code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Any = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 50257 , UpperCAmelCase_ : int = 1024 , UpperCAmelCase_ : int = 768 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = "gelu_new" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 1E-5 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , ): super().__init__() lowerCAmelCase : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) lowerCAmelCase : str = prefix_inner_dim lowerCAmelCase : Any = prefix_hidden_dim lowerCAmelCase : int = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase : Optional[Any] = ( nn.Linear(self.prefix_hidden_dim , UpperCAmelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase : Union[str, Any] = GPTaConfig( vocab_size=UpperCAmelCase_ , n_positions=UpperCAmelCase_ , n_embd=UpperCAmelCase_ , n_layer=UpperCAmelCase_ , n_head=UpperCAmelCase_ , n_inner=UpperCAmelCase_ , activation_function=UpperCAmelCase_ , resid_pdrop=UpperCAmelCase_ , embd_pdrop=UpperCAmelCase_ , attn_pdrop=UpperCAmelCase_ , layer_norm_epsilon=UpperCAmelCase_ , initializer_range=UpperCAmelCase_ , scale_attn_weights=UpperCAmelCase_ , use_cache=UpperCAmelCase_ , scale_attn_by_inverse_layer_idx=UpperCAmelCase_ , reorder_and_upcast_attn=UpperCAmelCase_ , ) lowerCAmelCase : Union[str, Any] = GPTaLMHeadModel(UpperCAmelCase_ ) def lowercase__ ( self : Any , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , ): lowerCAmelCase : Dict = self.transformer.transformer.wte(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = self.encode_prefix(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.decode_prefix(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowerCAmelCase : Any = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowerCAmelCase : Optional[int] = torch.cat((dummy_token, input_ids) , dim=1 ) lowerCAmelCase : int = self.transformer(inputs_embeds=UpperCAmelCase_ , labels=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.device ): return torch.zeros(UpperCAmelCase_ , self.prefix_length , dtype=torch.intaa , device=UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : str ): return self.encode_prefix(UpperCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str ): lowerCAmelCase : str = torch.split(UpperCAmelCase_ , 1 , dim=0 ) lowerCAmelCase : int = [] lowerCAmelCase : Optional[Any] = [] for feature in features: lowerCAmelCase : Dict = self.decode_prefix(feature.to(UpperCAmelCase_ ) ) # back to the clip feature # Only support beam search for now lowerCAmelCase : Tuple = self.generate_beam( input_embeds=UpperCAmelCase_ , device=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowerCAmelCase : Dict = torch.stack(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = torch.stack(UpperCAmelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowercase__ ( self : List[str] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : int = 5 , UpperCAmelCase_ : int = 67 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[int] = None , ): lowerCAmelCase : Tuple = eos_token_id lowerCAmelCase : int = None lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : str = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=torch.int ) lowerCAmelCase : Any = torch.zeros(UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=torch.bool ) if input_embeds is not None: lowerCAmelCase : int = input_embeds else: lowerCAmelCase : Union[str, Any] = self.transformer.transformer.wte(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = self.transformer(inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : Any = outputs.logits lowerCAmelCase : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCAmelCase : Optional[Any] = logits.softmax(-1 ).log() if scores is None: lowerCAmelCase : List[str] = logits.topk(UpperCAmelCase_ , -1 ) lowerCAmelCase : Union[str, Any] = generated.expand(UpperCAmelCase_ , *generated.shape[1:] ) lowerCAmelCase : str = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowerCAmelCase : int = next_tokens else: lowerCAmelCase : Optional[int] = tokens.expand(UpperCAmelCase_ , *tokens.shape[1:] ) lowerCAmelCase : Any = torch.cat((tokens, next_tokens) , dim=1 ) else: lowerCAmelCase : str = -float(np.inf ) lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCAmelCase : Optional[int] = scores_sum / seq_lengths[:, None] lowerCAmelCase : str = scores_sum_average.view(-1 ).topk(UpperCAmelCase_ , -1 ) lowerCAmelCase : List[Any] = next_tokens // scores_sum.shape[1] lowerCAmelCase : List[str] = seq_lengths[next_tokens_source] lowerCAmelCase : List[str] = next_tokens % scores_sum.shape[1] lowerCAmelCase : Optional[Any] = next_tokens.unsqueeze(1 ) lowerCAmelCase : int = tokens[next_tokens_source] lowerCAmelCase : Dict = torch.cat((tokens, next_tokens) , dim=1 ) lowerCAmelCase : List[str] = generated[next_tokens_source] lowerCAmelCase : Optional[int] = scores_sum_average * seq_lengths lowerCAmelCase : Union[str, Any] = is_stopped[next_tokens_source] lowerCAmelCase : int = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowerCAmelCase : Any = torch.cat((generated, next_token_embed) , dim=1 ) lowerCAmelCase : List[Any] = is_stopped + next_tokens.eq(UpperCAmelCase_ ).squeeze() if is_stopped.all(): break lowerCAmelCase : Tuple = scores / seq_lengths lowerCAmelCase : List[str] = scores.argsort(descending=UpperCAmelCase_ ) # tokens tensors are already padded to max_seq_length lowerCAmelCase : Tuple = [tokens[i] for i in order] lowerCAmelCase : str = torch.stack(UpperCAmelCase_ , dim=0 ) lowerCAmelCase : Union[str, Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
365
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
0
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Optional[int] = image.size lowerCAmelCase : Union[str, Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : str = image.resize((w, h), resample=PIL_INTERPOLATION['lanczos'] ) lowerCAmelCase : List[str] = np.array(_UpperCAmelCase ).astype(np.floataa ) / 255.0 lowerCAmelCase : Union[str, Any] = image[None].transpose(0, 3, 1, 2 ) lowerCAmelCase : List[str] = torch.from_numpy(_UpperCAmelCase ) return 2.0 * image - 1.0 class __A ( lowerCAmelCase ): def __init__( self : List[str] , UpperCAmelCase_ : VQModel , UpperCAmelCase_ : UNetaDModel , UpperCAmelCase_ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) @torch.no_grad() def __call__( self : Optional[int] , UpperCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : Optional[int] = 100 , UpperCAmelCase_ : Optional[float] = 0.0 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ): if isinstance(UpperCAmelCase_ , PIL.Image.Image ): lowerCAmelCase : str = 1 elif isinstance(UpperCAmelCase_ , torch.Tensor ): lowerCAmelCase : Tuple = image.shape[0] else: raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCAmelCase_ )}" ) if isinstance(UpperCAmelCase_ , PIL.Image.Image ): lowerCAmelCase : Optional[Any] = preprocess(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowerCAmelCase : str = (batch_size, self.unet.config.in_channels // 2, height, width) lowerCAmelCase : List[Any] = next(self.unet.parameters() ).dtype lowerCAmelCase : List[Any] = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = image.to(device=self.device , dtype=UpperCAmelCase_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCAmelCase_ , device=self.device ) lowerCAmelCase : Tuple = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : int = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase : List[str] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : Any = {} if accepts_eta: lowerCAmelCase : Any = eta for t in self.progress_bar(UpperCAmelCase_ ): # concat latents and low resolution image in the channel dimension. lowerCAmelCase : str = torch.cat([latents, image] , dim=1 ) lowerCAmelCase : Union[str, Any] = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # predict the noise residual lowerCAmelCase : int = self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : List[str] = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample # decode the image latents with the VQVAE lowerCAmelCase : Tuple = self.vqvae.decode(UpperCAmelCase_ ).sample lowerCAmelCase : Any = torch.clamp(UpperCAmelCase_ , -1.0 , 1.0 ) lowerCAmelCase : List[Any] = image / 2 + 0.5 lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : List[Any] = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ )
366
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
0
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Tuple = {} with open(_UpperCAmelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowerCAmelCase : Tuple = [] _list.append([line.split()[1], line.split()[2]] ) lowerCAmelCase : Dict = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowerCAmelCase : Optional[int] = [] _list.append([line.split()[0], line.split()[2]] ) lowerCAmelCase : Tuple = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' with open(_UpperCAmelCase ) as f: lowerCAmelCase : Tuple = f.read(1 ) lowerCAmelCase : int = start_node lowerCAmelCase : str = [] lowerCAmelCase : Optional[Any] = start_node lowerCAmelCase : str = 0 while visiting not in first_solution: lowerCAmelCase : Any = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_UpperCAmelCase ) and k[0] not in first_solution: lowerCAmelCase : Union[str, Any] = k[1] lowerCAmelCase : Dict = k[0] first_solution.append(_UpperCAmelCase ) lowerCAmelCase : Tuple = distance_of_first_solution + int(_UpperCAmelCase ) lowerCAmelCase : List[Any] = best_node first_solution.append(_UpperCAmelCase ) lowerCAmelCase : List[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowerCAmelCase : List[Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[Any] = [] for n in solution[1:-1]: lowerCAmelCase : List[Any] = solution.index(_UpperCAmelCase ) for kn in solution[1:-1]: lowerCAmelCase : Any = solution.index(_UpperCAmelCase ) if n == kn: continue lowerCAmelCase : Optional[int] = copy.deepcopy(_UpperCAmelCase ) lowerCAmelCase : List[Any] = kn lowerCAmelCase : Any = n lowerCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: lowerCAmelCase : Optional[int] = _tmp[_tmp.index(_UpperCAmelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowerCAmelCase : int = distance + int(i[1] ) _tmp.append(_UpperCAmelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowerCAmelCase : Tuple = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _UpperCAmelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[Any] = 1 lowerCAmelCase : Union[str, Any] = first_solution lowerCAmelCase : Any = [] lowerCAmelCase : Tuple = distance_of_first_solution lowerCAmelCase : Any = solution while count <= iters: lowerCAmelCase : Tuple = find_neighborhood(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : str = 0 lowerCAmelCase : Tuple = neighborhood[index_of_best_solution] lowerCAmelCase : Dict = len(_UpperCAmelCase ) - 1 lowerCAmelCase : Tuple = False while not found: lowerCAmelCase : Dict = 0 while i < len(_UpperCAmelCase ): if best_solution[i] != solution[i]: lowerCAmelCase : Optional[int] = best_solution[i] lowerCAmelCase : int = solution[i] break lowerCAmelCase : Dict = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowerCAmelCase : Tuple = True lowerCAmelCase : List[str] = best_solution[:-1] lowerCAmelCase : Union[str, Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowerCAmelCase : int = cost lowerCAmelCase : Optional[Any] = solution else: lowerCAmelCase : int = index_of_best_solution + 1 lowerCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] if len(_UpperCAmelCase ) >= size: tabu_list.pop(0 ) lowerCAmelCase : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase=None ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[int] = generate_neighbours(args.File ) lowerCAmelCase : List[str] = generate_first_solution( args.File, _UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = tabu_search( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, args.Iterations, args.Size, ) print(f"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
367
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __A : List[Any] = logging.get_logger(__name__) class __A ( lowerCAmelCase ): def __init__( self : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import re def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list: '''simple docstring''' return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]', str_ )] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : List[Any] = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' try: lowerCAmelCase : Any = split_input(_UpperCAmelCase ) if upper: lowerCAmelCase : Optional[int] = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowerCAmelCase : Dict = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' return to_simple_case(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' try: lowerCAmelCase : Optional[int] = to_simple_case(_UpperCAmelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' return to_complex_case(_UpperCAmelCase, _UpperCAmelCase, '_' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' return to_complex_case(_UpperCAmelCase, _UpperCAmelCase, '-' ) if __name__ == "__main__": __import__('''doctest''').testmod()
369
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[Any] = FlaxAutoencoderKL @property def lowercase__ ( self : Tuple ): lowerCAmelCase : Dict = 4 lowerCAmelCase : str = 3 lowerCAmelCase : Optional[Any] = (32, 32) lowerCAmelCase : Any = jax.random.PRNGKey(0 ) lowerCAmelCase : List[str] = jax.random.uniform(UpperCAmelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowercase__ ( self : Dict ): lowerCAmelCase : Any = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } lowerCAmelCase : Optional[Any] = self.dummy_input return init_dict, inputs_dict
370
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __A : def __init__( self : str ): lowerCAmelCase : str = '' lowerCAmelCase : List[Any] = '' lowerCAmelCase : Tuple = [] lowerCAmelCase : Any = 0 lowerCAmelCase : Dict = 256 lowerCAmelCase : int = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Union[str, Any] = 0 def lowercase__ ( self : int , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : List[Any] = cva.imread(UpperCAmelCase_ , 0 ) lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.img ) lowerCAmelCase : Optional[Any] = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) lowerCAmelCase : Dict = np.sum(UpperCAmelCase_ ) for i in range(len(UpperCAmelCase_ ) ): lowerCAmelCase : Optional[Any] = x[i] / self.k self.sk += prk lowerCAmelCase : List[Any] = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase : Any = int(last % last ) lowerCAmelCase : List[str] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(UpperCAmelCase_ ) lowerCAmelCase : Tuple = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase : Dict = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase : Tuple = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase : str = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def lowercase__ ( self : Dict ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase__ ( self : List[str] ): cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __A : List[Any] = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __A : Dict = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import copy import re class __A : lowerCAmelCase_ : Any = "hp" lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Dict = None @classmethod def lowercase__ ( cls : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ): lowerCAmelCase : Dict = prefix lowerCAmelCase : Optional[int] = defaults cls.build_naming_info() @staticmethod def lowercase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): if len(UpperCAmelCase_ ) == 0: return "" lowerCAmelCase : Tuple = None if any(char.isdigit() for char in word ): raise Exception(f"Parameters should not contain numbers: '{word}' contains a number" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(UpperCAmelCase_ ) + 1 ): lowerCAmelCase : Any = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowerCAmelCase : Optional[Any] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Dict = '' while integer != 0: lowerCAmelCase : int = chr(ord('A' ) + integer % 10 ) + s integer //= 10 return s lowerCAmelCase : str = 0 while True: lowerCAmelCase : List[Any] = word + '#' + int_to_alphabetic(UpperCAmelCase_ ) if sword in info["reverse_short_word"]: continue else: lowerCAmelCase : int = sword break lowerCAmelCase : Dict = short_word lowerCAmelCase : str = word return short_word @staticmethod def lowercase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ): lowerCAmelCase : Dict = param_name.split('_' ) lowerCAmelCase : List[Any] = [TrialShortNamer.shortname_for_word(UpperCAmelCase_ , UpperCAmelCase_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowerCAmelCase : Union[str, Any] = ['', '_'] for separator in separators: lowerCAmelCase : Tuple = separator.join(UpperCAmelCase_ ) if shortname not in info["reverse_short_param"]: lowerCAmelCase : Tuple = shortname lowerCAmelCase : Union[str, Any] = param_name return shortname return param_name @staticmethod def lowercase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any ): lowerCAmelCase : List[str] = TrialShortNamer.shortname_for_key(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = short_name lowerCAmelCase : Any = param_name @classmethod def lowercase__ ( cls : int ): if cls.NAMING_INFO is not None: return lowerCAmelCase : Optional[Any] = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } lowerCAmelCase : Any = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = info @classmethod def lowercase__ ( cls : int , UpperCAmelCase_ : List[Any] ): cls.build_naming_info() assert cls.PREFIX is not None lowerCAmelCase : Optional[Any] = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"You should provide a default value for the param name {k} with value {v}" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowerCAmelCase : Any = cls.NAMING_INFO['short_param'][k] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = 1 if v else 0 lowerCAmelCase : int = '' if isinstance(UpperCAmelCase_ , (int, float) ) else '-' lowerCAmelCase : Union[str, Any] = f"{key}{sep}{v}" name.append(UpperCAmelCase_ ) return "_".join(UpperCAmelCase_ ) @classmethod def lowercase__ ( cls : Optional[Any] , UpperCAmelCase_ : Dict ): lowerCAmelCase : List[Any] = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowerCAmelCase : Any = [] else: lowerCAmelCase : Optional[int] = repr.split('_' ) lowerCAmelCase : Dict = {} for value in values: if "-" in value: lowerCAmelCase : List[Any] = value.split('-' ) else: lowerCAmelCase : str = re.sub('[0-9.]' , '' , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = float(re.sub('[^0-9.]' , '' , UpperCAmelCase_ ) ) lowerCAmelCase : List[str] = cls.NAMING_INFO['reverse_short_param'][p_k] lowerCAmelCase : str = p_v for k in cls.DEFAULTS: if k not in parameters: lowerCAmelCase : Optional[Any] = cls.DEFAULTS[k] return parameters
350
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
351
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
0
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __A : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class __A ( lowerCAmelCase , lowerCAmelCase ): @register_to_config def __init__( self : Tuple , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None ): super().__init__() lowerCAmelCase : Tuple = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" lowerCAmelCase : Optional[int] = torch.zeros(UpperCAmelCase_ , UpperCAmelCase_ ) else: lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Union[str, Any] = torch.nn.Parameter(UpperCAmelCase_ ) class __A ( lowerCAmelCase ): lowerCAmelCase_ : VQModel lowerCAmelCase_ : CLIPTextModel lowerCAmelCase_ : CLIPTokenizer lowerCAmelCase_ : TransformeraDModel lowerCAmelCase_ : LearnedClassifierFreeSamplingEmbeddings lowerCAmelCase_ : VQDiffusionScheduler def __init__( self : str , UpperCAmelCase_ : VQModel , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : TransformeraDModel , UpperCAmelCase_ : VQDiffusionScheduler , UpperCAmelCase_ : LearnedClassifierFreeSamplingEmbeddings , ): super().__init__() self.register_modules( vqvae=UpperCAmelCase_ , transformer=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ): lowerCAmelCase : Dict = len(UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else 1 # get prompt text embeddings lowerCAmelCase : List[Any] = self.tokenizer( UpperCAmelCase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase : List[str] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase : Dict = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase : Dict = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 lowerCAmelCase : str = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCAmelCase_ ) # duplicate text embeddings for each generation per prompt lowerCAmelCase : Any = prompt_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: lowerCAmelCase : Any = self.learned_classifier_free_sampling_embeddings.embeddings lowerCAmelCase : str = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCAmelCase_ , 1 , 1 ) else: lowerCAmelCase : Union[str, Any] = [''] * batch_size lowerCAmelCase : Tuple = text_input_ids.shape[-1] lowerCAmelCase : Union[str, Any] = self.tokenizer( UpperCAmelCase_ , padding='max_length' , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors='pt' , ) lowerCAmelCase : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings lowerCAmelCase : str = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCAmelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase : str = negative_prompt_embeds.shape[1] lowerCAmelCase : List[str] = negative_prompt_embeds.repeat(1 , UpperCAmelCase_ , 1 ) lowerCAmelCase : Tuple = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCAmelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[int] , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Optional[int] = 1 elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : str = len(UpperCAmelCase_ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase_ )}" ) lowerCAmelCase : Any = batch_size * num_images_per_prompt lowerCAmelCase : Any = guidance_scale > 1.0 lowerCAmelCase : Tuple = self._encode_prompt(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(UpperCAmelCase_ )}." ) # get the initial completely masked latents unless the user supplied it lowerCAmelCase : Optional[Any] = (batch_size, self.transformer.num_latent_pixels) if latents is None: lowerCAmelCase : str = self.transformer.num_vector_embeds - 1 lowerCAmelCase : List[Any] = torch.full(UpperCAmelCase_ , UpperCAmelCase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' f" {self.transformer.num_vector_embeds - 1} (inclusive)." ) lowerCAmelCase : Optional[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCAmelCase_ , device=self.device ) lowerCAmelCase : Optional[int] = self.scheduler.timesteps.to(self.device ) lowerCAmelCase : Optional[Any] = latents for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ): # expand the sample if we are doing classifier free guidance lowerCAmelCase : Optional[int] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` lowerCAmelCase : Any = self.transformer(UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , timestep=UpperCAmelCase_ ).sample if do_classifier_free_guidance: lowerCAmelCase : Optional[int] = model_output.chunk(2 ) lowerCAmelCase : Optional[int] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(UpperCAmelCase_ , dim=1 , keepdim=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.truncate(UpperCAmelCase_ , UpperCAmelCase_ ) # remove `log(0)`'s (`-inf`s) lowerCAmelCase : Any = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : Any = self.scheduler.step(UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.vqvae.config.vq_embed_dim lowerCAmelCase : Optional[int] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) lowerCAmelCase : List[Any] = self.vqvae.quantize.get_codebook_entry(UpperCAmelCase_ , shape=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.vqvae.decode(UpperCAmelCase_ , force_not_quantize=UpperCAmelCase_ ).sample lowerCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : int = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : float ): lowerCAmelCase : List[Any] = torch.sort(UpperCAmelCase_ , 1 , descending=UpperCAmelCase_ ) lowerCAmelCase : str = torch.exp(UpperCAmelCase_ ) lowerCAmelCase : Dict = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out lowerCAmelCase : Optional[int] = torch.full_like(keep_mask[:, 0:1, :] , UpperCAmelCase_ ) lowerCAmelCase : str = torch.cat((all_true, keep_mask) , dim=1 ) lowerCAmelCase : Optional[int] = keep_mask[:, :-1, :] lowerCAmelCase : Dict = keep_mask.gather(1 , indices.argsort(1 ) ) lowerCAmelCase : Optional[Any] = log_p_x_0.clone() lowerCAmelCase : str = -torch.inf # -inf = log(0) return rv
352
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
0
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Dict = KandinskyVaaPipeline lowerCAmelCase_ : Any = [ "image_embeds", "negative_image_embeds", ] lowerCAmelCase_ : Any = ["image_embeds", "negative_image_embeds"] lowerCAmelCase_ : Union[str, Any] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCAmelCase_ : str = False @property def lowercase__ ( self : Dict ): return 32 @property def lowercase__ ( self : Optional[Any] ): return 32 @property def lowercase__ ( self : Dict ): return self.time_input_dim @property def lowercase__ ( self : Any ): return self.time_input_dim * 4 @property def lowercase__ ( self : Union[str, Any] ): return 100 @property def lowercase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCAmelCase : Any = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase : Dict = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def lowercase__ ( self : Tuple ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase : Any = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = self.dummy_unet lowerCAmelCase : Union[str, Any] = self.dummy_movq lowerCAmelCase : Optional[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCAmelCase_ , ) lowerCAmelCase : Tuple = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase__ ( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str=0 ): lowerCAmelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith('mps' ): lowerCAmelCase : Optional[Any] = torch.manual_seed(UpperCAmelCase_ ) else: lowerCAmelCase : List[str] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def lowercase__ ( self : List[str] ): lowerCAmelCase : Tuple = 'cpu' lowerCAmelCase : List[Any] = self.get_dummy_components() lowerCAmelCase : List[Any] = self.pipeline_class(**UpperCAmelCase_ ) lowerCAmelCase : Any = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : List[str] = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) lowerCAmelCase : Union[str, Any] = output.images lowerCAmelCase : Dict = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Tuple = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __A ( unittest.TestCase ): def lowercase__ ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) lowerCAmelCase : str = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) lowerCAmelCase : str = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : Any = 'red cat, 4k photo' lowerCAmelCase : int = torch.Generator(device='cuda' ).manual_seed(0 ) lowerCAmelCase : Dict = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase : List[str] = torch.Generator(device='cuda' ).manual_seed(0 ) lowerCAmelCase : int = pipeline( image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type='np' , ) lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
353
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
0
__A : Tuple = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
354
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import heapq import sys import numpy as np __A : int = tuple[int, int] class __A : def __init__( self : Optional[int] ): lowerCAmelCase : Tuple = [] lowerCAmelCase : List[Any] = set() def lowercase__ ( self : Dict ): if not self.empty(): return self.elements[0][0] else: return float('inf' ) def lowercase__ ( self : str ): return len(self.elements ) == 0 def lowercase__ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(UpperCAmelCase_ ) else: # update # print("update", item) lowerCAmelCase : Any = [] (lowerCAmelCase) : List[str] = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) (lowerCAmelCase) : Optional[Any] = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def lowercase__ ( self : int , UpperCAmelCase_ : Any ): if item in self.set: self.set.remove(UpperCAmelCase_ ) lowerCAmelCase : Any = [] (lowerCAmelCase) : str = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) (lowerCAmelCase) : List[str] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def lowercase__ ( self : Optional[Any] ): return self.elements[0][1] def lowercase__ ( self : int ): (lowerCAmelCase) : List[str] = heapq.heappop(self.elements ) self.set.remove(UpperCAmelCase_ ) return (priority, item) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[Any] = np.array(_UpperCAmelCase ) lowerCAmelCase : Any = np.array(_UpperCAmelCase ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' return consistent_heuristic(_UpperCAmelCase, _UpperCAmelCase ) // t def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[str] = g_function[start] + Wa * heuristics[i](_UpperCAmelCase, _UpperCAmelCase ) return ans def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Any = np.chararray((n, n) ) for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCAmelCase : Optional[Any] = '*' for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (j, (n - 1) - i) in blocks: lowerCAmelCase : Tuple = '#' lowerCAmelCase : List[Any] = '-' lowerCAmelCase : Optional[Any] = back_pointer[goal] while x != start: (lowerCAmelCase) : Tuple = x # print(x) lowerCAmelCase : Tuple = '-' lowerCAmelCase : str = back_pointer[x] lowerCAmelCase : Optional[int] = '-' for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (i, j) == (0, n - 1): print(grid[i][j], end=' ' ) print('<-- End position', end=' ' ) else: print(grid[i][j], end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowerCAmelCase : Dict = back_pointer[goal] while x != start: print(_UpperCAmelCase, end=' ' ) lowerCAmelCase : List[Any] = back_pointer[x] print(_UpperCAmelCase ) sys.exit() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) -> int: '''simple docstring''' for itera in range(_UpperCAmelCase ): open_list[itera].remove_element(_UpperCAmelCase ) # print("s", s) # print("j", j) (lowerCAmelCase) : Union[str, Any] = s lowerCAmelCase : List[Any] = (x - 1, y) lowerCAmelCase : Optional[Any] = (x + 1, y) lowerCAmelCase : Optional[int] = (x, y + 1) lowerCAmelCase : str = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCAmelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Optional[int] = float('inf' ) if valid(_UpperCAmelCase ) and g_function[neighbours] > g_function[s] + 1: lowerCAmelCase : Any = g_function[s] + 1 lowerCAmelCase : Optional[Any] = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCAmelCase, key(_UpperCAmelCase, 0, _UpperCAmelCase, _UpperCAmelCase ) ) if neighbours not in close_list_inad: for var in range(1, _UpperCAmelCase ): if key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) <= Wa * key( _UpperCAmelCase, 0, _UpperCAmelCase, _UpperCAmelCase ): open_list[j].put( _UpperCAmelCase, key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Tuple = [] for x in range(1, 5 ): for y in range(1, 6 ): some_list.append((x, y) ) for x in range(15, 20 ): some_list.append((x, 17) ) for x in range(10, 19 ): for y in range(1, 15 ): some_list.append((x, y) ) # L block for x in range(1, 4 ): for y in range(12, 19 ): some_list.append((x, y) ) for x in range(3, 13 ): for y in range(16, 19 ): some_list.append((x, y) ) return some_list __A : Any = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __A : str = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __A : Any = make_common_ground() __A : List[Any] = blocks_blk # hyper parameters __A : Union[str, Any] = 1 __A : Dict = 1 __A : str = 20 __A : int = 3 # one consistent and two other inconsistent # start and end destination __A : str = (0, 0) __A : List[str] = (n - 1, n - 1) __A : int = 1 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[int] = {start: 0, goal: float('inf' )} lowerCAmelCase : List[str] = {start: -1, goal: -1} lowerCAmelCase : Dict = [] lowerCAmelCase : Any = set() for i in range(_UpperCAmelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCAmelCase, key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) ) lowerCAmelCase : list[int] = [] lowerCAmelCase : list[int] = [] while open_list[0].minkey() < float('inf' ): for i in range(1, _UpperCAmelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) else: lowerCAmelCase : int = open_list[i].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) close_list_inad.append(_UpperCAmelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) else: lowerCAmelCase : Tuple = open_list[0].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase, 0, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) close_list_anchor.append(_UpperCAmelCase ) print('No path found to goal' ) print() for i in range(n - 1, -1, -1 ): for j in range(_UpperCAmelCase ): if (j, i) in blocks: print('#', end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*', end=' ' ) else: print('-', end=' ' ) else: print('*', end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position', end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
355
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
0
# flake8: noqa # Lint as: python3 __A : List[str] = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
357
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Tuple = emb.weight.shape lowerCAmelCase : Tuple = nn.Linear(_UpperCAmelCase, _UpperCAmelCase, bias=_UpperCAmelCase ) lowerCAmelCase : Any = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Union[str, Any] = torch.load(_UpperCAmelCase, map_location='cpu' ) lowerCAmelCase : Optional[int] = Namespace(**checkpoint['cfg']['model'] ) lowerCAmelCase : Dict = checkpoint['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCAmelCase : str = state_dict['decoder.embed_tokens.weight'].shape[0] lowerCAmelCase : Tuple = {key.replace('decoder', 'model' ): val for key, val in state_dict.items()} lowerCAmelCase : Dict = XGLMConfig( vocab_size=_UpperCAmelCase, max_position_embeddings=args.max_target_positions, num_layers=args.decoder_layers, attention_heads=args.decoder_attention_heads, ffn_dim=args.decoder_ffn_embed_dim, d_model=args.decoder_embed_dim, layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='gelu', scale_embedding=not args.no_scale_embedding, tie_word_embeddings=args.share_decoder_input_output_embed, ) lowerCAmelCase : List[Any] = XGLMForCausalLM(_UpperCAmelCase ) lowerCAmelCase : List[Any] = model.load_state_dict(_UpperCAmelCase, strict=_UpperCAmelCase ) print(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __A : Optional[int] = parser.parse_args() __A : List[Any] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
358
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
359
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : List[Any] = prime_factors(_UpperCAmelCase ) if is_square_free(_UpperCAmelCase ): return -1 if len(_UpperCAmelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
360
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
0
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __A : Union[str, Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' print('Loading config file...' ) def flatten_yaml_as_dict(_UpperCAmelCase, _UpperCAmelCase="", _UpperCAmelCase="." ): lowerCAmelCase : Any = [] for k, v in d.items(): lowerCAmelCase : int = parent_key + sep + k if parent_key else k if isinstance(_UpperCAmelCase, collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(_UpperCAmelCase, _UpperCAmelCase, sep=_UpperCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(_UpperCAmelCase ) lowerCAmelCase : str = argparse.Namespace() with open(_UpperCAmelCase, 'r' ) as yaml_file: try: lowerCAmelCase : Tuple = yaml.load(_UpperCAmelCase, Loader=yaml.FullLoader ) lowerCAmelCase : int = flatten_yaml_as_dict(_UpperCAmelCase ) for k, v in flat_cfg.items(): setattr(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(_UpperCAmelCase, str(_UpperCAmelCase ) ) ) return config def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[int] = MobileViTVaConfig() lowerCAmelCase : Union[str, Any] = False # dataset if task_name.startswith('imagenet1k_' ): lowerCAmelCase : Tuple = 1_000 if int(task_name.strip().split('_' )[-1] ) == 384: lowerCAmelCase : Optional[int] = 384 else: lowerCAmelCase : Dict = 256 lowerCAmelCase : Union[str, Any] = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): lowerCAmelCase : Optional[Any] = 21_000 if int(task_name.strip().split('_' )[-1] ) == 384: lowerCAmelCase : Dict = 384 else: lowerCAmelCase : Optional[Any] = 256 lowerCAmelCase : Dict = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): lowerCAmelCase : Any = 151 lowerCAmelCase : Dict = 512 lowerCAmelCase : List[str] = 'ade20k-id2label.json' lowerCAmelCase : Any = True elif task_name.startswith('voc_' ): lowerCAmelCase : Dict = 21 lowerCAmelCase : str = 512 lowerCAmelCase : List[Any] = 'pascal-voc-id2label.json' lowerCAmelCase : Dict = True # orig_config lowerCAmelCase : List[str] = load_orig_config_file(_UpperCAmelCase ) assert getattr(_UpperCAmelCase, 'model.classification.name', -1 ) == "mobilevit_v2", "Invalid model" lowerCAmelCase : Dict = getattr(_UpperCAmelCase, 'model.classification.mitv2.width_multiplier', 1.0 ) assert ( getattr(_UpperCAmelCase, 'model.classification.mitv2.attn_norm_layer', -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowerCAmelCase : List[Any] = getattr(_UpperCAmelCase, 'model.classification.activation.name', 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowerCAmelCase : Any = getattr(_UpperCAmelCase, 'model.segmentation.output_stride', 16 ) if "_deeplabv3" in task_name: lowerCAmelCase : str = getattr(_UpperCAmelCase, 'model.segmentation.deeplabv3.aspp_rates', [12, 24, 36] ) lowerCAmelCase : Optional[int] = getattr(_UpperCAmelCase, 'model.segmentation.deeplabv3.aspp_out_channels', 512 ) lowerCAmelCase : List[str] = getattr(_UpperCAmelCase, 'model.segmentation.deeplabv3.aspp_dropout', 0.1 ) # id2label lowerCAmelCase : Optional[Any] = 'huggingface/label-files' lowerCAmelCase : str = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase, repo_type='dataset' ), 'r' ) ) lowerCAmelCase : List[str] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[Any] = idalabel lowerCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Union[str, Any] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' if base_model: lowerCAmelCase : Union[str, Any] = '' else: lowerCAmelCase : Union[str, Any] = 'mobilevitv2.' lowerCAmelCase : Optional[Any] = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowerCAmelCase : Optional[Any] = k[8:] else: lowerCAmelCase : Optional[Any] = k if ".block." in k: lowerCAmelCase : Any = k_new.replace('.block.', '.' ) if ".conv." in k: lowerCAmelCase : str = k_new.replace('.conv.', '.convolution.' ) if ".norm." in k: lowerCAmelCase : List[str] = k_new.replace('.norm.', '.normalization.' ) if "conv_1." in k: lowerCAmelCase : List[str] = k_new.replace('conv_1.', f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: lowerCAmelCase : int = k_new.replace(f"layer_{i}.", f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: lowerCAmelCase : Dict = k_new.replace('.exp_1x1.', '.expand_1x1.' ) if ".red_1x1." in k: lowerCAmelCase : Optional[int] = k_new.replace('.red_1x1.', '.reduce_1x1.' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: lowerCAmelCase : List[str] = k_new.replace(f"layer_{i}.0.", f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: lowerCAmelCase : Optional[Any] = k_new.replace(f"layer_{i}.1.local_rep.0.", f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: lowerCAmelCase : Optional[int] = k_new.replace(f"layer_{i}.1.local_rep.1.", f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: lowerCAmelCase : Optional[Any] = [0, 1] elif i == 4: lowerCAmelCase : List[str] = [0, 1, 2, 3] elif i == 5: lowerCAmelCase : Tuple = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: lowerCAmelCase : str = k_new.replace( f"layer_{i}.1.global_rep.{j}.", f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: lowerCAmelCase : str = k_new.replace( f"layer_{i}.1.global_rep.{j+1}.", f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: lowerCAmelCase : str = k_new.replace(f"layer_{i}.1.conv_proj.", f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: lowerCAmelCase : Dict = k_new.replace('pre_norm_attn.0.', 'layernorm_before.' ) if "pre_norm_attn.1." in k: lowerCAmelCase : int = k_new.replace('pre_norm_attn.1.', 'attention.' ) if "pre_norm_ffn.0." in k: lowerCAmelCase : List[Any] = k_new.replace('pre_norm_ffn.0.', 'layernorm_after.' ) if "pre_norm_ffn.1." in k: lowerCAmelCase : int = k_new.replace('pre_norm_ffn.1.', 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: lowerCAmelCase : List[str] = k_new.replace('pre_norm_ffn.3.', 'ffn.conv2.' ) if "classifier.1." in k: lowerCAmelCase : Optional[int] = k_new.replace('classifier.1.', 'classifier.' ) if "seg_head." in k: lowerCAmelCase : Any = k_new.replace('seg_head.', 'segmentation_head.' ) if ".aspp_layer." in k: lowerCAmelCase : Union[str, Any] = k_new.replace('.aspp_layer.', '.' ) if ".aspp_pool." in k: lowerCAmelCase : Tuple = k_new.replace('.aspp_pool.', '.' ) rename_keys.append((k, k_new) ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Optional[int] = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(_UpperCAmelCase ) for k in keys_to_ignore: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowerCAmelCase : str = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Tuple = get_mobilevitva_config(_UpperCAmelCase, _UpperCAmelCase ) # load original state_dict lowerCAmelCase : Optional[int] = torch.load(_UpperCAmelCase, map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): lowerCAmelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ).eval() lowerCAmelCase : Optional[int] = False else: lowerCAmelCase : str = MobileViTVaForImageClassification(_UpperCAmelCase ).eval() lowerCAmelCase : Tuple = False # remove and rename some keys of load the original model lowerCAmelCase : Dict = checkpoint remove_unused_keys(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # load modified state_dict model.load_state_dict(_UpperCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCAmelCase : Any = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) lowerCAmelCase : Dict = image_processor(images=prepare_img(), return_tensors='pt' ) lowerCAmelCase : Optional[int] = model(**_UpperCAmelCase ) # verify classification model if task_name.startswith('imagenet' ): lowerCAmelCase : List[str] = outputs.logits lowerCAmelCase : Union[str, Any] = logits.argmax(-1 ).item() print('Predicted class:', model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant lowerCAmelCase : List[str] = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3], _UpperCAmelCase, atol=1e-4 ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) __A : str = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
361
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 10**9 ): '''simple docstring''' lowerCAmelCase : Any = 1 lowerCAmelCase : str = 2 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Tuple = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCAmelCase : Tuple = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'{solution() = }')
362
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
0
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A ( unittest.TestCase ): def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 250 lowerCAmelCase : Dict = ids_tensor((batch_size, length) , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = torch.ones((batch_size, length) , device=UpperCAmelCase_ , dtype=torch.float ) / length return input_ids, scores def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = self._get_tensors(5 ) lowerCAmelCase : Any = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Tuple = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = MaxLengthCriteria(max_length=10 ) lowerCAmelCase : Any = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Dict = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Dict = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Dict = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Any = self._get_tensors(5 ) lowerCAmelCase : int = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : Optional[int] ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCAmelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowerCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCAmelCase_ ) , 1 )
363
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = "laptop" ) -> DataFrame: '''simple docstring''' lowerCAmelCase : List[str] = f"https://www.amazon.in/laptop/s?k={product}" lowerCAmelCase : Any = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } lowerCAmelCase : str = BeautifulSoup(requests.get(_UpperCAmelCase, headers=_UpperCAmelCase ).text ) # Initialize a Pandas dataframe with the column titles lowerCAmelCase : Optional[int] = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div', attrs={'class': 's-result-item', 'data-component-type': 's-search-result'}, ), soup.find_all('div', attrs={'class': 'a-row a-size-base a-color-base'} ), ): try: lowerCAmelCase : str = item.ha.text lowerCAmelCase : Optional[Any] = 'https://www.amazon.in/' + item.ha.a['href'] lowerCAmelCase : Tuple = item.find('span', attrs={'class': 'a-offscreen'} ).text try: lowerCAmelCase : str = item.find('span', attrs={'class': 'a-icon-alt'} ).text except AttributeError: lowerCAmelCase : Any = 'Not available' try: lowerCAmelCase : str = ( '₹' + item.find( 'span', attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: lowerCAmelCase : Tuple = '' try: lowerCAmelCase : List[str] = float( ( ( float(product_mrp.strip('₹' ).replace(',', '' ) ) - float(product_price.strip('₹' ).replace(',', '' ) ) ) / float(product_mrp.strip('₹' ).replace(',', '' ) ) ) * 100 ) except ValueError: lowerCAmelCase : Optional[Any] = float('nan' ) except AttributeError: pass lowerCAmelCase : Dict = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowerCAmelCase : List[str] = ' ' lowerCAmelCase : Dict = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": __A : Optional[int] = '''headphones''' get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
364
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def SCREAMING_SNAKE_CASE__ ( ) -> tuple[list[int], int]: '''simple docstring''' lowerCAmelCase : List[str] = [randint(-1_000, 1_000 ) for i in range(10 )] lowerCAmelCase : Optional[int] = randint(-5_000, 5_000 ) return (arr, r) __A : Union[str, Any] = make_dataset() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> tuple[int, ...]: '''simple docstring''' for triplet in permutations(_UpperCAmelCase, 3 ): if sum(_UpperCAmelCase ) == target: return tuple(sorted(_UpperCAmelCase ) ) return (0, 0, 0) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> tuple[int, int, int]: '''simple docstring''' arr.sort() lowerCAmelCase : Dict = len(_UpperCAmelCase ) for i in range(n - 1 ): lowerCAmelCase : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def SCREAMING_SNAKE_CASE__ ( ) -> tuple[float, float]: '''simple docstring''' lowerCAmelCase : Optional[Any] = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' lowerCAmelCase : List[str] = '\ntriplet_sum1(*dataset)\n' lowerCAmelCase : str = '\ntriplet_sum2(*dataset)\n' lowerCAmelCase : Optional[int] = repeat(setup=_UpperCAmelCase, stmt=_UpperCAmelCase, repeat=5, number=10_000 ) lowerCAmelCase : Optional[Any] = repeat(setup=_UpperCAmelCase, stmt=_UpperCAmelCase, repeat=5, number=10_000 ) return (min(_UpperCAmelCase ), min(_UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() __A : Dict = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
365
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : int = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( lowerCAmelCase ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
367
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( lowerCAmelCase ): lowerCAmelCase_ : UNetaDModel lowerCAmelCase_ : ScoreSdeVeScheduler def __init__( self : Optional[int] , UpperCAmelCase_ : UNetaDModel , UpperCAmelCase_ : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) @torch.no_grad() def __call__( self : Tuple , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 2000 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Tuple , ): lowerCAmelCase : Optional[Any] = self.unet.config.sample_size lowerCAmelCase : str = (batch_size, 3, img_size, img_size) lowerCAmelCase : Tuple = self.unet lowerCAmelCase : str = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ ) * self.scheduler.init_noise_sigma lowerCAmelCase : List[str] = sample.to(self.device ) self.scheduler.set_timesteps(UpperCAmelCase_ ) self.scheduler.set_sigmas(UpperCAmelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase : int = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase : Dict = self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample lowerCAmelCase : Optional[Any] = self.scheduler.step_correct(UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample # prediction step lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample lowerCAmelCase : Optional[Any] = self.scheduler.step_pred(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ) lowerCAmelCase : List[str] = output.prev_sample, output.prev_sample_mean lowerCAmelCase : List[Any] = sample_mean.clamp(0 , 1 ) lowerCAmelCase : Optional[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCAmelCase_ )
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import math import tensorflow as tf from packaging import version def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Any = tf.convert_to_tensor(_UpperCAmelCase ) lowerCAmelCase : Dict = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ), x.dtype ) )) return x * cdf def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Dict = tf.convert_to_tensor(_UpperCAmelCase ) lowerCAmelCase : Dict = tf.cast(math.pi, x.dtype ) lowerCAmelCase : int = tf.cast(0.0_4_4_7_1_5, x.dtype ) lowerCAmelCase : Union[str, Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(_UpperCAmelCase, 3 )) )) return x * cdf def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Tuple = tf.convert_to_tensor(_UpperCAmelCase ) return x * tf.tanh(tf.math.softplus(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : List[Any] = tf.convert_to_tensor(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = tf.cast(0.0_4_4_7_1_5, x.dtype ) lowerCAmelCase : List[Any] = tf.cast(0.7_9_7_8_8_4_5_6_0_8, x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : List[Any] = tf.convert_to_tensor(_UpperCAmelCase ) lowerCAmelCase : List[Any] = tf.cast(1.7_0_2, x.dtype ) return x * tf.math.sigmoid(coeff * x ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return tf.clip_by_value(_gelu(_UpperCAmelCase ), -10, 10 ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=-1 ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Dict = tf.split(_UpperCAmelCase, 2, axis=_UpperCAmelCase ) return a * tf.math.sigmoid(_UpperCAmelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' return tf.keras.activations.gelu(_UpperCAmelCase, approximate=_UpperCAmelCase ) __A : Optional[int] = tf.keras.activations.gelu __A : Tuple = approximate_gelu_wrap else: __A : Any = _gelu __A : int = _gelu_new __A : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
369
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __A : Any = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __A : List[str] = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[Any] = SavedModel() lowerCAmelCase : List[Any] = [] with open(os.path.join(_UpperCAmelCase, 'utils', 'tf_ops', 'onnx.json' ) ) as f: lowerCAmelCase : Union[str, Any] = json.load(_UpperCAmelCase )['opsets'] for i in range(1, opset + 1 ): onnx_ops.extend(onnx_opsets[str(_UpperCAmelCase )] ) with open(_UpperCAmelCase, 'rb' ) as f: saved_model.ParseFromString(f.read() ) lowerCAmelCase : Any = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want lowerCAmelCase : str = sorted(_UpperCAmelCase ) lowerCAmelCase : str = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_UpperCAmelCase ) if strict and len(_UpperCAmelCase ) > 0: raise Exception(f"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(_UpperCAmelCase ) > 0: print(f"Found the following incompatible ops for the opset {opset}:" ) print(*_UpperCAmelCase, sep='\n' ) else: print(f"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) __A : List[str] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
370
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A : str = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = XGLMTokenizer lowerCAmelCase_ : str = XGLMTokenizerFast lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Tuple = True def lowercase__ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : str = XGLMTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : str = '<pad>' lowerCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase_ ) , 1008 ) def lowercase__ ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Any = XGLMTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) lowerCAmelCase : str = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase : str = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase : int = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ): return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def lowercase__ ( self : Optional[Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCAmelCase_ , f.name ) lowerCAmelCase : Dict = XGLMTokenizer(f.name , keep_accents=UpperCAmelCase_ ) lowerCAmelCase : Dict = pickle.dumps(UpperCAmelCase_ ) pickle.loads(UpperCAmelCase_ ) def lowercase__ ( self : Any ): if not self.test_rust_tokenizer: return lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : Any = self.get_rust_tokenizer() lowerCAmelCase : str = 'I was born in 92000, and this is falsé.' lowerCAmelCase : str = tokenizer.tokenize(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : Dict = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase : str = tokenizer.encode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def lowercase__ ( self : int ): lowerCAmelCase : str = 'Hello World!' lowerCAmelCase : Any = [2, 31227, 4447, 35] self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def lowercase__ ( self : str ): lowerCAmelCase : int = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowerCAmelCase : List[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def lowercase__ ( self : Any ): # fmt: off lowerCAmelCase : Dict = { 'input_ids': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='facebook/xglm-564M' , padding=UpperCAmelCase_ , )
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
350
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : int = StableDiffusionLatentUpscalePipeline lowerCAmelCase_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } lowerCAmelCase_ : Optional[int] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} lowerCAmelCase_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase_ : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase_ : Optional[Any] = frozenset([] ) lowerCAmelCase_ : List[Any] = True @property def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 1 lowerCAmelCase : int = 4 lowerCAmelCase : Tuple = (16, 16) lowerCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase_ ) return image def lowercase__ ( self : List[Any] ): torch.manual_seed(0 ) lowerCAmelCase : Tuple = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=UpperCAmelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=UpperCAmelCase_ , only_cross_attention=UpperCAmelCase_ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) lowerCAmelCase : Dict = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) lowerCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type='sample' ) lowerCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='quick_gelu' , projection_dim=512 , ) lowerCAmelCase : Optional[int] = CLIPTextModel(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase : int = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=0 ): if str(UpperCAmelCase_ ).startswith('mps' ): lowerCAmelCase : Dict = torch.manual_seed(UpperCAmelCase_ ) else: lowerCAmelCase : int = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowercase__ ( self : str ): lowerCAmelCase : Tuple = 'cpu' lowerCAmelCase : List[Any] = self.get_dummy_components() lowerCAmelCase : Optional[int] = self.pipeline_class(**UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.get_dummy_inputs(UpperCAmelCase_ ) lowerCAmelCase : int = pipe(**UpperCAmelCase_ ).images lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) lowerCAmelCase : Any = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) lowerCAmelCase : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase_ , 1E-3 ) def lowercase__ ( self : int ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowercase__ ( self : Any ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowercase__ ( self : Optional[Any] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowercase__ ( self : Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowercase__ ( self : str ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowercase__ ( self : Optional[Any] ): super().test_save_load_local(expected_max_difference=3E-3 ) def lowercase__ ( self : Any ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] lowerCAmelCase : Dict = self.get_dummy_components() lowerCAmelCase : List[Any] = self.pipeline_class(**UpperCAmelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.get_dummy_inputs(UpperCAmelCase_ ) lowerCAmelCase : int = 2 lowerCAmelCase : Any = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowerCAmelCase : Any = getattr(UpperCAmelCase_ , scheduler_enum.name ) lowerCAmelCase : Optional[Any] = scheduler_cls.from_config(pipe.scheduler.config ) lowerCAmelCase : List[Any] = pipe(**UpperCAmelCase_ )[0] outputs.append(UpperCAmelCase_ ) assert check_same_shape(UpperCAmelCase_ ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ): lowerCAmelCase : str = torch.manual_seed(33 ) lowerCAmelCase : str = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCAmelCase : Dict = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) lowerCAmelCase : List[Any] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' lowerCAmelCase : Dict = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type='latent' ).images lowerCAmelCase : Tuple = upscaler( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase_ , output_type='np' , ).images[0] lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowercase__ ( self : Tuple ): lowerCAmelCase : int = torch.manual_seed(33 ) lowerCAmelCase : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) lowerCAmelCase : List[str] = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' lowerCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) lowerCAmelCase : Optional[int] = upscaler( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase_ , output_type='np' , ).images[0] lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
351
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : Any = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __A ( lowerCAmelCase ): lowerCAmelCase_ : List[Any] = "ctrl" lowerCAmelCase_ : Optional[int] = ["past_key_values"] lowerCAmelCase_ : Any = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , UpperCAmelCase_ : Dict=246534 , UpperCAmelCase_ : List[str]=256 , UpperCAmelCase_ : List[Any]=1280 , UpperCAmelCase_ : Any=8192 , UpperCAmelCase_ : Tuple=48 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Tuple=1E-6 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : List[Any]=True , **UpperCAmelCase_ : List[Any] , ): lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : str = n_positions lowerCAmelCase : Dict = n_embd lowerCAmelCase : Any = n_layer lowerCAmelCase : List[Any] = n_head lowerCAmelCase : str = dff lowerCAmelCase : Optional[int] = resid_pdrop lowerCAmelCase : Any = embd_pdrop lowerCAmelCase : List[Any] = layer_norm_epsilon lowerCAmelCase : str = initializer_range lowerCAmelCase : List[str] = use_cache super().__init__(**UpperCAmelCase_ )
353
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' if "cls_token" in name: lowerCAmelCase : str = name.replace('cls_token', 'vit.embeddings.cls_token' ) if "mask_token" in name: lowerCAmelCase : str = name.replace('mask_token', 'decoder.mask_token' ) if "decoder_pos_embed" in name: lowerCAmelCase : List[str] = name.replace('decoder_pos_embed', 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase : Dict = name.replace('pos_embed', 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('patch_embed.proj', 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase : Union[str, Any] = name.replace('patch_embed.norm', 'vit.embeddings.norm' ) if "decoder_blocks" in name: lowerCAmelCase : Dict = name.replace('decoder_blocks', 'decoder.decoder_layers' ) if "blocks" in name: lowerCAmelCase : Tuple = name.replace('blocks', 'vit.encoder.layer' ) if "attn.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: lowerCAmelCase : Optional[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: lowerCAmelCase : Any = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: lowerCAmelCase : Dict = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase : Tuple = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase : Union[str, Any] = name.replace('mlp.fc2', 'output.dense' ) if "decoder_embed" in name: lowerCAmelCase : Dict = name.replace('decoder_embed', 'decoder.decoder_embed' ) if "decoder_norm" in name: lowerCAmelCase : Tuple = name.replace('decoder_norm', 'decoder.decoder_norm' ) if "decoder_pred" in name: lowerCAmelCase : Optional[Any] = name.replace('decoder_pred', 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: lowerCAmelCase : List[Any] = name.replace('norm.weight', 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: lowerCAmelCase : Optional[Any] = name.replace('norm.bias', 'vit.layernorm.bias' ) return name def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase : Union[str, Any] = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase : Any = key.split('.' ) lowerCAmelCase : Optional[Any] = int(key_split[1] ) if "decoder_blocks" in key: lowerCAmelCase : Optional[int] = config.decoder_hidden_size lowerCAmelCase : str = 'decoder.decoder_layers.' if "weight" in key: lowerCAmelCase : Tuple = val[:dim, :] lowerCAmelCase : Dict = val[dim : dim * 2, :] lowerCAmelCase : Optional[int] = val[-dim:, :] elif "bias" in key: lowerCAmelCase : List[Any] = val[:dim] lowerCAmelCase : Dict = val[dim : dim * 2] lowerCAmelCase : Any = val[-dim:] else: lowerCAmelCase : Optional[int] = config.hidden_size lowerCAmelCase : int = 'vit.encoder.layer.' if "weight" in key: lowerCAmelCase : Tuple = val[:dim, :] lowerCAmelCase : List[Any] = val[dim : dim * 2, :] lowerCAmelCase : List[str] = val[-dim:, :] elif "bias" in key: lowerCAmelCase : List[Any] = val[:dim] lowerCAmelCase : Tuple = val[dim : dim * 2] lowerCAmelCase : List[str] = val[-dim:] else: lowerCAmelCase : int = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[int] = ViTMAEConfig() if "large" in checkpoint_url: lowerCAmelCase : int = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : Dict = 24 lowerCAmelCase : str = 16 elif "huge" in checkpoint_url: lowerCAmelCase : Union[str, Any] = 14 lowerCAmelCase : str = 1_280 lowerCAmelCase : int = 5_120 lowerCAmelCase : Any = 32 lowerCAmelCase : Union[str, Any] = 16 lowerCAmelCase : Optional[int] = ViTMAEForPreTraining(_UpperCAmelCase ) lowerCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['model'] lowerCAmelCase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowerCAmelCase : List[Any] = convert_state_dict(_UpperCAmelCase, _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : List[Any] = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' lowerCAmelCase : int = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) lowerCAmelCase : int = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Optional[int] = model(**_UpperCAmelCase ) lowerCAmelCase : int = outputs.logits if "large" in checkpoint_url: lowerCAmelCase : str = torch.tensor( [[-0.7_3_0_9, -0.7_1_2_8, -1.0_1_6_9], [-1.0_1_6_1, -0.9_0_5_8, -1.1_8_7_8], [-1.0_4_7_8, -0.9_4_1_1, -1.1_9_1_1]] ) elif "huge" in checkpoint_url: lowerCAmelCase : Tuple = torch.tensor( [[-1.1_5_9_9, -0.9_1_9_9, -1.2_2_2_1], [-1.1_9_5_2, -0.9_2_6_9, -1.2_3_0_7], [-1.2_1_4_3, -0.9_3_3_7, -1.2_2_6_2]] ) else: lowerCAmelCase : List[Any] = torch.tensor( [[-0.9_1_9_2, -0.8_4_8_1, -1.1_2_5_9], [-1.1_3_4_9, -1.0_0_3_4, -1.2_5_9_9], [-1.1_7_5_7, -1.0_4_2_9, -1.2_7_2_6]] ) # verify logits assert torch.allclose(logits[0, :3, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : Tuple = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
354
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list[int]: '''simple docstring''' lowerCAmelCase : List[Any] = [] lowerCAmelCase : Union[str, Any] = 2 lowerCAmelCase : Optional[Any] = int(math.sqrt(_UpperCAmelCase ) ) # Size of every segment lowerCAmelCase : Any = [True] * (end + 1) lowerCAmelCase : Union[str, Any] = [] while start <= end: if temp[start] is True: in_prime.append(_UpperCAmelCase ) for i in range(start * start, end + 1, _UpperCAmelCase ): lowerCAmelCase : Dict = False start += 1 prime += in_prime lowerCAmelCase : Union[str, Any] = end + 1 lowerCAmelCase : int = min(2 * end, _UpperCAmelCase ) while low <= n: lowerCAmelCase : Optional[Any] = [True] * (high - low + 1) for each in in_prime: lowerCAmelCase : str = math.floor(low / each ) * each if t < low: t += each for j in range(_UpperCAmelCase, high + 1, _UpperCAmelCase ): lowerCAmelCase : List[str] = False for j in range(len(_UpperCAmelCase ) ): if temp[j] is True: prime.append(j + low ) lowerCAmelCase : str = high + 1 lowerCAmelCase : Optional[int] = min(high + end, _UpperCAmelCase ) return prime print(sieve(10**6))
355
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
0
from copy import deepcopy class __A : def __init__( self : Tuple , UpperCAmelCase_ : list[int] | None = None , UpperCAmelCase_ : int | None = None ): if arr is None and size is not None: lowerCAmelCase : Union[str, Any] = size lowerCAmelCase : str = [0] * size elif arr is not None: self.init(UpperCAmelCase_ ) else: raise ValueError('Either arr or size must be specified' ) def lowercase__ ( self : Any , UpperCAmelCase_ : list[int] ): lowerCAmelCase : Tuple = len(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = deepcopy(UpperCAmelCase_ ) for i in range(1 , self.size ): lowerCAmelCase : Any = self.next_(UpperCAmelCase_ ) if j < self.size: self.tree[j] += self.tree[i] def lowercase__ ( self : int ): lowerCAmelCase : int = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): lowerCAmelCase : List[str] = self.next_(UpperCAmelCase_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def lowercase__ ( UpperCAmelCase_ : int ): return index + (index & (-index)) @staticmethod def lowercase__ ( UpperCAmelCase_ : int ): return index - (index & (-index)) def lowercase__ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value lowerCAmelCase : Tuple = self.next_(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.add(UpperCAmelCase_ , value - self.get(UpperCAmelCase_ ) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : int ): if right == 0: return 0 lowerCAmelCase : Optional[int] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] lowerCAmelCase : Optional[int] = self.prev(UpperCAmelCase_ ) return result def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): return self.prefix(UpperCAmelCase_ ) - self.prefix(UpperCAmelCase_ ) def lowercase__ ( self : str , UpperCAmelCase_ : int ): return self.query(UpperCAmelCase_ , index + 1 ) def lowercase__ ( self : str , UpperCAmelCase_ : int ): value -= self.tree[0] if value < 0: return -1 lowerCAmelCase : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 lowerCAmelCase : Optional[int] = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
356
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
0
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __A : List[str] = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] __A : List[Any] = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Optional[int] = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCAmelCase : str = int(re.match(r'.*layer_(\d*).*', _UpperCAmelCase )[1] ) layer_number -= 3 return f"h.{layer_number}." + key def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if dtype == torch.bool: return 1 / 8 lowerCAmelCase : Tuple = re.search(r'[^\d](\d+)$', str(_UpperCAmelCase ) ) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}." ) lowerCAmelCase : Optional[Any] = int(bit_search.groups()[0] ) return bit_size // 8 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' if bloom_config_file == "": lowerCAmelCase : List[Any] = BloomConfig() else: lowerCAmelCase : Optional[Any] = BloomConfig.from_json_file(_UpperCAmelCase ) if shard_model: lowerCAmelCase : Union[str, Any] = os.listdir(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = sorted(filter(lambda _UpperCAmelCase : s.startswith('layer' ) and "model_00" in s, _UpperCAmelCase ) ) lowerCAmelCase : List[Any] = {'weight_map': {}, 'metadata': {}} lowerCAmelCase : int = 0 lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Optional[Any] = BloomConfig() for j, file in enumerate(_UpperCAmelCase ): print('Processing file: {}'.format(_UpperCAmelCase ) ) lowerCAmelCase : Optional[int] = None for i in range(_UpperCAmelCase ): # load all TP files lowerCAmelCase : Optional[int] = file.replace('model_00', f"model_0{i}" ) lowerCAmelCase : List[Any] = torch.load(os.path.join(_UpperCAmelCase, _UpperCAmelCase ), map_location='cpu' ) # Rename keys in the transformers names lowerCAmelCase : Union[str, Any] = list(temp.keys() ) for key in keys: lowerCAmelCase : List[Any] = temp.pop(_UpperCAmelCase ) if tensors is None: lowerCAmelCase : Union[str, Any] = temp else: for key in tensors.keys(): if any(key.endswith(_UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase : Optional[Any] = torch.cat([tensors[key], temp[key]], dim=_UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase : int = tensors[key] / pretraining_tp torch.save( _UpperCAmelCase, os.path.join( _UpperCAmelCase, 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ), str(len(_UpperCAmelCase ) ).zfill(5 ) ), ), ) for key in tensors.keys(): lowerCAmelCase : str = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCAmelCase : Union[str, Any] = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ), str(len(_UpperCAmelCase ) ).zfill(5 ) ) lowerCAmelCase : Optional[int] = BloomConfig() lowerCAmelCase : Dict = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCAmelCase : Union[str, Any] = total_size with open(_UpperCAmelCase, 'w', encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_UpperCAmelCase, WEIGHTS_NAME + '.index.json' ), 'w', encoding='utf-8' ) as f: lowerCAmelCase : Any = json.dumps(_UpperCAmelCase, indent=2, sort_keys=_UpperCAmelCase ) + '\n' f.write(_UpperCAmelCase ) else: lowerCAmelCase : Dict = BloomModel(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = os.listdir(_UpperCAmelCase ) lowerCAmelCase : Any = sorted(filter(lambda _UpperCAmelCase : s.startswith('layer' ) and "model_00" in s, _UpperCAmelCase ) ) lowerCAmelCase : Any = None for i, file in enumerate(_UpperCAmelCase ): lowerCAmelCase : str = None for i in range(_UpperCAmelCase ): # load all TP files lowerCAmelCase : List[str] = file.replace('model_00', f"model_0{i}" ) lowerCAmelCase : List[str] = torch.load(os.path.join(_UpperCAmelCase, _UpperCAmelCase ), map_location='cpu' ) # Rename keys in the transformers names lowerCAmelCase : str = list(temp.keys() ) for key in keys: lowerCAmelCase : Tuple = temp.pop(_UpperCAmelCase ) if tensors is None: lowerCAmelCase : Tuple = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase : List[str] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase : Optional[Any] = torch.cat([tensors[key], temp[key]], dim=_UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase : Union[str, Any] = tensors[key] / pretraining_tp lowerCAmelCase : List[str] = model.load_state_dict(_UpperCAmelCase, strict=_UpperCAmelCase ) assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: lowerCAmelCase : List[Any] = set(other_keys.missing_keys ) else: lowerCAmelCase : Optional[Any] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(_UpperCAmelCase, exist_ok=_UpperCAmelCase ) lowerCAmelCase : Tuple = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCAmelCase : Tuple = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: lowerCAmelCase : str = model.to(config.torch_dtype ) torch.save(model.state_dict(), _UpperCAmelCase ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_UpperCAmelCase, 'w', encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) __A : Optional[int] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
357
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
0
# Imports import numpy as np class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None ): self.set_matricies(red=UpperCAmelCase_ , green=UpperCAmelCase_ , blue=UpperCAmelCase_ , red_edge=UpperCAmelCase_ , nir=UpperCAmelCase_ ) def lowercase__ ( self : str , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Tuple=None ): if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Union[str, Any] = green if blue is not None: lowerCAmelCase : Tuple = blue if red_edge is not None: lowerCAmelCase : Union[str, Any] = red_edge if nir is not None: lowerCAmelCase : Tuple = nir return True def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple="" , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Dict=None ): self.set_matricies(red=UpperCAmelCase_ , green=UpperCAmelCase_ , blue=UpperCAmelCase_ , red_edge=UpperCAmelCase_ , nir=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def lowercase__ ( self : str ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def lowercase__ ( self : str ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def lowercase__ ( self : str ): return self.nir * (self.red / (self.green**2)) def lowercase__ ( self : Union[str, Any] ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def lowercase__ ( self : Optional[int] ): return (self.nir - self.red) / (self.nir + self.red) def lowercase__ ( self : int ): return (self.nir - self.blue) / (self.nir + self.blue) def lowercase__ ( self : int ): return (self.redEdge - self.red) / (self.redEdge + self.red) def lowercase__ ( self : Optional[Any] ): return (self.nir - self.green) / (self.nir + self.green) def lowercase__ ( self : Dict ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def lowercase__ ( self : List[Any] ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def lowercase__ ( self : Union[str, Any] ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def lowercase__ ( self : int ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[Any]=0.08 , UpperCAmelCase_ : str=1.22 , UpperCAmelCase_ : List[Any]=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def lowercase__ ( self : Union[str, Any] ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def lowercase__ ( self : Union[str, Any] ): return (self.nir / self.green) - 1 def lowercase__ ( self : Dict ): return (self.nir / self.redEdge) - 1 def lowercase__ ( self : Any ): return (self.red - self.blue) / self.red def lowercase__ ( self : int ): lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def lowercase__ ( self : int ): return self.nir - self.green def lowercase__ ( self : int ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def lowercase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : List[Any]=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def lowercase__ ( self : Tuple ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def lowercase__ ( self : str , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None ): return (self.nir - b) / (a * self.red) def lowercase__ ( self : Dict ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def lowercase__ ( self : int ): return (self.red + self.green + self.blue) / 30.5 def lowercase__ ( self : int ): return self.nir / self.red def lowercase__ ( self : Optional[int] ): return (self.rvi() - 1) / (self.rvi() + 1) def lowercase__ ( self : List[Any] ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def lowercase__ ( self : List[Any] ): return self.green / (self.nir + self.red + self.green) def lowercase__ ( self : int ): return self.nir / (self.nir + self.red + self.green) def lowercase__ ( self : Any ): return self.red / (self.nir + self.red + self.green) def lowercase__ ( self : int ): return (self.green - self.red) / (self.green + self.red) def lowercase__ ( self : int ): return (self.red - self.green) / (self.red + self.green) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Optional[int] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def lowercase__ ( self : Optional[Any] ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def lowercase__ ( self : int ): return self.nir / self.red def lowercase__ ( self : Tuple ): return (self.ndvi() + 0.5) ** (1 / 2) def lowercase__ ( self : Any ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
358
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
359
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A : List[Any] = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A : int = logging.get_logger(__name__) __A : Tuple = Dict[str, Any] __A : Union[str, Any] = List[Prediction] @add_end_docstrings(lowerCAmelCase ) class __A ( lowerCAmelCase ): def __init__( self : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def lowercase__ ( self : int , **UpperCAmelCase_ : List[str] ): lowerCAmelCase : Union[str, Any] = {} if "threshold" in kwargs: lowerCAmelCase : Union[str, Any] = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Any ): return super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def lowercase__ ( self : int , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Tuple = load_image(UpperCAmelCase_ ) lowerCAmelCase : Dict = torch.IntTensor([[image.height, image.width]] ) lowerCAmelCase : Optional[int] = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: lowerCAmelCase : int = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) lowerCAmelCase : Union[str, Any] = target_size return inputs def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : List[str] ): lowerCAmelCase : Tuple = model_inputs.pop('target_size' ) lowerCAmelCase : Dict = self.model(**UpperCAmelCase_ ) lowerCAmelCase : List[str] = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: lowerCAmelCase : Optional[Any] = model_inputs['bbox'] return model_outputs def lowercase__ ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple=0.9 ): lowerCAmelCase : Tuple = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowerCAmelCase : Dict = target_size[0].tolist() def unnormalize(UpperCAmelCase_ : Dict ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) lowerCAmelCase : Optional[Any] = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowerCAmelCase : List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowerCAmelCase : Optional[int] = [unnormalize(UpperCAmelCase_ ) for bbox in model_outputs['bbox'].squeeze(0 )] lowerCAmelCase : List[str] = ['score', 'label', 'box'] lowerCAmelCase : Union[str, Any] = [dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) for vals in zip(scores.tolist() , UpperCAmelCase_ , UpperCAmelCase_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowerCAmelCase : str = self.image_processor.post_process_object_detection(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : str = raw_annotations[0] lowerCAmelCase : Optional[Any] = raw_annotation['scores'] lowerCAmelCase : Tuple = raw_annotation['labels'] lowerCAmelCase : List[Any] = raw_annotation['boxes'] lowerCAmelCase : Optional[int] = scores.tolist() lowerCAmelCase : Tuple = [self.model.config.idalabel[label.item()] for label in labels] lowerCAmelCase : Union[str, Any] = [self._get_bounding_box(UpperCAmelCase_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowerCAmelCase : Optional[Any] = ['score', 'label', 'box'] lowerCAmelCase : Any = [ dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def lowercase__ ( self : Tuple , UpperCAmelCase_ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) lowerCAmelCase : List[str] = box.int().tolist() lowerCAmelCase : Optional[Any] = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
361
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A : Any = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __A : lowerCAmelCase_ : List[Any] = PegasusConfig lowerCAmelCase_ : Optional[int] = {} lowerCAmelCase_ : int = "gelu" def __init__( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Tuple=99 , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : List[Any]=5 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Tuple=20 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Tuple=0 , ): lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : Tuple = is_training lowerCAmelCase : Dict = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : Optional[Any] = eos_token_id lowerCAmelCase : List[str] = pad_token_id lowerCAmelCase : Optional[int] = bos_token_id def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowerCAmelCase : int = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase : int = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase : Tuple = prepare_pegasus_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def lowercase__ ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Union[str, Any] = 20 lowerCAmelCase : Tuple = model_class_name(UpperCAmelCase_ ) lowerCAmelCase : Tuple = model.encode(inputs_dict['input_ids'] ) lowerCAmelCase : Dict = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowerCAmelCase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) lowerCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : int = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCAmelCase : List[Any] = model.decode(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def lowercase__ ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = 20 lowerCAmelCase : Tuple = model_class_name(UpperCAmelCase_ ) lowerCAmelCase : Any = model.encode(inputs_dict['input_ids'] ) lowerCAmelCase : List[str] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowerCAmelCase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : str = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCAmelCase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase : Dict = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCAmelCase : int = model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ ) lowerCAmelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=None, ): '''simple docstring''' if attention_mask is None: lowerCAmelCase : Dict = np.not_equal(_UpperCAmelCase, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowerCAmelCase : str = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCAmelCase_ : Dict = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Union[str, Any] = False def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = FlaxPegasusModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Any = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : int = model_class(UpperCAmelCase_ ) @jax.jit def encode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Any ): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) with self.subTest('JIT Enabled' ): lowerCAmelCase : Optional[Any] = encode_jitted(**UpperCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase : Tuple = encode_jitted(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Dict = model_class(UpperCAmelCase_ ) lowerCAmelCase : Tuple = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) lowerCAmelCase : Union[str, Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest('JIT Enabled' ): lowerCAmelCase : Optional[int] = decode_jitted(**UpperCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase : Optional[Any] = decode_jitted(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase__ ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase : Any = model_class_name.from_pretrained('google/pegasus-large' , from_pt=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = np.ones((1, 1) ) lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @slow def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : str = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) lowerCAmelCase : int = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) lowerCAmelCase : Optional[int] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] lowerCAmelCase : List[str] = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] lowerCAmelCase : List[Any] = tokenizer(UpperCAmelCase_ , return_tensors='np' , truncation=UpperCAmelCase_ , max_length=512 , padding=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = model.generate(**UpperCAmelCase_ , num_beams=2 ).sequences lowerCAmelCase : List[str] = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) assert tgt_text == decoded
362
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
0
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(_UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), ) return min( minimax(depth + 1, node_index * 2, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' lowerCAmelCase : List[str] = [90, 23, 6, 33, 21, 65, 123, 34_423] lowerCAmelCase : int = math.log(len(_UpperCAmelCase ), 2 ) print('Optimal value : ', end='' ) print(minimax(0, 0, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
363
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import operator as op __A : int = '''scaler.pt''' __A : Any = '''pytorch_model''' __A : int = '''random_states''' __A : List[str] = '''optimizer''' __A : Optional[int] = '''scheduler''' __A : List[Any] = '''pytorch_model.bin''' __A : str = '''pytorch_model.bin.index.json''' __A : List[str] = '''model.safetensors''' __A : Optional[int] = '''model.safetensors.index.json''' __A : List[Any] = '''1.10.2''' __A : int = '''py38''' __A : int = '''4.17.0''' __A : Union[str, Any] = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] __A : Optional[int] = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] __A : List[str] = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] __A : List[str] = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] __A : Optional[Any] = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] __A : Optional[Any] = '''2.0.1''' __A : int = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] __A : Union[str, Any] = ['''default''', '''reduce-overhead''', '''max-autotune'''] __A : Any = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __A : Any = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] __A : Dict = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] __A : Optional[int] = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
364
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A ( unittest.TestCase ): def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Dict=224 , UpperCAmelCase_ : Union[str, Any]=30 , UpperCAmelCase_ : Tuple=400 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : str=[0.5, 0.5, 0.5] , ): lowerCAmelCase : Tuple = size if size is not None else {'height': 18, 'width': 18} lowerCAmelCase : str = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : Dict = image_size lowerCAmelCase : Optional[Any] = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : str = do_resize lowerCAmelCase : Union[str, Any] = size lowerCAmelCase : Union[str, Any] = do_normalize lowerCAmelCase : str = image_mean lowerCAmelCase : Optional[int] = image_std def lowercase__ ( self : Optional[int] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Any = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = EfficientFormerImageProcessorTester(self ) @property def lowercase__ ( self : Any ): return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self : str ): lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) def lowercase__ ( self : Union[str, Any] ): pass def lowercase__ ( self : str ): # Initialize image_processor lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : Dict = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def lowercase__ ( self : List[str] ): # Initialize image_processor lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Dict = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched lowerCAmelCase : Optional[Any] = image_processor(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def lowercase__ ( self : List[Any] ): # Initialize image_processor lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : int = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processor(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , )
365
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True lowerCAmelCase : Optional[Any] = 4 lowerCAmelCase : Any = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
366
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return round(float(moles / volume ) * nfactor ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
367
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' return number | (1 << position) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' return number & ~(1 << position) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' return number ^ (1 << position) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> bool: '''simple docstring''' return ((number >> position) & 1) == 1 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __A ( lowerCAmelCase ): def __init__( self : List[str] , UpperCAmelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , UpperCAmelCase_ : Optional[NamedSplit] = None , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Tuple , ): lowerCAmelCase : List[Any] = path_or_paths lowerCAmelCase : List[Any] = split if split or isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else 'train' lowerCAmelCase : List[str] = features lowerCAmelCase : Dict = cache_dir lowerCAmelCase : Dict = keep_in_memory lowerCAmelCase : List[Any] = streaming lowerCAmelCase : Dict = num_proc lowerCAmelCase : Any = kwargs @abstractmethod def lowercase__ ( self : List[Any] ): pass class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Union[str, Any] , ): lowerCAmelCase : int = features lowerCAmelCase : Optional[Any] = cache_dir lowerCAmelCase : Union[str, Any] = keep_in_memory lowerCAmelCase : Any = streaming lowerCAmelCase : Dict = num_proc lowerCAmelCase : Any = kwargs @abstractmethod def lowercase__ ( self : str ): pass
369
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[Any] = StableUnCLIPImgaImgPipeline lowerCAmelCase_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase_ : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase_ : Any = frozenset([] ) def lowercase__ ( self : int ): lowerCAmelCase : str = 32 lowerCAmelCase : List[str] = embedder_hidden_size # image encoding components lowerCAmelCase : List[Any] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase_ , projection_dim=UpperCAmelCase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase : Dict = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase_ ) lowerCAmelCase : List[str] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) lowerCAmelCase : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase_ , layers_per_block=1 , upcast_attention=UpperCAmelCase_ , use_linear_projection=UpperCAmelCase_ , ) torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = AutoencoderKL() lowerCAmelCase : Optional[int] = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def lowercase__ ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Optional[int]=True ): if str(UpperCAmelCase_ ).startswith('mps' ): lowerCAmelCase : Union[str, Any] = torch.manual_seed(UpperCAmelCase_ ) else: lowerCAmelCase : Optional[Any] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if pil_image: lowerCAmelCase : str = input_image * 0.5 + 0.5 lowerCAmelCase : str = input_image.clamp(0 , 1 ) lowerCAmelCase : Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase : Any = DiffusionPipeline.numpy_to_pil(UpperCAmelCase_ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def lowercase__ ( self : Any ): lowerCAmelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Any = self.get_dummy_components() lowerCAmelCase : Any = StableUnCLIPImgaImgPipeline(**UpperCAmelCase_ ) lowerCAmelCase : int = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(UpperCAmelCase_ ) inputs.update({'image_embeds': None} ) lowerCAmelCase : Tuple = sd_pipe(**UpperCAmelCase_ ).images lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase : Tuple = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): lowerCAmelCase : int = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : Any = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase_ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase__ ( self : str ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase_ ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def lowercase__ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int ): lowerCAmelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) lowerCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) lowerCAmelCase : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase : Tuple = pipe(UpperCAmelCase_ , 'anime turle' , generator=UpperCAmelCase_ , output_type='np' ) lowerCAmelCase : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) lowerCAmelCase : Dict = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase : Any = pipe(UpperCAmelCase_ , 'anime turle' , generator=UpperCAmelCase_ , output_type='np' ) lowerCAmelCase : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase : Optional[int] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) lowerCAmelCase : Optional[Any] = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase : Union[str, Any] = pipe( UpperCAmelCase_ , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase : int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
370
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Union[str, Any] = PriorTransformer lowerCAmelCase_ : List[Any] = "hidden_states" @property def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = 4 lowerCAmelCase : str = 8 lowerCAmelCase : Optional[Any] = 7 lowerCAmelCase : Optional[int] = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : str = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase__ ( self : Dict , UpperCAmelCase_ : List[str]=0 ): torch.manual_seed(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 4 lowerCAmelCase : Any = 8 lowerCAmelCase : List[Any] = 7 lowerCAmelCase : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : str = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : str = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowercase__ ( self : Tuple ): return (4, 8) @property def lowercase__ ( self : int ): return (4, 8) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } lowerCAmelCase : Any = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : int ): lowerCAmelCase : List[str] = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(UpperCAmelCase_ ) lowerCAmelCase : int = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase : Dict = self.model_class(**UpperCAmelCase_ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : Tuple = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) lowerCAmelCase : Optional[int] = model.to(UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , 'set_default_attn_processor' ): model.set_default_attn_processor() lowerCAmelCase : Union[str, Any] = self.get_dummy_seed_input() with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**UpperCAmelCase_ )[0] lowerCAmelCase : List[Any] = output[0, :5].flatten().cpu() print(UpperCAmelCase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowerCAmelCase : int = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-2 ) ) @slow class __A ( unittest.TestCase ): def lowercase__ ( self : int , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : Tuple=77 , UpperCAmelCase_ : List[str]=0 ): torch.manual_seed(UpperCAmelCase_ ) lowerCAmelCase : Dict = batch_size lowerCAmelCase : Dict = embedding_dim lowerCAmelCase : Dict = num_embeddings lowerCAmelCase : Tuple = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : Tuple = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ): lowerCAmelCase : Dict = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.get_dummy_seed_input(seed=UpperCAmelCase_ ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**UpperCAmelCase_ )[0] assert list(sample.shape ) == [1, 768] lowerCAmelCase : Union[str, Any] = sample[0, :8].flatten().cpu() print(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = torch.tensor(UpperCAmelCase_ ) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 )
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
"""simple docstring""" import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser() parser.add_argument("""-f""" ) _a : str = parser.parse_args() return args.f def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Optional[Any] = {} _a : int = os.path.join(UpperCamelCase__ , """all_results.json""" ) if os.path.exists(UpperCamelCase__ ): with open(UpperCamelCase__ , """r""" ) as f: _a : str = json.load(UpperCamelCase__ ) else: raise ValueError(F"""can't find {path}""" ) return results def lowerCAmelCase__ ( ): '''simple docstring''' _a : Union[str, Any] = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() _snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCamelCase ( snake_case_ ): @classmethod def _lowercase ( cls : Optional[Any] ) -> Union[str, Any]: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU _a : List[Any] = tempfile.mkdtemp() _a : int = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) _a : str = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def _lowercase ( cls : Optional[Any] ) -> Tuple: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : int ) -> Tuple: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Dict = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) _a : Optional[int] = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: _a : List[Any] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _a : Union[str, Any] = get_results(UpperCAmelCase__ ) self.assertLess(result["""perplexity"""] , 100 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : Tuple ) -> Dict: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : int = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _a : List[str] = get_results(UpperCAmelCase__ ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : Optional[Any] ) -> int: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : str = 7 if get_gpu_count() > 1 else 2 _a : Any = self.get_auto_remove_tmp_dir() _a : Tuple = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _a : Tuple = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : Optional[int] = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _a : Union[str, Any] = get_results(UpperCAmelCase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : List[Any] ) -> Any: _a : Union[str, Any] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) _a : List[str] = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : Optional[Any] ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Any = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _a : List[str] = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : Optional[int] ) -> Union[str, Any]: _a : int = self.get_auto_remove_tmp_dir() _a : List[Any] = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _a : Optional[Any] = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """translation_no_trainer""" ) ) ) @slow def _lowercase ( self : str ) -> List[Any]: _a : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCAmelCase__ ) _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : List[str] = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) _a : Any = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.1_0 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: _a : Dict = self.get_auto_remove_tmp_dir() _a : List[str] = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) _a : int = get_results(UpperCAmelCase__ ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """image_classification_no_trainer""" ) ) )
324
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
1
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[str] = torch.load(UpperCamelCase__ , map_location="""cpu""" ) if "model" in sd.keys(): _a : int = torch.load(UpperCamelCase__ , map_location="""cpu""" )["""model"""] # pop unnecessary weights _a : str = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(UpperCamelCase__ ) _a : Optional[int] = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _a : Tuple = sd.pop(UpperCamelCase__ ) _a : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _a : Any = sd[key] # We split QKV in separate Q,K,V _a : List[str] = key.replace(""".qkv_proj.""" , """.q_proj.""" ) _a : Optional[Any] = key.replace(""".qkv_proj.""" , """.k_proj.""" ) _a : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) _a : Optional[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _a , _a , _a : List[Any] = torch.split(UpperCamelCase__ , depth // 3 , dim=0 ) _a : Optional[int] = q _a : int = k _a : Union[str, Any] = v del sd[key] return sd @torch.no_grad() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' _a : Union[str, Any] = load_checkpoint(UpperCamelCase__ ) if config is not None: _a : List[Any] = OPTConfig.from_pretrained(UpperCamelCase__ ) else: _a : Tuple = OPTConfig() _a : Any = OPTModel(UpperCamelCase__ ).half().eval() model.load_state_dict(UpperCamelCase__ ) # Check results Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') _snake_case = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
324
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
1
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _snake_case = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def lowerCAmelCase__ ( ): '''simple docstring''' _a : Any = argparse.ArgumentParser() parser.add_argument("""-f""" ) _a : Dict = parser.parse_args() return args.f def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__="eval" ): '''simple docstring''' _a : List[Any] = os.path.join(UpperCamelCase__ , F"""{split}_results.json""" ) if os.path.exists(UpperCamelCase__ ): with open(UpperCamelCase__ , """r""" ) as f: return json.load(UpperCamelCase__ ) raise ValueError(F"""can't find {path}""" ) _snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Optional[int] ) -> int: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_flax_glue.main() _a : Tuple = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) @slow def _lowercase ( self : Union[str, Any] ) -> int: _a : str = self.get_auto_remove_tmp_dir() _a : List[str] = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_clm_flax.main() _a : Union[str, Any] = get_results(UpperCAmelCase__ ) self.assertLess(result["""eval_perplexity"""] , 100 ) @slow def _lowercase ( self : str ) -> int: _a : Any = self.get_auto_remove_tmp_dir() _a : Tuple = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_summarization_flax.main() _a : Tuple = get_results(UpperCAmelCase__ , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 10 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def _lowercase ( self : Union[str, Any] ) -> Optional[int]: _a : Dict = self.get_auto_remove_tmp_dir() _a : Optional[Any] = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_mlm_flax.main() _a : Optional[int] = get_results(UpperCAmelCase__ ) self.assertLess(result["""eval_perplexity"""] , 42 ) @slow def _lowercase ( self : Any ) -> Optional[Any]: _a : int = self.get_auto_remove_tmp_dir() _a : Optional[Any] = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_ta_mlm_flax.main() _a : Optional[Any] = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.4_2 ) @slow def _lowercase ( self : Any ) -> Any: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Dict = 7 if get_gpu_count() > 1 else 2 _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : str = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_flax_ner.main() _a : Optional[Any] = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def _lowercase ( self : str ) -> int: _a : int = self.get_auto_remove_tmp_dir() _a : Optional[Any] = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_qa.main() _a : Optional[Any] = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_f1"""] , 30 ) self.assertGreaterEqual(result["""eval_exact"""] , 30 )
324
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase ( snake_case_ , snake_case_ ): UpperCamelCase : Any = '''swin''' UpperCamelCase : Optional[Any] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[int]=224 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Optional[Any]=96 , UpperCAmelCase__ : str=[2, 2, 6, 2] , UpperCAmelCase__ : Optional[Any]=[3, 6, 12, 24] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : List[Any]=4.0 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : str=0.0_2 , UpperCAmelCase__ : Dict=1E-5 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : str , ) -> int: super().__init__(**UpperCAmelCase__ ) _a : Optional[int] = image_size _a : Tuple = patch_size _a : List[str] = num_channels _a : str = embed_dim _a : List[Any] = depths _a : List[Any] = len(UpperCAmelCase__ ) _a : List[str] = num_heads _a : List[Any] = window_size _a : str = mlp_ratio _a : List[Any] = qkv_bias _a : Tuple = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : List[str] = drop_path_rate _a : str = hidden_act _a : List[str] = use_absolute_embeddings _a : List[Any] = layer_norm_eps _a : Tuple = initializer_range _a : str = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a : str = int(embed_dim * 2 ** (len(UpperCAmelCase__ ) - 1) ) _a : Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase__ ) + 1 )] _a , _a : Dict = get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : int = version.parse('''1.11''' ) @property def _lowercase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase ( self : Optional[Any] ) -> float: return 1E-4
324
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None: _a : int = do_resize _a : Union[str, Any] = do_rescale _a : Any = size_divisor _a : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray: _a , _a : Tuple = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _a : Optional[Any] = height // size_divisor * size_divisor _a : Union[str, Any] = width // size_divisor * size_divisor _a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : str = size_divisor if size_divisor is not None else self.size_divisor _a : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _a : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: _a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images] _a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
324
1
"""simple docstring""" import operator as op def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = [] _a : List[Any] = lambda UpperCamelCase__ , UpperCamelCase__ : int(x / y ) # noqa: E731 integer division operation _a : int = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(1_2 ) , """Stack""" , sep=""" | """ ) print("""-""" * (3_0 + len(UpperCamelCase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(UpperCamelCase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(1_2 ) , """,""".join(UpperCamelCase__ ) , sep=""" | """ ) else: _a : int = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(1_2 ) , """,""".join(UpperCamelCase__ ) , sep=""" | """ ) _a : Union[str, Any] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(1_2 ) , """,""".join(UpperCamelCase__ ) , sep=""" | """ ) stack.append( str(opr[x](int(UpperCamelCase__ ) , int(UpperCamelCase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(1_2 ) , """,""".join(UpperCamelCase__ ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": _snake_case = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
324
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCAmelCase__ ( ): '''simple docstring''' print("""Making key files...""" ) make_key_files("""rsa""" , 1_0_2_4 ) print("""Key files generation successful.""" ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' print("""Generating prime p...""" ) _a : Union[str, Any] = rabinMiller.generate_large_prime(UpperCamelCase__ ) print("""Generating prime q...""" ) _a : List[Any] = rabinMiller.generate_large_prime(UpperCamelCase__ ) _a : Union[str, Any] = p * q print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" ) while True: _a : Optional[int] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(UpperCamelCase__ , (p - 1) * (q - 1) ) == 1: break print("""Calculating d that is mod inverse of e...""" ) _a : List[str] = cryptoMath.find_mod_inverse(UpperCamelCase__ , (p - 1) * (q - 1) ) _a : Any = (n, e) _a : int = (n, d) return (public_key, private_key) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() _a , _a : List[str] = generate_key(UpperCamelCase__ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , """w""" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , """w""" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
324
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
1
"""simple docstring""" import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) def lowerCAmelCase__ ( UpperCamelCase__=None , UpperCamelCase__=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=UpperCamelCase__ ) @dataclass class UpperCamelCase : UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase : Optional[bool] = field( default=snake_case_ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) UpperCamelCase : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) UpperCamelCase : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) UpperCamelCase : Optional[float] = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) UpperCamelCase : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) UpperCamelCase : Optional[float] = field( default=0.0_5 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) UpperCamelCase : Optional[float] = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase : Optional[str] = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase : Optional[int] = field( default=snake_case_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase : Optional[int] = field( default=snake_case_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase : Optional[int] = field( default=snake_case_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) UpperCamelCase : List[str] = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : WavaVecaProcessor UpperCamelCase : Union[bool, str] = True UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None def __call__( self : List[Any] , UpperCAmelCase__ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods _a : Union[str, Any] = [{"""input_values""": feature["""input_values"""]} for feature in features] _a : str = [{"""input_ids""": feature["""labels"""]} for feature in features] _a : Optional[Any] = self.processor.pad( UpperCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) _a : List[str] = self.processor.pad( labels=UpperCAmelCase__ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="""pt""" , ) # replace padding with -100 to ignore loss correctly _a : Union[str, Any] = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _a : Any = labels return batch class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Any , UpperCAmelCase__ : nn.Module , UpperCAmelCase__ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() _a : Optional[Any] = self._prepare_inputs(UpperCAmelCase__ ) if self.use_amp: with autocast(): _a : Optional[int] = self.compute_loss(UpperCAmelCase__ , UpperCAmelCase__ ) else: _a : Union[str, Any] = self.compute_loss(UpperCAmelCase__ , UpperCAmelCase__ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _a : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _a : List[Any] = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _a : Any = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase__ ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase__ ) else: loss.backward() return loss.detach() def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _a : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _a : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _a : str = datasets.load_dataset( """common_voice""" , data_args.dataset_config_name , split=data_args.train_split_name ) _a : int = datasets.load_dataset("""common_voice""" , data_args.dataset_config_name , split="""test""" ) # Create and save tokenizer _a : str = F"""[{''.join(data_args.chars_to_ignore )}]""" def remove_special_characters(UpperCamelCase__ ): _a : int = re.sub(UpperCamelCase__ , """""" , batch["""sentence"""] ).lower() + """ """ return batch _a : List[Any] = train_dataset.map(UpperCamelCase__ , remove_columns=["""sentence"""] ) _a : Union[str, Any] = eval_dataset.map(UpperCamelCase__ , remove_columns=["""sentence"""] ) def extract_all_chars(UpperCamelCase__ ): _a : Any = """ """.join(batch["""text"""] ) _a : List[Any] = list(set(UpperCamelCase__ ) ) return {"vocab": [vocab], "all_text": [all_text]} _a : Optional[Any] = train_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , batch_size=-1 , keep_in_memory=UpperCamelCase__ , remove_columns=train_dataset.column_names , ) _a : Tuple = train_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , batch_size=-1 , keep_in_memory=UpperCamelCase__ , remove_columns=eval_dataset.column_names , ) _a : Tuple = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) ) _a : str = {v: k for k, v in enumerate(UpperCamelCase__ )} _a : Dict = vocab_dict[""" """] del vocab_dict[" "] _a : Any = len(UpperCamelCase__ ) _a : Union[str, Any] = len(UpperCamelCase__ ) with open("""vocab.json""" , """w""" ) as vocab_file: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a : Union[str, Any] = WavaVecaCTCTokenizer( """vocab.json""" , unk_token="""[UNK]""" , pad_token="""[PAD]""" , word_delimiter_token="""|""" , ) _a : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0.0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ ) _a : Dict = WavaVecaProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) _a : Any = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="""mean""" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _a : Any = min(len(UpperCamelCase__ ) , data_args.max_train_samples ) _a : Optional[int] = train_dataset.select(range(UpperCamelCase__ ) ) if data_args.max_val_samples is not None: _a : Dict = eval_dataset.select(range(data_args.max_val_samples ) ) _a : List[Any] = torchaudio.transforms.Resample(4_8_0_0_0 , 1_6_0_0_0 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(UpperCamelCase__ ): _a , _a : str = torchaudio.load(batch["""path"""] ) _a : Tuple = resampler(UpperCamelCase__ ).squeeze().numpy() _a : List[Any] = 1_6_0_0_0 _a : Optional[int] = batch["""text"""] return batch _a : Tuple = train_dataset.map( UpperCamelCase__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _a : int = eval_dataset.map( UpperCamelCase__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(UpperCamelCase__ ): # check that all files have the correct sampling rate assert ( len(set(batch["""sampling_rate"""] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _a : str = processor( audio=batch["""speech"""] , text=batch["""target_text"""] , sampling_rate=batch["""sampling_rate"""][0] ) batch.update(UpperCamelCase__ ) return batch _a : Optional[int] = train_dataset.map( UpperCamelCase__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , ) _a : str = eval_dataset.map( UpperCamelCase__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , ) # Metric _a : str = datasets.load_metric("""wer""" ) def compute_metrics(UpperCamelCase__ ): _a : List[Any] = pred.predictions _a : int = np.argmax(UpperCamelCase__ , axis=-1 ) _a : Any = processor.tokenizer.pad_token_id _a : List[Any] = processor.batch_decode(UpperCamelCase__ ) # we do not want to group tokens when computing the metrics _a : int = processor.batch_decode(pred.label_ids , group_tokens=UpperCamelCase__ ) _a : Any = wer_metric.compute(predictions=UpperCamelCase__ , references=UpperCamelCase__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _a : Optional[Any] = DataCollatorCTCWithPadding(processor=UpperCamelCase__ , padding=UpperCamelCase__ ) # Initialize our Trainer _a : Any = CTCTrainer( model=UpperCamelCase__ , data_collator=UpperCamelCase__ , args=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _a : Any = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _a : Tuple = model_args.model_name_or_path else: _a : List[str] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _a : Optional[Any] = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() _a : Optional[int] = train_result.metrics _a : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) _a : Optional[int] = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("""train""" , UpperCamelCase__ ) trainer.save_metrics("""train""" , UpperCamelCase__ ) trainer.save_state() # Evaluation _a : List[Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : str = trainer.evaluate() _a : Optional[int] = data_args.max_val_samples if data_args.max_val_samples is not None else len(UpperCamelCase__ ) _a : Dict = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("""eval""" , UpperCamelCase__ ) trainer.save_metrics("""eval""" , UpperCamelCase__ ) return results if __name__ == "__main__": main()
324
"""simple docstring""" import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" _a : Optional[Any] = nn.Parameter(UpperCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" _a : Optional[int] = nn.Parameter(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # set torch weights for 1-to-1 comparison _a : Any = np.asarray(weights[0] ) _a : str = np.asarray(weights[1] ) _a : List[str] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # set torch weights for 1-to-1 comparison _a : List[Any] = np.asarray(weights[0] ) _a : Dict = np.asarray(weights[1] ) _a : Any = np.asarray(weights[2] ) _a : List[Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # layernorm 1 _a : Any = weights[0][0][0] _a : str = np.asarray(layer_norm_a[0] ) _a : int = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # lsh weights + output _a : Optional[int] = weights[0][1] if len(UpperCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ ) else: set_layer_weights_in_torch_local(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ ) # intermediate weighs _a : int = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCamelCase__ ) == 4: _a : int = intermediate_weights[2] # layernorm 2 _a : List[str] = np.asarray(intermediate_weights[0][0] ) _a : Any = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # intermediate dense _a : Optional[Any] = np.asarray(intermediate_weights[1][0] ) _a : Tuple = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) # intermediate out _a : Optional[Any] = np.asarray(intermediate_weights[4][0] ) _a : List[str] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # reformer model _a : int = torch_model.reformer # word embeds _a : Any = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCamelCase__ ) , ) if isinstance(weights[3] , UpperCamelCase__ ): _a : Union[str, Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _a : List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" _a : List[str] = nn.Parameter(torch.tensor(UpperCamelCase__ ) ) _a : str = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _a : int = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # output layer norm _a : Optional[int] = np.asarray(weights[7][0] ) _a : Dict = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # output embeddings _a : List[str] = np.asarray(weights[9][0] ) _a : str = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # Initialise PyTorch model _a : List[Any] = ReformerConfig.from_json_file(UpperCamelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) _a : Any = ReformerModelWithLMHead(UpperCamelCase__ ) with open(UpperCamelCase__ , """rb""" ) as f: _a : Union[str, Any] = pickle.load(UpperCamelCase__ )["""weights"""] set_model_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , config.hidden_size ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
324
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
1
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = PegasusTokenizer UpperCamelCase : int = PegasusTokenizerFast UpperCamelCase : Union[str, Any] = True UpperCamelCase : Tuple = True def _lowercase ( self : Optional[Any] ) -> str: super().setUp() # We have a SentencePiece fixture for testing _a : Dict = PegasusTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase ( self : Tuple ) -> List[str]: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase ( self : Tuple , **UpperCAmelCase__ : str ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : List[Any] ) -> Any: return ("This is a test", "This is a test") def _lowercase ( self : Any ) -> List[str]: _a : Optional[int] = """</s>""" _a : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> List[Any]: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1103 ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase ( self : Any ) -> Union[str, Any]: _a : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _a : int = self.tokenizer_class.from_pretrained(self.tmpdirname ) _a : str = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _a : Any = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ).input_ids[0] _a : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ).input_ids[0] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : int ) -> Dict: _a : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _a : List[Any] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _a : List[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] _a : str = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase__ ).input_ids[0] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: _a : Union[str, Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _a : List[Any] = """To ensure a smooth flow of bank resolutions.""" _a : List[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] _a : Tuple = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase__ ).input_ids[0] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase ( self : Any ) -> str: _a : Any = ["""This is going to be way too long.""" * 150, """short example"""] _a : str = ["""not super long but more than 5 tokens""", """tiny"""] _a : Optional[Any] = self._large_tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="""pt""" ) _a : Dict = self._large_tokenizer( text_target=UpperCAmelCase__ , max_length=5 , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(UpperCAmelCase__ ) == 2 # input_ids, attention_mask. @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Union[str, Any] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Optional[Any] = PegasusTokenizer UpperCamelCase : int = PegasusTokenizerFast UpperCamelCase : Dict = True UpperCamelCase : List[str] = True def _lowercase ( self : Optional[Any] ) -> str: super().setUp() # We have a SentencePiece fixture for testing _a : int = PegasusTokenizer(UpperCAmelCase__ , offset=0 , mask_token_sent=UpperCAmelCase__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase ( self : Optional[int] ) -> Dict: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase ( self : Tuple , **UpperCAmelCase__ : int ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def _lowercase ( self : Any , UpperCAmelCase__ : Dict ) -> Union[str, Any]: return ("This is a test", "This is a test") def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _a : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _a : Optional[int] = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _a : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ).input_ids[0] _a : int = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ).input_ids[0] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @require_torch def _lowercase ( self : Any ) -> Optional[int]: _a : List[Any] = ["""This is going to be way too long.""" * 1000, """short example"""] _a : int = ["""not super long but more than 5 tokens""", """tiny"""] _a : List[str] = self._large_tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="""pt""" ) _a : List[Any] = self._large_tokenizer( text_target=UpperCAmelCase__ , max_length=5 , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(UpperCAmelCase__ ) == 2 # input_ids, attention_mask. def _lowercase ( self : List[str] ) -> List[Any]: _a : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _a : str = self._large_tokenizer(UpperCAmelCase__ ).input_ids self.assertListEqual( UpperCAmelCase__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
324
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _snake_case = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _snake_case = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : Optional[int] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(UpperCamelCase__ ) _a : List[str] = collections.defaultdict(UpperCamelCase__ ) _a : Tuple = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): _a : str = None if _re_tf_models.match(UpperCamelCase__ ) is not None: _a : List[Any] = tf_models _a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: _a : Any = flax_models _a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: _a : int = pt_models _a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: _a : Optional[int] = True break # Try again after removing the last word in the name _a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] ) _a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _a : Dict = list(UpperCamelCase__ ) all_models.sort() _a : str = {"""model_type""": all_models} _a : List[Any] = [pt_models[t] for t in all_models] _a : str = [tf_models[t] for t in all_models] _a : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a : List[str] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a : str = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a : int = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a : int = """AutoTokenizer""" _a : Any = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names _a : str = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = get_frameworks_table() _a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ ) _a : Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ ) _a : List[Any] = Dataset.from_json(UpperCamelCase__ ) _a : List[str] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(UpperCamelCase__ ) ) } _a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a : int = sorted(table.keys() ) _a : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _a : Dict = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) ) if commit_sha is not None: _a : List[str] = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _a : Optional[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a : Any = transformers_module.pipelines.SUPPORTED_TASKS _a : List[str] = [] for key in pipeline_tasks: if key not in in_table: _a : Tuple = pipeline_tasks[key]["""pt"""] if isinstance(UpperCamelCase__ , (list, tuple) ): _a : Dict = model[0] _a : List[str] = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _a : Union[str, Any] = """, """.join(UpperCamelCase__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
324
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : Dict=18 , UpperCAmelCase__ : str=30 , UpperCAmelCase__ : str=400 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , ) -> Any: _a : Optional[Any] = size if size is not None else {"""shortest_edge""": 18} _a : Optional[int] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _a : int = parent _a : Union[str, Any] = batch_size _a : Union[str, Any] = num_channels _a : Any = image_size _a : Optional[int] = min_resolution _a : str = max_resolution _a : List[Any] = do_resize _a : Union[str, Any] = size _a : List[str] = do_center_crop _a : List[Any] = crop_size _a : Tuple = do_normalize _a : Any = image_mean _a : Tuple = image_std def _lowercase ( self : List[str] ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Dict = LevitImageProcessor if is_vision_available() else None def _lowercase ( self : Any ) -> int: _a : Any = LevitImageProcessingTester(self ) @property def _lowercase ( self : Dict ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Optional[Any] ) -> List[str]: _a : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """size""" ) ) def _lowercase ( self : str ) -> Optional[Any]: _a : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Optional[Any] ) -> Optional[int]: # Initialize image_processing _a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input _a : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : List[str] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : Optional[Any] ) -> List[Any]: # Initialize image_processing _a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input _a : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : List[Any] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : str ) -> List[Any]: # Initialize image_processing _a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input _a : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : Optional[int] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
324
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : Any = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : int = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : List[str] = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = DatasetInfo() _a : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
324
1
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Any=18 , UpperCAmelCase__ : List[str]=30 , UpperCAmelCase__ : Tuple=400 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[Any]=False , ) -> Optional[Any]: _a : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} _a : int = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _a : Optional[int] = parent _a : int = batch_size _a : List[Any] = num_channels _a : Dict = image_size _a : Optional[Any] = min_resolution _a : Any = max_resolution _a : Dict = do_resize _a : Union[str, Any] = size _a : str = do_center_crop _a : Tuple = crop_size _a : int = do_normalize _a : Optional[Any] = image_mean _a : List[str] = image_std _a : int = do_reduce_labels def _lowercase ( self : Dict ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _a : Optional[int] = Image.open(dataset[0]["""file"""] ) _a : Tuple = Image.open(dataset[1]["""file"""] ) return image, map def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _a : List[Any] = Image.open(ds[0]["""file"""] ) _a : Tuple = Image.open(ds[1]["""file"""] ) _a : List[Any] = Image.open(ds[2]["""file"""] ) _a : List[Any] = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : List[str] = BeitImageProcessor if is_vision_available() else None def _lowercase ( self : Tuple ) -> Optional[Any]: _a : Union[str, Any] = BeitImageProcessingTester(self ) @property def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Dict ) -> Tuple: _a : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """center_crop""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_std""" ) ) def _lowercase ( self : Any ) -> Any: _a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase__ ) _a : List[str] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=UpperCAmelCase__ ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase__ ) def _lowercase ( self : List[str] ) -> int: pass def _lowercase ( self : Any ) -> Dict: # Initialize image_processing _a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input _a : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : Dict = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : Union[str, Any] ) -> Tuple: # Initialize image_processing _a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input _a : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : int = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : Optional[Any] ) -> List[str]: # Initialize image_processing _a : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input _a : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : Dict = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : int ) -> Union[str, Any]: # Initialize image_processing _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) _a : List[Any] = [] for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _a : int = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched _a : List[Any] = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) _a , _a : Optional[int] = prepare_semantic_single_inputs() _a : List[str] = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) _a , _a : Any = prepare_semantic_batch_inputs() _a : int = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def _lowercase ( self : Optional[int] ) -> Dict: # Initialize image_processing _a : int = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _a , _a : Union[str, Any] = prepare_semantic_single_inputs() _a : Union[str, Any] = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) _a : List[str] = True _a : Union[str, Any] = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
324
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): def _lowercase ( self : int ) -> int: _a : Optional[Any] = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self : List[str] ) -> Union[str, Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : str = self.tool("""hey""" ) _a : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : int = self.tool("""hey""" ) _a : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
324
1
"""simple docstring""" import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = tmp_path / """file.csv""" _a : Optional[int] = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(UpperCamelCase__ , """w""" ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) @pytest.fixture def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[str] = tmp_path / """malformed_file.csv""" _a : Optional[int] = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(UpperCamelCase__ , """w""" ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) @pytest.fixture def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Tuple = tmp_path / """csv_with_image.csv""" _a : str = textwrap.dedent( F"""\ image {image_file} """ ) with open(UpperCamelCase__ , """w""" ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) @pytest.fixture def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : str = tmp_path / """csv_with_label.csv""" _a : int = textwrap.dedent( """\ label good bad good """ ) with open(UpperCamelCase__ , """w""" ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) @pytest.fixture def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Any = tmp_path / """csv_with_int_list.csv""" _a : Optional[int] = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(UpperCamelCase__ , """w""" ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Tuple = Csv() _a : Tuple = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(UpperCamelCase__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(UpperCamelCase__ ) in record.message for record in caplog.records ) @require_pil def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: _a : List[Any] = f.read().splitlines()[1] _a : List[str] = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) _a : Optional[Any] = csv._generate_tables([[csv_file_with_image]] ) _a : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() _a : List[str] = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: _a : Any = f.read().splitlines()[1:] _a : List[str] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) _a : Any = csv._generate_tables([[csv_file_with_label]] ) _a : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() _a : List[str] = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(UpperCamelCase__ ) for label in labels] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda UpperCamelCase__ : [int(UpperCamelCase__ ) for i in x.split()]} ) _a : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _a : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) _a : Dict = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
324
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int: _a : str = parent _a : Union[str, Any] = config_class _a : List[Any] = has_text_modality _a : List[Any] = kwargs _a : List[Any] = common_properties def _lowercase ( self : int ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) _a : Dict = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase__ ): try: setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase__ ): try: _a : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) _a : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[str]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" ) config_first.to_json_file(UpperCAmelCase__ ) _a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Union[str, Any] ) -> Dict: _a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase__ ) _a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Dict ) -> Tuple: _a : List[Any] = self.config_class(**self.inputs_dict ) _a : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) config_first.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Tuple ) -> List[str]: if self.config_class.is_composition: return _a : str = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Dict = copy.deepcopy(UpperCAmelCase__ ) _a : Any = self.config_class(**UpperCAmelCase__ ) _a : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value: wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) ) if len(UpperCAmelCase__ ) > 0: _a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self : int ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
324
1
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _snake_case = logging.getLogger(__name__) _snake_case = 'Hello world! cécé herlolip' _snake_case = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = BertAbsConfig( temp_dir=""".""" , finetune_bert=UpperCamelCase__ , large=UpperCamelCase__ , share_emb=UpperCamelCase__ , use_bert_emb=UpperCamelCase__ , encoder="""bert""" , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) _a : List[Any] = torch.load(UpperCamelCase__ , lambda UpperCamelCase__ , UpperCamelCase__ : storage ) _a : str = AbsSummarizer(UpperCamelCase__ , torch.device("""cpu""" ) , UpperCamelCase__ ) original.eval() _a : Any = BertAbsSummarizer(UpperCamelCase__ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) _a : str = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs _a : Optional[Any] = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(UpperCamelCase__ )) ) _a : str = torch.tensor(UpperCamelCase__ ).unsqueeze(0 ) _a : Optional[int] = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(UpperCamelCase__ )) ) _a : Optional[Any] = torch.tensor(UpperCamelCase__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _a : Any = encoder_input_ids _a : Dict = decoder_input_ids _a : Dict = None _a : int = None _a : List[Any] = None _a : List[str] = None _a : Optional[Any] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _a : List[str] = original(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )[0] _a : Optional[int] = original.generator(UpperCamelCase__ ) _a : int = new_model( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )[0] _a : List[str] = new_model.generator(UpperCamelCase__ ) _a : Dict = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase__ ) ) _a : List[str] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase__ ) ) _a : Optional[Any] = torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _snake_case = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
324
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
1
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[str] = list(UpperCamelCase__ ) _a : str = list(UpperCamelCase__ ) _a : int = 0 for i in range(len(UpperCamelCase__ ) ): if lista[i] != lista[i]: count += 1 _a : List[str] = """_""" if count > 1: return False else: return "".join(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = [] while True: _a : Optional[int] = ["""$"""] * len(UpperCamelCase__ ) _a : Dict = [] for i in range(len(UpperCamelCase__ ) ): for j in range(i + 1 , len(UpperCamelCase__ ) ): _a : Union[str, Any] = compare_string(binary[i] , binary[j] ) if k is False: _a : List[str] = """*""" _a : Union[str, Any] = """*""" temp.append("""X""" ) for i in range(len(UpperCamelCase__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(UpperCamelCase__ ) == 0: return pi _a : Union[str, Any] = list(set(UpperCamelCase__ ) ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = [] for minterm in minterms: _a : str = """""" for _ in range(UpperCamelCase__ ): _a : Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(UpperCamelCase__ ) return temp def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[str] = list(UpperCamelCase__ ) _a : Tuple = list(UpperCamelCase__ ) _a : str = 0 for i in range(len(UpperCamelCase__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [] _a : Any = [0] * len(UpperCamelCase__ ) for i in range(len(chart[0] ) ): _a : int = 0 _a : Any = -1 for j in range(len(UpperCamelCase__ ) ): if chart[j][i] == 1: count += 1 _a : Tuple = j if count == 1: _a : Tuple = 1 for i in range(len(UpperCamelCase__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(UpperCamelCase__ ) ): _a : Dict = 0 temp.append(prime_implicants[i] ) while True: _a : Union[str, Any] = 0 _a : Dict = -1 _a : int = 0 for i in range(len(UpperCamelCase__ ) ): _a : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: _a : Any = count_n _a : str = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(UpperCamelCase__ ) ): _a : Dict = 0 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [[0 for x in range(len(UpperCamelCase__ ) )] for x in range(len(UpperCamelCase__ ) )] for i in range(len(UpperCamelCase__ ) ): _a : Optional[int] = prime_implicants[i].count("""_""" ) for j in range(len(UpperCamelCase__ ) ): if is_for_table(prime_implicants[i] , binary[j] , UpperCamelCase__ ): _a : Dict = 1 return chart def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = int(input("""Enter the no. of variables\n""" ) ) _a : Dict = [ float(UpperCamelCase__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _a : int = decimal_to_binary(UpperCamelCase__ , UpperCamelCase__ ) _a : Optional[int] = check(UpperCamelCase__ ) print("""Prime Implicants are:""" ) print(UpperCamelCase__ ) _a : Optional[Any] = prime_implicant_chart(UpperCamelCase__ , UpperCamelCase__ ) _a : List[Any] = selection(UpperCamelCase__ , UpperCamelCase__ ) print("""Essential Prime Implicants are:""" ) print(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
324
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : Optional[Any] = '''xmod''' def __init__( self : Optional[int] , UpperCAmelCase__ : Dict=30522 , UpperCAmelCase__ : int=768 , UpperCAmelCase__ : Optional[int]=12 , UpperCAmelCase__ : Tuple=12 , UpperCAmelCase__ : Any=3072 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : List[str]=512 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : int=0.0_2 , UpperCAmelCase__ : Any=1E-12 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Optional[int]=0 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=False , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Optional[Any]=("en_XX",) , UpperCAmelCase__ : Optional[int]=None , **UpperCAmelCase__ : Any , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) _a : List[str] = vocab_size _a : List[str] = hidden_size _a : Tuple = num_hidden_layers _a : str = num_attention_heads _a : int = hidden_act _a : str = intermediate_size _a : Optional[Any] = hidden_dropout_prob _a : Union[str, Any] = attention_probs_dropout_prob _a : int = max_position_embeddings _a : Optional[Any] = type_vocab_size _a : List[Any] = initializer_range _a : str = layer_norm_eps _a : int = position_embedding_type _a : int = use_cache _a : int = classifier_dropout _a : int = pre_norm _a : Dict = adapter_reduction_factor _a : List[str] = adapter_layer_norm _a : List[str] = adapter_reuse_layer_norm _a : str = ln_before_adapter _a : Optional[Any] = list(UpperCAmelCase__ ) _a : Any = default_language class UpperCamelCase ( snake_case_ ): @property def _lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _a : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
324
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Dict ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self : List[str] ) -> Dict: _a : Tuple = 1 _a : Optional[Any] = 3 _a : Optional[int] = (32, 32) _a : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase__ ) return image @property def _lowercase ( self : int ) -> Dict: torch.manual_seed(0 ) _a : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def _lowercase ( self : Union[str, Any] ) -> int: torch.manual_seed(0 ) _a : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowercase ( self : Optional[int] ) -> int: torch.manual_seed(0 ) _a : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(UpperCAmelCase__ ) @property def _lowercase ( self : Dict ) -> Optional[Any]: def extract(*UpperCAmelCase__ : int , **UpperCAmelCase__ : str ): class UpperCamelCase : def __init__( self : Any ) -> int: _a : List[Any] = torch.ones([0] ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> str: self.pixel_values.to(UpperCAmelCase__ ) return self return Out() return extract def _lowercase ( self : Any ) -> List[Any]: _a : int = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Union[str, Any] = self.dummy_cond_unet _a : Optional[int] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) _a : List[str] = self.dummy_vae _a : Tuple = self.dummy_text_encoder _a : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _a : int = StableDiffusionPipeline( unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , feature_extractor=self.dummy_extractor , ) _a : Optional[Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = """A painting of a squirrel eating a burger""" _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) _a : Optional[Any] = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) _a : Any = output.images _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) _a : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=UpperCAmelCase__ , )[0] _a : Optional[Any] = image[0, -3:, -3:, -1] _a : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a : Any = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> List[str]: _a : int = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Tuple = self.dummy_cond_unet _a : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase__ ) _a : int = self.dummy_vae _a : Optional[Any] = self.dummy_text_encoder _a : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _a : Any = StableDiffusionPipeline( unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , feature_extractor=self.dummy_extractor , ) _a : Any = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Union[str, Any] = """A painting of a squirrel eating a burger""" _a : str = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) _a : Optional[Any] = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) _a : Dict = output.images _a : int = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) _a : int = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=UpperCAmelCase__ , )[0] _a : List[Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a : int = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : int ) -> Dict: _a : Any = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=UpperCAmelCase__ ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert isinstance(pipe.scheduler , UpperCAmelCase__ ) assert pipe.safety_checker is None _a : Any = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase__ ) _a : Union[str, Any] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _a : Optional[int] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowercase ( self : List[str] ) -> List[str]: _a : Union[str, Any] = self.dummy_cond_unet _a : List[Any] = PNDMScheduler(skip_prk_steps=UpperCAmelCase__ ) _a : List[str] = self.dummy_vae _a : Optional[Any] = self.dummy_text_encoder _a : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _a : Any = unet.half() _a : List[Any] = vae.half() _a : List[Any] = bert.half() # make sure here that pndm scheduler skips prk _a : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , feature_extractor=self.dummy_extractor , ) _a : Tuple = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : str = """A painting of a squirrel eating a burger""" _a : Union[str, Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[Any] ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Tuple ) -> Dict: _a : Dict = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=UpperCAmelCase__ ) _a : Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _a : Optional[int] = 4003660346 _a : int = 7 # without safety guidance (sld_guidance_scale = 0) _a : List[Any] = torch.manual_seed(UpperCAmelCase__ ) _a : List[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _a : Optional[int] = output.images _a : List[str] = image[0, -3:, -3:, -1] _a : int = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _a : Optional[int] = torch.manual_seed(UpperCAmelCase__ ) _a : List[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _a : Union[str, Any] = output.images _a : int = image[0, -3:, -3:, -1] _a : List[str] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : int ) -> Tuple: _a : Optional[int] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=UpperCAmelCase__ ) _a : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _a : int = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = """padme amidala taking a bath artwork, safe for work, no nudity""" _a : List[Any] = 2734971755 _a : Any = 7 _a : str = torch.manual_seed(UpperCAmelCase__ ) _a : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _a : Tuple = output.images _a : str = image[0, -3:, -3:, -1] _a : List[str] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _a : List[str] = torch.manual_seed(UpperCAmelCase__ ) _a : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _a : List[Any] = output.images _a : List[str] = image[0, -3:, -3:, -1] _a : int = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Union[str, Any] ) -> List[Any]: _a : str = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _a : Optional[int] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Union[str, Any] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _a : Tuple = 1044355234 _a : Any = 12 _a : int = torch.manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _a : Optional[int] = output.images _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : List[str] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _a : str = torch.manual_seed(UpperCAmelCase__ ) _a : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _a : Dict = output.images _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : List[Any] = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
1
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) _a : int = str(UpperCamelCase__ ) _a : str = """""".join(sorted(UpperCamelCase__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def lowerCAmelCase__ ( UpperCamelCase__ = 9_9 ): '''simple docstring''' if not 0 < percent < 1_0_0: raise ValueError("""solution() only accepts values from 0 to 100""" ) _a : List[str] = 0 _a : List[str] = 1 while True: if check_bouncy(UpperCamelCase__ ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
324
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
1
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCamelCase ( snake_case_ , snake_case_ ): @register_to_config def __init__( self : Dict , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : float = 2_0_0_0.0 , UpperCAmelCase__ : int = 768 , UpperCAmelCase__ : int = 12 , UpperCAmelCase__ : int = 12 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2048 , UpperCAmelCase__ : float = 0.1 , ) -> Optional[int]: super().__init__() _a : Optional[Any] = nn.Sequential( nn.Linear(UpperCAmelCase__ , d_model * 4 , bias=UpperCAmelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCAmelCase__ ) , nn.SiLU() , ) _a : Optional[int] = nn.Embedding(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False _a : Union[str, Any] = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) _a : Optional[Any] = nn.Dropout(p=UpperCAmelCase__ ) _a : List[Any] = nn.ModuleList() for lyr_num in range(UpperCAmelCase__ ): # FiLM conditional T5 decoder _a : List[Any] = DecoderLayer(d_model=UpperCAmelCase__ , d_kv=UpperCAmelCase__ , num_heads=UpperCAmelCase__ , d_ff=UpperCAmelCase__ , dropout_rate=UpperCAmelCase__ ) self.decoders.append(UpperCAmelCase__ ) _a : Dict = TaLayerNorm(UpperCAmelCase__ ) _a : List[str] = nn.Dropout(p=UpperCAmelCase__ ) _a : Any = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) def _lowercase ( self : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any ) -> Dict: _a : Dict = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _lowercase ( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict ) -> Tuple: _a , _a , _a : Optional[int] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _a : Optional[int] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _a : Optional[int] = self.conditioning_emb(UpperCAmelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _a : Optional[int] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _a : Optional[int] = torch.broadcast_to( torch.arange(UpperCAmelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _a : Optional[int] = self.position_encoding(UpperCAmelCase__ ) _a : List[str] = self.continuous_inputs_projection(UpperCAmelCase__ ) inputs += position_encodings _a : List[str] = self.dropout(UpperCAmelCase__ ) # decoder: No padding present. _a : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _a : List[str] = [(x, self.encoder_decoder_mask(UpperCAmelCase__ , UpperCAmelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings _a : Union[str, Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _a : Optional[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _a : Tuple = lyr( UpperCAmelCase__ , conditioning_emb=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , )[0] _a : Optional[int] = self.decoder_norm(UpperCAmelCase__ ) _a : List[str] = self.post_dropout(UpperCAmelCase__ ) _a : int = self.spec_out(UpperCAmelCase__ ) return spec_out class UpperCamelCase ( nn.Module ): def __init__( self : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=1E-6 ) -> Optional[int]: super().__init__() _a : Tuple = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCAmelCase__ , d_kv=UpperCAmelCase__ , num_heads=UpperCAmelCase__ , dropout_rate=UpperCAmelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCAmelCase__ , d_kv=UpperCAmelCase__ , num_heads=UpperCAmelCase__ , dropout_rate=UpperCAmelCase__ , layer_norm_epsilon=UpperCAmelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCAmelCase__ , d_ff=UpperCAmelCase__ , dropout_rate=UpperCAmelCase__ , layer_norm_epsilon=UpperCAmelCase__ ) ) def _lowercase ( self : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[str]=None , ) -> Dict: _a : Optional[Any] = self.layer[0]( UpperCAmelCase__ , conditioning_emb=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , ) if encoder_hidden_states is not None: _a : List[Any] = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _a : List[str] = self.layer[1]( UpperCAmelCase__ , key_value_states=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , ) # Apply Film Conditional Feed Forward layer _a : List[Any] = self.layer[-1](UpperCAmelCase__ , UpperCAmelCase__ ) return (hidden_states,) class UpperCamelCase ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] ) -> Tuple: super().__init__() _a : Optional[Any] = TaLayerNorm(UpperCAmelCase__ ) _a : int = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase__ ) _a : Any = Attention(query_dim=UpperCAmelCase__ , heads=UpperCAmelCase__ , dim_head=UpperCAmelCase__ , out_bias=UpperCAmelCase__ , scale_qk=UpperCAmelCase__ ) _a : List[str] = nn.Dropout(UpperCAmelCase__ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Union[str, Any]=None , ) -> Any: # pre_self_attention_layer_norm _a : str = self.layer_norm(UpperCAmelCase__ ) if conditioning_emb is not None: _a : int = self.FiLMLayer(UpperCAmelCase__ , UpperCAmelCase__ ) # Self-attention block _a : Tuple = self.attention(UpperCAmelCase__ ) _a : Optional[Any] = hidden_states + self.dropout(UpperCAmelCase__ ) return hidden_states class UpperCamelCase ( nn.Module ): def __init__( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> List[str]: super().__init__() _a : Any = Attention(query_dim=UpperCAmelCase__ , heads=UpperCAmelCase__ , dim_head=UpperCAmelCase__ , out_bias=UpperCAmelCase__ , scale_qk=UpperCAmelCase__ ) _a : int = TaLayerNorm(UpperCAmelCase__ , eps=UpperCAmelCase__ ) _a : int = nn.Dropout(UpperCAmelCase__ ) def _lowercase ( self : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[str]=None , ) -> Optional[Any]: _a : Tuple = self.layer_norm(UpperCAmelCase__ ) _a : Any = self.attention( UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) _a : int = hidden_states + self.dropout(UpperCAmelCase__ ) return layer_output class UpperCamelCase ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: super().__init__() _a : str = TaDenseGatedActDense(d_model=UpperCAmelCase__ , d_ff=UpperCAmelCase__ , dropout_rate=UpperCAmelCase__ ) _a : Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase__ ) _a : Tuple = TaLayerNorm(UpperCAmelCase__ , eps=UpperCAmelCase__ ) _a : str = nn.Dropout(UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any]=None ) -> Optional[int]: _a : Any = self.layer_norm(UpperCAmelCase__ ) if conditioning_emb is not None: _a : Optional[Any] = self.film(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = self.DenseReluDense(UpperCAmelCase__ ) _a : List[Any] = hidden_states + self.dropout(UpperCAmelCase__ ) return hidden_states class UpperCamelCase ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict ) -> List[Any]: super().__init__() _a : List[str] = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) _a : List[Any] = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) _a : List[str] = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) _a : Dict = nn.Dropout(UpperCAmelCase__ ) _a : List[Any] = NewGELUActivation() def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any ) -> Optional[int]: _a : Tuple = self.act(self.wi_a(UpperCAmelCase__ ) ) _a : List[Any] = self.wi_a(UpperCAmelCase__ ) _a : List[str] = hidden_gelu * hidden_linear _a : Optional[Any] = self.dropout(UpperCAmelCase__ ) _a : Tuple = self.wo(UpperCAmelCase__ ) return hidden_states class UpperCamelCase ( nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any]=1E-6 ) -> List[Any]: super().__init__() _a : Optional[int] = nn.Parameter(torch.ones(UpperCAmelCase__ ) ) _a : str = eps def _lowercase ( self : Any , UpperCAmelCase__ : Any ) -> str: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _a : List[Any] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCAmelCase__ ) _a : Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _a : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCamelCase ( nn.Module ): def _lowercase ( self : Optional[int] , UpperCAmelCase__ : torch.Tensor ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(UpperCAmelCase__ , 3.0 )) )) class UpperCamelCase ( nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> List[str]: super().__init__() _a : Optional[Any] = nn.Linear(UpperCAmelCase__ , out_features * 2 , bias=UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> Any: _a : List[Any] = self.scale_bias(UpperCAmelCase__ ) _a , _a : Any = torch.chunk(UpperCAmelCase__ , 2 , -1 ) _a : Dict = x * (1 + scale) + shift return x
324
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCAmelCase__ ( ): '''simple docstring''' _a : Union[str, Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=UpperCamelCase__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=UpperCamelCase__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=UpperCamelCase__ ) return parser.parse_args() def lowerCAmelCase__ ( ): '''simple docstring''' _a : Any = parse_args() # Import training_script as a module. _a : str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _a : List[Any] = script_fpath.stem _a : Tuple = importlib.import_module(UpperCamelCase__ ) # Patch sys.argv _a : int = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
324
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
1
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return (-y * np.log(UpperCamelCase__ ) - (1 - y) * np.log(1 - h )).mean() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = np.dot(UpperCamelCase__ , UpperCamelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(UpperCamelCase__ ) ) ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=7_0_0_0_0 ): '''simple docstring''' _a : List[str] = np.zeros(x.shape[1] ) for iterations in range(UpperCamelCase__ ): _a : Optional[Any] = np.dot(UpperCamelCase__ , UpperCamelCase__ ) _a : Union[str, Any] = sigmoid_function(UpperCamelCase__ ) _a : List[str] = np.dot(x.T , h - y ) / y.size _a : Any = theta - alpha * gradient # updating the weights _a : Optional[int] = np.dot(UpperCamelCase__ , UpperCamelCase__ ) _a : Any = sigmoid_function(UpperCamelCase__ ) _a : Any = cost_function(UpperCamelCase__ , UpperCamelCase__ ) if iterations % 1_0_0 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _snake_case = datasets.load_iris() _snake_case = iris.data[:, :2] _snake_case = (iris.target != 0) * 1 _snake_case = 0.1 _snake_case = logistic_reg(alpha, x, y, max_iterations=7_0000) print('theta: ', theta) # printing the theta i.e our weights vector def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return sigmoid_function( np.dot(UpperCamelCase__ , UpperCamelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((_snake_case) , (_snake_case)) = (x[:, 0].min(), x[:, 0].max()) ((_snake_case) , (_snake_case)) = (x[:, 1].min(), x[:, 1].max()) ((_snake_case) , (_snake_case)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _snake_case = np.c_[xxa.ravel(), xxa.ravel()] _snake_case = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
324
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Dict = CanineTokenizer UpperCamelCase : List[Any] = False def _lowercase ( self : int ) -> Tuple: super().setUp() _a : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase ( self : str ) -> Tuple: return CanineTokenizer.from_pretrained("""google/canine-s""" ) def _lowercase ( self : Tuple , **UpperCAmelCase__ : Tuple ) -> CanineTokenizer: _a : Any = self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) _a : Dict = 1024 return tokenizer @require_torch def _lowercase ( self : Optional[Any] ) -> Optional[Any]: _a : Any = self.canine_tokenizer _a : int = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off _a : int = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on _a : List[str] = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = list(batch.input_ids.numpy()[0] ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowercase ( self : Any ) -> List[str]: _a : Dict = self.canine_tokenizer _a : Any = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] _a : Tuple = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , UpperCAmelCase__ ) self.assertIn("""attention_mask""" , UpperCAmelCase__ ) self.assertIn("""token_type_ids""" , UpperCAmelCase__ ) @require_torch def _lowercase ( self : str ) -> Tuple: _a : Optional[int] = self.canine_tokenizer _a : List[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] _a : str = tokenizer( text_target=UpperCAmelCase__ , max_length=32 , padding="""max_length""" , truncation=UpperCAmelCase__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def _lowercase ( self : List[str] ) -> str: # safety check on max_len default value so we are sure the test works _a : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _a : List[str] = tempfile.mkdtemp() _a : Dict = """ He is very happy, UNwant\u00E9d,running""" _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) tokenizer.save_pretrained(UpperCAmelCase__ ) _a : Dict = tokenizer.__class__.from_pretrained(UpperCAmelCase__ ) _a : Optional[int] = after_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) shutil.rmtree(UpperCAmelCase__ ) _a : int = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _a : Dict = tempfile.mkdtemp() _a : Dict = """ He is very happy, UNwant\u00E9d,running""" _a : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _a : Optional[int] = chr(0xe007 ) additional_special_tokens.append(UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _a : Optional[int] = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) tokenizer.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = tokenizer.__class__.from_pretrained(UpperCAmelCase__ ) _a : int = after_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertIn(UpperCAmelCase__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _a : Union[str, Any] = tokenizer.__class__.from_pretrained(UpperCAmelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase__ ) def _lowercase ( self : str ) -> Optional[int]: _a : Tuple = self.get_tokenizers(do_lower_case=UpperCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _a , _a : Union[str, Any] = self.get_clean_sequence(UpperCAmelCase__ ) # a special token for Canine can be defined as follows: _a : str = 0xe005 _a : Optional[Any] = chr(UpperCAmelCase__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) _a : Optional[int] = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(len(UpperCAmelCase__ ) , 1 ) _a : str = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=UpperCAmelCase__ ) _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Any = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , input_encoded + special_token_id ) _a : Optional[int] = tokenizer.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) self.assertTrue(special_token not in decoded ) def _lowercase ( self : List[Any] ) -> Dict: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=UpperCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _a : Any = chr(0xe005 ) _a : Union[str, Any] = chr(0xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=UpperCAmelCase__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) _a : List[Any] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Optional[int] = tokenizer.tokenize(UpperCAmelCase__ ) self.assertEqual(len(UpperCAmelCase__ ) , 1 ) self.assertEqual(len(UpperCAmelCase__ ) , 1 ) self.assertEqual(token_a[0] , UpperCAmelCase__ ) self.assertEqual(token_a[0] , UpperCAmelCase__ ) @require_tokenizers def _lowercase ( self : str ) -> Tuple: _a : Optional[int] = self.get_tokenizers(do_lower_case=UpperCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: _a : str = 0xe006 _a : Tuple = chr(UpperCAmelCase__ ) _a : int = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(UpperCAmelCase__ ) tokenizer.from_pretrained(UpperCAmelCase__ ) def _lowercase ( self : List[str] ) -> Dict: _a : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: _a : Dict = json.load(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: _a : Tuple = json.load(UpperCAmelCase__ ) # a special token for Canine can be defined as follows: _a : str = 0xe006 _a : Union[str, Any] = chr(UpperCAmelCase__ ) _a : Dict = [new_token_a] _a : Tuple = [new_token_a] with open(os.path.join(UpperCAmelCase__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _a : Tuple = tokenizer_class.from_pretrained(UpperCAmelCase__ , extra_ids=0 ) self.assertIn(UpperCAmelCase__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _a : str = 0xe007 _a : Any = chr(UpperCAmelCase__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _a : Union[str, Any] = [AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ )] _a : str = tokenizer_class.from_pretrained( UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , extra_ids=0 ) self.assertIn(UpperCAmelCase__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowercase ( self : Optional[Any] ) -> str: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=UpperCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _a : List[Any] = """hello world""" if self.space_between_special_tokens: _a : Optional[int] = """[CLS] hello world [SEP]""" else: _a : int = input _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = tokenizer.decode(UpperCAmelCase__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(UpperCAmelCase__ , [output, output.lower()] ) def _lowercase ( self : str ) -> int: _a : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _a : List[Any] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _a : Any = """a""" _a : Optional[int] = ord(UpperCAmelCase__ ) for attr in attributes_list: setattr(UpperCAmelCase__ , attr + """_id""" , UpperCAmelCase__ ) self.assertEqual(getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(getattr(UpperCAmelCase__ , attr + """_id""" ) , UpperCAmelCase__ ) setattr(UpperCAmelCase__ , attr + """_id""" , UpperCAmelCase__ ) self.assertEqual(getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(getattr(UpperCAmelCase__ , attr + """_id""" ) , UpperCAmelCase__ ) setattr(UpperCAmelCase__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(UpperCAmelCase__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(UpperCAmelCase__ , """additional_special_tokens_ids""" ) , [] ) _a : Union[str, Any] = 0xe006 _a : Any = chr(UpperCAmelCase__ ) setattr(UpperCAmelCase__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(UpperCAmelCase__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(UpperCAmelCase__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: pass def _lowercase ( self : Optional[Any] ) -> Dict: pass def _lowercase ( self : Union[str, Any] ) -> List[Any]: pass def _lowercase ( self : int ) -> Dict: pass def _lowercase ( self : List[Any] ) -> Optional[Any]: pass def _lowercase ( self : Union[str, Any] ) -> str: pass def _lowercase ( self : Dict ) -> Dict: pass def _lowercase ( self : int ) -> int: pass
324
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ ) UpperCamelCase : list = field(default_factory=snake_case_ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any: _a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[int] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : nn.Module UpperCamelCase : int = 0 UpperCamelCase : List = field(default_factory=snake_case_ ) UpperCamelCase : List = field(default_factory=snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple: _a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized _a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized _a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) _a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while""" f""" destination module has {len(UpperCAmelCase__ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() _a : str = ResNetForImageClassification(UpperCamelCase__ ).eval() _a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) _a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." _a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one _a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' _a : Any = """imagenet-1k-id2label.json""" _a : Optional[int] = 1_0_0_0 _a : Any = (1, num_labels) _a : Union[str, Any] = """huggingface/label-files""" _a : Tuple = num_labels _a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} _a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _a : Union[str, Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
324
1
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _a : str = k.replace(UpperCamelCase__ , UpperCamelCase__ ) if k.startswith("""encoder""" ): _a : List[Any] = k.replace(""".attn""" , """.self_attn""" ) _a : int = k.replace("""norm1""" , """self_attn_layer_norm""" ) _a : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): _a : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) _a : Dict = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) _a : Optional[Any] = k.replace("""norm3""" , """final_layer_norm""" ) return k def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : str = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: _a : Dict = sd.pop(UpperCamelCase__ ) _a : str = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd _a : List[str] = v _snake_case = ['START'] @torch.no_grad() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = torch.load(UpperCamelCase__ , map_location="""cpu""" ) _a : str = model["""model"""] _a : Tuple = BlenderbotConfig.from_json_file(UpperCamelCase__ ) _a : Any = BlenderbotForConditionalGeneration(UpperCamelCase__ ) _a : List[Any] = m.model.state_dict().keys() _a : Dict = [] _a : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _a : Optional[Any] = rename_state_dict_key(UpperCamelCase__ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _a : List[str] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCamelCase__ ) m.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) m.half() m.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) _snake_case = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
324
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
1
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _snake_case = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) _snake_case = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) _snake_case = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) _snake_case = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) _snake_case = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) _snake_case = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) _snake_case = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def lowerCAmelCase__ ( ): '''simple docstring''' _a , _a : Union[str, Any] = randrange(len(UpperCamelCase__ ) ), randrange(len(UpperCamelCase__ ) ) _a : str = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] _a , _a : Union[str, Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCAmelCase__ ( UpperCamelCase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(UpperCamelCase__ )) @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' assert PokerHand(UpperCamelCase__ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' assert PokerHand(UpperCamelCase__ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = PokerHand(UpperCamelCase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' assert PokerHand(UpperCamelCase__ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' assert PokerHand(UpperCamelCase__ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' assert PokerHand(UpperCamelCase__ ).compare_with(PokerHand(UpperCamelCase__ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' assert PokerHand(UpperCamelCase__ ).compare_with(PokerHand(UpperCamelCase__ ) ) == expected def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = [PokerHand(UpperCamelCase__ ) for hand in SORTED_HANDS] _a : Union[str, Any] = poker_hands.copy() shuffle(UpperCamelCase__ ) _a : Optional[Any] = chain(sorted(UpperCamelCase__ ) ) for index, hand in enumerate(UpperCamelCase__ ): assert hand == poker_hands[index] def lowerCAmelCase__ ( ): '''simple docstring''' # Test that five high straights are compared correctly. _a : int = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=UpperCamelCase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCAmelCase__ ( ): '''simple docstring''' # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. _a : Optional[int] = PokerHand("""2C 4S AS 3D 5C""" ) _a : List[Any] = True _a : Dict = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCAmelCase__ ( ): '''simple docstring''' # Problem number 54 from Project Euler # Testing from poker_hands.txt file _a : int = 0 _a : Optional[int] = os.path.abspath(os.path.dirname(UpperCamelCase__ ) ) _a : Dict = os.path.join(UpperCamelCase__ , """poker_hands.txt""" ) with open(UpperCamelCase__ ) as file_hand: for line in file_hand: _a : str = line[:1_4].strip() _a : List[Any] = line[1_5:].strip() _a , _a : Dict = PokerHand(UpperCamelCase__ ), PokerHand(UpperCamelCase__ ) _a : Union[str, Any] = player.compare_with(UpperCamelCase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
324
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
1
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _snake_case = logging.getLogger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : str = '''masked_bert''' def __init__( self : Dict , UpperCAmelCase__ : Optional[Any]=30522 , UpperCAmelCase__ : Dict=768 , UpperCAmelCase__ : Any=12 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : int=3072 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=512 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Union[str, Any]=0.0_2 , UpperCAmelCase__ : int=1E-12 , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : str="topK" , UpperCAmelCase__ : Dict="constant" , UpperCAmelCase__ : str=0.0 , **UpperCAmelCase__ : Union[str, Any] , ) -> int: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Optional[Any] = vocab_size _a : List[Any] = hidden_size _a : Optional[Any] = num_hidden_layers _a : Tuple = num_attention_heads _a : Optional[int] = hidden_act _a : Tuple = intermediate_size _a : Optional[Any] = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : Dict = max_position_embeddings _a : Tuple = type_vocab_size _a : Optional[Any] = initializer_range _a : str = layer_norm_eps _a : Optional[int] = pruning_method _a : Optional[Any] = mask_init _a : Union[str, Any] = mask_scale
324
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
1
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = '''vision-encoder-decoder''' UpperCamelCase : List[Any] = True def __init__( self : List[Any] , **UpperCAmelCase__ : Optional[int] ) -> Any: super().__init__(**UpperCAmelCase__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _a : List[str] = kwargs.pop("""encoder""" ) _a : Optional[int] = encoder_config.pop("""model_type""" ) _a : Optional[Any] = kwargs.pop("""decoder""" ) _a : List[Any] = decoder_config.pop("""model_type""" ) _a : int = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Optional[Any] = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Optional[Any] = True @classmethod def _lowercase ( cls : str , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Optional[Any] ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _a : Optional[int] = True _a : List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> str: _a : List[str] = copy.deepcopy(self.__dict__ ) _a : Any = self.encoder.to_dict() _a : Union[str, Any] = self.decoder.to_dict() _a : Tuple = self.__class__.model_type return output class UpperCamelCase ( snake_case_ ): UpperCamelCase : Optional[int] = version.parse('''1.11''' ) @property def _lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase ( self : Dict ) -> float: return 1E-4 @property def _lowercase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class UpperCamelCase ( snake_case_ ): @property def _lowercase ( self : Any ) -> Mapping[str, Mapping[int, str]]: _a : Optional[int] = OrderedDict() _a : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _a : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _a : Union[str, Any] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def _lowercase ( self : Optional[int] , UpperCAmelCase__ : "PreTrainedTokenizerBase" , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: import torch _a : int = OrderedDict() _a : Any = super().generate_dummy_inputs( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__ ) _a , _a : List[Any] = dummy_input["""input_ids"""].shape _a : Tuple = (batch, encoder_sequence, self._config.encoder_hidden_size) _a : Optional[int] = dummy_input.pop("""input_ids""" ) _a : List[Any] = dummy_input.pop("""attention_mask""" ) _a : Tuple = torch.zeros(UpperCAmelCase__ ) return common_inputs class UpperCamelCase ( snake_case_ ): @property def _lowercase ( self : Optional[int] ) -> None: pass def _lowercase ( self : Any , UpperCAmelCase__ : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(UpperCAmelCase__ ) def _lowercase ( self : int , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : str = "default" ) -> OnnxConfig: _a : str = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(UpperCAmelCase__ , UpperCAmelCase__ )
324
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
1
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase : UpperCamelCase : Any = None @experimental def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return _map_with_joblib(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = num_proc if num_proc <= len(UpperCamelCase__ ) else len(UpperCamelCase__ ) _a : Optional[Any] = [] # We organize the splits ourselve (contiguous splits) for index in range(UpperCamelCase__ ): _a : Optional[int] = len(UpperCamelCase__ ) // num_proc _a : Any = len(UpperCamelCase__ ) % num_proc _a : Tuple = div * index + min(UpperCamelCase__ , UpperCamelCase__ ) _a : Optional[int] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(UpperCamelCase__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(UpperCamelCase__ )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(UpperCamelCase__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) _a , _a : Any = None, None if not disable_tqdm: _a , _a : Any = (RLock(),), tqdm.set_lock with Pool(UpperCamelCase__ , initargs=UpperCamelCase__ , initializer=UpperCamelCase__ ) as pool: _a : Optional[Any] = pool.map(UpperCamelCase__ , UpperCamelCase__ ) logger.info(F"""Finished {num_proc} processes""" ) _a : Optional[int] = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(UpperCamelCase__ )} objects""" ) return mapped def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=UpperCamelCase__ ): return joblib.Parallel()( joblib.delayed(UpperCamelCase__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _a : Optional[Any] = None
324
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None: _a : int = do_resize _a : Union[str, Any] = do_rescale _a : Any = size_divisor _a : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray: _a , _a : Tuple = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _a : Optional[Any] = height // size_divisor * size_divisor _a : Union[str, Any] = width // size_divisor * size_divisor _a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : str = size_divisor if size_divisor is not None else self.size_divisor _a : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _a : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: _a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images] _a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
324
1
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = 0 while len(UpperCamelCase__ ) > 1: _a : Optional[int] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _a : Optional[int] = files.index(min(UpperCamelCase__ ) ) temp += files[min_index] files.pop(UpperCamelCase__ ) files.append(UpperCamelCase__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
324
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
1
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _snake_case = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _a : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _a , _a : int = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: _a : Tuple = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _a , _a : Any = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) _a : List[Any] = ["""key_proj""", """value_proj""", """query_proj"""] _a : Tuple = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _a : Dict = key.split(""".""" ) if attributes[0] == "lm_head": _a : Any = prophet _a : Tuple = prophet_old else: _a : Any = prophet.prophetnet _a : int = prophet_old.model _a : List[Any] = False for attribute in attributes: if attribute in mapping: _a : Any = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: _a : str = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): _a : str = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _a : Tuple = old_model.weight logger.info(F"""{attribute} is initialized.""" ) _a : Tuple = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _a : Union[str, Any] = old_model.bias logger.info(F"""{attribute} is initialized""" ) _a : Optional[int] = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , """in_proj_weight""" ): _a : Optional[int] = old_model.in_proj_weight.shape[0] // 3 _a : List[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _a : Optional[int] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _a : List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _a : Dict = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _a : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _a : Dict = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _a : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _a : List[str] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_1_2, "We want 512 position_embeddings." _a : List[Any] = nn.Parameter(old_model.embed_positions.weight[:5_1_2, :] ) _a : Dict = True break if attribute.isdigit(): _a : Optional[Any] = model[int(UpperCamelCase__ )] _a : Dict = old_model[int(UpperCamelCase__ )] else: _a : List[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": _a : List[Any] = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F"""{old_model} does not have {old_attribute}""" ) _a : List[str] = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F"""{key} was not correctly initialized!""" ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
324
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
1
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[Any] = checkpoint _a : List[Any] = {} _a : Tuple = vae_state_dict["""encoder.conv_in.weight"""] _a : str = vae_state_dict["""encoder.conv_in.bias"""] _a : Tuple = vae_state_dict["""encoder.conv_out.weight"""] _a : Dict = vae_state_dict["""encoder.conv_out.bias"""] _a : List[Any] = vae_state_dict["""encoder.norm_out.weight"""] _a : Dict = vae_state_dict["""encoder.norm_out.bias"""] _a : Tuple = vae_state_dict["""decoder.conv_in.weight"""] _a : Union[str, Any] = vae_state_dict["""decoder.conv_in.bias"""] _a : Any = vae_state_dict["""decoder.conv_out.weight"""] _a : Optional[Any] = vae_state_dict["""decoder.conv_out.bias"""] _a : Any = vae_state_dict["""decoder.norm_out.weight"""] _a : str = vae_state_dict["""decoder.norm_out.bias"""] _a : Any = vae_state_dict["""quant_conv.weight"""] _a : Optional[Any] = vae_state_dict["""quant_conv.bias"""] _a : Union[str, Any] = vae_state_dict["""post_quant_conv.weight"""] _a : Dict = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only _a : int = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) _a : Tuple = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(UpperCamelCase__ ) } # Retrieves the keys for the decoder up blocks only _a : Any = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) _a : Optional[Any] = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(UpperCamelCase__ ) } for i in range(UpperCamelCase__ ): _a : str = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: _a : Any = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) _a : Union[str, Any] = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) _a : Any = renew_vae_resnet_paths(UpperCamelCase__ ) _a : Any = {"""old""": F"""down.{i}.block""", """new""": F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) _a : Dict = [key for key in vae_state_dict if """encoder.mid.block""" in key] _a : Optional[int] = 2 for i in range(1 , num_mid_res_blocks + 1 ): _a : str = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] _a : Tuple = renew_vae_resnet_paths(UpperCamelCase__ ) _a : Any = {"""old""": F"""mid.block_{i}""", """new""": F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) _a : Optional[int] = [key for key in vae_state_dict if """encoder.mid.attn""" in key] _a : str = renew_vae_attention_paths(UpperCamelCase__ ) _a : List[Any] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) conv_attn_to_linear(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): _a : Union[str, Any] = num_up_blocks - 1 - i _a : Union[str, Any] = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: _a : Union[str, Any] = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] _a : Optional[int] = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] _a : int = renew_vae_resnet_paths(UpperCamelCase__ ) _a : int = {"""old""": F"""up.{block_id}.block""", """new""": F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) _a : int = [key for key in vae_state_dict if """decoder.mid.block""" in key] _a : List[Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): _a : int = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] _a : Dict = renew_vae_resnet_paths(UpperCamelCase__ ) _a : List[str] = {"""old""": F"""mid.block_{i}""", """new""": F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) _a : Any = [key for key in vae_state_dict if """decoder.mid.attn""" in key] _a : str = renew_vae_attention_paths(UpperCamelCase__ ) _a : str = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) conv_attn_to_linear(UpperCamelCase__ ) return new_checkpoint def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' # Only support V1 _a : List[Any] = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) _a : Dict = io.BytesIO(r.content ) _a : Dict = OmegaConf.load(UpperCamelCase__ ) _a : Union[str, Any] = 5_1_2 _a : Tuple = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open _a : str = {} with safe_open(UpperCamelCase__ , framework="""pt""" , device="""cpu""" ) as f: for key in f.keys(): _a : List[Any] = f.get_tensor(UpperCamelCase__ ) else: _a : str = torch.load(UpperCamelCase__ , map_location=UpperCamelCase__ )["""state_dict"""] # Convert the VAE model. _a : List[Any] = create_vae_diffusers_config(UpperCamelCase__ , image_size=UpperCamelCase__ ) _a : Tuple = custom_convert_ldm_vae_checkpoint(UpperCamelCase__ , UpperCamelCase__ ) _a : Optional[Any] = AutoencoderKL(**UpperCamelCase__ ) vae.load_state_dict(UpperCamelCase__ ) vae.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') _snake_case = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
324
"""simple docstring""" import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
1
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _snake_case = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _snake_case = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : Optional[int] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(UpperCamelCase__ ) _a : List[str] = collections.defaultdict(UpperCamelCase__ ) _a : Tuple = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): _a : str = None if _re_tf_models.match(UpperCamelCase__ ) is not None: _a : List[Any] = tf_models _a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: _a : Any = flax_models _a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: _a : int = pt_models _a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: _a : Optional[int] = True break # Try again after removing the last word in the name _a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] ) _a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _a : Dict = list(UpperCamelCase__ ) all_models.sort() _a : str = {"""model_type""": all_models} _a : List[Any] = [pt_models[t] for t in all_models] _a : str = [tf_models[t] for t in all_models] _a : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a : List[str] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a : str = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a : int = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a : int = """AutoTokenizer""" _a : Any = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names _a : str = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = get_frameworks_table() _a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ ) _a : Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ ) _a : List[Any] = Dataset.from_json(UpperCamelCase__ ) _a : List[str] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(UpperCamelCase__ ) ) } _a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a : int = sorted(table.keys() ) _a : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _a : Dict = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) ) if commit_sha is not None: _a : List[str] = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _a : Optional[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a : Any = transformers_module.pipelines.SUPPORTED_TASKS _a : List[str] = [] for key in pipeline_tasks: if key not in in_table: _a : Tuple = pipeline_tasks[key]["""pt"""] if isinstance(UpperCamelCase__ , (list, tuple) ): _a : Dict = model[0] _a : List[str] = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _a : Union[str, Any] = """, """.join(UpperCamelCase__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
324
1
"""simple docstring""" import math class UpperCamelCase : def _lowercase ( self : Tuple , UpperCAmelCase__ : list[list[float]] , UpperCAmelCase__ : list[int] ) -> int: _a : str = 0.0 _a : Optional[int] = 0.0 for i in range(len(UpperCAmelCase__ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _lowercase ( self : Optional[int] , UpperCAmelCase__ : list[list[int | float]] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : float ) -> list[list[int | float]]: for i in range(len(UpperCAmelCase__ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCAmelCase__ ( ): '''simple docstring''' # Training Examples ( m, n ) _a : Tuple = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _a : Tuple = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _a : Union[str, Any] = SelfOrganizingMap() _a : Optional[Any] = 3 _a : List[Any] = 0.5 for _ in range(UpperCamelCase__ ): for j in range(len(UpperCamelCase__ ) ): # training sample _a : List[str] = training_samples[j] # Compute the winning vector _a : Tuple = self_organizing_map.get_winner(UpperCamelCase__ , UpperCamelCase__ ) # Update the winning vector _a : Any = self_organizing_map.update(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # classify test sample _a : str = [0, 0, 0, 1] _a : str = self_organizing_map.get_winner(UpperCamelCase__ , UpperCamelCase__ ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
324
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : Any = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : int = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : List[str] = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = DatasetInfo() _a : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
324
1
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): def _lowercase ( self : int ) -> int: _a : Optional[Any] = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self : List[str] ) -> Union[str, Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : str = self.tool("""hey""" ) _a : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : int = self.tool("""hey""" ) _a : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
324
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = 0 _a : List[Any] = len(UpperCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _a : Any = i + 1 else: _a : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
324
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int: _a : str = parent _a : Union[str, Any] = config_class _a : List[Any] = has_text_modality _a : List[Any] = kwargs _a : List[Any] = common_properties def _lowercase ( self : int ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) _a : Dict = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase__ ): try: setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase__ ): try: _a : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) _a : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[str]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" ) config_first.to_json_file(UpperCAmelCase__ ) _a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Union[str, Any] ) -> Dict: _a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase__ ) _a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Dict ) -> Tuple: _a : List[Any] = self.config_class(**self.inputs_dict ) _a : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) config_first.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Tuple ) -> List[str]: if self.config_class.is_composition: return _a : str = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Dict = copy.deepcopy(UpperCAmelCase__ ) _a : Any = self.config_class(**UpperCAmelCase__ ) _a : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value: wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) ) if len(UpperCAmelCase__ ) > 0: _a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self : int ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
324
1
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = '▁' _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : int = BigBirdTokenizer UpperCamelCase : str = BigBirdTokenizerFast UpperCamelCase : Tuple = True UpperCamelCase : Tuple = True def _lowercase ( self : int ) -> Any: super().setUp() _a : Any = self.tokenizer_class(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : str ) -> str: _a : Union[str, Any] = """<s>""" _a : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> int: _a : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """[MASK]""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : int ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowercase ( self : Optional[int] ) -> Optional[int]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : Any = self.get_rust_tokenizer() _a : int = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : int = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Dict = tokenizer.encode(UpperCAmelCase__ ) _a : List[str] = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ) -> str: _a : Union[str, Any] = BigBirdTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) _a : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [285, 46, 10, 170, 382] , ) _a : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _a : Dict = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _lowercase ( self : Optional[int] ) -> List[str]: return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : List[Any] = """Hello World!""" _a : int = [65, 18536, 2260, 101, 66] self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def _lowercase ( self : List[Any] ) -> List[Any]: _a : List[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off _a : Tuple = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @require_torch @slow def _lowercase ( self : str ) -> Optional[Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _a : str = list(self.big_tokenizer.get_vocab().keys() )[:10] _a : Any = """ """.join(UpperCAmelCase__ ) _a : Dict = self.big_tokenizer.encode_plus(UpperCAmelCase__ , return_tensors="""pt""" , return_token_type_ids=UpperCAmelCase__ ) _a : Tuple = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=UpperCAmelCase__ ) _a : List[str] = BigBirdConfig(attention_type="""original_full""" ) _a : int = BigBirdModel(UpperCAmelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase__ ) model(**UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> Optional[int]: _a : Any = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) _a : Optional[Any] = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def _lowercase ( self : int ) -> Optional[int]: # fmt: off _a : List[Any] = {"""input_ids""": [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
324
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
1
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
1
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _snake_case = 'hf-internal-testing/tiny-random-bert' _snake_case = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') _snake_case = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Optional[Any] ) -> str: _a : int = cached_file(UpperCAmelCase__ , UpperCAmelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) ) with open(os.path.join(UpperCAmelCase__ , """refs""" , """main""" ) ) as f: _a : Optional[Any] = f.read() self.assertEqual(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , """snapshots""" , UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertTrue(os.path.isfile(UpperCAmelCase__ ) ) # File is cached at the same place the second time. _a : List[str] = cached_file(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Using a specific revision to test the full commit hash. _a : Optional[Any] = cached_file(UpperCAmelCase__ , UpperCAmelCase__ , revision="""9b8c223""" ) self.assertEqual(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , """snapshots""" , UpperCAmelCase__ , UpperCAmelCase__ ) ) def _lowercase ( self : Tuple ) -> Tuple: with self.assertRaisesRegex(UpperCAmelCase__ , """is not a valid model identifier""" ): _a : Any = cached_file("""tiny-random-bert""" , UpperCAmelCase__ ) with self.assertRaisesRegex(UpperCAmelCase__ , """is not a valid git identifier""" ): _a : Union[str, Any] = cached_file(UpperCAmelCase__ , UpperCAmelCase__ , revision="""aaaa""" ) with self.assertRaisesRegex(UpperCAmelCase__ , """does not appear to have a file named""" ): _a : int = cached_file(UpperCAmelCase__ , """conf""" ) def _lowercase ( self : List[Any] ) -> int: with self.assertRaisesRegex(UpperCAmelCase__ , """does not appear to have a file named""" ): _a : str = cached_file(UpperCAmelCase__ , """conf""" ) with open(os.path.join(UpperCAmelCase__ , """refs""" , """main""" ) ) as f: _a : List[Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase__ , """.no_exist""" , UpperCAmelCase__ , """conf""" ) ) ) _a : Union[str, Any] = cached_file(UpperCAmelCase__ , """conf""" , _raise_exceptions_for_missing_entries=UpperCAmelCase__ ) self.assertIsNone(UpperCAmelCase__ ) _a : Dict = cached_file(UpperCAmelCase__ , """conf""" , local_files_only=UpperCAmelCase__ , _raise_exceptions_for_missing_entries=UpperCAmelCase__ ) self.assertIsNone(UpperCAmelCase__ ) _a : Union[str, Any] = mock.Mock() _a : Optional[Any] = 500 _a : Any = {} _a : int = HTTPError _a : int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=UpperCAmelCase__ ) as mock_head: _a : Tuple = cached_file(UpperCAmelCase__ , """conf""" , _raise_exceptions_for_connection_errors=UpperCAmelCase__ ) self.assertIsNone(UpperCAmelCase__ ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self : Any ) -> Optional[int]: self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCAmelCase__ ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCAmelCase__ ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCAmelCase__ ) ) def _lowercase ( self : Tuple ) -> int: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase__ , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , UpperCAmelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase__ , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , UpperCAmelCase__ , revision="""ahaha""" ) _a : Dict = get_file_from_repo("""bert-base-cased""" , UpperCAmelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. _a : Any = json.loads(open(UpperCAmelCase__ , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 768 ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: _a : Any = Path(UpperCAmelCase__ ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase__ , """a.txt""" ) , str(UpperCAmelCase__ ) ) self.assertIsNone(get_file_from_repo(UpperCAmelCase__ , """b.txt""" ) )
324
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
1
"""simple docstring""" import csv import tweepy # Twitter API credentials _snake_case = '' _snake_case = '' _snake_case = '' _snake_case = '' def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # authorize twitter, initialize tweepy _a : Any = tweepy.OAuthHandler(UpperCamelCase__ , UpperCamelCase__ ) auth.set_access_token(UpperCamelCase__ , UpperCamelCase__ ) _a : Any = tweepy.API(UpperCamelCase__ ) # initialize a list to hold all the tweepy Tweets _a : str = [] # make initial request for most recent tweets (200 is the maximum allowed count) _a : Tuple = api.user_timeline(screen_name=UpperCamelCase__ , count=2_0_0 ) # save most recent tweets alltweets.extend(UpperCamelCase__ ) # save the id of the oldest tweet less one _a : Dict = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(UpperCamelCase__ ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _a : str = api.user_timeline( screen_name=UpperCamelCase__ , count=2_0_0 , max_id=UpperCamelCase__ ) # save most recent tweets alltweets.extend(UpperCamelCase__ ) # update the id of the oldest tweet less one _a : str = alltweets[-1].id - 1 print(F"""...{len(UpperCamelCase__ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _a : Optional[int] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , """w""" ) as f: _a : List[str] = csv.writer(UpperCamelCase__ ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(UpperCamelCase__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
324
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
1
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
1
"""simple docstring""" from math import sqrt def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase__ ( UpperCamelCase__ = 1_0_0_0_1 ): '''simple docstring''' _a : str = 0 _a : Dict = 1 while count != nth and number < 3: number += 1 if is_prime(UpperCamelCase__ ): count += 1 while count != nth: number += 2 if is_prime(UpperCamelCase__ ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
324
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Tuple = BlenderbotSmallTokenizer UpperCamelCase : List[Any] = False def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: super().setUp() _a : List[Any] = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] _a : Dict = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) _a : Tuple = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] _a : Any = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase__ ) ) def _lowercase ( self : int , **UpperCAmelCase__ : Optional[Any] ) -> str: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def _lowercase ( self : str , UpperCAmelCase__ : str ) -> Dict: _a : Tuple = """adapt act apte""" _a : Union[str, Any] = """adapt act apte""" return input_text, output_text def _lowercase ( self : List[Any] ) -> Union[str, Any]: _a : Union[str, Any] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a : List[Any] = """adapt act apte""" _a : List[str] = ["""adapt""", """act""", """ap@@""", """te"""] _a : Union[str, Any] = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Optional[Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: _a : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1384] _a : Dict = """I am a small frog.""" _a : Optional[int] = tok([src_text] , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ )["""input_ids"""] _a : Optional[int] = tok.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowercase ( self : Dict ) -> str: _a : int = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) _a : List[Any] = """I am a small frog .""" _a : Tuple = """.""" _a : Optional[int] = tok(UpperCAmelCase__ )["""input_ids"""] _a : Dict = tok(UpperCAmelCase__ )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
324
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : str = IFInpaintingPipeline UpperCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase : Optional[int] = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowercase ( self : Union[str, Any] ) -> Tuple: return self._get_dummy_components() def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=0 ) -> Tuple: if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Dict = torch.manual_seed(UpperCAmelCase__ ) else: _a : Any = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowercase ( self : str ) -> str: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _lowercase ( self : Optional[int] ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _lowercase ( self : Union[str, Any] ) -> int: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _lowercase ( self : List[Any] ) -> Tuple: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _lowercase ( self : List[Any] ) -> Optional[int]: self._test_save_load_local() def _lowercase ( self : int ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
324
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ ) UpperCamelCase : list = field(default_factory=snake_case_ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any: _a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[int] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : nn.Module UpperCamelCase : int = 0 UpperCamelCase : List = field(default_factory=snake_case_ ) UpperCamelCase : List = field(default_factory=snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple: _a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized _a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized _a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) _a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while""" f""" destination module has {len(UpperCAmelCase__ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() _a : str = ResNetForImageClassification(UpperCamelCase__ ).eval() _a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) _a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." _a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one _a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' _a : Any = """imagenet-1k-id2label.json""" _a : Optional[int] = 1_0_0_0 _a : Any = (1, num_labels) _a : Union[str, Any] = """huggingface/label-files""" _a : Tuple = num_labels _a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} _a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _a : Union[str, Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
324
1
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers _snake_case = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Optional[int] = os.path.dirname(os.path.realpath(UpperCamelCase__ ) ) _a : List[str] = os.path.join(UpperCamelCase__ , """words.txt""" ) _a : str = """""" with open(UpperCamelCase__ ) as f: _a : Dict = f.readline() _a : Union[str, Any] = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] _a : Union[str, Any] = [ word for word in [sum(ord(UpperCamelCase__ ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(UpperCamelCase__ ) if __name__ == "__main__": print(solution())
324
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['GLPNFeatureExtractor'] _snake_case = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
1
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _snake_case = logging.getLogger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = '''summarization''' UpperCamelCase : str = ['''loss'''] UpperCamelCase : Optional[Any] = ROUGE_KEYS UpperCamelCase : List[str] = '''rouge2''' def __init__( self : Tuple , UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int ) -> Optional[int]: if hparams.sortish_sampler and hparams.gpus > 1: _a : Optional[Any] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(UpperCAmelCase__ , num_labels=UpperCAmelCase__ , mode=self.mode , **UpperCAmelCase__ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) _a : Tuple = Path(self.output_dir ) / """metrics.json""" _a : Tuple = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) _a : List[str] = 0 _a : Any = defaultdict(UpperCAmelCase__ ) _a : Optional[Any] = self.config.model_type _a : int = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size _a : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _a : List[str] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } _a : int = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _a : Tuple = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], f"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _a : str = get_git_info()["""repo_sha"""] _a : int = hparams.num_workers _a : int = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCAmelCase__ ): _a : Tuple = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _a : str = self.decoder_start_token_id _a : int = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) _a : Any = False _a : Union[str, Any] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _a : List[Any] = self.hparams.eval_max_gen_length else: _a : Union[str, Any] = self.model.config.max_length _a : Tuple = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _lowercase ( self : Tuple , UpperCAmelCase__ : Dict[str, torch.Tensor] ) -> Dict[str, List[str]]: _a : Optional[int] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(UpperCAmelCase__ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) _a : str = True return readable_batch def _lowercase ( self : List[str] , UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[int] ) -> str: return self.model(UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : List[int] ) -> Tuple: _a : Optional[Any] = self.tokenizer.batch_decode( UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ ) return lmap(str.strip , UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : dict ) -> Tuple: _a : Dict = self.tokenizer.pad_token_id _a , _a : List[Any] = batch["""input_ids"""], batch["""attention_mask"""] _a : List[str] = batch["""labels"""] if isinstance(self.model , UpperCAmelCase__ ): _a : Union[str, Any] = self.model._shift_right(UpperCAmelCase__ ) else: _a : Dict = shift_tokens_right(UpperCAmelCase__ , UpperCAmelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _a : Optional[int] = decoder_input_ids self.save_readable_batch(UpperCAmelCase__ ) _a : List[Any] = self(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) _a : Any = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _a : Union[str, Any] = nn.CrossEntropyLoss(ignore_index=UpperCAmelCase__ ) assert lm_logits.shape[-1] == self.vocab_size _a : str = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _a : int = nn.functional.log_softmax(UpperCAmelCase__ , dim=-1 ) _a , _a : Any = label_smoothed_nll_loss( UpperCAmelCase__ , UpperCAmelCase__ , self.hparams.label_smoothing , ignore_index=UpperCAmelCase__ ) return (loss,) @property def _lowercase ( self : Union[str, Any] ) -> int: return self.tokenizer.pad_token_id def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any ) -> Dict: _a : Optional[Any] = self._step(UpperCAmelCase__ ) _a : Dict = dict(zip(self.loss_names , UpperCAmelCase__ ) ) # tokens per batch _a : Dict = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() _a : List[str] = batch["""input_ids"""].shape[0] _a : Union[str, Any] = batch["""input_ids"""].eq(self.pad ).sum() _a : Tuple = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _lowercase ( self : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Dict: return self._generative_step(UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any]="val" ) -> Dict: self.step_count += 1 _a : Optional[int] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _a : Optional[int] = losses["""loss"""] _a : Union[str, Any] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } _a : Union[str, Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _a : torch.FloatTensor = torch.tensor(UpperCAmelCase__ ).type_as(UpperCAmelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(UpperCAmelCase__ ) _a : str = {f"""{prefix}_avg_{k}""": x for k, x in losses.items()} _a : List[str] = self.step_count self.metrics[prefix].append(UpperCAmelCase__ ) # callback writes this to self.metrics_save_path _a : Optional[int] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f"""{prefix}_loss""": loss, f"""{prefix}_{self.val_metric}""": metric_tensor, } def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple ) -> Dict: return calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : int , UpperCAmelCase__ : dict ) -> dict: _a : Union[str, Any] = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _a : Optional[Any] = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=UpperCAmelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _a : Any = (time.time() - ta) / batch["""input_ids"""].shape[0] _a : List[str] = self.ids_to_clean_text(UpperCAmelCase__ ) _a : List[str] = self.ids_to_clean_text(batch["""labels"""] ) _a : List[Any] = self._step(UpperCAmelCase__ ) _a : int = dict(zip(self.loss_names , UpperCAmelCase__ ) ) _a : Dict = self.calc_generative_metrics(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[Any] = np.mean(lmap(UpperCAmelCase__ , UpperCAmelCase__ ) ) base_metrics.update(gen_time=UpperCAmelCase__ , gen_len=UpperCAmelCase__ , preds=UpperCAmelCase__ , target=UpperCAmelCase__ , **UpperCAmelCase__ ) return base_metrics def _lowercase ( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int ) -> Dict: return self._generative_step(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Tuple ) -> Optional[Any]: return self.validation_epoch_end(UpperCAmelCase__ , prefix="""test""" ) def _lowercase ( self : str , UpperCAmelCase__ : Optional[int] ) -> SeqaSeqDataset: _a : Any = self.n_obs[type_path] _a : Dict = self.target_lens[type_path] _a : Union[str, Any] = self.dataset_class( self.tokenizer , type_path=UpperCAmelCase__ , n_obs=UpperCAmelCase__ , max_target_length=UpperCAmelCase__ , **self.dataset_kwargs , ) return dataset def _lowercase ( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False ) -> DataLoader: _a : List[Any] = self.get_dataset(UpperCAmelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _a : Optional[Any] = dataset.make_sortish_sampler(UpperCAmelCase__ , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCAmelCase__ , num_workers=self.num_workers , sampler=UpperCAmelCase__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _a : Optional[int] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCAmelCase__ , batch_sampler=UpperCAmelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCAmelCase__ , num_workers=self.num_workers , sampler=UpperCAmelCase__ , ) def _lowercase ( self : Tuple ) -> DataLoader: _a : str = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=UpperCAmelCase__ ) return dataloader def _lowercase ( self : Dict ) -> DataLoader: return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def _lowercase ( self : Optional[int] ) -> DataLoader: return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def _lowercase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Any ) -> Union[str, Any]: BaseTransformer.add_model_specific_args(UpperCAmelCase__ , UpperCAmelCase__ ) add_generic_args(UpperCAmelCase__ , UpperCAmelCase__ ) parser.add_argument( """--max_source_length""" , default=1024 , type=UpperCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=UpperCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=UpperCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=UpperCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=UpperCAmelCase__ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=UpperCAmelCase__ ) parser.add_argument("""--max_tokens_per_batch""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ ) parser.add_argument("""--logger_name""" , type=UpperCAmelCase__ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=UpperCAmelCase__ , default=-1 , required=UpperCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=UpperCAmelCase__ , default=500 , required=UpperCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=UpperCAmelCase__ , default=-1 , required=UpperCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=UpperCAmelCase__ , default="""summarization""" , required=UpperCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=UpperCAmelCase__ , default=0.0 , required=UpperCAmelCase__ ) parser.add_argument("""--src_lang""" , type=UpperCAmelCase__ , default="""""" , required=UpperCAmelCase__ ) parser.add_argument("""--tgt_lang""" , type=UpperCAmelCase__ , default="""""" , required=UpperCAmelCase__ ) parser.add_argument("""--eval_beams""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ ) parser.add_argument( """--val_metric""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=UpperCAmelCase__ , default=1 , required=UpperCAmelCase__ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=UpperCAmelCase__ , default=-1 , required=UpperCAmelCase__ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[str] = '''translation''' UpperCamelCase : List[str] = ['''loss'''] UpperCamelCase : Dict = ['''bleu'''] UpperCamelCase : Any = '''bleu''' def __init__( self : Union[str, Any] , UpperCAmelCase__ : Any , **UpperCAmelCase__ : Optional[int] ) -> Any: super().__init__(UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Tuple = hparams.src_lang _a : Optional[Any] = hparams.tgt_lang def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any ) -> dict: return calculate_bleu(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=UpperCamelCase__ ) check_output_dir(UpperCamelCase__ , expected_items=3 ) if model is None: if "summarization" in args.task: _a : SummarizationModule = SummarizationModule(UpperCamelCase__ ) else: _a : SummarizationModule = TranslationModule(UpperCamelCase__ ) _a : Optional[int] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): _a : Dict = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _a : Optional[Any] = os.environ.get("""WANDB_PROJECT""" , UpperCamelCase__ ) _a : str = WandbLogger(name=model.output_dir.name , project=UpperCamelCase__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _a : int = WandbLogger(name=model.output_dir.name , project=F"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: _a : List[Any] = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _a : List[str] = False _a : int = args.val_metric == """loss""" _a : pl.Trainer = generic_train( UpperCamelCase__ , UpperCamelCase__ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , UpperCamelCase__ ) , early_stopping_callback=UpperCamelCase__ , logger=UpperCamelCase__ , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model _a : Dict = """""" _a : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=UpperCamelCase__ ) ) if checkpoints: _a : Optional[Any] = checkpoints[-1] _a : Optional[Any] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _snake_case = argparse.ArgumentParser() _snake_case = pl.Trainer.add_argparse_args(parser) _snake_case = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _snake_case = parser.parse_args() main(args)
324
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
1
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase : def __init__( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=13 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : Optional[Any]=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : Any=[10, 20, 30, 40] , UpperCAmelCase__ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : str=37 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Dict=10 , UpperCAmelCase__ : Dict=0.0_2 , UpperCAmelCase__ : Any=["stage2", "stage3", "stage4"] , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Any=None , ) -> Optional[int]: _a : Dict = parent _a : List[str] = batch_size _a : int = image_size _a : str = num_channels _a : Optional[int] = num_stages _a : Optional[int] = hidden_sizes _a : int = depths _a : List[Any] = is_training _a : str = use_labels _a : Union[str, Any] = intermediate_size _a : int = hidden_act _a : Dict = type_sequence_label_size _a : str = initializer_range _a : Dict = out_features _a : int = num_labels _a : Dict = scope _a : Tuple = num_stages def _lowercase ( self : int ) -> Any: _a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Dict = None if self.use_labels: _a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Any = self.get_config() return config, pixel_values, labels def _lowercase ( self : Dict ) -> Dict: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase__ , loss_ignore_index=255 , num_labels=self.num_labels , ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> Union[str, Any]: _a : Tuple = UperNetForSemanticSegmentation(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : List[str] = model(UpperCAmelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowercase ( self : List[Any] ) -> str: _a : Union[str, Any] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ) : str = config_and_inputs _a : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Optional[int] = (UperNetForSemanticSegmentation,) if is_torch_available() else () UpperCamelCase : Union[str, Any] = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} UpperCamelCase : Optional[int] = False UpperCamelCase : Optional[int] = False UpperCamelCase : int = False UpperCamelCase : Optional[int] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Tuple = False def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = UperNetModelTester(self ) _a : List[Any] = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 ) def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: return def _lowercase ( self : int ) -> Optional[int]: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(UpperCAmelCase__ ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Union[str, Any] = [*signature.parameters.keys()] _a : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def _lowercase ( self : Any ) -> Any: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase__ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def _lowercase ( self : Tuple ) -> List[Any]: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase ( self : str ) -> int: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase ( self : int ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _lowercase ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: pass def _lowercase ( self : Union[str, Any] ) -> Optional[int]: def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] ): _a : Tuple = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): _a : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a : str = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : int = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : str ) -> Dict: _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[Any] = _config_zero_init(UpperCAmelCase__ ) _a : Tuple = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _a : Dict = model_class(config=UpperCAmelCase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def _lowercase ( self : Tuple ) -> Dict: pass @slow def _lowercase ( self : Tuple ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Optional[int] = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _a : List[str] = Image.open(UpperCamelCase__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> int: _a : List[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _a : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase__ ) _a : Tuple = prepare_img() _a : Tuple = processor(images=UpperCAmelCase__ , return_tensors="""pt""" ).to(UpperCAmelCase__ ) with torch.no_grad(): _a : Tuple = model(**UpperCAmelCase__ ) _a : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) _a : Optional[Any] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) ) def _lowercase ( self : Optional[int] ) -> Union[str, Any]: _a : Optional[int] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _a : List[Any] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase__ ) _a : Any = prepare_img() _a : Optional[int] = processor(images=UpperCAmelCase__ , return_tensors="""pt""" ).to(UpperCAmelCase__ ) with torch.no_grad(): _a : str = model(**UpperCAmelCase__ ) _a : int = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) _a : Tuple = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
324
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
1
"""simple docstring""" import os import numpy import onnx def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = a.name _a : str = b.name _a : Optional[int] = """""" _a : Any = """""" _a : List[str] = a == b _a : str = name_a _a : str = name_b return res def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCamelCase__ , UpperCamelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCamelCase__ , UpperCamelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = list(model.graph.initializer ) _a : Tuple = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _a : Tuple = inits[i].name _a : Union[str, Any] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = os.path.dirname(UpperCamelCase__ ) _a : Optional[Any] = os.path.basename(UpperCamelCase__ ) _a : Tuple = onnx.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) _a : List[Any] = list(model.graph.initializer ) _a : Dict = set() _a : Optional[int] = {} _a : str = [] _a : Optional[int] = 0 for i in range(len(UpperCamelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCamelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCamelCase__ ) dup_set.add(UpperCamelCase__ ) _a : Union[str, Any] = inits[j].data_type _a : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print("""unexpected data type: """ , UpperCamelCase__ ) total_reduced_size += mem_size _a : Any = inits[i].name _a : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCamelCase__ ) else: _a : List[Any] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , """GB""" ) _a : Dict = sorted(UpperCamelCase__ ) _remove_dup_initializers_from_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _a : Optional[Any] = """optimized_""" + model_file_name _a : Optional[int] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) onnx.save(UpperCamelCase__ , UpperCamelCase__ ) return new_model
324
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None: _a : int = do_resize _a : Union[str, Any] = do_rescale _a : Any = size_divisor _a : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray: _a , _a : Tuple = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _a : Optional[Any] = height // size_divisor * size_divisor _a : Union[str, Any] = width // size_divisor * size_divisor _a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : str = size_divisor if size_divisor is not None else self.size_divisor _a : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _a : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: _a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images] _a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
324
1
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return (data["data"], data["target"]) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : str = XGBClassifier() classifier.fit(UpperCamelCase__ , UpperCamelCase__ ) return classifier def lowerCAmelCase__ ( ): '''simple docstring''' _a : Optional[Any] = load_iris() _a , _a : Dict = data_handling(UpperCamelCase__ ) _a , _a , _a , _a : List[Any] = train_test_split( UpperCamelCase__ , UpperCamelCase__ , test_size=0.25 ) _a : List[Any] = iris["""target_names"""] # Create an XGBoost Classifier from the training data _a : List[str] = xgboost(UpperCamelCase__ , UpperCamelCase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , display_labels=UpperCamelCase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
324
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
1