200, type=SCREAMING_SNAKE_CASE_ ) return parser.parse_args() if __name__ == "__main__": __A : Optional[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
366
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class __A : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any ): lowerCAmelCase : Any = data lowerCAmelCase : List[Any] = None class __A : def __init__( self : Union[str, Any] ): lowerCAmelCase : Tuple = None lowerCAmelCase : List[Any] = None def __iter__( self : Tuple ): lowerCAmelCase : Any = self.head while self.head: yield node.data lowerCAmelCase : Dict = node.next if node == self.head: break def __len__( self : Optional[int] ): return sum(1 for _ in self ) def __repr__( self : Optional[Any] ): return "->".join(str(__lowerCamelCase ) for item in iter(self ) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : str ): self.insert_nth(len(self ) , __lowerCamelCase ) def lowercase__ ( self : int , UpperCAmelCase_ : Union[str, Any] ): self.insert_nth(0 , __lowerCamelCase ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ): if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) lowerCAmelCase : Any = Node(__lowerCamelCase ) if self.head is None: lowerCAmelCase : Dict = new_node # first node points itself lowerCAmelCase : Dict = new_node elif index == 0: # insert at head lowerCAmelCase : Any = self.head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : str = self.head for _ in range(index - 1 ): lowerCAmelCase : List[str] = temp.next lowerCAmelCase : str = temp.next lowerCAmelCase : Union[str, Any] = new_node if index == len(self ) - 1: # insert at tail lowerCAmelCase : Any = new_node def lowercase__ ( self : Union[str, Any] ): return self.delete_nth(0 ) def lowercase__ ( self : Optional[Any] ): return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self : str , UpperCAmelCase_ : List[str] = 0 ): if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) lowerCAmelCase : List[Any] = self.head if self.head == self.tail: # just one node lowerCAmelCase : List[str] = None elif index == 0: # delete head node lowerCAmelCase : Tuple = self.tail.next.next lowerCAmelCase : Dict = self.head.next else: lowerCAmelCase : Optional[int] = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : str = temp.next lowerCAmelCase : Union[str, Any] = temp.next.next if index == len(self ) - 1: # delete at tail lowerCAmelCase : str = temp return delete_node.data def lowercase__ ( self : Dict ): return len(self ) == 0 def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' lowerCAmelCase : Any = CircularLinkedList() assert len(UpperCamelCase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase__ ) == i circular_linked_list.insert_nth(UpperCamelCase__, i + 1 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1, 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1, 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(0, 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1, 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2, 3 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1, 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
367
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> bool: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> bool: '''simple docstring''' if curr_ind == len(__lowerCamelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0, len(__lowerCamelCase ) ): if valid_connection(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Insert current vertex into path as next transition lowerCAmelCase : Any = next_ver # Validate created path if util_hamilton_cycle(__lowerCamelCase, __lowerCamelCase, curr_ind + 1 ): return True # Backtrack lowerCAmelCase : List[str] = -1 return False def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = 0 ) -> list[int]: '''simple docstring''' lowerCAmelCase : Dict = [-1] * (len(__lowerCamelCase ) + 1) # initialize start and end of path with starting index lowerCAmelCase : Optional[int] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__lowerCamelCase, __lowerCamelCase, 1 ) else []
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : str = "▁" __A : int = {"vocab_file": "spiece.model"} __A : Tuple = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } __A : List[str] = { "google/pegasus-xsum": 512, } __A : int = logging.get_logger(__name__) class __A ( lowerCAmelCase ): lowerCAmelCase_ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : int="<pad>" , UpperCAmelCase_ : List[Any]="</s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Tuple="<mask_2>" , UpperCAmelCase_ : Optional[Any]="<mask_1>" , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[int]=103 , UpperCAmelCase_ : Union[str, Any] = None , **UpperCAmelCase_ : List[Any] , ): lowerCAmelCase : str = offset if additional_special_tokens is not None: if not isinstance(_a , _a ): raise TypeError( f"additional_special_tokens should be of type {type(_a )}, but is" f" {type(_a )}" ) lowerCAmelCase : str = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(_a ) , self.offset - 1 ) ] if len(set(_a ) ) != len(_a ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) lowerCAmelCase : Tuple = additional_special_tokens_extended else: lowerCAmelCase : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] lowerCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_a , unk_token=_a , mask_token=_a , pad_token=_a , mask_token_sent=_a , offset=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) lowerCAmelCase : Any = mask_token_sent lowerCAmelCase : List[str] = vocab_file lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) # add special tokens to encoder dict lowerCAmelCase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def lowercase__ ( self : List[str] ): return len(self.sp_model ) + self.offset def lowercase__ ( self : str ): lowerCAmelCase : Optional[int] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): lowerCAmelCase : Dict = self.__dict__.copy() lowerCAmelCase : int = None return state def __setstate__( self : Any , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase : Optional[int] = {} lowerCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ): return self.sp_model.encode(_a , out_type=_a ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Dict ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase : Any = self.sp_model.piece_to_id(_a ) return sp_id + self.offset def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase : str = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : int = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_a ) + token lowerCAmelCase : Optional[int] = [] else: current_sub_tokens.append(_a ) out_string += self.sp_model.decode(_a ) return out_string.strip() def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[int]=False ): return 1 def lowercase__ ( self : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple = None , UpperCAmelCase_ : Optional[Any] = False ): if already_has_special_tokens: return self._special_token_mask(_a ) elif token_ids_a is None: return self._special_token_mask(_a ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] = None ): if not os.path.isdir(_a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : Any = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , 'wb' ) as fi: lowerCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
369
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
0
import argparse import hashlib # hashlib is only used inside the Test class import struct class __A : def __init__( self : Any , UpperCAmelCase_ : List[str] ): lowerCAmelCase : Union[str, Any] = data lowerCAmelCase : List[Any] = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def lowercase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] ): return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = b"\x80" + b"\x00" * (63 - (len(self.data ) + 8) % 64) lowerCAmelCase : Optional[int] = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def lowercase__ ( self : int ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def lowercase__ ( self : str , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : int = list(struct.unpack('>16L' , _a ) ) + [0] * 64 for i in range(16 , 80 ): lowerCAmelCase : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : str = self.padding() lowerCAmelCase : Dict = self.split_blocks() for block in self.blocks: lowerCAmelCase : Tuple = self.expand_block(_a ) lowerCAmelCase : int = self.h for i in range(0 , 80 ): if 0 <= i < 20: lowerCAmelCase : Dict = (b & c) | ((~b) & d) lowerCAmelCase : Optional[Any] = 0x5a_827_999 elif 20 <= i < 40: lowerCAmelCase : Optional[Any] = b ^ c ^ d lowerCAmelCase : Any = 0x6e_d9e_ba1 elif 40 <= i < 60: lowerCAmelCase : Optional[int] = (b & c) | (b & d) | (c & d) lowerCAmelCase : Optional[int] = 0x8f_1bb_cdc elif 60 <= i < 80: lowerCAmelCase : List[str] = b ^ c ^ d lowerCAmelCase : int = 0xca_62c_1d6 lowerCAmelCase : List[Any] = ( self.rotate(_a , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(_a , 30 ), c, d, ) lowerCAmelCase : Dict = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' lowerCAmelCase : Optional[Any] = b"Test String" assert SHAaHash(_UpperCAmelCase ).final_hash() == hashlib.shaa(_UpperCAmelCase ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string', dest='input_string', default='Hello World!! Welcome to Cryptography', help='Hash the string', ) parser.add_argument('--file', dest='input_file', help='Hash contents of a file' ) lowerCAmelCase : Optional[Any] = parser.parse_args() lowerCAmelCase : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file, 'rb' ) as f: lowerCAmelCase : List[str] = f.read() else: lowerCAmelCase : Tuple = bytes(_UpperCAmelCase, 'utf-8' ) print(SHAaHash(_UpperCAmelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
370
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
0
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __A ( _a ): def __init__( self : Any ): lowerCAmelCase : int = [] def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ): self.events.append('on_init_end' ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ): self.events.append('on_train_begin' ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): self.events.append('on_train_end' ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : int ): self.events.append('on_epoch_begin' ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): self.events.append('on_epoch_end' ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): self.events.append('on_step_begin' ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any] ): self.events.append('on_step_end' ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any] ): self.events.append('on_evaluate' ) def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Any ): self.events.append('on_predict' ) def lowercase__ ( self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , **UpperCAmelCase_ : str ): self.events.append('on_save' ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int] ): self.events.append('on_log' ) def lowercase__ ( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Tuple ): self.events.append('on_prediction_step' ) @require_torch class __A ( unittest.TestCase ): def lowercase__ ( self : Tuple ): lowerCAmelCase : List[Any] = tempfile.mkdtemp() def lowercase__ ( self : List[Any] ): shutil.rmtree(self.output_dir ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : List[str]=64 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Optional[int]=False , **UpperCAmelCase_ : int ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowerCAmelCase : Optional[int] = RegressionDataset(length=snake_case_ ) lowerCAmelCase : Dict = RegressionDataset(length=snake_case_ ) lowerCAmelCase : Any = RegressionModelConfig(a=snake_case_ , b=snake_case_ ) lowerCAmelCase : str = RegressionPreTrainedModel(snake_case_ ) lowerCAmelCase : Any = TrainingArguments(self.output_dir , disable_tqdm=snake_case_ , report_to=[] , **snake_case_ ) return Trainer( snake_case_ , snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , callbacks=snake_case_ , ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) # Order doesn't matter lowerCAmelCase : int = sorted(snake_case_ , key=lambda UpperCAmelCase_ : cb.__name__ if isinstance(snake_case_ , snake_case_ ) else cb.__class__.__name__ ) lowerCAmelCase : Optional[int] = sorted(snake_case_ , key=lambda UpperCAmelCase_ : cb.__name__ if isinstance(snake_case_ , snake_case_ ) else cb.__class__.__name__ ) for cba, cba in zip(snake_case_ , snake_case_ ): if isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , snake_case_ ) elif isinstance(snake_case_ , snake_case_ ) and not isinstance(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , cba.__class__ ) elif not isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): self.assertEqual(cba.__class__ , snake_case_ ) else: self.assertEqual(snake_case_ , snake_case_ ) def lowercase__ ( self : str , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = ["""on_init_end""", """on_train_begin"""] lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = len(trainer.get_eval_dataloader() ) lowerCAmelCase : Optional[int] = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(snake_case_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = self.get_trainer() lowerCAmelCase : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # Callbacks passed at init are added to the default callbacks lowerCAmelCase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowerCAmelCase : int = self.get_trainer(disable_tqdm=snake_case_ ) lowerCAmelCase : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowerCAmelCase : Any = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(snake_case_ ) expected_callbacks.remove(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) lowerCAmelCase : List[Any] = self.get_trainer() lowerCAmelCase : List[Any] = trainer.pop_callback(snake_case_ ) self.assertEqual(cb.__class__ , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) trainer.add_callback(snake_case_ ) expected_callbacks.insert(0 , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # We can also add, pop, or remove by instance lowerCAmelCase : Optional[Any] = self.get_trainer() lowerCAmelCase : Any = trainer.callback_handler.callbacks[0] trainer.remove_callback(snake_case_ ) expected_callbacks.remove(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) lowerCAmelCase : Any = self.get_trainer() lowerCAmelCase : Dict = trainer.callback_handler.callbacks[0] lowerCAmelCase : Optional[int] = trainer.pop_callback(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) trainer.add_callback(snake_case_ ) expected_callbacks.insert(0 , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) def lowercase__ ( self : str ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=snake_case_ ) lowerCAmelCase : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowerCAmelCase : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # Independent log/save/eval lowerCAmelCase : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowerCAmelCase : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) lowerCAmelCase : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowerCAmelCase : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) lowerCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowerCAmelCase : Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) lowerCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowerCAmelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # A bit of everything lowerCAmelCase : Optional[int] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowerCAmelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowerCAmelCase : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(snake_case_ ) in warn_mock.call_args[0][0]
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __A : Dict = pytest.mark.integration @pytest.mark.parametrize('path', ['paws', 'csv'] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' inspect_dataset(__lowerCAmelCase, __lowerCAmelCase ) lowerCAmelCase : str = path + '''.py''' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path', ['accuracy'] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' inspect_metric(__lowerCAmelCase, __lowerCAmelCase ) lowerCAmelCase : str = path + '''.py''' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits', [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : List[str] = get_dataset_config_info(__lowerCAmelCase, config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception', [ ('paws', None, ValueError), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase, config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected', [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : List[str] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config', [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : str = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs lowerCAmelCase : int = expected_configs[0] assert expected_config in infos lowerCAmelCase : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits', [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Union[str, Any] = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos lowerCAmelCase : List[str] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception', [ ('paws', None, ValueError), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase, config_name=__lowerCAmelCase )
350
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __A : def __init__( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any]=14 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : List[Any]=32 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Union[str, Any]=37 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : List[str] = seq_length lowerCAmelCase : Union[str, Any] = is_training lowerCAmelCase : Dict = use_token_type_ids lowerCAmelCase : Optional[int] = use_input_mask lowerCAmelCase : Tuple = use_labels lowerCAmelCase : str = use_mc_token_ids lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : int = intermediate_size lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : Optional[Any] = num_choices lowerCAmelCase : Optional[Any] = scope lowerCAmelCase : List[Any] = self.vocab_size - 1 def lowercase__ ( self : Optional[int] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : str = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : str = None if self.use_token_type_ids: lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Tuple = None if self.use_mc_token_ids: lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowerCAmelCase : Tuple = None lowerCAmelCase : Dict = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() lowerCAmelCase : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : Dict ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[int] = CTRLModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Tuple ): lowerCAmelCase : Union[str, Any] = CTRLLMHeadModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : List[Any] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : int ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( lowerCAmelCase ) : Any = config_and_inputs lowerCAmelCase : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowercase__ ( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , *UpperCAmelCase_ : Any ): lowerCAmelCase : Any = self.num_labels lowerCAmelCase : Tuple = CTRLForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : int = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowerCAmelCase_ : str = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCAmelCase_ : List[str] = (CTRLLMHeadModel,) if is_torch_available() else () lowerCAmelCase_ : List[str] = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Union[str, Any] = False def lowercase__ ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = CTRLModelTester(self ) lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase_ , n_embd=37 ) def lowercase__ ( self : List[str] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCAmelCase_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase__ ( self : List[Any] ): pass @slow def lowercase__ ( self : List[str] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[str] = CTRLModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass @require_torch class __A ( unittest.TestCase ): def lowercase__ ( self : str ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Union[str, Any] = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(UpperCAmelCase_ ) lowerCAmelCase : Tuple = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=UpperCAmelCase_ ) # Legal the president is lowerCAmelCase : List[str] = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCAmelCase : Optional[Any] = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , UpperCAmelCase_ )
351
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 for i in range(1, n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
352
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
0
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __A : def __init__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Any=99 , UpperCAmelCase_ : Optional[int]=[1, 1, 2] , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Union[str, Any]=8 , UpperCAmelCase_ : List[Any]=37 , UpperCAmelCase_ : str="gelu_new" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=False , ): lowerCAmelCase : List[str] = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : List[str] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : Dict = use_token_type_ids lowerCAmelCase : int = use_labels lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : List[str] = block_sizes lowerCAmelCase : Union[str, Any] = num_decoder_layers lowerCAmelCase : Any = d_model lowerCAmelCase : List[Any] = n_head lowerCAmelCase : Tuple = d_head lowerCAmelCase : List[str] = d_inner lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : Dict = hidden_dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : Union[str, Any] = type_vocab_size lowerCAmelCase : Dict = 2 lowerCAmelCase : Any = num_labels lowerCAmelCase : Dict = num_choices lowerCAmelCase : str = scope lowerCAmelCase : Union[str, Any] = initializer_std # Used in the tests to check the size of the first attention layer lowerCAmelCase : Dict = n_head # Used in the tests to check the size of the first hidden state lowerCAmelCase : Dict = self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCAmelCase : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCAmelCase : Union[str, Any] = self.num_hidden_layers + 2 def lowercase__ ( self : str ): lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : int = None if self.use_input_mask: lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[int] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , ): lowerCAmelCase : int = TFFunnelModel(config=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : Dict = model(UpperCAmelCase_ ) lowerCAmelCase : Tuple = [input_ids, input_mask] lowerCAmelCase : Dict = model(UpperCAmelCase_ ) lowerCAmelCase : str = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase : int = False lowerCAmelCase : int = TFFunnelModel(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase : Dict = False lowerCAmelCase : Optional[int] = TFFunnelModel(config=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , ): lowerCAmelCase : Tuple = TFFunnelBaseModel(config=UpperCAmelCase_ ) lowerCAmelCase : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) lowerCAmelCase : Tuple = [input_ids, input_mask] lowerCAmelCase : List[Any] = model(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowerCAmelCase : str = False lowerCAmelCase : Tuple = TFFunnelBaseModel(config=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowerCAmelCase : Dict = False lowerCAmelCase : Any = TFFunnelBaseModel(config=UpperCAmelCase_ ) lowerCAmelCase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , ): lowerCAmelCase : Tuple = TFFunnelForPreTraining(config=UpperCAmelCase_ ) lowerCAmelCase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , ): lowerCAmelCase : Optional[Any] = TFFunnelForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , ): lowerCAmelCase : int = self.num_labels lowerCAmelCase : Any = TFFunnelForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Optional[int] = TFFunnelForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : str = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Any = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Optional[Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : List[Any] = TFFunnelForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , ): lowerCAmelCase : Union[str, Any] = TFFunnelForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] ): lowerCAmelCase : int = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : int = config_and_inputs lowerCAmelCase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase_ : Dict = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ : Dict = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Optional[Any] = False def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = TFFunnelModelTester(self ) lowerCAmelCase : Any = ConfigTester(self , config_class=UpperCAmelCase_ ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : str ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) @require_tf class __A ( snake_case_ , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) lowerCAmelCase_ : str = False lowerCAmelCase_ : List[Any] = False def lowercase__ ( self : List[Any] ): lowerCAmelCase : Union[str, Any] = TFFunnelModelTester(self , base=UpperCAmelCase_ ) lowerCAmelCase : int = ConfigTester(self , config_class=UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): self.config_tester.run_common_tests() def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*UpperCAmelCase_ ) def lowercase__ ( self : Dict ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ )
353
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __A ( lowerCAmelCase ): lowerCAmelCase_ : str = 42 lowerCAmelCase_ : Union[str, Any] = None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=0.9_9_9, _UpperCAmelCase="cosine", ) -> Optional[Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowerCAmelCase : Any = [] for i in range(_lowerCAmelCase ): lowerCAmelCase : int = i / num_diffusion_timesteps lowerCAmelCase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ), _lowerCAmelCase ) ) return torch.tensor(_lowerCAmelCase, dtype=torch.floataa ) class __A ( lowerCAmelCase , lowerCAmelCase ): @register_to_config def __init__( self : Dict , UpperCAmelCase_ : int = 1000 , UpperCAmelCase_ : str = "fixed_small_log" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[float] = 1.0 , UpperCAmelCase_ : str = "epsilon" , UpperCAmelCase_ : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) lowerCAmelCase : List[str] = betas_for_alpha_bar(_lowerCAmelCase ) lowerCAmelCase : Union[str, Any] = 1.0 - self.betas lowerCAmelCase : Dict = torch.cumprod(self.alphas , dim=0 ) lowerCAmelCase : str = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCAmelCase : Dict = 1.0 # setable values lowerCAmelCase : str = None lowerCAmelCase : Optional[Any] = torch.from_numpy(np.arange(0 , _lowerCAmelCase )[::-1].copy() ) lowerCAmelCase : Optional[int] = variance_type def lowercase__ ( self : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Optional[int] = None ): return sample def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, torch.device] = None ): lowerCAmelCase : int = num_inference_steps lowerCAmelCase : Any = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCAmelCase : Optional[int] = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCAmelCase : Any = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None ): if prev_timestep is None: lowerCAmelCase : Any = t - 1 lowerCAmelCase : Any = self.alphas_cumprod[t] lowerCAmelCase : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : List[str] = 1 - alpha_prod_t lowerCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : Optional[Any] = self.betas[t] else: lowerCAmelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCAmelCase : Any = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCAmelCase : Optional[Any] = torch.log(torch.clamp(_lowerCAmelCase , min=1E-20 ) ) lowerCAmelCase : Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCAmelCase : Union[str, Any] = variance.log() lowerCAmelCase : str = beta.log() lowerCAmelCase : str = (predicted_variance + 1) / 2 lowerCAmelCase : Tuple = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self : Any , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : bool = True , ): lowerCAmelCase : Tuple = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCAmelCase , lowerCAmelCase : List[str] = torch.split(_lowerCAmelCase , sample.shape[1] , dim=1 ) else: lowerCAmelCase : Optional[int] = None # 1. compute alphas, betas if prev_timestep is None: lowerCAmelCase : List[Any] = t - 1 lowerCAmelCase : List[str] = self.alphas_cumprod[t] lowerCAmelCase : List[str] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : Any = 1 - alpha_prod_t lowerCAmelCase : Optional[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : Tuple = self.betas[t] lowerCAmelCase : List[Any] = self.alphas[t] else: lowerCAmelCase : Optional[Any] = 1 - alpha_prod_t / alpha_prod_t_prev lowerCAmelCase : Any = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : Optional[int] = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[Any] = torch.clamp( _lowerCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : Any = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCAmelCase : Dict = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : Optional[int] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCAmelCase : Optional[int] = 0 if t > 0: lowerCAmelCase : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_lowerCAmelCase , device=model_output.device ) lowerCAmelCase : Optional[Any] = self._get_variance( _lowerCAmelCase , predicted_variance=_lowerCAmelCase , prev_timestep=_lowerCAmelCase , ) if self.variance_type == "fixed_small_log": lowerCAmelCase : str = variance elif self.variance_type == "learned_range": lowerCAmelCase : str = (0.5 * variance).exp() else: raise ValueError( f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" ' for the UnCLIPScheduler.' ) lowerCAmelCase : List[str] = variance * variance_noise lowerCAmelCase : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.IntTensor , ): lowerCAmelCase : Dict = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCAmelCase : Tuple = timesteps.to(original_samples.device ) lowerCAmelCase : Dict = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase : Optional[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : List[str] = sqrt_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : int = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase : Optional[int] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : Optional[int] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : Optional[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
354
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A : Optional[Any] = logging.get_logger(__name__) class __A ( lowerCAmelCase__ ): lowerCAmelCase_ : Optional[Any] = ["input_values", "padding_mask"] def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[Any] = 1 , UpperCAmelCase_ : int = 24000 , UpperCAmelCase_ : Optional[Any] = 0.0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Tuple = None , **UpperCAmelCase_ : Optional[int] , ): super().__init__(feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = chunk_length_s lowerCAmelCase : Optional[Any] = overlap @property def lowercase__ ( self : str ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowercase__ ( self : List[Any] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any = None , UpperCAmelCase_ : Union[str, Any] = False , UpperCAmelCase_ : int = None , UpperCAmelCase_ : List[Any] = None , UpperCAmelCase_ : List[Any] = None , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowerCAmelCase : Dict = True lowerCAmelCase : int = bool( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase : Dict = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): lowerCAmelCase : str = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowerCAmelCase : Dict = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase : Tuple = [np.asarray(_SCREAMING_SNAKE_CASE ).T] # verify inputs are valid for idx, example in enumerate(_SCREAMING_SNAKE_CASE ): if example.ndim > 2: raise ValueError(f"Expected input shape (channels, length) but got shape {example.shape}" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"Expected mono audio but example has {example.shape[-1]} channels" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"Expected stereo audio but example has {example.shape[-1]} channels" ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowerCAmelCase : List[Any] = min(array.shape[0] for array in raw_audio ) lowerCAmelCase : int = int(np.floor(max_length / self.chunk_stride ) ) lowerCAmelCase : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowerCAmelCase : Optional[Any] = max(array.shape[0] for array in raw_audio ) lowerCAmelCase : Dict = int(np.ceil(max_length / self.chunk_stride ) ) lowerCAmelCase : str = (nb_step - 1) * self.chunk_stride + self.chunk_length lowerCAmelCase : Tuple = 'max_length' else: lowerCAmelCase : List[str] = input_values # normal padding on batch if padded_inputs is None: lowerCAmelCase : Tuple = self.pad( _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) if padding: lowerCAmelCase : Optional[int] = padded_inputs.pop('attention_mask' ) lowerCAmelCase : Optional[Any] = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowerCAmelCase : str = example[..., None] input_values.append(example.T ) lowerCAmelCase : str = input_values if return_tensors is not None: lowerCAmelCase : Dict = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs
355
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
0
from datetime import datetime as dt import os from github import Github __A : Dict = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Tuple = Github(os.environ['GITHUB_TOKEN'] ) lowerCAmelCase : Union[str, Any] = g.get_repo('huggingface/transformers' ) lowerCAmelCase : Any = repo.get_issues(state='open' ) for issue in open_issues: lowerCAmelCase : Optional[Any] = sorted([comment for comment in issue.get_comments()], key=lambda _UpperCAmelCase : i.created_at, reverse=_UpperCAmelCase ) lowerCAmelCase : Optional[int] = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
356
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __A ( __lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Tuple = BarthezTokenizer lowerCAmelCase_ : Tuple = BarthezTokenizerFast lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Union[str, Any] = True def lowercase__ ( self : Union[str, Any] ): super().setUp() lowerCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCamelCase__ ) lowerCAmelCase : Dict = tokenizer def lowercase__ ( self : Tuple ): lowerCAmelCase : str = '''<pad>''' lowerCAmelCase : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowerCamelCase__ ) , 101122 ) def lowercase__ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCAmelCase : Tuple = [0, 57, 3018, 70307, 91, 2] lowerCAmelCase : Any = self.tokenizer( lowerCamelCase__ , max_length=len(lowerCamelCase__ ) , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='pt' ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCAmelCase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowercase__ ( self : int ): if not self.test_rust_tokenizer: return lowerCAmelCase : List[Any] = self.get_tokenizer() lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = '''I was born in 92000, and this is falsé.''' lowerCAmelCase : Optional[Any] = tokenizer.tokenize(lowerCamelCase__ ) lowerCAmelCase : Optional[Any] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase : Tuple = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) lowerCAmelCase : int = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase : Tuple = self.get_rust_tokenizer() lowerCAmelCase : Tuple = tokenizer.encode(lowerCamelCase__ ) lowerCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = {'''input_ids''': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCAmelCase : int = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=lowerCamelCase__ , )
357
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' assert isinstance(A__, A__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Optional[Any] = tmp_path / 'cache' lowerCAmelCase : Tuple = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : Any = TextDatasetReader(A__, cache_dir=A__, keep_in_memory=A__ ).read() _check_text_dataset(A__, A__ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Tuple = tmp_path / 'cache' lowerCAmelCase : List[str] = {'text': 'string'} lowerCAmelCase : Any = features.copy() if features else default_expected_features lowerCAmelCase : str = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Optional[Any] = TextDatasetReader(A__, features=A__, cache_dir=A__ ).read() _check_text_dataset(A__, A__ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path / 'cache' lowerCAmelCase : List[Any] = {'text': 'string'} lowerCAmelCase : Any = TextDatasetReader(A__, cache_dir=A__, split=A__ ).read() _check_text_dataset(A__, A__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if issubclass(A__, A__ ): lowerCAmelCase : str = text_path elif issubclass(A__, A__ ): lowerCAmelCase : Tuple = [text_path] lowerCAmelCase : List[Any] = tmp_path / 'cache' lowerCAmelCase : Optional[Any] = {'text': 'string'} lowerCAmelCase : Optional[Any] = TextDatasetReader(A__, cache_dir=A__ ).read() _check_text_dataset(A__, A__ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=("train",) ) -> List[str]: '''simple docstring''' assert isinstance(A__, A__ ) for split in splits: lowerCAmelCase : Tuple = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Any = tmp_path / 'cache' lowerCAmelCase : Any = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : Optional[Any] = TextDatasetReader({'train': text_path}, cache_dir=A__, keep_in_memory=A__ ).read() _check_text_datasetdict(A__, A__ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Dict = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCAmelCase : Optional[int] = {'text': 'string'} lowerCAmelCase : Tuple = features.copy() if features else default_expected_features lowerCAmelCase : str = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Optional[Any] = TextDatasetReader({'train': text_path}, features=A__, cache_dir=A__ ).read() _check_text_datasetdict(A__, A__ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if split: lowerCAmelCase : List[str] = {split: text_path} else: lowerCAmelCase : List[Any] = 'train' lowerCAmelCase : Optional[Any] = {'train': text_path, 'test': text_path} lowerCAmelCase : Optional[int] = tmp_path / 'cache' lowerCAmelCase : Tuple = {'text': 'string'} lowerCAmelCase : Optional[int] = TextDatasetReader(A__, cache_dir=A__ ).read() _check_text_datasetdict(A__, A__, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
358
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
0
"""simple docstring""" import os import string import sys __A : Any = 1 << 8 __A : Tuple = { 'tab': ord('''\t'''), 'newline': ord('''\r'''), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } __A : Any = KEYMAP['up'] __A : Union[str, Any] = KEYMAP['left'] if sys.platform == "win32": __A : Dict = [] __A : Any = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): __A : int = ord(str(i)) def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : int = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_UpperCAmelCase ) == 0: # Read the keystroke lowerCAmelCase : Optional[int] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : List[str] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : Tuple = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_UpperCAmelCase ) if ord(_UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase : List[str] = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase : Tuple = cha[1] else: lowerCAmelCase : Optional[Any] = ch.decode(_UpperCAmelCase ) else: lowerCAmelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : Dict = sys.stdin.fileno() lowerCAmelCase : Tuple = termios.tcgetattr(_UpperCAmelCase ) try: tty.setraw(_UpperCAmelCase ) lowerCAmelCase : int = sys.stdin.read(1 ) finally: termios.tcsetattr(_UpperCAmelCase, termios.TCSADRAIN, _UpperCAmelCase ) return ch def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' lowerCAmelCase : List[Any] = get_raw_chars() if ord(_UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_UpperCAmelCase ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(_UpperCAmelCase ) == KEYMAP["mod_int"]: lowerCAmelCase : List[str] = get_raw_chars() if ord(_UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
359
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __A ( _lowercase ): """simple docstring""" def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : str ): with open(__UpperCamelCase , encoding='utf-8' ) as input_file: lowerCAmelCase : int = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) lowerCAmelCase : Any = input_file.read() lowerCAmelCase : Tuple = regexp.search(__UpperCamelCase ) return match def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : str ): with open(__UpperCamelCase , encoding='utf-8' ) as input_file: lowerCAmelCase : Dict = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) lowerCAmelCase : Dict = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowerCAmelCase : int = regexp.finditer(__UpperCamelCase ) lowerCAmelCase : List[Any] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowercase__ ( self : Optional[int] ): lowerCAmelCase : str = Path('./datasets' ) lowerCAmelCase : Optional[int] = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__UpperCamelCase ) ): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" ) def lowercase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = Path('./datasets' ) lowerCAmelCase : List[str] = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(__UpperCamelCase ) ): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
360
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class __A ( __lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCAmelCase_ : str = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase_ : ClassVar[Features] = Features({"text": Value("string" )} ) lowerCAmelCase_ : ClassVar[Features] = Features({"labels": ClassLabel} ) lowerCAmelCase_ : str = "text" lowerCAmelCase_ : str = "labels" def lowercase__ ( self : Tuple , UpperCAmelCase_ : Optional[int] ): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , UpperCAmelCase__ ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) lowerCAmelCase : List[str] = copy.deepcopy(self ) lowerCAmelCase : Optional[int] = self.label_schema.copy() lowerCAmelCase : List[str] = features[self.label_column] lowerCAmelCase : Optional[Any] = label_schema return task_template @property def lowercase__ ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
361
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase : Any = abs(__lowerCAmelCase ) lowerCAmelCase : List[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = abs(__lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): '''simple docstring''' return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) ) def SCREAMING_SNAKE_CASE__ ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCAmelCase, _UpperCAmelCase ) -> None: lowerCAmelCase : Dict = f"{func.__name__}({value})" lowerCAmelCase : Tuple = timeit(f"__main__.{call}", setup='import __main__' ) print(f"{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds" ) for value in (262_144, 1_125_899_906_842_624, 1_267_650_600_228_229_401_496_703_205_376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__lowerCAmelCase, __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
362
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( _A , unittest.TestCase ): lowerCAmelCase_ : Union[str, Any] = LEDTokenizer lowerCAmelCase_ : Dict = LEDTokenizerFast lowerCAmelCase_ : Optional[int] = True def lowercase__ ( self : List[Any] ): super().setUp() lowerCAmelCase : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase : List[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase : Optional[int] = {'unk_token': '<unk>'} lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__SCREAMING_SNAKE_CASE ) ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Tuple ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def lowercase__ ( self : Union[str, Any] , **UpperCAmelCase_ : Dict ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Any ): return "lower newer", "lower newer" @cached_property def lowercase__ ( self : List[Any] ): return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowercase__ ( self : List[str] ): return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowercase__ ( self : List[str] ): lowerCAmelCase : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase : List[str] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase : int = tokenizer(__SCREAMING_SNAKE_CASE , max_length=len(__SCREAMING_SNAKE_CASE ) , padding=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @require_torch def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase : Optional[Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertIn('input_ids' , __SCREAMING_SNAKE_CASE ) self.assertIn('attention_mask' , __SCREAMING_SNAKE_CASE ) self.assertNotIn('labels' , __SCREAMING_SNAKE_CASE ) self.assertNotIn('decoder_attention_mask' , __SCREAMING_SNAKE_CASE ) @require_torch def lowercase__ ( self : int ): lowerCAmelCase : List[str] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase : Optional[int] = tokenizer(text_target=__SCREAMING_SNAKE_CASE , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowercase__ ( self : str ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase : Union[str, Any] = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = ['A long paragraph for summarization.'] lowerCAmelCase : str = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase : Dict = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='pt' ) lowerCAmelCase : Optional[int] = tokenizer(text_target=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) lowerCAmelCase : Optional[int] = inputs['input_ids'] lowerCAmelCase : List[str] = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowercase__ ( self : Optional[int] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase : int = ['Summary of the text.', 'Another summary.'] lowerCAmelCase : List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCAmelCase : List[str] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = [[0] * len(__SCREAMING_SNAKE_CASE ) for x in encoded_output['input_ids']] lowerCAmelCase : Dict = tokenizer.pad(__SCREAMING_SNAKE_CASE ) self.assertSequenceEqual(outputs['global_attention_mask'] , __SCREAMING_SNAKE_CASE ) def lowercase__ ( self : Dict ): pass def lowercase__ ( self : Union[str, Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = 'A, <mask> AllenNLP sentence.' lowerCAmelCase : Any = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowerCAmelCase : Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCAmelCase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
363
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __A : Optional[List[str]] = None __A : Optional[Any] = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __A : Dict = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class __A : lowerCAmelCase_ : Dict = True lowerCAmelCase_ : str = None # Automatically constructed lowerCAmelCase_ : Union[str, Any] = "PIL.Image.Image" lowerCAmelCase_ : List[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowerCAmelCase_ : List[Any] = field(default="Image" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self : str ): return self.pa_type def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase : Dict = np.array(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"path": value, "bytes": None} elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"path": None, "bytes": value} elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_SCREAMING_SNAKE_CASE ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : dict , UpperCAmelCase_ : Optional[Any]=None ): if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: lowerCAmelCase : Optional[int] = {} lowerCAmelCase : Union[str, Any] = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(_SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = PIL.Image.open(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Optional[int] = path.split('::' )[-1] try: lowerCAmelCase : Optional[int] = string_to_dict(_SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )["repo_id"] lowerCAmelCase : List[Any] = token_per_repo_id.get(_SCREAMING_SNAKE_CASE ) except ValueError: lowerCAmelCase : str = None with xopen(_SCREAMING_SNAKE_CASE , 'rb' , use_auth_token=_SCREAMING_SNAKE_CASE ) as f: lowerCAmelCase : List[str] = BytesIO(f.read() ) lowerCAmelCase : Dict = PIL.Image.open(bytes_ ) else: lowerCAmelCase : List[str] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase__ ( self : Dict ): from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def lowercase__ ( self : Any , UpperCAmelCase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowerCAmelCase : str = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) lowerCAmelCase : Any = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCAmelCase : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) lowerCAmelCase : Any = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: lowerCAmelCase : Union[str, Any] = storage.field('bytes' ) else: lowerCAmelCase : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: lowerCAmelCase : Any = storage.field('path' ) else: lowerCAmelCase : str = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) lowerCAmelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowerCAmelCase : Dict = pa.array( [encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowerCAmelCase : Optional[int] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) lowerCAmelCase : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase_ : Dict ): with xopen(_SCREAMING_SNAKE_CASE , 'rb' ) as f: lowerCAmelCase : List[Any] = f.read() return bytes_ lowerCAmelCase : int = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase : List[Any] = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) lowerCAmelCase : str = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowerCAmelCase : Dict = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> bytes: '''simple docstring''' lowerCAmelCase : Union[str, Any] = BytesIO() if image.format in list_image_compression_formats(): lowerCAmelCase : List[Any] = image.format else: lowerCAmelCase : List[Any] = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(__snake_case, format=__snake_case ) return buffer.getvalue() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> dict: '''simple docstring''' if hasattr(__snake_case, 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__snake_case )} def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) lowerCAmelCase : str = array.dtype lowerCAmelCase : Optional[Any] = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER lowerCAmelCase : Optional[Any] = dtype.kind lowerCAmelCase : List[Any] = dtype.itemsize lowerCAmelCase : Optional[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowerCAmelCase : Dict = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowerCAmelCase : List[Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowerCAmelCase : List[str] = dtype_byteorder + dtype_kind + str(__snake_case ) lowerCAmelCase : Union[str, Any] = np.dtype(__snake_case ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) lowerCAmelCase : Union[str, Any] = PIL.Image.fromarray(array.astype(__snake_case ) ) return {"path": None, "bytes": image_to_bytes(__snake_case )} def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: lowerCAmelCase : str = first_non_null_value(__snake_case ) if isinstance(__snake_case, __snake_case ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__snake_case, np.ndarray ): lowerCAmelCase : List[Any] = no_op_if_value_is_null(__snake_case ) return [obj_to_image_dict_func(__snake_case ) for obj in objs] elif isinstance(__snake_case, PIL.Image.Image ): lowerCAmelCase : int = no_op_if_value_is_null(__snake_case ) return [obj_to_image_dict_func(__snake_case ) for obj in objs] else: return objs else: return objs
364
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2], unknown_args[1::2] )} def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ArgumentParser( 'HuggingFace Datasets CLI tool', usage='datasets-cli <command> [<args>]', allow_abbrev=_a ) lowerCAmelCase : Any = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args lowerCAmelCase : Dict = parser.parse_known_args() if not hasattr(_a, 'func' ): parser.print_help() exit(1 ) lowerCAmelCase : Union[str, Any] = parse_unknown_args(_a ) # Run lowerCAmelCase : int = args.func(_a, **_a ) service.run() if __name__ == "__main__": main()
365
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
0
"""simple docstring""" import doctest from collections import deque import numpy as np class __A : def __init__( self : int ): lowerCAmelCase : List[Any] = [2, 1, 2, -1] lowerCAmelCase : List[str] = [1, 2, 3, 4] def lowercase__ ( self : int ): lowerCAmelCase : str = len(self.first_signal ) lowerCAmelCase : Optional[Any] = len(self.second_signal ) lowerCAmelCase : int = max(_lowercase , _lowercase ) # create a zero matrix of max_length x max_length lowerCAmelCase : Optional[Any] = [[0] * max_length for i in range(_lowercase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_lowercase ): lowerCAmelCase : List[Any] = deque(self.second_signal ) rotated_signal.rotate(_lowercase ) for j, item in enumerate(_lowercase ): matrix[i][j] += item # multiply the matrix with the first signal lowerCAmelCase : Dict = np.matmul(np.transpose(_lowercase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_lowercase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
366
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
0
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __A : str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : str = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) lowerCAmelCase : Tuple = MaskFormerConfig(backbone_config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok lowerCAmelCase : List[str] = 847 lowerCAmelCase : Optional[int] = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok lowerCAmelCase : Union[str, Any] = 150 lowerCAmelCase : Any = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok lowerCAmelCase : Optional[Any] = 171 lowerCAmelCase : str = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO lowerCAmelCase : int = 133 lowerCAmelCase : List[str] = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok lowerCAmelCase : int = 19 lowerCAmelCase : Dict = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok lowerCAmelCase : int = 65 lowerCAmelCase : List[str] = 'mapillary-vistas-id2label.json' lowerCAmelCase : List[str] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, repo_type='dataset' ), 'r' ) ) lowerCAmelCase : Union[str, Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : int = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.layers.{i}.downsample.reduction.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.layers.{i}.downsample.norm.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.layers.{i}.downsample.norm.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((f"sem_seg_head.adapter_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") ) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") ) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") ) # cross-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") ) # MLP 1 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", f"model.transformer_module.decoder.layers.{idx}.fc1.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", f"model.transformer_module.decoder.layers.{idx}.fc1.bias") ) # MLP 2 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", f"model.transformer_module.decoder.layers.{idx}.fc2.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", f"model.transformer_module.decoder.layers.{idx}.fc2.bias") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") ) # layernorm 3 (final layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.weight", f"mask_embedder.{i}.0.weight") ) rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.bias", f"mask_embedder.{i}.0.bias") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Optional[Any] = dct.pop(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCAmelCase : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCAmelCase : int = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Optional[int] = in_proj_weight[:dim, :] lowerCAmelCase : Union[str, Any] = in_proj_bias[: dim] lowerCAmelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] lowerCAmelCase : str = in_proj_bias[ dim : dim * 2 ] lowerCAmelCase : Dict = in_proj_weight[ -dim :, : ] lowerCAmelCase : List[str] = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Tuple = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCAmelCase : List[str] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" ) lowerCAmelCase : List[str] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Optional[Any] = in_proj_weight[: hidden_size, :] lowerCAmelCase : List[Any] = in_proj_bias[:config.hidden_size] lowerCAmelCase : Optional[int] = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCAmelCase : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase : Any = in_proj_weight[-hidden_size :, :] lowerCAmelCase : Dict = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" ) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : List[str] = in_proj_weight[: hidden_size, :] lowerCAmelCase : List[Any] = in_proj_bias[:config.hidden_size] lowerCAmelCase : Tuple = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCAmelCase : Any = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase : Tuple = in_proj_weight[-hidden_size :, :] lowerCAmelCase : int = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' lowerCAmelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Tuple = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = False ) -> Tuple: '''simple docstring''' lowerCAmelCase : Optional[int] = get_maskformer_config(SCREAMING_SNAKE_CASE__ ) # load original state_dict with open(SCREAMING_SNAKE_CASE__, 'rb' ) as f: lowerCAmelCase : Tuple = pickle.load(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCAmelCase : Union[str, Any] = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) read_in_swin_q_k_v(SCREAMING_SNAKE_CASE__, config.backbone_config ) read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # update to torch tensors for key, value in state_dict.items(): lowerCAmelCase : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # load 🤗 model lowerCAmelCase : Union[str, Any] = MaskFormerForInstanceSegmentation(SCREAMING_SNAKE_CASE__ ) model.eval() for name, param in model.named_parameters(): print(SCREAMING_SNAKE_CASE__, param.shape ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = model.load_state_dict(SCREAMING_SNAKE_CASE__, strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(SCREAMING_SNAKE_CASE__ ) == 0, f"Unexpected keys: {unexpected_keys}" # verify results lowerCAmelCase : Tuple = prepare_img() if "vistas" in model_name: lowerCAmelCase : int = 65 elif "cityscapes" in model_name: lowerCAmelCase : Optional[int] = 65_535 else: lowerCAmelCase : str = 255 lowerCAmelCase : List[str] = True if 'ade' in model_name else False lowerCAmelCase : Dict = MaskFormerImageProcessor(ignore_index=SCREAMING_SNAKE_CASE__, reduce_labels=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = image_processor(SCREAMING_SNAKE_CASE__, return_tensors='pt' ) lowerCAmelCase : Any = model(**SCREAMING_SNAKE_CASE__ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": lowerCAmelCase : int = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], SCREAMING_SNAKE_CASE__, atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(f"nielsr/{model_name}" ) image_processor.push_to_hub(f"nielsr/{model_name}" ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A : Optional[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
367
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __A : Union[str, Any] = logging.get_logger(__name__) __A : Optional[int] = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) __A : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase : List[Any] = model_type_to_module_name(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = importlib.import_module(f".{module_name}", 'transformers.models' ) try: return getattr(_UpperCAmelCase, _UpperCAmelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase, '__name__', _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase : List[str] = importlib.import_module('transformers' ) if hasattr(_UpperCAmelCase, _UpperCAmelCase ): return getattr(_UpperCAmelCase, _UpperCAmelCase ) return None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, **_UpperCAmelCase, ) -> Dict: '''simple docstring''' lowerCAmelCase : Dict = get_file_from_repo( _UpperCAmelCase, _UpperCAmelCase, cache_dir=_UpperCAmelCase, force_download=_UpperCAmelCase, resume_download=_UpperCAmelCase, proxies=_UpperCAmelCase, use_auth_token=_UpperCAmelCase, revision=_UpperCAmelCase, local_files_only=_UpperCAmelCase, ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(_UpperCAmelCase, encoding='utf-8' ) as reader: return json.load(_UpperCAmelCase ) class __A : def __init__( self : Any ): raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(__lowerCamelCase ) def lowercase__ ( cls : List[str] , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int ): lowerCAmelCase : Optional[Any] = kwargs.pop('config' , __lowerCamelCase ) lowerCAmelCase : Union[str, Any] = kwargs.pop('trust_remote_code' , __lowerCamelCase ) lowerCAmelCase : Any = True lowerCAmelCase : int = ImageProcessingMixin.get_image_processor_dict(__lowerCamelCase , **__lowerCamelCase ) lowerCAmelCase : Union[str, Any] = config_dict.get('image_processor_type' , __lowerCamelCase ) lowerCAmelCase : int = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): lowerCAmelCase : Optional[Any] = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowerCAmelCase : Optional[int] = config_dict.pop('feature_extractor_type' , __lowerCamelCase ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) lowerCAmelCase : str = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): lowerCAmelCase : Any = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] lowerCAmelCase : Dict = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCAmelCase : str = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # It could be in `config.image_processor_type`` lowerCAmelCase : Optional[Any] = getattr(__lowerCamelCase , 'image_processor_type' , __lowerCamelCase ) if hasattr(__lowerCamelCase , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: lowerCAmelCase : Any = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: lowerCAmelCase : Tuple = image_processor_class_from_name(__lowerCamelCase ) lowerCAmelCase : List[Any] = image_processor_auto_map is not None lowerCAmelCase : Any = image_processor_class is not None or type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING lowerCAmelCase : Optional[int] = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if has_remote_code and trust_remote_code: lowerCAmelCase : Optional[int] = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) lowerCAmelCase : int = kwargs.pop('code_revision' , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: lowerCAmelCase : int = IMAGE_PROCESSOR_MAPPING[type(__lowerCamelCase )] return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) raise ValueError( f"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " f"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def lowercase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] ): IMAGE_PROCESSOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase )
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from __future__ import annotations __A : Tuple = tuple[int, int, int] __A : Tuple = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase __A : List[str] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' # -------------------------- default selection -------------------------- # rotors -------------------------- __A : Any = '''EGZWVONAHDCLFQMSIPJBYUKXTR''' __A : Any = '''FOBHMDKEXQNRAULPGSJVTYICZW''' __A : Any = '''ZJXESIUQLHAVRMDOYGTNFWPBKC''' # reflector -------------------------- __A : int = { '''A''': '''N''', '''N''': '''A''', '''B''': '''O''', '''O''': '''B''', '''C''': '''P''', '''P''': '''C''', '''D''': '''Q''', '''Q''': '''D''', '''E''': '''R''', '''R''': '''E''', '''F''': '''S''', '''S''': '''F''', '''G''': '''T''', '''T''': '''G''', '''H''': '''U''', '''U''': '''H''', '''I''': '''V''', '''V''': '''I''', '''J''': '''W''', '''W''': '''J''', '''K''': '''X''', '''X''': '''K''', '''L''': '''Y''', '''Y''': '''L''', '''M''': '''Z''', '''Z''': '''M''', } # -------------------------- extra rotors -------------------------- __A : Optional[Any] = '''RMDJXFUWGISLHVTCQNKYPBEZOA''' __A : Union[str, Any] = '''SGLCPQWZHKXAREONTFBVIYJUDM''' __A : List[str] = '''HVSICLTYKQUBXDWAJZOMFGPREN''' __A : Union[str, Any] = '''RZWQHFMVDBKICJLNTUXAGYPSOE''' __A : Optional[Any] = '''LFKIJODBEGAMQPXVUHYSTCZRWN''' __A : str = '''KOAEGVDHXPQZMLFTYWJNBRCIUS''' def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: '''simple docstring''' if (unique_rotsel := len(set(a__ ) )) < 3: lowerCAmelCase : Any = f"Please use 3 unique rotors (not {unique_rotsel})" raise Exception(a__ ) # Checks if rotor positions are valid lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = rotpos if not 0 < rotorposa <= len(a__ ): lowerCAmelCase : str = f"First rotor position is not within range of 1..26 ({rotorposa}" raise ValueError(a__ ) if not 0 < rotorposa <= len(a__ ): lowerCAmelCase : int = f"Second rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(a__ ) if not 0 < rotorposa <= len(a__ ): lowerCAmelCase : List[str] = f"Third rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(a__ ) # Validates string and returns dict lowerCAmelCase : List[str] = _plugboard(a__ ) return rotpos, rotsel, pbdict def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> dict[str, str]: '''simple docstring''' if not isinstance(a__, a__ ): lowerCAmelCase : Any = f"Plugboard setting isn\'t type string ({type(a__ )})" raise TypeError(a__ ) elif len(a__ ) % 2 != 0: lowerCAmelCase : Optional[Any] = f"Odd number of symbols ({len(a__ )})" raise Exception(a__ ) elif pbstring == "": return {} pbstring.replace(' ', '' ) # Checks if all characters are unique lowerCAmelCase : Any = set() for i in pbstring: if i not in abc: lowerCAmelCase : Optional[Any] = f"\'{i}\' not in list of symbols" raise Exception(a__ ) elif i in tmppbl: lowerCAmelCase : Any = f"Duplicate symbol ({i})" raise Exception(a__ ) else: tmppbl.add(a__ ) del tmppbl # Created the dictionary lowerCAmelCase : Optional[int] = {} for j in range(0, len(a__ ) - 1, 2 ): lowerCAmelCase : str = pbstring[j + 1] lowerCAmelCase : Dict = pbstring[j] return pb def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = (rotora, rotora, rotora), _UpperCAmelCase = "", ) -> str: '''simple docstring''' lowerCAmelCase : Any = text.upper() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = _validator( a__, a__, plugb.upper() ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = rotor_position lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowerCAmelCase : Optional[int] = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowerCAmelCase : Any = plugboard[symbol] # rotor ra -------------------------- lowerCAmelCase : Dict = abc.index(a__ ) + rotorposa lowerCAmelCase : Tuple = rotora[index % len(a__ )] # rotor rb -------------------------- lowerCAmelCase : int = abc.index(a__ ) + rotorposa lowerCAmelCase : str = rotora[index % len(a__ )] # rotor rc -------------------------- lowerCAmelCase : int = abc.index(a__ ) + rotorposa lowerCAmelCase : Union[str, Any] = rotora[index % len(a__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowerCAmelCase : Dict = reflector[symbol] # 2nd rotors lowerCAmelCase : Union[str, Any] = abc[rotora.index(a__ ) - rotorposa] lowerCAmelCase : str = abc[rotora.index(a__ ) - rotorposa] lowerCAmelCase : List[str] = abc[rotora.index(a__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowerCAmelCase : Dict = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(a__ ): lowerCAmelCase : Tuple = 0 rotorposa += 1 if rotorposa >= len(a__ ): lowerCAmelCase : Any = 0 rotorposa += 1 if rotorposa >= len(a__ ): lowerCAmelCase : Optional[int] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(a__ ) return "".join(a__ ) if __name__ == "__main__": __A : Union[str, Any] = '''This is my Python script that emulates the Enigma machine from WWII.''' __A : int = (1, 1, 1) __A : Tuple = '''pictures''' __A : Union[str, Any] = (rotora, rotora, rotora) __A : List[str] = enigma(message, rotor_pos, rotor_sel, pb) print('''Encrypted message:''', en) print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
369
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __A : List[Any] = logging.get_logger(__name__) __A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __A : Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : lowerCAmelCase_ : Optional[Any] = field( default=a__ , metadata={"help": "Model type selected in the list: " + ", ".join(a__ )} ) lowerCAmelCase_ : Union[str, Any] = field( default=a__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) lowerCAmelCase_ : str = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCAmelCase_ : Dict = field( default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) lowerCAmelCase_ : Tuple = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) lowerCAmelCase_ : Optional[Any] = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) lowerCAmelCase_ : str = field( default=a__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCAmelCase_ : Optional[int] = field( default=a__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) lowerCAmelCase_ : List[str] = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCAmelCase_ : Any = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCAmelCase_ : Union[str, Any] = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) lowerCAmelCase_ : List[str] = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class __A ( a__ ): lowerCAmelCase_ : Dict = "train" lowerCAmelCase_ : List[Any] = "dev" class __A ( a__ ): lowerCAmelCase_ : Tuple = 42 lowerCAmelCase_ : Optional[int] = 42 lowerCAmelCase_ : Tuple = 42 lowerCAmelCase_ : Any = 42 def __init__( self : Optional[Any] , UpperCAmelCase_ : SquadDataTrainingArguments , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Union[str, Split] = Split.train , UpperCAmelCase_ : Optional[bool] = False , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[str] = "pt" , ): lowerCAmelCase : Dict = args lowerCAmelCase : List[Any] = is_language_sensitive lowerCAmelCase : List[str] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): try: lowerCAmelCase : str = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) lowerCAmelCase : Optional[Any] = mode # Load data features from cache or dataset file lowerCAmelCase : str = "v2" if args.version_2_with_negative else "v1" lowerCAmelCase : List[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase : Any = cached_features_file + ".lock" with FileLock(UpperCAmelCase_ ): if os.path.exists(UpperCAmelCase_ ) and not args.overwrite_cache: lowerCAmelCase : Tuple = time.time() lowerCAmelCase : Dict = torch.load(UpperCAmelCase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCAmelCase : List[Any] = self.old_features["features"] lowerCAmelCase : List[Any] = self.old_features.get('dataset' , UpperCAmelCase_ ) lowerCAmelCase : str = self.old_features.get('examples' , UpperCAmelCase_ ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" ' future run' ) else: if mode == Split.dev: lowerCAmelCase : Any = self.processor.get_dev_examples(args.data_dir ) else: lowerCAmelCase : Optional[int] = self.processor.get_train_examples(args.data_dir ) lowerCAmelCase : int = squad_convert_examples_to_features( examples=self.examples , tokenizer=UpperCAmelCase_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , UpperCAmelCase_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : Union[str, Any] ): return len(self.features ) def __getitem__( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): # Convert to Tensors and build dataset lowerCAmelCase : List[Any] = self.features[i] lowerCAmelCase : Any = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCAmelCase : Optional[int] = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCAmelCase : str = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCAmelCase : Optional[int] = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCAmelCase : Union[str, Any] = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCAmelCase : List[str] = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCAmelCase : str = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCAmelCase : Any = torch.tensor(feature.start_position , dtype=torch.long ) lowerCAmelCase : Optional[Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
370
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Union[str, Any] = checkpoint lowerCAmelCase : str = {} lowerCAmelCase : Tuple = vae_state_dict['''encoder.conv_in.weight'''] lowerCAmelCase : str = vae_state_dict['''encoder.conv_in.bias'''] lowerCAmelCase : Optional[int] = vae_state_dict['''encoder.conv_out.weight'''] lowerCAmelCase : Any = vae_state_dict['''encoder.conv_out.bias'''] lowerCAmelCase : Tuple = vae_state_dict['''encoder.norm_out.weight'''] lowerCAmelCase : int = vae_state_dict['''encoder.norm_out.bias'''] lowerCAmelCase : Dict = vae_state_dict['''decoder.conv_in.weight'''] lowerCAmelCase : Dict = vae_state_dict['''decoder.conv_in.bias'''] lowerCAmelCase : Dict = vae_state_dict['''decoder.conv_out.weight'''] lowerCAmelCase : Any = vae_state_dict['''decoder.conv_out.bias'''] lowerCAmelCase : Any = vae_state_dict['''decoder.norm_out.weight'''] lowerCAmelCase : Union[str, Any] = vae_state_dict['''decoder.norm_out.bias'''] lowerCAmelCase : Optional[Any] = vae_state_dict['''quant_conv.weight'''] lowerCAmelCase : Optional[Any] = vae_state_dict['''quant_conv.bias'''] lowerCAmelCase : int = vae_state_dict['''post_quant_conv.weight'''] lowerCAmelCase : Optional[int] = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only lowerCAmelCase : Union[str, Any] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) lowerCAmelCase : Optional[Any] = { layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(_UpperCAmelCase ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase : Optional[Any] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) lowerCAmelCase : Union[str, Any] = { layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(_UpperCAmelCase ) } for i in range(_UpperCAmelCase ): lowerCAmelCase : List[str] = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase : int = vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase : List[str] = vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase : List[str] = renew_vae_resnet_paths(_UpperCAmelCase ) lowerCAmelCase : int = {'''old''': f"down.{i}.block", '''new''': f"down_blocks.{i}.resnets"} assign_to_checkpoint(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, additional_replacements=[meta_path], config=_UpperCAmelCase ) lowerCAmelCase : str = [key for key in vae_state_dict if '''encoder.mid.block''' in key] lowerCAmelCase : Any = 2 for i in range(1, num_mid_res_blocks + 1 ): lowerCAmelCase : List[Any] = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] lowerCAmelCase : Optional[int] = renew_vae_resnet_paths(_UpperCAmelCase ) lowerCAmelCase : List[Any] = {'''old''': f"mid.block_{i}", '''new''': f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, additional_replacements=[meta_path], config=_UpperCAmelCase ) lowerCAmelCase : List[str] = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] lowerCAmelCase : Union[str, Any] = renew_vae_attention_paths(_UpperCAmelCase ) lowerCAmelCase : Tuple = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, additional_replacements=[meta_path], config=_UpperCAmelCase ) conv_attn_to_linear(_UpperCAmelCase ) for i in range(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = num_up_blocks - 1 - i lowerCAmelCase : int = [ key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key ] if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase : Optional[int] = vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase : int = vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase : Any = renew_vae_resnet_paths(_UpperCAmelCase ) lowerCAmelCase : List[str] = {'''old''': f"up.{block_id}.block", '''new''': f"up_blocks.{i}.resnets"} assign_to_checkpoint(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, additional_replacements=[meta_path], config=_UpperCAmelCase ) lowerCAmelCase : Optional[int] = [key for key in vae_state_dict if '''decoder.mid.block''' in key] lowerCAmelCase : Tuple = 2 for i in range(1, num_mid_res_blocks + 1 ): lowerCAmelCase : str = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] lowerCAmelCase : Tuple = renew_vae_resnet_paths(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = {'''old''': f"mid.block_{i}", '''new''': f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, additional_replacements=[meta_path], config=_UpperCAmelCase ) lowerCAmelCase : Optional[int] = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] lowerCAmelCase : Any = renew_vae_attention_paths(_UpperCAmelCase ) lowerCAmelCase : List[Any] = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, additional_replacements=[meta_path], config=_UpperCAmelCase ) conv_attn_to_linear(_UpperCAmelCase ) return new_checkpoint def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : int = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) lowerCAmelCase : int = io.BytesIO(r.content ) lowerCAmelCase : Tuple = OmegaConf.load(_UpperCAmelCase ) lowerCAmelCase : Dict = 512 lowerCAmelCase : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open lowerCAmelCase : List[str] = {} with safe_open(_UpperCAmelCase, framework='pt', device='cpu' ) as f: for key in f.keys(): lowerCAmelCase : str = f.get_tensor(_UpperCAmelCase ) else: lowerCAmelCase : int = torch.load(_UpperCAmelCase, map_location=_UpperCAmelCase )['''state_dict'''] # Convert the VAE model. lowerCAmelCase : Optional[Any] = create_vae_diffusers_config(_UpperCAmelCase, image_size=_UpperCAmelCase ) lowerCAmelCase : Any = custom_convert_ldm_vae_checkpoint(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : List[str] = AutoencoderKL(**_UpperCAmelCase ) vae.load_state_dict(_UpperCAmelCase ) vae.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') __A : Optional[Any] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __A : List[str] = logging.get_logger(__name__) __A : int = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __A ( a_ ): lowerCAmelCase_ : List[Any] = "mctct" def __init__( self : Any , UpperCAmelCase_ : Tuple=8065 , UpperCAmelCase_ : Optional[Any]=1536 , UpperCAmelCase_ : str=36 , UpperCAmelCase_ : List[Any]=6144 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Optional[Any]=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Union[str, Any]="relu" , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Optional[Any]=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : Union[str, Any]=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Tuple=(7,) , UpperCAmelCase_ : str=(3,) , UpperCAmelCase_ : Any=80 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[Any]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : str = attention_head_dim lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : List[Any] = layerdrop lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : str = initializer_range lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = pad_token_id lowerCAmelCase : Dict = bos_token_id lowerCAmelCase : Dict = eos_token_id lowerCAmelCase : Union[str, Any] = conv_glu_dim lowerCAmelCase : int = conv_dropout lowerCAmelCase : str = num_conv_layers lowerCAmelCase : Optional[Any] = input_feat_per_channel lowerCAmelCase : Tuple = input_channels lowerCAmelCase : Tuple = conv_channels lowerCAmelCase : List[Any] = ctc_loss_reduction lowerCAmelCase : Optional[int] = ctc_zero_infinity # prevents config testing fail with exporting to json lowerCAmelCase : List[str] = list(UpperCAmelCase_ ) lowerCAmelCase : Tuple = list(UpperCAmelCase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' f"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." )
350
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( __SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase_ : List[Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase_ : List[str] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : int ): if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _snake_case , ) lowerCAmelCase : List[str] = kwargs.pop('feature_extractor' ) lowerCAmelCase : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_snake_case , _snake_case ) def __call__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] = None , UpperCAmelCase_ : List[str] = None , UpperCAmelCase_ : Dict = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Tuple = True , UpperCAmelCase_ : List[Any] = False , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Tuple = None , UpperCAmelCase_ : Optional[Any] = 0 , UpperCAmelCase_ : int = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Optional[int] = False , UpperCAmelCase_ : Tuple = False , UpperCAmelCase_ : str = False , UpperCAmelCase_ : Union[str, Any] = False , UpperCAmelCase_ : Dict = True , UpperCAmelCase_ : Optional[Any] = None , **UpperCAmelCase_ : Any , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor lowerCAmelCase : str = self.image_processor(images=_snake_case , return_tensors=_snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_snake_case , _snake_case ): lowerCAmelCase : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase : Optional[Any] = features["words"] lowerCAmelCase : Union[str, Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) # add pixel values lowerCAmelCase : Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: lowerCAmelCase : Optional[Any] = self.get_overflowing_images(_snake_case , encoded_inputs['overflow_to_sample_mapping'] ) lowerCAmelCase : Optional[Any] = images return encoded_inputs def lowercase__ ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowerCAmelCase : Any = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_snake_case ) != len(_snake_case ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f" {len(_snake_case )} and {len(_snake_case )}" ) return images_with_overflow def lowercase__ ( self : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ): return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def lowercase__ ( self : Optional[int] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int] ): return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def lowercase__ ( self : str ): return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self : List[Any] ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _snake_case , ) return self.image_processor_class @property def lowercase__ ( self : str ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _snake_case , ) return self.image_processor
351
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
0
"""simple docstring""" import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Dict = CanineTokenizer lowerCAmelCase_ : Optional[int] = False def lowercase__ ( self : Union[str, Any] ): super().setUp() lowerCAmelCase : Union[str, Any] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Any ): return CanineTokenizer.from_pretrained('google/canine-s' ) def lowercase__ ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) lowerCAmelCase : Dict = 1024 return tokenizer @require_torch def lowercase__ ( self : Dict ): lowerCAmelCase : List[Any] = self.canine_tokenizer lowerCAmelCase : Union[str, Any] = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off lowerCAmelCase : Tuple = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on lowerCAmelCase : Optional[Any] = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[str] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = self.canine_tokenizer lowerCAmelCase : str = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] lowerCAmelCase : List[Any] = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors='pt' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('input_ids' , UpperCAmelCase_ ) self.assertIn('attention_mask' , UpperCAmelCase_ ) self.assertIn('token_type_ids' , UpperCAmelCase_ ) @require_torch def lowercase__ ( self : Any ): lowerCAmelCase : str = self.canine_tokenizer lowerCAmelCase : Tuple = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] lowerCAmelCase : Any = tokenizer( text_target=UpperCAmelCase_ , max_length=32 , padding='max_length' , truncation=UpperCAmelCase_ , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase__ ( self : Dict ): # safety check on max_len default value so we are sure the test works lowerCAmelCase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase : Optional[int] = ''' He is very happy, UNwant\u00E9d,running''' lowerCAmelCase : Union[str, Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : str = tokenizer.__class__.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : str = after_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) shutil.rmtree(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase : Union[str, Any] = ''' He is very happy, UNwant\u00E9d,running''' lowerCAmelCase : Dict = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCAmelCase : Tuple = chr(0xe_007 ) additional_special_tokens.append(UpperCAmelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCAmelCase : Union[str, Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : str = tokenizer.__class__.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Dict = after_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIn(UpperCAmelCase_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase : List[Any] = tokenizer.__class__.from_pretrained(UpperCAmelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase : Optional[int] = self.get_clean_sequence(UpperCAmelCase_ ) # a special token for Canine can be defined as follows: lowerCAmelCase : List[str] = 0xe_005 lowerCAmelCase : Dict = chr(UpperCAmelCase_ ) tokenizer.add_special_tokens({'cls_token': special_token} ) lowerCAmelCase : int = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , 1 ) lowerCAmelCase : Optional[Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , input_encoded + special_token_id ) lowerCAmelCase : Dict = tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase : List[Any] = chr(0xe_005 ) lowerCAmelCase : str = chr(0xe_006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=UpperCAmelCase_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} ) lowerCAmelCase : List[str] = tokenizer.tokenize(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.tokenize(UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , 1 ) self.assertEqual(len(UpperCAmelCase_ ) , 1 ) self.assertEqual(token_a[0] , UpperCAmelCase_ ) self.assertEqual(token_a[0] , UpperCAmelCase_ ) @require_tokenizers def lowercase__ ( self : Dict ): lowerCAmelCase : Tuple = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: lowerCAmelCase : str = 0xe_006 lowerCAmelCase : Optional[int] = chr(UpperCAmelCase_ ) lowerCAmelCase : Dict = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(UpperCAmelCase_ ) tokenizer.from_pretrained(UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase : str = json.load(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase : Dict = json.load(UpperCAmelCase_ ) # a special token for Canine can be defined as follows: lowerCAmelCase : Any = 0xe_006 lowerCAmelCase : int = chr(UpperCAmelCase_ ) lowerCAmelCase : Any = [new_token_a] lowerCAmelCase : Optional[int] = [new_token_a] with open(os.path.join(UpperCAmelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase : str = tokenizer_class.from_pretrained(UpperCAmelCase_ , extra_ids=0 ) self.assertIn(UpperCAmelCase_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) lowerCAmelCase : List[str] = 0xe_007 lowerCAmelCase : str = chr(UpperCAmelCase_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase : Union[str, Any] = [AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ )] lowerCAmelCase : Union[str, Any] = tokenizer_class.from_pretrained( UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , extra_ids=0 ) self.assertIn(UpperCAmelCase_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase : List[str] = '''hello world''' if self.space_between_special_tokens: lowerCAmelCase : List[str] = '''[CLS] hello world [SEP]''' else: lowerCAmelCase : str = input lowerCAmelCase : str = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.decode(UpperCAmelCase_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(UpperCAmelCase_ , [output, output.lower()] ) def lowercase__ ( self : int ): lowerCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase : Optional[int] = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] lowerCAmelCase : List[Any] = '''a''' lowerCAmelCase : Dict = ord(UpperCAmelCase_ ) for attr in attributes_list: setattr(UpperCAmelCase_ , attr + '_id' , UpperCAmelCase_ ) self.assertEqual(getattr(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(getattr(UpperCAmelCase_ , attr + '_id' ) , UpperCAmelCase_ ) setattr(UpperCAmelCase_ , attr + '_id' , UpperCAmelCase_ ) self.assertEqual(getattr(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(getattr(UpperCAmelCase_ , attr + '_id' ) , UpperCAmelCase_ ) setattr(UpperCAmelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCAmelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCAmelCase_ , 'additional_special_tokens_ids' ) , [] ) lowerCAmelCase : int = 0xe_006 lowerCAmelCase : Any = chr(UpperCAmelCase_ ) setattr(UpperCAmelCase_ , 'additional_special_tokens_ids' , [additional_special_token_id] ) self.assertListEqual(getattr(UpperCAmelCase_ , 'additional_special_tokens' ) , [additional_special_token] ) self.assertListEqual(getattr(UpperCAmelCase_ , 'additional_special_tokens_ids' ) , [additional_special_token_id] ) def lowercase__ ( self : Tuple ): pass def lowercase__ ( self : int ): pass def lowercase__ ( self : Tuple ): pass def lowercase__ ( self : Tuple ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : List[str] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : Tuple ): pass
352
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
0