code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
lowerCAmelCase_ : Any = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 50257 , UpperCAmelCase_ : int = 1024 , UpperCAmelCase_ : int = 768 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = "gelu_new" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 1E-5 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , ):
super().__init__()
lowerCAmelCase : Tuple = prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and"
f" `n_embd`: {n_embd} are not equal." )
lowerCAmelCase : str = prefix_inner_dim
lowerCAmelCase : Any = prefix_hidden_dim
lowerCAmelCase : int = (
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
lowerCAmelCase : Optional[Any] = (
nn.Linear(self.prefix_hidden_dim , UpperCAmelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
lowerCAmelCase : Union[str, Any] = GPTaConfig(
vocab_size=UpperCAmelCase_ , n_positions=UpperCAmelCase_ , n_embd=UpperCAmelCase_ , n_layer=UpperCAmelCase_ , n_head=UpperCAmelCase_ , n_inner=UpperCAmelCase_ , activation_function=UpperCAmelCase_ , resid_pdrop=UpperCAmelCase_ , embd_pdrop=UpperCAmelCase_ , attn_pdrop=UpperCAmelCase_ , layer_norm_epsilon=UpperCAmelCase_ , initializer_range=UpperCAmelCase_ , scale_attn_weights=UpperCAmelCase_ , use_cache=UpperCAmelCase_ , scale_attn_by_inverse_layer_idx=UpperCAmelCase_ , reorder_and_upcast_attn=UpperCAmelCase_ , )
lowerCAmelCase : Union[str, Any] = GPTaLMHeadModel(UpperCAmelCase_ )
def lowercase__ ( self : Any , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , ):
lowerCAmelCase : Dict = self.transformer.transformer.wte(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = self.encode_prefix(UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = self.decode_prefix(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
lowerCAmelCase : Any = self.get_dummy_token(input_ids.shape[0] , input_ids.device )
lowerCAmelCase : Optional[int] = torch.cat((dummy_token, input_ids) , dim=1 )
lowerCAmelCase : int = self.transformer(inputs_embeds=UpperCAmelCase_ , labels=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.device ):
return torch.zeros(UpperCAmelCase_ , self.prefix_length , dtype=torch.intaa , device=UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : str ):
return self.encode_prefix(UpperCAmelCase_ )
@torch.no_grad()
def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str ):
lowerCAmelCase : str = torch.split(UpperCAmelCase_ , 1 , dim=0 )
lowerCAmelCase : int = []
lowerCAmelCase : Optional[Any] = []
for feature in features:
lowerCAmelCase : Dict = self.decode_prefix(feature.to(UpperCAmelCase_ ) ) # back to the clip feature
# Only support beam search for now
lowerCAmelCase : Tuple = self.generate_beam(
input_embeds=UpperCAmelCase_ , device=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
lowerCAmelCase : Dict = torch.stack(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = torch.stack(UpperCAmelCase_ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def lowercase__ ( self : List[str] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : int = 5 , UpperCAmelCase_ : int = 67 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[int] = None , ):
lowerCAmelCase : Tuple = eos_token_id
lowerCAmelCase : int = None
lowerCAmelCase : Union[str, Any] = None
lowerCAmelCase : str = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=torch.int )
lowerCAmelCase : Any = torch.zeros(UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=torch.bool )
if input_embeds is not None:
lowerCAmelCase : int = input_embeds
else:
lowerCAmelCase : Union[str, Any] = self.transformer.transformer.wte(UpperCAmelCase_ )
for i in range(UpperCAmelCase_ ):
lowerCAmelCase : Union[str, Any] = self.transformer(inputs_embeds=UpperCAmelCase_ )
lowerCAmelCase : Any = outputs.logits
lowerCAmelCase : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
lowerCAmelCase : Optional[Any] = logits.softmax(-1 ).log()
if scores is None:
lowerCAmelCase : List[str] = logits.topk(UpperCAmelCase_ , -1 )
lowerCAmelCase : Union[str, Any] = generated.expand(UpperCAmelCase_ , *generated.shape[1:] )
lowerCAmelCase : str = next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
lowerCAmelCase : int = next_tokens
else:
lowerCAmelCase : Optional[int] = tokens.expand(UpperCAmelCase_ , *tokens.shape[1:] )
lowerCAmelCase : Any = torch.cat((tokens, next_tokens) , dim=1 )
else:
lowerCAmelCase : str = -float(np.inf )
lowerCAmelCase : List[str] = 0
lowerCAmelCase : Optional[int] = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
lowerCAmelCase : Optional[int] = scores_sum / seq_lengths[:, None]
lowerCAmelCase : str = scores_sum_average.view(-1 ).topk(UpperCAmelCase_ , -1 )
lowerCAmelCase : List[Any] = next_tokens // scores_sum.shape[1]
lowerCAmelCase : List[str] = seq_lengths[next_tokens_source]
lowerCAmelCase : List[str] = next_tokens % scores_sum.shape[1]
lowerCAmelCase : Optional[Any] = next_tokens.unsqueeze(1 )
lowerCAmelCase : int = tokens[next_tokens_source]
lowerCAmelCase : Dict = torch.cat((tokens, next_tokens) , dim=1 )
lowerCAmelCase : List[str] = generated[next_tokens_source]
lowerCAmelCase : Optional[int] = scores_sum_average * seq_lengths
lowerCAmelCase : Union[str, Any] = is_stopped[next_tokens_source]
lowerCAmelCase : int = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
lowerCAmelCase : Any = torch.cat((generated, next_token_embed) , dim=1 )
lowerCAmelCase : List[Any] = is_stopped + next_tokens.eq(UpperCAmelCase_ ).squeeze()
if is_stopped.all():
break
lowerCAmelCase : Tuple = scores / seq_lengths
lowerCAmelCase : List[str] = scores.argsort(descending=UpperCAmelCase_ )
# tokens tensors are already padded to max_seq_length
lowerCAmelCase : Tuple = [tokens[i] for i in order]
lowerCAmelCase : str = torch.stack(UpperCAmelCase_ , dim=0 )
lowerCAmelCase : Union[str, Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 365
|
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
__A : str = logging.getLogger(__name__)
class __A ( lowerCAmelCase ):
def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ):
lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] )
lowerCAmelCase : Optional[Any] = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , )
class __A ( lowerCAmelCase ):
def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ):
super().__init__(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ )
self.init_weights()
lowerCAmelCase : str = 0
lowerCAmelCase : Optional[Any] = 0
lowerCAmelCase : str = 0
lowerCAmelCase : Dict = 0
def lowercase__ ( self : int , UpperCAmelCase_ : Any ):
lowerCAmelCase : int = threshold
def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ):
lowerCAmelCase : Optional[Any] = patience
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Tuple = 0
lowerCAmelCase : Tuple = 0
def lowercase__ ( self : Dict ):
lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num
lowerCAmelCase : List[Any] = (
f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="
f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"
)
print(UpperCAmelCase_ )
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
lowerCAmelCase : Optional[int] = input_ids.size()
elif inputs_embeds is not None:
lowerCAmelCase : List[str] = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ )
if token_type_ids is None:
lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size()
lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ )
lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ )
else:
lowerCAmelCase : List[Any] = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers )
lowerCAmelCase : int = self.embeddings(
input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ )
lowerCAmelCase : List[str] = embedding_output
if self.training:
lowerCAmelCase : Tuple = []
for i in range(self.config.num_hidden_layers ):
lowerCAmelCase : Dict = self.encoder.adaptive_forward(
UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ )
lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) )
res.append(UpperCAmelCase_ )
elif self.patience == 0: # Use all layers for inference
lowerCAmelCase : Union[str, Any] = self.encoder(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , )
lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] )
lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )]
else:
lowerCAmelCase : Tuple = 0
lowerCAmelCase : List[str] = None
lowerCAmelCase : Optional[Any] = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward(
UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ )
lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ )
if regression:
lowerCAmelCase : List[str] = logits.detach()
if patient_result is not None:
lowerCAmelCase : List[Any] = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
lowerCAmelCase : Any = 0
else:
lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 )
if patient_result is not None:
lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ):
patient_counter += 1
else:
lowerCAmelCase : Tuple = 0
lowerCAmelCase : List[Any] = logits
if patient_counter == self.patience:
break
lowerCAmelCase : Dict = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , )
class __A ( lowerCAmelCase ):
def __init__( self : Tuple , UpperCAmelCase_ : Tuple ):
super().__init__(UpperCAmelCase_ )
lowerCAmelCase : Tuple = config.num_labels
lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob )
lowerCAmelCase : List[Any] = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ):
lowerCAmelCase : int = self.bert(
input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
lowerCAmelCase : Any = (logits[-1],)
if labels is not None:
lowerCAmelCase : Tuple = None
lowerCAmelCase : Optional[int] = 0
for ix, logits_item in enumerate(UpperCAmelCase_ ):
if self.num_labels == 1:
# We are doing regression
lowerCAmelCase : Tuple = MSELoss()
lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
lowerCAmelCase : Tuple = CrossEntropyLoss()
lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
lowerCAmelCase : Any = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
lowerCAmelCase : str = (total_loss / total_weights,) + outputs
return outputs
| 323
| 0
|
"""simple docstring"""
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase : Optional[int] = image.size
lowerCAmelCase : Union[str, Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
lowerCAmelCase : str = image.resize((w, h), resample=PIL_INTERPOLATION['lanczos'] )
lowerCAmelCase : List[str] = np.array(_UpperCAmelCase ).astype(np.floataa ) / 255.0
lowerCAmelCase : Union[str, Any] = image[None].transpose(0, 3, 1, 2 )
lowerCAmelCase : List[str] = torch.from_numpy(_UpperCAmelCase )
return 2.0 * image - 1.0
class __A ( lowerCAmelCase ):
def __init__( self : List[str] , UpperCAmelCase_ : VQModel , UpperCAmelCase_ : UNetaDModel , UpperCAmelCase_ : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] , ):
super().__init__()
self.register_modules(vqvae=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ )
@torch.no_grad()
def __call__( self : Optional[int] , UpperCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : Optional[int] = 100 , UpperCAmelCase_ : Optional[float] = 0.0 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ):
if isinstance(UpperCAmelCase_ , PIL.Image.Image ):
lowerCAmelCase : str = 1
elif isinstance(UpperCAmelCase_ , torch.Tensor ):
lowerCAmelCase : Tuple = image.shape[0]
else:
raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCAmelCase_ )}" )
if isinstance(UpperCAmelCase_ , PIL.Image.Image ):
lowerCAmelCase : Optional[Any] = preprocess(UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
lowerCAmelCase : str = (batch_size, self.unet.config.in_channels // 2, height, width)
lowerCAmelCase : List[Any] = next(self.unet.parameters() ).dtype
lowerCAmelCase : List[Any] = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=UpperCAmelCase_ )
lowerCAmelCase : List[Any] = image.to(device=self.device , dtype=UpperCAmelCase_ )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(UpperCAmelCase_ , device=self.device )
lowerCAmelCase : Tuple = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
lowerCAmelCase : int = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
lowerCAmelCase : List[str] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
lowerCAmelCase : Any = {}
if accepts_eta:
lowerCAmelCase : Any = eta
for t in self.progress_bar(UpperCAmelCase_ ):
# concat latents and low resolution image in the channel dimension.
lowerCAmelCase : str = torch.cat([latents, image] , dim=1 )
lowerCAmelCase : Union[str, Any] = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ )
# predict the noise residual
lowerCAmelCase : int = self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample
# compute the previous noisy sample x_t -> x_t-1
lowerCAmelCase : List[str] = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample
# decode the image latents with the VQVAE
lowerCAmelCase : Tuple = self.vqvae.decode(UpperCAmelCase_ ).sample
lowerCAmelCase : Any = torch.clamp(UpperCAmelCase_ , -1.0 , 1.0 )
lowerCAmelCase : List[Any] = image / 2 + 0.5
lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : List[Any] = self.numpy_to_pil(UpperCAmelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase_ )
| 366
|
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__A : List[Any] = logging.get_logger(__name__)
__A : List[Any] = {
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class __A ( lowerCAmelCase ):
lowerCAmelCase_ : Union[str, Any] = "deberta-v2"
def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ):
super().__init__(**UpperCAmelCase_ )
lowerCAmelCase : Dict = hidden_size
lowerCAmelCase : List[Any] = num_hidden_layers
lowerCAmelCase : str = num_attention_heads
lowerCAmelCase : List[str] = intermediate_size
lowerCAmelCase : List[Any] = hidden_act
lowerCAmelCase : int = hidden_dropout_prob
lowerCAmelCase : int = attention_probs_dropout_prob
lowerCAmelCase : Any = max_position_embeddings
lowerCAmelCase : str = type_vocab_size
lowerCAmelCase : Union[str, Any] = initializer_range
lowerCAmelCase : Union[str, Any] = relative_attention
lowerCAmelCase : List[Any] = max_relative_positions
lowerCAmelCase : List[Any] = pad_token_id
lowerCAmelCase : Optional[Any] = position_biased_input
# Backwards compatibility
if type(UpperCAmelCase_ ) == str:
lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )]
lowerCAmelCase : str = pos_att_type
lowerCAmelCase : Dict = vocab_size
lowerCAmelCase : Optional[Any] = layer_norm_eps
lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ )
lowerCAmelCase : Tuple = pooler_dropout
lowerCAmelCase : Union[str, Any] = pooler_hidden_act
class __A ( lowerCAmelCase ):
@property
def lowercase__ ( self : Optional[Any] ):
if self.task == "multiple-choice":
lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def lowercase__ ( self : int ):
return 12
def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ):
lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 323
| 0
|
"""simple docstring"""
import argparse
import copy
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase : Tuple = {}
with open(_UpperCAmelCase ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
lowerCAmelCase : Tuple = []
_list.append([line.split()[1], line.split()[2]] )
lowerCAmelCase : Dict = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
lowerCAmelCase : Optional[int] = []
_list.append([line.split()[0], line.split()[2]] )
lowerCAmelCase : Tuple = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int:
'''simple docstring'''
with open(_UpperCAmelCase ) as f:
lowerCAmelCase : Tuple = f.read(1 )
lowerCAmelCase : int = start_node
lowerCAmelCase : str = []
lowerCAmelCase : Optional[Any] = start_node
lowerCAmelCase : str = 0
while visiting not in first_solution:
lowerCAmelCase : Any = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(_UpperCAmelCase ) and k[0] not in first_solution:
lowerCAmelCase : Union[str, Any] = k[1]
lowerCAmelCase : Dict = k[0]
first_solution.append(_UpperCAmelCase )
lowerCAmelCase : Tuple = distance_of_first_solution + int(_UpperCAmelCase )
lowerCAmelCase : List[Any] = best_node
first_solution.append(_UpperCAmelCase )
lowerCAmelCase : List[Any] = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
lowerCAmelCase : List[Any] = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Dict:
'''simple docstring'''
lowerCAmelCase : Optional[Any] = []
for n in solution[1:-1]:
lowerCAmelCase : List[Any] = solution.index(_UpperCAmelCase )
for kn in solution[1:-1]:
lowerCAmelCase : Any = solution.index(_UpperCAmelCase )
if n == kn:
continue
lowerCAmelCase : Optional[int] = copy.deepcopy(_UpperCAmelCase )
lowerCAmelCase : List[Any] = kn
lowerCAmelCase : Any = n
lowerCAmelCase : Optional[int] = 0
for k in _tmp[:-1]:
lowerCAmelCase : Optional[int] = _tmp[_tmp.index(_UpperCAmelCase ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
lowerCAmelCase : int = distance + int(i[1] )
_tmp.append(_UpperCAmelCase )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
lowerCAmelCase : Tuple = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda _UpperCAmelCase : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase : List[Any] = 1
lowerCAmelCase : Union[str, Any] = first_solution
lowerCAmelCase : Any = []
lowerCAmelCase : Tuple = distance_of_first_solution
lowerCAmelCase : Any = solution
while count <= iters:
lowerCAmelCase : Tuple = find_neighborhood(_UpperCAmelCase, _UpperCAmelCase )
lowerCAmelCase : str = 0
lowerCAmelCase : Tuple = neighborhood[index_of_best_solution]
lowerCAmelCase : Dict = len(_UpperCAmelCase ) - 1
lowerCAmelCase : Tuple = False
while not found:
lowerCAmelCase : Dict = 0
while i < len(_UpperCAmelCase ):
if best_solution[i] != solution[i]:
lowerCAmelCase : Optional[int] = best_solution[i]
lowerCAmelCase : int = solution[i]
break
lowerCAmelCase : Dict = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
lowerCAmelCase : Tuple = True
lowerCAmelCase : List[str] = best_solution[:-1]
lowerCAmelCase : Union[str, Any] = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
lowerCAmelCase : int = cost
lowerCAmelCase : Optional[Any] = solution
else:
lowerCAmelCase : int = index_of_best_solution + 1
lowerCAmelCase : Optional[Any] = neighborhood[index_of_best_solution]
if len(_UpperCAmelCase ) >= size:
tabu_list.pop(0 )
lowerCAmelCase : List[str] = count + 1
return best_solution_ever, best_cost
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase=None ) -> Dict:
'''simple docstring'''
lowerCAmelCase : Optional[int] = generate_neighbours(args.File )
lowerCAmelCase : List[str] = generate_first_solution(
args.File, _UpperCAmelCase )
lowerCAmelCase : Union[str, Any] = tabu_search(
_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, args.Iterations, args.Size, )
print(f"Best solution: {best_sol}, with total distance: {best_cost}." )
if __name__ == "__main__":
__A : Union[str, Any] = argparse.ArgumentParser(description='''Tabu Search''')
parser.add_argument(
'''-f''',
'''--File''',
type=str,
help='''Path to the file containing the data''',
required=True,
)
parser.add_argument(
'''-i''',
'''--Iterations''',
type=int,
help='''How many iterations the algorithm should perform''',
required=True,
)
parser.add_argument(
'''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 367
|
__A : Dict = [
999,
800,
799,
600,
599,
500,
400,
399,
377,
355,
333,
311,
288,
266,
244,
222,
200,
199,
177,
155,
133,
111,
88,
66,
44,
22,
0,
]
__A : List[Any] = [
999,
976,
952,
928,
905,
882,
858,
857,
810,
762,
715,
714,
572,
429,
428,
286,
285,
238,
190,
143,
142,
118,
95,
71,
47,
24,
0,
]
__A : Dict = [
999,
988,
977,
966,
955,
944,
933,
922,
911,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
350,
300,
299,
266,
233,
200,
199,
179,
159,
140,
120,
100,
99,
88,
77,
66,
55,
44,
33,
22,
11,
0,
]
__A : Optional[int] = [
999,
995,
992,
989,
985,
981,
978,
975,
971,
967,
964,
961,
957,
956,
951,
947,
942,
937,
933,
928,
923,
919,
914,
913,
908,
903,
897,
892,
887,
881,
876,
871,
870,
864,
858,
852,
846,
840,
834,
828,
827,
820,
813,
806,
799,
792,
785,
784,
777,
770,
763,
756,
749,
742,
741,
733,
724,
716,
707,
699,
698,
688,
677,
666,
656,
655,
645,
634,
623,
613,
612,
598,
584,
570,
569,
555,
541,
527,
526,
505,
484,
483,
462,
440,
439,
396,
395,
352,
351,
308,
307,
264,
263,
220,
219,
176,
132,
88,
44,
0,
]
__A : Optional[int] = [
999,
997,
995,
992,
990,
988,
986,
984,
981,
979,
977,
975,
972,
970,
968,
966,
964,
961,
959,
957,
956,
954,
951,
949,
946,
944,
941,
939,
936,
934,
931,
929,
926,
924,
921,
919,
916,
914,
913,
910,
907,
905,
902,
899,
896,
893,
891,
888,
885,
882,
879,
877,
874,
871,
870,
867,
864,
861,
858,
855,
852,
849,
846,
843,
840,
837,
834,
831,
828,
827,
824,
821,
817,
814,
811,
808,
804,
801,
798,
795,
791,
788,
785,
784,
780,
777,
774,
770,
766,
763,
760,
756,
752,
749,
746,
742,
741,
737,
733,
730,
726,
722,
718,
714,
710,
707,
703,
699,
698,
694,
690,
685,
681,
677,
673,
669,
664,
660,
656,
655,
650,
646,
641,
636,
632,
627,
622,
618,
613,
612,
607,
602,
596,
591,
586,
580,
575,
570,
569,
563,
557,
551,
545,
539,
533,
527,
526,
519,
512,
505,
498,
491,
484,
483,
474,
466,
457,
449,
440,
439,
428,
418,
407,
396,
395,
381,
366,
352,
351,
330,
308,
307,
286,
264,
263,
242,
220,
219,
176,
175,
132,
131,
88,
44,
0,
]
__A : Tuple = [
999,
991,
982,
974,
966,
958,
950,
941,
933,
925,
916,
908,
900,
899,
874,
850,
825,
800,
799,
700,
600,
500,
400,
300,
200,
100,
0,
]
__A : int = [
999,
992,
985,
978,
971,
964,
957,
949,
942,
935,
928,
921,
914,
907,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
300,
299,
200,
199,
100,
99,
0,
]
__A : Optional[Any] = [
999,
996,
992,
989,
985,
982,
979,
975,
972,
968,
965,
961,
958,
955,
951,
948,
944,
941,
938,
934,
931,
927,
924,
920,
917,
914,
910,
907,
903,
900,
899,
891,
884,
876,
869,
861,
853,
846,
838,
830,
823,
815,
808,
800,
799,
788,
777,
766,
755,
744,
733,
722,
711,
700,
699,
688,
677,
666,
655,
644,
633,
622,
611,
600,
599,
585,
571,
557,
542,
528,
514,
500,
499,
485,
471,
457,
442,
428,
414,
400,
399,
379,
359,
340,
320,
300,
299,
279,
259,
240,
220,
200,
199,
166,
133,
100,
99,
66,
33,
0,
]
| 323
| 0
|
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
__A : List[Any] = logging.get_logger(__name__)
class __A ( lowerCAmelCase ):
def __init__( self : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ):
warnings.warn(
'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use BeitImageProcessor instead.' , UpperCAmelCase_ , )
super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
| 368
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = [
'''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''UniSpeechForCTC''',
'''UniSpeechForPreTraining''',
'''UniSpeechForSequenceClassification''',
'''UniSpeechModel''',
'''UniSpeechPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 323
| 0
|
import re
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list:
'''simple docstring'''
return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]', str_ )]
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str:
'''simple docstring'''
lowerCAmelCase : List[Any] = split_input(str_ )
return "".join(
[''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> str:
'''simple docstring'''
try:
lowerCAmelCase : Any = split_input(_UpperCAmelCase )
if upper:
lowerCAmelCase : Optional[int] = ''.join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
lowerCAmelCase : Dict = ''.join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str:
'''simple docstring'''
return to_simple_case(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str:
'''simple docstring'''
try:
lowerCAmelCase : Optional[int] = to_simple_case(_UpperCAmelCase )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str:
'''simple docstring'''
return to_complex_case(_UpperCAmelCase, _UpperCAmelCase, '_' )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str:
'''simple docstring'''
return to_complex_case(_UpperCAmelCase, _UpperCAmelCase, '-' )
if __name__ == "__main__":
__import__('''doctest''').testmod()
| 369
|
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class __A :
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ):
lowerCAmelCase : int = parent
lowerCAmelCase : Any = 13
lowerCAmelCase : Union[str, Any] = 7
lowerCAmelCase : List[Any] = True
lowerCAmelCase : List[str] = True
lowerCAmelCase : Tuple = True
lowerCAmelCase : Union[str, Any] = True
lowerCAmelCase : Tuple = 99
lowerCAmelCase : Optional[Any] = 32
lowerCAmelCase : List[str] = 2
lowerCAmelCase : str = 4
lowerCAmelCase : Optional[Any] = 37
lowerCAmelCase : List[Any] = 'gelu'
lowerCAmelCase : Any = 0.1
lowerCAmelCase : Any = 0.1
lowerCAmelCase : Optional[Any] = 512
lowerCAmelCase : Dict = 16
lowerCAmelCase : Optional[Any] = 2
lowerCAmelCase : Union[str, Any] = 0.02
lowerCAmelCase : Optional[int] = 3
lowerCAmelCase : List[str] = 4
lowerCAmelCase : Any = None
def lowercase__ ( self : List[str] ):
lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase : Any = None
if self.use_input_mask:
lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase : Dict = None
if self.use_token_type_ids:
lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase : List[str] = None
lowerCAmelCase : Any = None
lowerCAmelCase : Tuple = None
if self.use_labels:
lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase : Tuple = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ):
lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ )
lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowerCAmelCase : str = [input_ids, input_mask]
lowerCAmelCase : Any = model(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ):
lowerCAmelCase : str = True
lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ )
lowerCAmelCase : List[Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ):
lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ )
lowerCAmelCase : Tuple = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : Tuple = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ):
lowerCAmelCase : str = self.num_labels
lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ )
lowerCAmelCase : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ):
lowerCAmelCase : Dict = self.num_choices
lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ )
lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : Union[str, Any] = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ):
lowerCAmelCase : List[Any] = self.num_labels
lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : Dict = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ):
lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ )
lowerCAmelCase : Dict = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : int = model(UpperCAmelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) : Union[str, Any] = config_and_inputs
lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : List[str] = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase_ : Optional[Any] = (
{
"feature-extraction": TFRoFormerModel,
"fill-mask": TFRoFormerForMaskedLM,
"question-answering": TFRoFormerForQuestionAnswering,
"text-classification": TFRoFormerForSequenceClassification,
"text-generation": TFRoFormerForCausalLM,
"token-classification": TFRoFormerForTokenClassification,
"zero-shot": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase_ : Optional[int] = False
lowerCAmelCase_ : int = False
def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def lowercase__ ( self : int ):
lowerCAmelCase : List[Any] = TFRoFormerModelTester(self )
lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowercase__ ( self : int ):
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ):
lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ )
def lowercase__ ( self : Tuple ):
lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ )
def lowercase__ ( self : Tuple ):
lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
def lowercase__ ( self : str ):
lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ )
def lowercase__ ( self : int ):
lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
@slow
def lowercase__ ( self : Dict ):
lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' )
self.assertIsNotNone(UpperCAmelCase_ )
@require_tf
class __A ( unittest.TestCase ):
@slow
def lowercase__ ( self : Any ):
lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] )
lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0]
# TODO Replace vocab size
lowerCAmelCase : Any = 50000
lowerCAmelCase : str = [1, 6, vocab_size]
self.assertEqual(output.shape , UpperCAmelCase_ )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
lowerCAmelCase : Union[str, Any] = tf.constant(
[
[
[-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46],
[-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07],
[-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 )
@require_tf
class __A ( unittest.TestCase ):
lowerCAmelCase_ : Optional[int] = 1E-4
def lowercase__ ( self : Any ):
lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] )
lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
lowerCAmelCase : int = emba(input_ids.shape )
lowerCAmelCase : str = tf.constant(
[[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] )
tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance )
def lowercase__ ( self : int ):
lowerCAmelCase : Dict = tf.constant(
[
[0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00],
[0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17],
[0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70],
] )
lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 )
emba([2, 16, 512] )
lowerCAmelCase : List[Any] = emba.weight[:3, :5]
tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance )
@require_tf
class __A ( unittest.TestCase ):
lowerCAmelCase_ : Optional[int] = 1E-4
def lowercase__ ( self : List[Any] ):
# 2,12,16,64
lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :]
lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = tf.constant(
[
[0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00],
[-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43],
[-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85],
[-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71],
[0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80],
[3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53],
] )
lowerCAmelCase : Union[str, Any] = tf.constant(
[
[0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00],
[0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43],
[1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85],
[2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71],
[-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80],
[-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
| 323
| 0
|
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class __A ( lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : List[Any] = FlaxAutoencoderKL
@property
def lowercase__ ( self : Tuple ):
lowerCAmelCase : Dict = 4
lowerCAmelCase : str = 3
lowerCAmelCase : Optional[Any] = (32, 32)
lowerCAmelCase : Any = jax.random.PRNGKey(0 )
lowerCAmelCase : List[str] = jax.random.uniform(UpperCAmelCase_ , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def lowercase__ ( self : Dict ):
lowerCAmelCase : Any = {
'block_out_channels': [32, 64],
'in_channels': 3,
'out_channels': 3,
'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'],
'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'],
'latent_channels': 4,
}
lowerCAmelCase : Optional[Any] = self.dummy_input
return init_dict, inputs_dict
| 370
|
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class __A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ):
lowerCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) )
lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
lowerCAmelCase : Tuple = {'unk_token': '<unk>'}
lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(UpperCAmelCase_ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(UpperCAmelCase_ ) )
lowerCAmelCase : Dict = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(UpperCAmelCase_ , UpperCAmelCase_ )
def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : List[str] ):
lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase__ ( self : Any ):
lowerCAmelCase : List[str] = self.get_tokenizer()
lowerCAmelCase : List[str] = self.get_rust_tokenizer()
lowerCAmelCase : Optional[int] = self.get_image_processor()
lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ )
self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ )
self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ )
def lowercase__ ( self : Tuple ):
lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 )
lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase_ )
def lowercase__ ( self : List[str] ):
lowerCAmelCase : Any = self.get_image_processor()
lowerCAmelCase : Union[str, Any] = self.get_tokenizer()
lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : Dict = self.prepare_image_inputs()
lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' )
lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Union[str, Any] = self.get_image_processor()
lowerCAmelCase : Union[str, Any] = self.get_tokenizer()
lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = 'lower newer'
lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : Tuple = self.get_image_processor()
lowerCAmelCase : Dict = self.get_tokenizer()
lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = 'lower newer'
lowerCAmelCase : Optional[int] = self.prepare_image_inputs()
lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase_ ):
processor()
def lowercase__ ( self : List[str] ):
lowerCAmelCase : Optional[Any] = self.get_image_processor()
lowerCAmelCase : str = self.get_tokenizer()
lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ )
lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : List[Any] = self.get_image_processor()
lowerCAmelCase : Dict = self.get_tokenizer()
lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : Dict = 'lower newer'
lowerCAmelCase : Tuple = self.prepare_image_inputs()
lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 323
| 0
|
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class __A :
def __init__( self : str ):
lowerCAmelCase : str = ''
lowerCAmelCase : List[Any] = ''
lowerCAmelCase : Tuple = []
lowerCAmelCase : Any = 0
lowerCAmelCase : Dict = 256
lowerCAmelCase : int = 0
lowerCAmelCase : str = 0
lowerCAmelCase : Optional[Any] = 0
lowerCAmelCase : Union[str, Any] = 0
def lowercase__ ( self : int , UpperCAmelCase_ : List[Any] ):
lowerCAmelCase : List[Any] = cva.imread(UpperCAmelCase_ , 0 )
lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.img )
lowerCAmelCase : Optional[Any] = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
lowerCAmelCase : Dict = np.sum(UpperCAmelCase_ )
for i in range(len(UpperCAmelCase_ ) ):
lowerCAmelCase : Optional[Any] = x[i] / self.k
self.sk += prk
lowerCAmelCase : List[Any] = (self.L - 1) * self.sk
if self.rem != 0:
lowerCAmelCase : Any = int(last % last )
lowerCAmelCase : List[str] = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(UpperCAmelCase_ )
lowerCAmelCase : Tuple = int(np.ma.count(self.img ) / self.img[1].size )
lowerCAmelCase : Dict = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
lowerCAmelCase : Tuple = self.img[j][i]
if num != self.last_list[num]:
lowerCAmelCase : str = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def lowercase__ ( self : Dict ):
plt.hist(self.img.ravel() , 256 , [0, 256] )
def lowercase__ ( self : List[str] ):
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
__A : List[Any] = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
__A : Dict = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 371
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : List[Any] = {
'''configuration_xlm_roberta''': [
'''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XLMRobertaConfig''',
'''XLMRobertaOnnxConfig''',
],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = ['''XLMRobertaTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = ['''XLMRobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = [
'''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLMRobertaForCausalLM''',
'''XLMRobertaForMaskedLM''',
'''XLMRobertaForMultipleChoice''',
'''XLMRobertaForQuestionAnswering''',
'''XLMRobertaForSequenceClassification''',
'''XLMRobertaForTokenClassification''',
'''XLMRobertaModel''',
'''XLMRobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXLMRobertaForCausalLM''',
'''TFXLMRobertaForMaskedLM''',
'''TFXLMRobertaForMultipleChoice''',
'''TFXLMRobertaForQuestionAnswering''',
'''TFXLMRobertaForSequenceClassification''',
'''TFXLMRobertaForTokenClassification''',
'''TFXLMRobertaModel''',
'''TFXLMRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FlaxXLMRobertaForMaskedLM''',
'''FlaxXLMRobertaForCausalLM''',
'''FlaxXLMRobertaForMultipleChoice''',
'''FlaxXLMRobertaForQuestionAnswering''',
'''FlaxXLMRobertaForSequenceClassification''',
'''FlaxXLMRobertaForTokenClassification''',
'''FlaxXLMRobertaModel''',
'''FlaxXLMRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaConfig,
XLMRobertaOnnxConfig,
)
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta import XLMRobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForCausalLM,
TFXLMRobertaForMaskedLM,
TFXLMRobertaForMultipleChoice,
TFXLMRobertaForQuestionAnswering,
TFXLMRobertaForSequenceClassification,
TFXLMRobertaForTokenClassification,
TFXLMRobertaModel,
TFXLMRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xlm_roberta import (
FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxXLMRobertaForCausalLM,
FlaxXLMRobertaForMaskedLM,
FlaxXLMRobertaForMultipleChoice,
FlaxXLMRobertaForQuestionAnswering,
FlaxXLMRobertaForSequenceClassification,
FlaxXLMRobertaForTokenClassification,
FlaxXLMRobertaModel,
FlaxXLMRobertaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 323
| 0
|
import copy
import re
class __A :
lowerCAmelCase_ : Any = "hp"
lowerCAmelCase_ : List[str] = {}
lowerCAmelCase_ : Dict = None
@classmethod
def lowercase__ ( cls : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ):
lowerCAmelCase : Dict = prefix
lowerCAmelCase : Optional[int] = defaults
cls.build_naming_info()
@staticmethod
def lowercase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ):
if len(UpperCAmelCase_ ) == 0:
return ""
lowerCAmelCase : Tuple = None
if any(char.isdigit() for char in word ):
raise Exception(f"Parameters should not contain numbers: '{word}' contains a number" )
if word in info["short_word"]:
return info["short_word"][word]
for prefix_len in range(1 , len(UpperCAmelCase_ ) + 1 ):
lowerCAmelCase : Any = word[:prefix_len]
if prefix in info["reverse_short_word"]:
continue
else:
lowerCAmelCase : Optional[Any] = prefix
break
if short_word is None:
# Paranoid fallback
def int_to_alphabetic(UpperCAmelCase_ : Optional[int] ):
lowerCAmelCase : Dict = ''
while integer != 0:
lowerCAmelCase : int = chr(ord('A' ) + integer % 10 ) + s
integer //= 10
return s
lowerCAmelCase : str = 0
while True:
lowerCAmelCase : List[Any] = word + '#' + int_to_alphabetic(UpperCAmelCase_ )
if sword in info["reverse_short_word"]:
continue
else:
lowerCAmelCase : int = sword
break
lowerCAmelCase : Dict = short_word
lowerCAmelCase : str = word
return short_word
@staticmethod
def lowercase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ):
lowerCAmelCase : Dict = param_name.split('_' )
lowerCAmelCase : List[Any] = [TrialShortNamer.shortname_for_word(UpperCAmelCase_ , UpperCAmelCase_ ) for word in words]
# We try to create a separatorless short name, but if there is a collision we have to fallback
# to a separated short name
lowerCAmelCase : Union[str, Any] = ['', '_']
for separator in separators:
lowerCAmelCase : Tuple = separator.join(UpperCAmelCase_ )
if shortname not in info["reverse_short_param"]:
lowerCAmelCase : Tuple = shortname
lowerCAmelCase : Union[str, Any] = param_name
return shortname
return param_name
@staticmethod
def lowercase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any ):
lowerCAmelCase : List[str] = TrialShortNamer.shortname_for_key(UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = short_name
lowerCAmelCase : Any = param_name
@classmethod
def lowercase__ ( cls : int ):
if cls.NAMING_INFO is not None:
return
lowerCAmelCase : Optional[Any] = {
'short_word': {},
'reverse_short_word': {},
'short_param': {},
'reverse_short_param': {},
}
lowerCAmelCase : Any = list(cls.DEFAULTS.keys() )
for k in field_keys:
cls.add_new_param_name(UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : List[Any] = info
@classmethod
def lowercase__ ( cls : int , UpperCAmelCase_ : List[Any] ):
cls.build_naming_info()
assert cls.PREFIX is not None
lowerCAmelCase : Optional[Any] = [copy.copy(cls.PREFIX )]
for k, v in params.items():
if k not in cls.DEFAULTS:
raise Exception(f"You should provide a default value for the param name {k} with value {v}" )
if v == cls.DEFAULTS[k]:
# The default value is not added to the name
continue
lowerCAmelCase : Any = cls.NAMING_INFO['short_param'][k]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
lowerCAmelCase : Union[str, Any] = 1 if v else 0
lowerCAmelCase : int = '' if isinstance(UpperCAmelCase_ , (int, float) ) else '-'
lowerCAmelCase : Union[str, Any] = f"{key}{sep}{v}"
name.append(UpperCAmelCase_ )
return "_".join(UpperCAmelCase_ )
@classmethod
def lowercase__ ( cls : Optional[Any] , UpperCAmelCase_ : Dict ):
lowerCAmelCase : List[Any] = repr[len(cls.PREFIX ) + 1 :]
if repr == "":
lowerCAmelCase : Any = []
else:
lowerCAmelCase : Optional[int] = repr.split('_' )
lowerCAmelCase : Dict = {}
for value in values:
if "-" in value:
lowerCAmelCase : List[Any] = value.split('-' )
else:
lowerCAmelCase : str = re.sub('[0-9.]' , '' , UpperCAmelCase_ )
lowerCAmelCase : List[Any] = float(re.sub('[^0-9.]' , '' , UpperCAmelCase_ ) )
lowerCAmelCase : List[str] = cls.NAMING_INFO['reverse_short_param'][p_k]
lowerCAmelCase : str = p_v
for k in cls.DEFAULTS:
if k not in parameters:
lowerCAmelCase : Optional[Any] = cls.DEFAULTS[k]
return parameters
| 350
|
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class __A ( lowerCAmelCase ):
lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray]
lowerCAmelCase_ : Optional[List[bool]]
lowerCAmelCase_ : Optional[List[bool]]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
| 323
| 0
|
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 351
|
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return x + 2
class __A ( unittest.TestCase ):
def lowercase__ ( self : int ):
lowerCAmelCase : List[str] = 'x = 3'
lowerCAmelCase : Optional[Any] = {}
lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
assert result == 3
self.assertDictEqual(UpperCAmelCase_ , {'x': 3} )
lowerCAmelCase : Dict = 'x = y'
lowerCAmelCase : List[Any] = {'y': 5}
lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} )
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : Any = 'y = add_two(x)'
lowerCAmelCase : int = {'x': 3}
lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ )
assert result == 5
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} )
# Won't work without the tool
with CaptureStdout() as out:
lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
assert result is None
assert "tried to execute add_two" in out.out
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Tuple = 'x = 3'
lowerCAmelCase : List[Any] = {}
lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
assert result == 3
self.assertDictEqual(UpperCAmelCase_ , {'x': 3} )
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}'
lowerCAmelCase : Dict = {'x': 3}
lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ )
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} )
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} )
def lowercase__ ( self : Any ):
lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5'
lowerCAmelCase : str = {}
lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\''
lowerCAmelCase : str = {'x': 3}
lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} )
def lowercase__ ( self : Dict ):
lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5'
lowerCAmelCase : Dict = {'x': 3}
lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} )
lowerCAmelCase : Any = {'x': 8}
lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} )
def lowercase__ ( self : List[Any] ):
lowerCAmelCase : int = 'test_list = [x, add_two(x)]'
lowerCAmelCase : Optional[Any] = {'x': 3}
lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , [3, 5] )
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} )
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : int = 'y = x'
lowerCAmelCase : Optional[int] = {'x': 3}
lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
assert result == 3
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} )
def lowercase__ ( self : List[str] ):
lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]'
lowerCAmelCase : List[str] = {'x': 3}
lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ )
assert result == 5
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} )
lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']'
lowerCAmelCase : List[Any] = {'x': 3}
lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ )
assert result == 5
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} )
def lowercase__ ( self : int ):
lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i'
lowerCAmelCase : str = {}
lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ )
assert result == 2
self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
| 323
| 0
|
"""simple docstring"""
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
__A : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
class __A ( lowerCAmelCase , lowerCAmelCase ):
@register_to_config
def __init__( self : Tuple , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None ):
super().__init__()
lowerCAmelCase : Tuple = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
lowerCAmelCase : Optional[int] = torch.zeros(UpperCAmelCase_ , UpperCAmelCase_ )
else:
lowerCAmelCase : Union[str, Any] = None
lowerCAmelCase : Union[str, Any] = torch.nn.Parameter(UpperCAmelCase_ )
class __A ( lowerCAmelCase ):
lowerCAmelCase_ : VQModel
lowerCAmelCase_ : CLIPTextModel
lowerCAmelCase_ : CLIPTokenizer
lowerCAmelCase_ : TransformeraDModel
lowerCAmelCase_ : LearnedClassifierFreeSamplingEmbeddings
lowerCAmelCase_ : VQDiffusionScheduler
def __init__( self : str , UpperCAmelCase_ : VQModel , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : TransformeraDModel , UpperCAmelCase_ : VQDiffusionScheduler , UpperCAmelCase_ : LearnedClassifierFreeSamplingEmbeddings , ):
super().__init__()
self.register_modules(
vqvae=UpperCAmelCase_ , transformer=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , )
def lowercase__ ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ):
lowerCAmelCase : Dict = len(UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else 1
# get prompt text embeddings
lowerCAmelCase : List[Any] = self.tokenizer(
UpperCAmelCase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
lowerCAmelCase : List[str] = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
lowerCAmelCase : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
lowerCAmelCase : Dict = text_input_ids[:, : self.tokenizer.model_max_length]
lowerCAmelCase : Dict = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
lowerCAmelCase : str = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCAmelCase_ )
# duplicate text embeddings for each generation per prompt
lowerCAmelCase : Any = prompt_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
lowerCAmelCase : Any = self.learned_classifier_free_sampling_embeddings.embeddings
lowerCAmelCase : str = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCAmelCase_ , 1 , 1 )
else:
lowerCAmelCase : Union[str, Any] = [''] * batch_size
lowerCAmelCase : Tuple = text_input_ids.shape[-1]
lowerCAmelCase : Union[str, Any] = self.tokenizer(
UpperCAmelCase_ , padding='max_length' , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors='pt' , )
lowerCAmelCase : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
lowerCAmelCase : str = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCAmelCase_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
lowerCAmelCase : str = negative_prompt_embeds.shape[1]
lowerCAmelCase : List[str] = negative_prompt_embeds.repeat(1 , UpperCAmelCase_ , 1 )
lowerCAmelCase : Tuple = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCAmelCase_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
lowerCAmelCase : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self : Optional[int] , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , ):
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
lowerCAmelCase : Optional[int] = 1
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
lowerCAmelCase : str = len(UpperCAmelCase_ )
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase_ )}" )
lowerCAmelCase : Any = batch_size * num_images_per_prompt
lowerCAmelCase : Any = guidance_scale > 1.0
lowerCAmelCase : Tuple = self._encode_prompt(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(UpperCAmelCase_ )}." )
# get the initial completely masked latents unless the user supplied it
lowerCAmelCase : Optional[Any] = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
lowerCAmelCase : str = self.transformer.num_vector_embeds - 1
lowerCAmelCase : List[Any] = torch.full(UpperCAmelCase_ , UpperCAmelCase_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'
f" {self.transformer.num_vector_embeds - 1} (inclusive)." )
lowerCAmelCase : Optional[Any] = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(UpperCAmelCase_ , device=self.device )
lowerCAmelCase : Optional[int] = self.scheduler.timesteps.to(self.device )
lowerCAmelCase : Optional[Any] = latents
for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ):
# expand the sample if we are doing classifier free guidance
lowerCAmelCase : Optional[int] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
lowerCAmelCase : Any = self.transformer(UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , timestep=UpperCAmelCase_ ).sample
if do_classifier_free_guidance:
lowerCAmelCase : Optional[int] = model_output.chunk(2 )
lowerCAmelCase : Optional[int] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(UpperCAmelCase_ , dim=1 , keepdim=UpperCAmelCase_ )
lowerCAmelCase : List[Any] = self.truncate(UpperCAmelCase_ , UpperCAmelCase_ )
# remove `log(0)`'s (`-inf`s)
lowerCAmelCase : Any = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
lowerCAmelCase : Any = self.scheduler.step(UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = self.vqvae.config.vq_embed_dim
lowerCAmelCase : Optional[int] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
lowerCAmelCase : List[Any] = self.vqvae.quantize.get_codebook_entry(UpperCAmelCase_ , shape=UpperCAmelCase_ )
lowerCAmelCase : Dict = self.vqvae.decode(UpperCAmelCase_ , force_not_quantize=UpperCAmelCase_ ).sample
lowerCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : int = self.numpy_to_pil(UpperCAmelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase_ )
def lowercase__ ( self : List[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : float ):
lowerCAmelCase : List[Any] = torch.sort(UpperCAmelCase_ , 1 , descending=UpperCAmelCase_ )
lowerCAmelCase : str = torch.exp(UpperCAmelCase_ )
lowerCAmelCase : Dict = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
lowerCAmelCase : Optional[int] = torch.full_like(keep_mask[:, 0:1, :] , UpperCAmelCase_ )
lowerCAmelCase : str = torch.cat((all_true, keep_mask) , dim=1 )
lowerCAmelCase : Optional[int] = keep_mask[:, :-1, :]
lowerCAmelCase : Dict = keep_mask.gather(1 , indices.argsort(1 ) )
lowerCAmelCase : Optional[Any] = log_p_x_0.clone()
lowerCAmelCase : str = -torch.inf # -inf = log(0)
return rv
| 352
|
from math import pi, sqrt, tan
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float:
'''simple docstring'''
if side_length < 0:
raise ValueError('surface_area_cube() only accepts non-negative values' )
return 6 * side_length**2
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if length < 0 or breadth < 0 or height < 0:
raise ValueError('surface_area_cuboid() only accepts non-negative values' )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError('surface_area_sphere() only accepts non-negative values' )
return 4 * pi * radius**2
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError('surface_area_hemisphere() only accepts non-negative values' )
return 3 * pi * radius**2
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0 or height < 0:
raise ValueError('surface_area_cone() only accepts non-negative values' )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
'surface_area_conical_frustum() only accepts non-negative values' )
lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0 or height < 0:
raise ValueError('surface_area_cylinder() only accepts non-negative values' )
return 2 * pi * radius * (height + radius)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if torus_radius < 0 or tube_radius < 0:
raise ValueError('surface_area_torus() only accepts non-negative values' )
if torus_radius < tube_radius:
raise ValueError(
'surface_area_torus() does not support spindle or self intersecting tori' )
return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if length < 0 or width < 0:
raise ValueError('area_rectangle() only accepts non-negative values' )
return length * width
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float:
'''simple docstring'''
if side_length < 0:
raise ValueError('area_square() only accepts non-negative values' )
return side_length**2
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if base < 0 or height < 0:
raise ValueError('area_triangle() only accepts non-negative values' )
return (base * height) / 2
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError('area_triangle_three_sides() only accepts non-negative values' )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError('Given three sides do not form a triangle' )
lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2
lowerCAmelCase : Any = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if base < 0 or height < 0:
raise ValueError('area_parallelogram() only accepts non-negative values' )
return base * height
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if basea < 0 or basea < 0 or height < 0:
raise ValueError('area_trapezium() only accepts non-negative values' )
return 1 / 2 * (basea + basea) * height
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError('area_circle() only accepts non-negative values' )
return pi * radius**2
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius_x < 0 or radius_y < 0:
raise ValueError('area_ellipse() only accepts non-negative values' )
return pi * radius_x * radius_y
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError('area_rhombus() only accepts non-negative values' )
return 1 / 2 * diagonal_a * diagonal_a
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3:
raise ValueError(
'area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides' )
elif length < 0:
raise ValueError(
'area_reg_polygon() only accepts non-negative values as \
length of a side' )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print('''[DEMO] Areas of various geometric shapes: \n''')
print(F'Rectangle: {area_rectangle(10, 20) = }')
print(F'Square: {area_square(10) = }')
print(F'Triangle: {area_triangle(10, 10) = }')
print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }')
print(F'Parallelogram: {area_parallelogram(10, 20) = }')
print(F'Rhombus: {area_rhombus(10, 20) = }')
print(F'Trapezium: {area_trapezium(10, 20, 30) = }')
print(F'Circle: {area_circle(20) = }')
print(F'Ellipse: {area_ellipse(10, 20) = }')
print('''\nSurface Areas of various geometric shapes: \n''')
print(F'Cube: {surface_area_cube(20) = }')
print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }')
print(F'Sphere: {surface_area_sphere(20) = }')
print(F'Hemisphere: {surface_area_hemisphere(20) = }')
print(F'Cone: {surface_area_cone(10, 20) = }')
print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }')
print(F'Cylinder: {surface_area_cylinder(10, 20) = }')
print(F'Torus: {surface_area_torus(20, 10) = }')
print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }')
print(F'Square: {area_reg_polygon(4, 10) = }')
print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
| 323
| 0
|
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A ( lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : Dict = KandinskyVaaPipeline
lowerCAmelCase_ : Any = [
"image_embeds",
"negative_image_embeds",
]
lowerCAmelCase_ : Any = ["image_embeds", "negative_image_embeds"]
lowerCAmelCase_ : Union[str, Any] = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
lowerCAmelCase_ : str = False
@property
def lowercase__ ( self : Dict ):
return 32
@property
def lowercase__ ( self : Optional[Any] ):
return 32
@property
def lowercase__ ( self : Dict ):
return self.time_input_dim
@property
def lowercase__ ( self : Any ):
return self.time_input_dim * 4
@property
def lowercase__ ( self : Union[str, Any] ):
return 100
@property
def lowercase__ ( self : Union[str, Any] ):
torch.manual_seed(0 )
lowerCAmelCase : Any = {
'in_channels': 4,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
lowerCAmelCase : Dict = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowercase__ ( self : Tuple ):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : List[str] ):
torch.manual_seed(0 )
lowerCAmelCase : Any = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : Optional[int] = self.dummy_unet
lowerCAmelCase : Union[str, Any] = self.dummy_movq
lowerCAmelCase : Optional[Any] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCAmelCase_ , )
lowerCAmelCase : Tuple = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def lowercase__ ( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str=0 ):
lowerCAmelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith('mps' ):
lowerCAmelCase : Optional[Any] = torch.manual_seed(UpperCAmelCase_ )
else:
lowerCAmelCase : List[str] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = {
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'guidance_scale': 4.0,
'num_inference_steps': 2,
'output_type': 'np',
}
return inputs
def lowercase__ ( self : List[str] ):
lowerCAmelCase : Tuple = 'cpu'
lowerCAmelCase : List[Any] = self.get_dummy_components()
lowerCAmelCase : List[Any] = self.pipeline_class(**UpperCAmelCase_ )
lowerCAmelCase : Any = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowerCAmelCase : List[str] = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
lowerCAmelCase : Union[str, Any] = output.images
lowerCAmelCase : Dict = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase : Tuple = np.array(
[0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class __A ( unittest.TestCase ):
def lowercase__ ( self : List[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Dict ):
lowerCAmelCase : Union[str, Any] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' )
lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
lowerCAmelCase : str = KandinskyVaaPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa )
lowerCAmelCase : str = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
lowerCAmelCase : Any = 'red cat, 4k photo'
lowerCAmelCase : int = torch.Generator(device='cuda' ).manual_seed(0 )
lowerCAmelCase : Dict = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
lowerCAmelCase : List[str] = torch.Generator(device='cuda' ).manual_seed(0 )
lowerCAmelCase : int = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type='np' , )
lowerCAmelCase : Union[str, Any] = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 353
|
from __future__ import annotations
from typing import Any
class __A :
def __init__( self : Optional[Any] , UpperCAmelCase_ : int ):
lowerCAmelCase : Tuple = num_of_nodes
lowerCAmelCase : list[list[int]] = []
lowerCAmelCase : dict[int, int] = {}
def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ):
self.m_edges.append([u_node, v_node, weight] )
def lowercase__ ( self : Dict , UpperCAmelCase_ : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ )
def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ):
if component_size[u_node] <= component_size[v_node]:
lowerCAmelCase : Optional[int] = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase_ )
elif component_size[u_node] >= component_size[v_node]:
lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase_ )
def lowercase__ ( self : str ):
lowerCAmelCase : str = []
lowerCAmelCase : Tuple = 0
lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
lowerCAmelCase : int = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge
lowerCAmelCase : Optional[int] = self.m_component[u]
lowerCAmelCase : str = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
lowerCAmelCase : str = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge
lowerCAmelCase : Optional[Any] = self.m_component[u]
lowerCAmelCase : Optional[Any] = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" )
num_of_components -= 1
lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes
print(f"The total weight of the minimal spanning tree is: {mst_weight}" )
def SCREAMING_SNAKE_CASE__ ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323
| 0
|
__A : Tuple = [
'''Audio''',
'''Array2D''',
'''Array3D''',
'''Array4D''',
'''Array5D''',
'''ClassLabel''',
'''Features''',
'''Sequence''',
'''Value''',
'''Image''',
'''Translation''',
'''TranslationVariableLanguages''',
]
from .audio import Audio
from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value
from .image import Image
from .translation import Translation, TranslationVariableLanguages
| 354
|
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : List[Any] = {
'''configuration_autoformer''': [
'''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''AutoformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''AutoformerForPrediction''',
'''AutoformerModel''',
'''AutoformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
__A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 323
| 0
|
import heapq
import sys
import numpy as np
__A : int = tuple[int, int]
class __A :
def __init__( self : Optional[int] ):
lowerCAmelCase : Tuple = []
lowerCAmelCase : List[Any] = set()
def lowercase__ ( self : Dict ):
if not self.empty():
return self.elements[0][0]
else:
return float('inf' )
def lowercase__ ( self : str ):
return len(self.elements ) == 0
def lowercase__ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ):
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(UpperCAmelCase_ )
else:
# update
# print("update", item)
lowerCAmelCase : Any = []
(lowerCAmelCase) : List[str] = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
(lowerCAmelCase) : Optional[Any] = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def lowercase__ ( self : int , UpperCAmelCase_ : Any ):
if item in self.set:
self.set.remove(UpperCAmelCase_ )
lowerCAmelCase : Any = []
(lowerCAmelCase) : str = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
(lowerCAmelCase) : List[str] = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def lowercase__ ( self : Optional[Any] ):
return self.elements[0][1]
def lowercase__ ( self : int ):
(lowerCAmelCase) : List[str] = heapq.heappop(self.elements )
self.set.remove(UpperCAmelCase_ )
return (priority, item)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int:
'''simple docstring'''
lowerCAmelCase : Optional[Any] = np.array(_UpperCAmelCase )
lowerCAmelCase : Any = np.array(_UpperCAmelCase )
return np.linalg.norm(a - b )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return consistent_heuristic(_UpperCAmelCase, _UpperCAmelCase ) // t
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase : List[str] = g_function[start] + Wa * heuristics[i](_UpperCAmelCase, _UpperCAmelCase )
return ans
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]:
'''simple docstring'''
lowerCAmelCase : Any = np.chararray((n, n) )
for i in range(_UpperCAmelCase ):
for j in range(_UpperCAmelCase ):
lowerCAmelCase : Optional[Any] = '*'
for i in range(_UpperCAmelCase ):
for j in range(_UpperCAmelCase ):
if (j, (n - 1) - i) in blocks:
lowerCAmelCase : Tuple = '#'
lowerCAmelCase : List[Any] = '-'
lowerCAmelCase : Optional[Any] = back_pointer[goal]
while x != start:
(lowerCAmelCase) : Tuple = x
# print(x)
lowerCAmelCase : Tuple = '-'
lowerCAmelCase : str = back_pointer[x]
lowerCAmelCase : Optional[int] = '-'
for i in range(_UpperCAmelCase ):
for j in range(_UpperCAmelCase ):
if (i, j) == (0, n - 1):
print(grid[i][j], end=' ' )
print('<-- End position', end=' ' )
else:
print(grid[i][j], end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
print('PATH TAKEN BY THE ALGORITHM IS:-' )
lowerCAmelCase : Dict = back_pointer[goal]
while x != start:
print(_UpperCAmelCase, end=' ' )
lowerCAmelCase : List[Any] = back_pointer[x]
print(_UpperCAmelCase )
sys.exit()
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str:
'''simple docstring'''
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) -> int:
'''simple docstring'''
for itera in range(_UpperCAmelCase ):
open_list[itera].remove_element(_UpperCAmelCase )
# print("s", s)
# print("j", j)
(lowerCAmelCase) : Union[str, Any] = s
lowerCAmelCase : List[Any] = (x - 1, y)
lowerCAmelCase : Optional[Any] = (x + 1, y)
lowerCAmelCase : Optional[int] = (x, y + 1)
lowerCAmelCase : str = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(_UpperCAmelCase ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(_UpperCAmelCase )
lowerCAmelCase : Optional[int] = -1
lowerCAmelCase : Optional[int] = float('inf' )
if valid(_UpperCAmelCase ) and g_function[neighbours] > g_function[s] + 1:
lowerCAmelCase : Any = g_function[s] + 1
lowerCAmelCase : Optional[Any] = s
if neighbours not in close_list_anchor:
open_list[0].put(_UpperCAmelCase, key(_UpperCAmelCase, 0, _UpperCAmelCase, _UpperCAmelCase ) )
if neighbours not in close_list_inad:
for var in range(1, _UpperCAmelCase ):
if key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) <= Wa * key(
_UpperCAmelCase, 0, _UpperCAmelCase, _UpperCAmelCase ):
open_list[j].put(
_UpperCAmelCase, key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) )
def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase : Tuple = []
for x in range(1, 5 ):
for y in range(1, 6 ):
some_list.append((x, y) )
for x in range(15, 20 ):
some_list.append((x, 17) )
for x in range(10, 19 ):
for y in range(1, 15 ):
some_list.append((x, y) )
# L block
for x in range(1, 4 ):
for y in range(12, 19 ):
some_list.append((x, y) )
for x in range(3, 13 ):
for y in range(16, 19 ):
some_list.append((x, y) )
return some_list
__A : Any = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
__A : str = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
__A : Any = make_common_ground()
__A : List[Any] = blocks_blk
# hyper parameters
__A : Union[str, Any] = 1
__A : Dict = 1
__A : str = 20
__A : int = 3 # one consistent and two other inconsistent
# start and end destination
__A : str = (0, 0)
__A : List[str] = (n - 1, n - 1)
__A : int = 1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int:
'''simple docstring'''
lowerCAmelCase : Optional[int] = {start: 0, goal: float('inf' )}
lowerCAmelCase : List[str] = {start: -1, goal: -1}
lowerCAmelCase : Dict = []
lowerCAmelCase : Any = set()
for i in range(_UpperCAmelCase ):
open_list.append(PriorityQueue() )
open_list[i].put(_UpperCAmelCase, key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) )
lowerCAmelCase : list[int] = []
lowerCAmelCase : list[int] = []
while open_list[0].minkey() < float('inf' ):
for i in range(1, _UpperCAmelCase ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('inf' ):
do_something(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
else:
lowerCAmelCase : int = open_list[i].top_show()
visited.add(_UpperCAmelCase )
expand_state(
_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, )
close_list_inad.append(_UpperCAmelCase )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('inf' ):
do_something(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
else:
lowerCAmelCase : Tuple = open_list[0].top_show()
visited.add(_UpperCAmelCase )
expand_state(
_UpperCAmelCase, 0, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, )
close_list_anchor.append(_UpperCAmelCase )
print('No path found to goal' )
print()
for i in range(n - 1, -1, -1 ):
for j in range(_UpperCAmelCase ):
if (j, i) in blocks:
print('#', end=' ' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('*', end=' ' )
else:
print('-', end=' ' )
else:
print('*', end=' ' )
if (j, i) == (n - 1, n - 1):
print('<-- End position', end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 355
|
import math
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int:
'''simple docstring'''
lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) )
lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(F'{solution() = }')
| 323
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = [
'''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''UniSpeechForCTC''',
'''UniSpeechForPreTraining''',
'''UniSpeechForSequenceClassification''',
'''UniSpeechModel''',
'''UniSpeechPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 356
|
from collections.abc import Sequence
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
lowerCAmelCase : Optional[int] = 0.0
for coeff in reversed(_UpperCAmelCase ):
lowerCAmelCase : Union[str, Any] = result * x + coeff
return result
if __name__ == "__main__":
__A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0)
__A : str = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 323
| 0
|
# flake8: noqa
# Lint as: python3
__A : List[str] = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 357
|
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class __A ( unittest.TestCase ):
def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ):
lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20}
lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18}
lowerCAmelCase : List[Any] = parent
lowerCAmelCase : Optional[Any] = batch_size
lowerCAmelCase : int = num_channels
lowerCAmelCase : int = image_size
lowerCAmelCase : Tuple = min_resolution
lowerCAmelCase : Any = max_resolution
lowerCAmelCase : int = do_resize
lowerCAmelCase : Dict = size
lowerCAmelCase : int = do_center_crop
lowerCAmelCase : str = crop_size
def lowercase__ ( self : Optional[int] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __A ( lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None
def lowercase__ ( self : int ):
lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self )
@property
def lowercase__ ( self : int ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Dict ):
lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) )
self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) )
self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) )
self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) )
def lowercase__ ( self : int ):
lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def lowercase__ ( self : str ):
pass
def lowercase__ ( self : List[str] ):
# Initialize image_processing
lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image )
# Test not batched input
lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowercase__ ( self : Optional[Any] ):
# Initialize image_processing
lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowercase__ ( self : Dict ):
# Initialize image_processing
lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 323
| 0
|
import argparse
from argparse import Namespace
import torch
from torch import nn
from transformers import XGLMConfig, XGLMForCausalLM
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int:
'''simple docstring'''
lowerCAmelCase : Optional[int] = [
'decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase, _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase : Tuple = emb.weight.shape
lowerCAmelCase : Tuple = nn.Linear(_UpperCAmelCase, _UpperCAmelCase, bias=_UpperCAmelCase )
lowerCAmelCase : Any = emb.weight.data
return lin_layer
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = torch.load(_UpperCAmelCase, map_location='cpu' )
lowerCAmelCase : Optional[int] = Namespace(**checkpoint['cfg']['model'] )
lowerCAmelCase : Dict = checkpoint['model']
remove_ignore_keys_(_UpperCAmelCase )
lowerCAmelCase : str = state_dict['decoder.embed_tokens.weight'].shape[0]
lowerCAmelCase : Tuple = {key.replace('decoder', 'model' ): val for key, val in state_dict.items()}
lowerCAmelCase : Dict = XGLMConfig(
vocab_size=_UpperCAmelCase, max_position_embeddings=args.max_target_positions, num_layers=args.decoder_layers, attention_heads=args.decoder_attention_heads, ffn_dim=args.decoder_ffn_embed_dim, d_model=args.decoder_embed_dim, layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='gelu', scale_embedding=not args.no_scale_embedding, tie_word_embeddings=args.share_decoder_input_output_embed, )
lowerCAmelCase : List[Any] = XGLMForCausalLM(_UpperCAmelCase )
lowerCAmelCase : List[Any] = model.load_state_dict(_UpperCAmelCase, strict=_UpperCAmelCase )
print(_UpperCAmelCase )
lowerCAmelCase : Union[str, Any] = make_linear_from_emb(model.model.embed_tokens )
return model
if __name__ == "__main__":
__A : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
__A : Optional[int] = parser.parse_args()
__A : List[Any] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path)
model.save_pretrained(args.pytorch_dump_folder_path)
| 358
|
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
('module.cls_token', 'vit.embeddings.cls_token'),
('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'),
('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'),
('module.pos_embed', 'vit.embeddings.position_embeddings'),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('module.norm.weight', 'layernorm.weight'),
('module.norm.bias', 'layernorm.bias'),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('norm.weight', 'vit.layernorm.weight'),
('norm.bias', 'vit.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase : Optional[Any] = ''
else:
lowerCAmelCase : Optional[Any] = 'vit.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" )
lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase : str = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase : int = in_proj_bias[: config.hidden_size]
lowerCAmelCase : Dict = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase : Tuple = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase : str = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any:
'''simple docstring'''
lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase, _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str:
'''simple docstring'''
lowerCAmelCase : Optional[int] = [
'module.fc.fc1.weight',
'module.fc.fc1.bias',
'module.fc.bn1.weight',
'module.fc.bn1.bias',
'module.fc.bn1.running_mean',
'module.fc.bn1.running_var',
'module.fc.bn1.num_batches_tracked',
'module.fc.fc2.weight',
'module.fc.fc2.bias',
'module.fc.bn2.weight',
'module.fc.bn2.bias',
'module.fc.bn2.running_mean',
'module.fc.bn2.running_var',
'module.fc.bn2.num_batches_tracked',
'module.fc.fc3.weight',
'module.fc.fc3.bias',
]
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase, _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]:
'''simple docstring'''
lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase )
lowerCAmelCase : Dict = val
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple:
'''simple docstring'''
lowerCAmelCase : str = ViTMSNConfig()
lowerCAmelCase : str = 1_000
lowerCAmelCase : List[str] = 'datasets/huggingface/label-files'
lowerCAmelCase : int = 'imagenet-1k-id2label.json'
lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) )
lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()}
lowerCAmelCase : List[str] = idalabel
lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowerCAmelCase : Optional[Any] = 384
lowerCAmelCase : List[Any] = 1_536
lowerCAmelCase : Union[str, Any] = 6
elif "l16" in checkpoint_url:
lowerCAmelCase : List[Any] = 1_024
lowerCAmelCase : Any = 4_096
lowerCAmelCase : str = 24
lowerCAmelCase : Optional[int] = 16
lowerCAmelCase : Any = 0.1
elif "b4" in checkpoint_url:
lowerCAmelCase : Any = 4
elif "l7" in checkpoint_url:
lowerCAmelCase : int = 7
lowerCAmelCase : str = 1_024
lowerCAmelCase : Tuple = 4_096
lowerCAmelCase : str = 24
lowerCAmelCase : Tuple = 16
lowerCAmelCase : Dict = 0.1
lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase )
lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder']
lowerCAmelCase : int = ViTImageProcessor(size=config.image_size )
remove_projection_head(_UpperCAmelCase )
lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase )
for src, dest in rename_keys:
rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase )
model.load_state_dict(_UpperCAmelCase )
model.eval()
lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw )
lowerCAmelCase : Any = ViTImageProcessor(
size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase )
lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' )
# forward pass
torch.manual_seed(2 )
lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase )
lowerCAmelCase : List[str] = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] )
elif "b16" in checkpoint_url:
lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] )
elif "l16" in checkpoint_url:
lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] )
elif "b4" in checkpoint_url:
lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] )
else:
lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 )
print(f"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(_UpperCAmelCase )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(_UpperCAmelCase )
if __name__ == "__main__":
__A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
__A : List[str] = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 323
| 0
|
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
('module.cls_token', 'vit.embeddings.cls_token'),
('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'),
('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'),
('module.pos_embed', 'vit.embeddings.position_embeddings'),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('module.norm.weight', 'layernorm.weight'),
('module.norm.bias', 'layernorm.bias'),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('norm.weight', 'vit.layernorm.weight'),
('norm.bias', 'vit.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase : Optional[Any] = ''
else:
lowerCAmelCase : Optional[Any] = 'vit.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" )
lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase : str = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase : int = in_proj_bias[: config.hidden_size]
lowerCAmelCase : Dict = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase : Tuple = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase : str = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any:
'''simple docstring'''
lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase, _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str:
'''simple docstring'''
lowerCAmelCase : Optional[int] = [
'module.fc.fc1.weight',
'module.fc.fc1.bias',
'module.fc.bn1.weight',
'module.fc.bn1.bias',
'module.fc.bn1.running_mean',
'module.fc.bn1.running_var',
'module.fc.bn1.num_batches_tracked',
'module.fc.fc2.weight',
'module.fc.fc2.bias',
'module.fc.bn2.weight',
'module.fc.bn2.bias',
'module.fc.bn2.running_mean',
'module.fc.bn2.running_var',
'module.fc.bn2.num_batches_tracked',
'module.fc.fc3.weight',
'module.fc.fc3.bias',
]
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase, _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]:
'''simple docstring'''
lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase )
lowerCAmelCase : Dict = val
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple:
'''simple docstring'''
lowerCAmelCase : str = ViTMSNConfig()
lowerCAmelCase : str = 1_000
lowerCAmelCase : List[str] = 'datasets/huggingface/label-files'
lowerCAmelCase : int = 'imagenet-1k-id2label.json'
lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) )
lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()}
lowerCAmelCase : List[str] = idalabel
lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowerCAmelCase : Optional[Any] = 384
lowerCAmelCase : List[Any] = 1_536
lowerCAmelCase : Union[str, Any] = 6
elif "l16" in checkpoint_url:
lowerCAmelCase : List[Any] = 1_024
lowerCAmelCase : Any = 4_096
lowerCAmelCase : str = 24
lowerCAmelCase : Optional[int] = 16
lowerCAmelCase : Any = 0.1
elif "b4" in checkpoint_url:
lowerCAmelCase : Any = 4
elif "l7" in checkpoint_url:
lowerCAmelCase : int = 7
lowerCAmelCase : str = 1_024
lowerCAmelCase : Tuple = 4_096
lowerCAmelCase : str = 24
lowerCAmelCase : Tuple = 16
lowerCAmelCase : Dict = 0.1
lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase )
lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder']
lowerCAmelCase : int = ViTImageProcessor(size=config.image_size )
remove_projection_head(_UpperCAmelCase )
lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase )
for src, dest in rename_keys:
rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase )
model.load_state_dict(_UpperCAmelCase )
model.eval()
lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw )
lowerCAmelCase : Any = ViTImageProcessor(
size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase )
lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' )
# forward pass
torch.manual_seed(2 )
lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase )
lowerCAmelCase : List[str] = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] )
elif "b16" in checkpoint_url:
lowerCAmelCase : int = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowerCAmelCase : Union[str, Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] )
else:
lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 )
print(f"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(_UpperCAmelCase )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(_UpperCAmelCase )
if __name__ == "__main__":
__A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
__A : List[str] = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 359
|
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int:
'''simple docstring'''
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError('String lengths must match!' )
lowerCAmelCase : Tuple = 0
for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323
| 0
|
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int:
'''simple docstring'''
lowerCAmelCase : List[Any] = prime_factors(_UpperCAmelCase )
if is_square_free(_UpperCAmelCase ):
return -1 if len(_UpperCAmelCase ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 360
|
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
__A : List[Any] = trt.Logger(trt.Logger.WARNING)
__A : Optional[Any] = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
__A : List[Any] = logging.getLogger(__name__)
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--onnx_model_path''',
default=None,
type=str,
required=True,
help='''Path to ONNX model: ''',
)
parser.add_argument(
'''--output_dir''',
default=None,
type=str,
required=True,
help='''The output directory where the model checkpoints and predictions will be written.''',
)
# Other parameters
parser.add_argument(
'''--tokenizer_name''',
default='''''',
type=str,
required=True,
help='''Pretrained tokenizer name or path if not the same as model_name''',
)
parser.add_argument(
'''--version_2_with_negative''',
action='''store_true''',
help='''If true, the SQuAD examples contain some that do not have an answer.''',
)
parser.add_argument(
'''--null_score_diff_threshold''',
type=float,
default=0.0,
help='''If null_score - best_non_null is greater than the threshold predict null.''',
)
parser.add_argument(
'''--max_seq_length''',
default=384,
type=int,
help=(
'''The maximum total input sequence length after WordPiece tokenization. Sequences '''
'''longer than this will be truncated, and sequences shorter than this will be padded.'''
),
)
parser.add_argument(
'''--doc_stride''',
default=128,
type=int,
help='''When splitting up a long document into chunks, how much stride to take between chunks.''',
)
parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''')
parser.add_argument(
'''--n_best_size''',
default=20,
type=int,
help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''',
)
parser.add_argument(
'''--max_answer_length''',
default=30,
type=int,
help=(
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
),
)
parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''')
parser.add_argument(
'''--dataset_name''',
type=str,
default=None,
required=True,
help='''The name of the dataset to use (via the datasets library).''',
)
parser.add_argument(
'''--dataset_config_name''',
type=str,
default=None,
help='''The configuration name of the dataset to use (via the datasets library).''',
)
parser.add_argument(
'''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.'''
)
parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''')
parser.add_argument(
'''--fp16''',
action='''store_true''',
help='''Whether to use 16-bit (mixed) precision instead of 32-bit''',
)
parser.add_argument(
'''--int8''',
action='''store_true''',
help='''Whether to use INT8''',
)
__A : List[str] = parser.parse_args()
if args.tokenizer_name:
__A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported by this script.'''
'''You can do it from another script, save it, and load it from here, using --tokenizer_name.'''
)
logger.info('''Training/evaluation parameters %s''', args)
__A : List[Any] = args.per_device_eval_batch_size
__A : Any = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
__A : Any = True
__A : Union[str, Any] = '''temp_engine/bert-fp32.engine'''
if args.fpaa:
__A : List[str] = '''temp_engine/bert-fp16.engine'''
if args.inta:
__A : Dict = '''temp_engine/bert-int8.engine'''
# import ONNX file
if not os.path.exists('''temp_engine'''):
os.makedirs('''temp_engine''')
__A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, '''rb''') as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
__A : str = [network.get_input(i) for i in range(network.num_inputs)]
__A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
__A : Dict = 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
__A : List[Any] = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
__A : Union[str, Any] = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, '''wb''') as f:
f.write(engine.serialize())
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any:
'''simple docstring'''
lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa )
lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa )
lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase )
cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase )
cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase )
# start time
lowerCAmelCase : List[Any] = time.time()
# Run inference
context.execute_async(
bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
# Synchronize the stream and take time
stream.synchronize()
# end time
lowerCAmelCase : List[str] = time.time()
lowerCAmelCase : Tuple = end_time - start_time
lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
__A : List[str] = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError('''Evaluation requires a dataset name''')
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
__A : int = raw_datasets['''validation'''].column_names
__A : int = '''question''' if '''question''' in column_names else column_names[0]
__A : List[str] = '''context''' if '''context''' in column_names else column_names[1]
__A : int = '''answers''' if '''answers''' in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
__A : str = tokenizer.padding_side == '''right'''
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the'
F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.'
)
__A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple:
'''simple docstring'''
lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
lowerCAmelCase : Union[str, Any] = tokenizer(
examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
lowerCAmelCase : Tuple = []
for i in range(len(tokenized_examples['input_ids'] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase )
lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
lowerCAmelCase : List[str] = sample_mapping[i]
tokenized_examples["example_id"].append(examples['id'][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
lowerCAmelCase : List[Any] = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples['offset_mapping'][i] )
]
return tokenized_examples
__A : int = raw_datasets['''validation''']
# Validation Feature Creation
__A : Any = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc='''Running tokenizer on validation dataset''',
)
__A : List[str] = default_data_collator
__A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping'''])
__A : Union[str, Any] = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int:
'''simple docstring'''
lowerCAmelCase : str = postprocess_qa_predictions(
examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
lowerCAmelCase : Union[str, Any] = [
{'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items()
]
else:
lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()]
lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase )
__A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''')
# Evaluation!
logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path)
with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize
# Allocate device memory for inputs and outputs.
__A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
__A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
__A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
__A : Tuple = cuda.mem_alloc(h_outputa.nbytes)
__A : Tuple = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
__A : Union[str, Any] = cuda.Stream()
# Evaluation
logger.info('''***** Running Evaluation *****''')
logger.info(F' Num examples = {len(eval_dataset)}')
logger.info(F' Batch size = {args.per_device_eval_batch_size}')
__A : Union[str, Any] = 0.0
__A : Optional[Any] = 0
__A : Optional[Any] = timeit.default_timer()
__A : Optional[int] = None
for step, batch in enumerate(eval_dataloader):
__A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
__A , __A : str = outputs
__A : Optional[Any] = torch.tensor(start_logits)
__A : Any = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
__A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100)
__A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100)
__A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
__A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if all_preds is not None:
__A : str = nested_truncate(all_preds, len(eval_dataset))
__A : Any = timeit.default_timer() - start_time
logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter))
logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000))
logger.info('''Total Number of Inference = %d''', niter)
__A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds)
__A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(F'Evaluation metrics: {eval_metric}')
| 323
| 0
|
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
__A : Union[str, Any] = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
print('Loading config file...' )
def flatten_yaml_as_dict(_UpperCAmelCase, _UpperCAmelCase="", _UpperCAmelCase="." ):
lowerCAmelCase : Any = []
for k, v in d.items():
lowerCAmelCase : int = parent_key + sep + k if parent_key else k
if isinstance(_UpperCAmelCase, collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(_UpperCAmelCase, _UpperCAmelCase, sep=_UpperCAmelCase ).items() )
else:
items.append((new_key, v) )
return dict(_UpperCAmelCase )
lowerCAmelCase : str = argparse.Namespace()
with open(_UpperCAmelCase, 'r' ) as yaml_file:
try:
lowerCAmelCase : Tuple = yaml.load(_UpperCAmelCase, Loader=yaml.FullLoader )
lowerCAmelCase : int = flatten_yaml_as_dict(_UpperCAmelCase )
for k, v in flat_cfg.items():
setattr(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
except yaml.YAMLError as exc:
logger.error('Error while loading config file: {}. Error message: {}'.format(_UpperCAmelCase, str(_UpperCAmelCase ) ) )
return config
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int:
'''simple docstring'''
lowerCAmelCase : Optional[int] = MobileViTVaConfig()
lowerCAmelCase : Union[str, Any] = False
# dataset
if task_name.startswith('imagenet1k_' ):
lowerCAmelCase : Tuple = 1_000
if int(task_name.strip().split('_' )[-1] ) == 384:
lowerCAmelCase : Optional[int] = 384
else:
lowerCAmelCase : Dict = 256
lowerCAmelCase : Union[str, Any] = 'imagenet-1k-id2label.json'
elif task_name.startswith('imagenet21k_to_1k_' ):
lowerCAmelCase : Optional[Any] = 21_000
if int(task_name.strip().split('_' )[-1] ) == 384:
lowerCAmelCase : Dict = 384
else:
lowerCAmelCase : Optional[Any] = 256
lowerCAmelCase : Dict = 'imagenet-22k-id2label.json'
elif task_name.startswith('ade20k_' ):
lowerCAmelCase : Any = 151
lowerCAmelCase : Dict = 512
lowerCAmelCase : List[str] = 'ade20k-id2label.json'
lowerCAmelCase : Any = True
elif task_name.startswith('voc_' ):
lowerCAmelCase : Dict = 21
lowerCAmelCase : str = 512
lowerCAmelCase : List[Any] = 'pascal-voc-id2label.json'
lowerCAmelCase : Dict = True
# orig_config
lowerCAmelCase : List[str] = load_orig_config_file(_UpperCAmelCase )
assert getattr(_UpperCAmelCase, 'model.classification.name', -1 ) == "mobilevit_v2", "Invalid model"
lowerCAmelCase : Dict = getattr(_UpperCAmelCase, 'model.classification.mitv2.width_multiplier', 1.0 )
assert (
getattr(_UpperCAmelCase, 'model.classification.mitv2.attn_norm_layer', -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
lowerCAmelCase : List[Any] = getattr(_UpperCAmelCase, 'model.classification.activation.name', 'swish' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
lowerCAmelCase : Any = getattr(_UpperCAmelCase, 'model.segmentation.output_stride', 16 )
if "_deeplabv3" in task_name:
lowerCAmelCase : str = getattr(_UpperCAmelCase, 'model.segmentation.deeplabv3.aspp_rates', [12, 24, 36] )
lowerCAmelCase : Optional[int] = getattr(_UpperCAmelCase, 'model.segmentation.deeplabv3.aspp_out_channels', 512 )
lowerCAmelCase : List[str] = getattr(_UpperCAmelCase, 'model.segmentation.deeplabv3.aspp_dropout', 0.1 )
# id2label
lowerCAmelCase : Optional[Any] = 'huggingface/label-files'
lowerCAmelCase : str = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase, repo_type='dataset' ), 'r' ) )
lowerCAmelCase : List[str] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()}
lowerCAmelCase : List[Any] = idalabel
lowerCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()}
return config
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int:
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = dct.pop(_UpperCAmelCase )
lowerCAmelCase : Optional[int] = val
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]:
'''simple docstring'''
if base_model:
lowerCAmelCase : Union[str, Any] = ''
else:
lowerCAmelCase : Union[str, Any] = 'mobilevitv2.'
lowerCAmelCase : Optional[Any] = []
for k in state_dict.keys():
if k[:8] == "encoder.":
lowerCAmelCase : Optional[Any] = k[8:]
else:
lowerCAmelCase : Optional[Any] = k
if ".block." in k:
lowerCAmelCase : Any = k_new.replace('.block.', '.' )
if ".conv." in k:
lowerCAmelCase : str = k_new.replace('.conv.', '.convolution.' )
if ".norm." in k:
lowerCAmelCase : List[str] = k_new.replace('.norm.', '.normalization.' )
if "conv_1." in k:
lowerCAmelCase : List[str] = k_new.replace('conv_1.', f"{model_prefix}conv_stem." )
for i in [1, 2]:
if f"layer_{i}." in k:
lowerCAmelCase : int = k_new.replace(f"layer_{i}.", f"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
lowerCAmelCase : Dict = k_new.replace('.exp_1x1.', '.expand_1x1.' )
if ".red_1x1." in k:
lowerCAmelCase : Optional[int] = k_new.replace('.red_1x1.', '.reduce_1x1.' )
for i in [3, 4, 5]:
if f"layer_{i}.0." in k:
lowerCAmelCase : List[str] = k_new.replace(f"layer_{i}.0.", f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if f"layer_{i}.1.local_rep.0." in k:
lowerCAmelCase : Optional[Any] = k_new.replace(f"layer_{i}.1.local_rep.0.", f"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if f"layer_{i}.1.local_rep.1." in k:
lowerCAmelCase : Optional[int] = k_new.replace(f"layer_{i}.1.local_rep.1.", f"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
lowerCAmelCase : Optional[Any] = [0, 1]
elif i == 4:
lowerCAmelCase : List[str] = [0, 1, 2, 3]
elif i == 5:
lowerCAmelCase : Tuple = [0, 1, 2]
for j in j_in:
if f"layer_{i}.1.global_rep.{j}." in k:
lowerCAmelCase : str = k_new.replace(
f"layer_{i}.1.global_rep.{j}.", f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if f"layer_{i}.1.global_rep.{j+1}." in k:
lowerCAmelCase : str = k_new.replace(
f"layer_{i}.1.global_rep.{j+1}.", f"{model_prefix}encoder.layer.{i-1}.layernorm." )
if f"layer_{i}.1.conv_proj." in k:
lowerCAmelCase : str = k_new.replace(f"layer_{i}.1.conv_proj.", f"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
lowerCAmelCase : Dict = k_new.replace('pre_norm_attn.0.', 'layernorm_before.' )
if "pre_norm_attn.1." in k:
lowerCAmelCase : int = k_new.replace('pre_norm_attn.1.', 'attention.' )
if "pre_norm_ffn.0." in k:
lowerCAmelCase : List[Any] = k_new.replace('pre_norm_ffn.0.', 'layernorm_after.' )
if "pre_norm_ffn.1." in k:
lowerCAmelCase : int = k_new.replace('pre_norm_ffn.1.', 'ffn.conv1.' )
if "pre_norm_ffn.3." in k:
lowerCAmelCase : List[str] = k_new.replace('pre_norm_ffn.3.', 'ffn.conv2.' )
if "classifier.1." in k:
lowerCAmelCase : Optional[int] = k_new.replace('classifier.1.', 'classifier.' )
if "seg_head." in k:
lowerCAmelCase : Any = k_new.replace('seg_head.', 'segmentation_head.' )
if ".aspp_layer." in k:
lowerCAmelCase : Union[str, Any] = k_new.replace('.aspp_layer.', '.' )
if ".aspp_pool." in k:
lowerCAmelCase : Tuple = k_new.replace('.aspp_pool.', '.' )
rename_keys.append((k, k_new) )
return rename_keys
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase : Optional[int] = []
for k in state_dict.keys():
if k.startswith('seg_head.aux_head.' ):
keys_to_ignore.append(_UpperCAmelCase )
for k in keys_to_ignore:
state_dict.pop(_UpperCAmelCase, _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
lowerCAmelCase : str = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase : Tuple = get_mobilevitva_config(_UpperCAmelCase, _UpperCAmelCase )
# load original state_dict
lowerCAmelCase : Optional[int] = torch.load(_UpperCAmelCase, map_location='cpu' )
# load huggingface model
if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ):
lowerCAmelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ).eval()
lowerCAmelCase : Optional[int] = False
else:
lowerCAmelCase : str = MobileViTVaForImageClassification(_UpperCAmelCase ).eval()
lowerCAmelCase : Tuple = False
# remove and rename some keys of load the original model
lowerCAmelCase : Dict = checkpoint
remove_unused_keys(_UpperCAmelCase )
lowerCAmelCase : Union[str, Any] = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
# load modified state_dict
model.load_state_dict(_UpperCAmelCase )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCAmelCase : Any = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 )
lowerCAmelCase : Dict = image_processor(images=prepare_img(), return_tensors='pt' )
lowerCAmelCase : Optional[int] = model(**_UpperCAmelCase )
# verify classification model
if task_name.startswith('imagenet' ):
lowerCAmelCase : List[str] = outputs.logits
lowerCAmelCase : Union[str, Any] = logits.argmax(-1 ).item()
print('Predicted class:', model.config.idalabel[predicted_class_idx] )
if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
lowerCAmelCase : List[str] = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] )
assert torch.allclose(logits[0, :3], _UpperCAmelCase, atol=1e-4 )
Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase )
print(f"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_UpperCAmelCase )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(_UpperCAmelCase )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--task''',
default='''imagenet1k_256''',
type=str,
help=(
'''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '''
'''
Classification (ImageNet-1k)
- MobileViTV2 (256x256) : imagenet1k_256
- MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384
- MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :
imagenet21k_to_1k_256
- MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on
ImageNet-1k 384x384) : imagenet21k_to_1k_384
Segmentation
- ADE20K Dataset : ade20k_deeplabv3
- Pascal VOC 2012 Dataset: voc_deeplabv3
'''
),
choices=[
'''imagenet1k_256''',
'''imagenet1k_384''',
'''imagenet21k_to_1k_256''',
'''imagenet21k_to_1k_384''',
'''ade20k_deeplabv3''',
'''voc_deeplabv3''',
],
)
parser.add_argument(
'''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
__A : str = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 361
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A : Any = logging.get_logger(__name__)
__A : Union[str, Any] = {
'''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''',
# See all Dinat models at https://huggingface.co/models?filter=dinat
}
class __A ( lowerCAmelCase , lowerCAmelCase ):
lowerCAmelCase_ : Optional[Any] = "dinat"
lowerCAmelCase_ : Dict = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ):
super().__init__(**UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = patch_size
lowerCAmelCase : Optional[Any] = num_channels
lowerCAmelCase : str = embed_dim
lowerCAmelCase : Any = depths
lowerCAmelCase : List[Any] = len(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = num_heads
lowerCAmelCase : Tuple = kernel_size
lowerCAmelCase : List[str] = dilations
lowerCAmelCase : Any = mlp_ratio
lowerCAmelCase : Optional[int] = qkv_bias
lowerCAmelCase : int = hidden_dropout_prob
lowerCAmelCase : str = attention_probs_dropout_prob
lowerCAmelCase : Union[str, Any] = drop_path_rate
lowerCAmelCase : Any = hidden_act
lowerCAmelCase : Union[str, Any] = layer_norm_eps
lowerCAmelCase : Optional[int] = initializer_range
# we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) )
lowerCAmelCase : int = layer_scale_init_value
lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )]
lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices(
out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
| 323
| 0
|
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 10**9 ):
'''simple docstring'''
lowerCAmelCase : Any = 1
lowerCAmelCase : str = 2
lowerCAmelCase : Union[str, Any] = 0
lowerCAmelCase : Any = 0
lowerCAmelCase : Tuple = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
lowerCAmelCase : Tuple = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F'{solution() = }')
| 362
|
from manim import *
class __A ( lowerCAmelCase ):
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 )
lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 )
lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )]
lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )]
lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : str = Text('CPU' , font_size=24 )
lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(UpperCAmelCase_ )
lowerCAmelCase : int = [mem.copy() for i in range(4 )]
lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : int = Text('GPU' , font_size=24 )
lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ )
gpu.move_to([-1, -1, 0] )
self.add(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )]
lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : List[str] = Text('Model' , font_size=24 )
lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ )
model.move_to([3, -1.0, 0] )
self.add(UpperCAmelCase_ )
lowerCAmelCase : Any = []
lowerCAmelCase : Dict = []
for i, rect in enumerate(UpperCAmelCase_ ):
lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 )
target.move_to(UpperCAmelCase_ )
model_arr.append(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(UpperCAmelCase_ )
self.add(*UpperCAmelCase_ , *UpperCAmelCase_ )
lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )]
lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )]
lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 )
lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ )
disk.move_to([-4, -1.25, 0] )
self.add(UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : List[Any] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowerCAmelCase : Optional[int] = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : Dict = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , )
blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(UpperCAmelCase_ )
lowerCAmelCase : str = MarkupText(
f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(UpperCAmelCase_ ) )
lowerCAmelCase : Optional[Any] = Square(0.3 )
input.set_fill(UpperCAmelCase_ , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 )
self.play(Write(UpperCAmelCase_ ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 )
self.play(MoveToTarget(UpperCAmelCase_ ) )
self.play(FadeOut(UpperCAmelCase_ ) )
lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 )
a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
lowerCAmelCase : int = MarkupText(
f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(UpperCAmelCase_ , run_time=3 ) )
lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
lowerCAmelCase : Any = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
lowerCAmelCase : int = AnimationGroup(
FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 )
self.play(UpperCAmelCase_ )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
lowerCAmelCase : List[str] = 0.7
self.play(
Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
lowerCAmelCase : int = a_c
lowerCAmelCase : Union[str, Any] = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , )
lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) )
self.wait()
| 323
| 0
|
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class __A ( unittest.TestCase ):
def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[int] ):
lowerCAmelCase : Optional[int] = 3
lowerCAmelCase : List[str] = 250
lowerCAmelCase : Dict = ids_tensor((batch_size, length) , UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = torch.ones((batch_size, length) , device=UpperCAmelCase_ , dtype=torch.float ) / length
return input_ids, scores
def lowercase__ ( self : Tuple ):
lowerCAmelCase : Any = self._get_tensors(5 )
lowerCAmelCase : Any = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) )
lowerCAmelCase : List[str] = self._get_tensors(9 )
self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) )
lowerCAmelCase : Tuple = self._get_tensors(10 )
self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) )
def lowercase__ ( self : List[Any] ):
lowerCAmelCase : Optional[Any] = MaxLengthCriteria(max_length=10 )
lowerCAmelCase : Any = self._get_tensors(5 )
self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) )
lowerCAmelCase : Union[str, Any] = self._get_tensors(9 )
self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) )
lowerCAmelCase : Dict = self._get_tensors(10 )
self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) )
def lowercase__ ( self : List[str] ):
lowerCAmelCase : str = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
lowerCAmelCase : List[str] = self._get_tensors(5 )
self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) )
lowerCAmelCase : Dict = self._get_tensors(9 )
self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) )
lowerCAmelCase : Dict = self._get_tensors(10 )
self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) )
lowerCAmelCase : Dict = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def lowercase__ ( self : Optional[int] ):
lowerCAmelCase : Any = self._get_tensors(5 )
lowerCAmelCase : int = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) )
lowerCAmelCase : Optional[Any] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) )
def lowercase__ ( self : Optional[int] ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(UpperCAmelCase_ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
lowerCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(UpperCAmelCase_ ) , 1 )
| 363
|
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : Union[str, Any] = {
'''configuration_informer''': [
'''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''InformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = [
'''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''InformerForPrediction''',
'''InformerModel''',
'''InformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 323
| 0
|
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = "laptop" ) -> DataFrame:
'''simple docstring'''
lowerCAmelCase : List[str] = f"https://www.amazon.in/laptop/s?k={product}"
lowerCAmelCase : Any = {
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36',
'Accept-Language': 'en-US, en;q=0.5',
}
lowerCAmelCase : str = BeautifulSoup(requests.get(_UpperCAmelCase, headers=_UpperCAmelCase ).text )
# Initialize a Pandas dataframe with the column titles
lowerCAmelCase : Optional[int] = DataFrame(
columns=[
'Product Title',
'Product Link',
'Current Price of the product',
'Product Rating',
'MRP of the product',
'Discount',
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
'div', attrs={'class': 's-result-item', 'data-component-type': 's-search-result'}, ), soup.find_all('div', attrs={'class': 'a-row a-size-base a-color-base'} ), ):
try:
lowerCAmelCase : str = item.ha.text
lowerCAmelCase : Optional[Any] = 'https://www.amazon.in/' + item.ha.a['href']
lowerCAmelCase : Tuple = item.find('span', attrs={'class': 'a-offscreen'} ).text
try:
lowerCAmelCase : str = item.find('span', attrs={'class': 'a-icon-alt'} ).text
except AttributeError:
lowerCAmelCase : Any = 'Not available'
try:
lowerCAmelCase : str = (
'₹'
+ item.find(
'span', attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1]
)
except AttributeError:
lowerCAmelCase : Tuple = ''
try:
lowerCAmelCase : List[str] = float(
(
(
float(product_mrp.strip('₹' ).replace(',', '' ) )
- float(product_price.strip('₹' ).replace(',', '' ) )
)
/ float(product_mrp.strip('₹' ).replace(',', '' ) )
)
* 100 )
except ValueError:
lowerCAmelCase : Optional[Any] = float('nan' )
except AttributeError:
pass
lowerCAmelCase : Dict = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
lowerCAmelCase : List[str] = ' '
lowerCAmelCase : Dict = ' '
data_frame.index += 1
return data_frame
if __name__ == "__main__":
__A : Optional[int] = '''headphones'''
get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
| 364
|
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__A : Dict = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='''relu'''))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='''relu'''))
classifier.add(layers.Dense(units=1, activation='''sigmoid'''))
# Compiling the CNN
classifier.compile(
optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy''']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__A : Any = train_datagen.flow_from_directory(
'''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
__A : Tuple = test_datagen.flow_from_directory(
'''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('''cnn.h5''')
# Part 3 - Making new predictions
__A : Any = tf.keras.preprocessing.image.load_img(
'''dataset/single_prediction/image.png''', target_size=(64, 64)
)
__A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image)
__A : Optional[Any] = np.expand_dims(test_image, axis=0)
__A : int = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__A : Optional[int] = '''Normal'''
if result[0][0] == 1:
__A : str = '''Abnormality detected'''
| 323
| 0
|
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def SCREAMING_SNAKE_CASE__ ( ) -> tuple[list[int], int]:
'''simple docstring'''
lowerCAmelCase : List[str] = [randint(-1_000, 1_000 ) for i in range(10 )]
lowerCAmelCase : Optional[int] = randint(-5_000, 5_000 )
return (arr, r)
__A : Union[str, Any] = make_dataset()
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> tuple[int, ...]:
'''simple docstring'''
for triplet in permutations(_UpperCAmelCase, 3 ):
if sum(_UpperCAmelCase ) == target:
return tuple(sorted(_UpperCAmelCase ) )
return (0, 0, 0)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> tuple[int, int, int]:
'''simple docstring'''
arr.sort()
lowerCAmelCase : Dict = len(_UpperCAmelCase )
for i in range(n - 1 ):
lowerCAmelCase : Optional[Any] = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def SCREAMING_SNAKE_CASE__ ( ) -> tuple[float, float]:
'''simple docstring'''
lowerCAmelCase : Optional[Any] = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n'
lowerCAmelCase : List[str] = '\ntriplet_sum1(*dataset)\n'
lowerCAmelCase : str = '\ntriplet_sum2(*dataset)\n'
lowerCAmelCase : Optional[int] = repeat(setup=_UpperCAmelCase, stmt=_UpperCAmelCase, repeat=5, number=10_000 )
lowerCAmelCase : Optional[Any] = repeat(setup=_UpperCAmelCase, stmt=_UpperCAmelCase, repeat=5, number=10_000 )
return (min(_UpperCAmelCase ), min(_UpperCAmelCase ))
if __name__ == "__main__":
from doctest import testmod
testmod()
__A : Dict = solution_times()
print(F'The time for naive implementation is {times[0]}.')
print(F'The time for optimized implementation is {times[1]}.')
| 365
|
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
__A : str = logging.getLogger(__name__)
class __A ( lowerCAmelCase ):
def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ):
lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] )
lowerCAmelCase : Optional[Any] = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , )
class __A ( lowerCAmelCase ):
def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ):
super().__init__(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ )
self.init_weights()
lowerCAmelCase : str = 0
lowerCAmelCase : Optional[Any] = 0
lowerCAmelCase : str = 0
lowerCAmelCase : Dict = 0
def lowercase__ ( self : int , UpperCAmelCase_ : Any ):
lowerCAmelCase : int = threshold
def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ):
lowerCAmelCase : Optional[Any] = patience
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Tuple = 0
lowerCAmelCase : Tuple = 0
def lowercase__ ( self : Dict ):
lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num
lowerCAmelCase : List[Any] = (
f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="
f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"
)
print(UpperCAmelCase_ )
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
lowerCAmelCase : Optional[int] = input_ids.size()
elif inputs_embeds is not None:
lowerCAmelCase : List[str] = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ )
if token_type_ids is None:
lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size()
lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ )
lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ )
else:
lowerCAmelCase : List[Any] = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers )
lowerCAmelCase : int = self.embeddings(
input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ )
lowerCAmelCase : List[str] = embedding_output
if self.training:
lowerCAmelCase : Tuple = []
for i in range(self.config.num_hidden_layers ):
lowerCAmelCase : Dict = self.encoder.adaptive_forward(
UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ )
lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) )
res.append(UpperCAmelCase_ )
elif self.patience == 0: # Use all layers for inference
lowerCAmelCase : Union[str, Any] = self.encoder(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , )
lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] )
lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )]
else:
lowerCAmelCase : Tuple = 0
lowerCAmelCase : List[str] = None
lowerCAmelCase : Optional[Any] = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward(
UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ )
lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ )
if regression:
lowerCAmelCase : List[str] = logits.detach()
if patient_result is not None:
lowerCAmelCase : List[Any] = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
lowerCAmelCase : Any = 0
else:
lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 )
if patient_result is not None:
lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ):
patient_counter += 1
else:
lowerCAmelCase : Tuple = 0
lowerCAmelCase : List[Any] = logits
if patient_counter == self.patience:
break
lowerCAmelCase : Dict = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , )
class __A ( lowerCAmelCase ):
def __init__( self : Tuple , UpperCAmelCase_ : Tuple ):
super().__init__(UpperCAmelCase_ )
lowerCAmelCase : Tuple = config.num_labels
lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob )
lowerCAmelCase : List[Any] = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ):
lowerCAmelCase : int = self.bert(
input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
lowerCAmelCase : Any = (logits[-1],)
if labels is not None:
lowerCAmelCase : Tuple = None
lowerCAmelCase : Optional[int] = 0
for ix, logits_item in enumerate(UpperCAmelCase_ ):
if self.num_labels == 1:
# We are doing regression
lowerCAmelCase : Tuple = MSELoss()
lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
lowerCAmelCase : Tuple = CrossEntropyLoss()
lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
lowerCAmelCase : Any = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
lowerCAmelCase : str = (total_loss / total_weights,) + outputs
return outputs
| 323
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : int = {
'''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = [
'''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegatronBertForCausalLM''',
'''MegatronBertForMaskedLM''',
'''MegatronBertForMultipleChoice''',
'''MegatronBertForNextSentencePrediction''',
'''MegatronBertForPreTraining''',
'''MegatronBertForQuestionAnswering''',
'''MegatronBertForSequenceClassification''',
'''MegatronBertForTokenClassification''',
'''MegatronBertModel''',
'''MegatronBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 366
|
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__A : List[Any] = logging.get_logger(__name__)
__A : List[Any] = {
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class __A ( lowerCAmelCase ):
lowerCAmelCase_ : Union[str, Any] = "deberta-v2"
def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ):
super().__init__(**UpperCAmelCase_ )
lowerCAmelCase : Dict = hidden_size
lowerCAmelCase : List[Any] = num_hidden_layers
lowerCAmelCase : str = num_attention_heads
lowerCAmelCase : List[str] = intermediate_size
lowerCAmelCase : List[Any] = hidden_act
lowerCAmelCase : int = hidden_dropout_prob
lowerCAmelCase : int = attention_probs_dropout_prob
lowerCAmelCase : Any = max_position_embeddings
lowerCAmelCase : str = type_vocab_size
lowerCAmelCase : Union[str, Any] = initializer_range
lowerCAmelCase : Union[str, Any] = relative_attention
lowerCAmelCase : List[Any] = max_relative_positions
lowerCAmelCase : List[Any] = pad_token_id
lowerCAmelCase : Optional[Any] = position_biased_input
# Backwards compatibility
if type(UpperCAmelCase_ ) == str:
lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )]
lowerCAmelCase : str = pos_att_type
lowerCAmelCase : Dict = vocab_size
lowerCAmelCase : Optional[Any] = layer_norm_eps
lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ )
lowerCAmelCase : Tuple = pooler_dropout
lowerCAmelCase : Union[str, Any] = pooler_hidden_act
class __A ( lowerCAmelCase ):
@property
def lowercase__ ( self : Optional[Any] ):
if self.task == "multiple-choice":
lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def lowercase__ ( self : int ):
return 12
def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ):
lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 323
| 0
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class __A :
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ):
lowerCAmelCase : int = parent
lowerCAmelCase : Any = 13
lowerCAmelCase : Union[str, Any] = 7
lowerCAmelCase : List[Any] = True
lowerCAmelCase : List[str] = True
lowerCAmelCase : Tuple = True
lowerCAmelCase : Union[str, Any] = True
lowerCAmelCase : Tuple = 99
lowerCAmelCase : Optional[Any] = 32
lowerCAmelCase : List[str] = 2
lowerCAmelCase : str = 4
lowerCAmelCase : Optional[Any] = 37
lowerCAmelCase : List[Any] = 'gelu'
lowerCAmelCase : Any = 0.1
lowerCAmelCase : Any = 0.1
lowerCAmelCase : Optional[Any] = 512
lowerCAmelCase : Dict = 16
lowerCAmelCase : Optional[Any] = 2
lowerCAmelCase : Union[str, Any] = 0.02
lowerCAmelCase : Optional[int] = 3
lowerCAmelCase : List[str] = 4
lowerCAmelCase : Any = None
def lowercase__ ( self : List[str] ):
lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase : Any = None
if self.use_input_mask:
lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase : Dict = None
if self.use_token_type_ids:
lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase : List[str] = None
lowerCAmelCase : Any = None
lowerCAmelCase : Tuple = None
if self.use_labels:
lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase : Tuple = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ):
lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ )
lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowerCAmelCase : str = [input_ids, input_mask]
lowerCAmelCase : Any = model(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ):
lowerCAmelCase : str = True
lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ )
lowerCAmelCase : List[Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ):
lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ )
lowerCAmelCase : Tuple = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : Tuple = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ):
lowerCAmelCase : str = self.num_labels
lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ )
lowerCAmelCase : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ):
lowerCAmelCase : Dict = self.num_choices
lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ )
lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : Union[str, Any] = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ):
lowerCAmelCase : List[Any] = self.num_labels
lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : Dict = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ):
lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ )
lowerCAmelCase : Dict = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : int = model(UpperCAmelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
lowerCAmelCase
) : Union[str, Any] = config_and_inputs
lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : List[str] = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase_ : Optional[Any] = (
{
"feature-extraction": TFRoFormerModel,
"fill-mask": TFRoFormerForMaskedLM,
"question-answering": TFRoFormerForQuestionAnswering,
"text-classification": TFRoFormerForSequenceClassification,
"text-generation": TFRoFormerForCausalLM,
"token-classification": TFRoFormerForTokenClassification,
"zero-shot": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase_ : Optional[int] = False
lowerCAmelCase_ : int = False
def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def lowercase__ ( self : int ):
lowerCAmelCase : List[Any] = TFRoFormerModelTester(self )
lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowercase__ ( self : int ):
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ):
lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ )
def lowercase__ ( self : Tuple ):
lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ )
def lowercase__ ( self : Tuple ):
lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
def lowercase__ ( self : str ):
lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ )
def lowercase__ ( self : int ):
lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
@slow
def lowercase__ ( self : Dict ):
lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' )
self.assertIsNotNone(UpperCAmelCase_ )
@require_tf
class __A ( unittest.TestCase ):
@slow
def lowercase__ ( self : Any ):
lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] )
lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0]
# TODO Replace vocab size
lowerCAmelCase : Any = 50000
lowerCAmelCase : str = [1, 6, vocab_size]
self.assertEqual(output.shape , UpperCAmelCase_ )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
lowerCAmelCase : Union[str, Any] = tf.constant(
[
[
[-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46],
[-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07],
[-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 )
@require_tf
class __A ( unittest.TestCase ):
lowerCAmelCase_ : Optional[int] = 1E-4
def lowercase__ ( self : Any ):
lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] )
lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
lowerCAmelCase : int = emba(input_ids.shape )
lowerCAmelCase : str = tf.constant(
[[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] )
tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance )
def lowercase__ ( self : int ):
lowerCAmelCase : Dict = tf.constant(
[
[0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00],
[0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17],
[0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70],
] )
lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 )
emba([2, 16, 512] )
lowerCAmelCase : List[Any] = emba.weight[:3, :5]
tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance )
@require_tf
class __A ( unittest.TestCase ):
lowerCAmelCase_ : Optional[int] = 1E-4
def lowercase__ ( self : List[Any] ):
# 2,12,16,64
lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :]
lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = tf.constant(
[
[0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00],
[-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43],
[-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85],
[-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71],
[0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80],
[3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53],
] )
lowerCAmelCase : Union[str, Any] = tf.constant(
[
[0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00],
[0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43],
[1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85],
[2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71],
[-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80],
[-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
| 367
|
__A : Dict = [
999,
800,
799,
600,
599,
500,
400,
399,
377,
355,
333,
311,
288,
266,
244,
222,
200,
199,
177,
155,
133,
111,
88,
66,
44,
22,
0,
]
__A : List[Any] = [
999,
976,
952,
928,
905,
882,
858,
857,
810,
762,
715,
714,
572,
429,
428,
286,
285,
238,
190,
143,
142,
118,
95,
71,
47,
24,
0,
]
__A : Dict = [
999,
988,
977,
966,
955,
944,
933,
922,
911,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
350,
300,
299,
266,
233,
200,
199,
179,
159,
140,
120,
100,
99,
88,
77,
66,
55,
44,
33,
22,
11,
0,
]
__A : Optional[int] = [
999,
995,
992,
989,
985,
981,
978,
975,
971,
967,
964,
961,
957,
956,
951,
947,
942,
937,
933,
928,
923,
919,
914,
913,
908,
903,
897,
892,
887,
881,
876,
871,
870,
864,
858,
852,
846,
840,
834,
828,
827,
820,
813,
806,
799,
792,
785,
784,
777,
770,
763,
756,
749,
742,
741,
733,
724,
716,
707,
699,
698,
688,
677,
666,
656,
655,
645,
634,
623,
613,
612,
598,
584,
570,
569,
555,
541,
527,
526,
505,
484,
483,
462,
440,
439,
396,
395,
352,
351,
308,
307,
264,
263,
220,
219,
176,
132,
88,
44,
0,
]
__A : Optional[int] = [
999,
997,
995,
992,
990,
988,
986,
984,
981,
979,
977,
975,
972,
970,
968,
966,
964,
961,
959,
957,
956,
954,
951,
949,
946,
944,
941,
939,
936,
934,
931,
929,
926,
924,
921,
919,
916,
914,
913,
910,
907,
905,
902,
899,
896,
893,
891,
888,
885,
882,
879,
877,
874,
871,
870,
867,
864,
861,
858,
855,
852,
849,
846,
843,
840,
837,
834,
831,
828,
827,
824,
821,
817,
814,
811,
808,
804,
801,
798,
795,
791,
788,
785,
784,
780,
777,
774,
770,
766,
763,
760,
756,
752,
749,
746,
742,
741,
737,
733,
730,
726,
722,
718,
714,
710,
707,
703,
699,
698,
694,
690,
685,
681,
677,
673,
669,
664,
660,
656,
655,
650,
646,
641,
636,
632,
627,
622,
618,
613,
612,
607,
602,
596,
591,
586,
580,
575,
570,
569,
563,
557,
551,
545,
539,
533,
527,
526,
519,
512,
505,
498,
491,
484,
483,
474,
466,
457,
449,
440,
439,
428,
418,
407,
396,
395,
381,
366,
352,
351,
330,
308,
307,
286,
264,
263,
242,
220,
219,
176,
175,
132,
131,
88,
44,
0,
]
__A : Tuple = [
999,
991,
982,
974,
966,
958,
950,
941,
933,
925,
916,
908,
900,
899,
874,
850,
825,
800,
799,
700,
600,
500,
400,
300,
200,
100,
0,
]
__A : int = [
999,
992,
985,
978,
971,
964,
957,
949,
942,
935,
928,
921,
914,
907,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
300,
299,
200,
199,
100,
99,
0,
]
__A : Optional[Any] = [
999,
996,
992,
989,
985,
982,
979,
975,
972,
968,
965,
961,
958,
955,
951,
948,
944,
941,
938,
934,
931,
927,
924,
920,
917,
914,
910,
907,
903,
900,
899,
891,
884,
876,
869,
861,
853,
846,
838,
830,
823,
815,
808,
800,
799,
788,
777,
766,
755,
744,
733,
722,
711,
700,
699,
688,
677,
666,
655,
644,
633,
622,
611,
600,
599,
585,
571,
557,
542,
528,
514,
500,
499,
485,
471,
457,
442,
428,
414,
400,
399,
379,
359,
340,
320,
300,
299,
279,
259,
240,
220,
200,
199,
166,
133,
100,
99,
66,
33,
0,
]
| 323
| 0
|
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __A ( lowerCAmelCase ):
lowerCAmelCase_ : UNetaDModel
lowerCAmelCase_ : ScoreSdeVeScheduler
def __init__( self : Optional[int] , UpperCAmelCase_ : UNetaDModel , UpperCAmelCase_ : ScoreSdeVeScheduler ):
super().__init__()
self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ )
@torch.no_grad()
def __call__( self : Tuple , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 2000 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Tuple , ):
lowerCAmelCase : Optional[Any] = self.unet.config.sample_size
lowerCAmelCase : str = (batch_size, 3, img_size, img_size)
lowerCAmelCase : Tuple = self.unet
lowerCAmelCase : str = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ ) * self.scheduler.init_noise_sigma
lowerCAmelCase : List[str] = sample.to(self.device )
self.scheduler.set_timesteps(UpperCAmelCase_ )
self.scheduler.set_sigmas(UpperCAmelCase_ )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
lowerCAmelCase : int = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
lowerCAmelCase : Dict = self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample
lowerCAmelCase : Optional[Any] = self.scheduler.step_correct(UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample
# prediction step
lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample
lowerCAmelCase : Optional[Any] = self.scheduler.step_pred(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ )
lowerCAmelCase : List[str] = output.prev_sample, output.prev_sample_mean
lowerCAmelCase : List[Any] = sample_mean.clamp(0 , 1 )
lowerCAmelCase : Optional[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : Dict = self.numpy_to_pil(UpperCAmelCase_ )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=UpperCAmelCase_ )
| 368
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = [
'''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''UniSpeechForCTC''',
'''UniSpeechForPreTraining''',
'''UniSpeechForSequenceClassification''',
'''UniSpeechModel''',
'''UniSpeechPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 323
| 0
|
import math
import tensorflow as tf
from packaging import version
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict:
'''simple docstring'''
lowerCAmelCase : Any = tf.convert_to_tensor(_UpperCAmelCase )
lowerCAmelCase : Dict = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ), x.dtype ) ))
return x * cdf
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase : Dict = tf.convert_to_tensor(_UpperCAmelCase )
lowerCAmelCase : Dict = tf.cast(math.pi, x.dtype )
lowerCAmelCase : int = tf.cast(0.0_4_4_7_1_5, x.dtype )
lowerCAmelCase : Union[str, Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(_UpperCAmelCase, 3 )) ))
return x * cdf
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase : Tuple = tf.convert_to_tensor(_UpperCAmelCase )
return x * tf.tanh(tf.math.softplus(_UpperCAmelCase ) )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str:
'''simple docstring'''
lowerCAmelCase : List[Any] = tf.convert_to_tensor(_UpperCAmelCase )
lowerCAmelCase : Union[str, Any] = tf.cast(0.0_4_4_7_1_5, x.dtype )
lowerCAmelCase : List[Any] = tf.cast(0.7_9_7_8_8_4_5_6_0_8, x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase : List[Any] = tf.convert_to_tensor(_UpperCAmelCase )
lowerCAmelCase : List[Any] = tf.cast(1.7_0_2, x.dtype )
return x * tf.math.sigmoid(coeff * x )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return tf.clip_by_value(_gelu(_UpperCAmelCase ), -10, 10 )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=-1 ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase : Dict = tf.split(_UpperCAmelCase, 2, axis=_UpperCAmelCase )
return a * tf.math.sigmoid(_UpperCAmelCase )
if version.parse(tf.version.VERSION) >= version.parse('''2.4'''):
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return tf.keras.activations.gelu(_UpperCAmelCase, approximate=_UpperCAmelCase )
__A : Optional[int] = tf.keras.activations.gelu
__A : Tuple = approximate_gelu_wrap
else:
__A : Any = _gelu
__A : int = _gelu_new
__A : Dict = {
'''gelu''': gelu,
'''gelu_10''': gelu_aa,
'''gelu_fast''': gelu_fast,
'''gelu_new''': gelu_new,
'''glu''': glu,
'''mish''': mish,
'''quick_gelu''': quick_gelu,
'''relu''': tf.keras.activations.relu,
'''sigmoid''': tf.keras.activations.sigmoid,
'''silu''': tf.keras.activations.swish,
'''swish''': tf.keras.activations.swish,
'''tanh''': tf.keras.activations.tanh,
}
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
| 369
|
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class __A :
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ):
lowerCAmelCase : int = parent
lowerCAmelCase : Any = 13
lowerCAmelCase : Union[str, Any] = 7
lowerCAmelCase : List[Any] = True
lowerCAmelCase : List[str] = True
lowerCAmelCase : Tuple = True
lowerCAmelCase : Union[str, Any] = True
lowerCAmelCase : Tuple = 99
lowerCAmelCase : Optional[Any] = 32
lowerCAmelCase : List[str] = 2
lowerCAmelCase : str = 4
lowerCAmelCase : Optional[Any] = 37
lowerCAmelCase : List[Any] = 'gelu'
lowerCAmelCase : Any = 0.1
lowerCAmelCase : Any = 0.1
lowerCAmelCase : Optional[Any] = 512
lowerCAmelCase : Dict = 16
lowerCAmelCase : Optional[Any] = 2
lowerCAmelCase : Union[str, Any] = 0.02
lowerCAmelCase : Optional[int] = 3
lowerCAmelCase : List[str] = 4
lowerCAmelCase : Any = None
def lowercase__ ( self : List[str] ):
lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase : Any = None
if self.use_input_mask:
lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase : Dict = None
if self.use_token_type_ids:
lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase : List[str] = None
lowerCAmelCase : Any = None
lowerCAmelCase : Tuple = None
if self.use_labels:
lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase : Tuple = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ):
lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ )
lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowerCAmelCase : str = [input_ids, input_mask]
lowerCAmelCase : Any = model(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ):
lowerCAmelCase : str = True
lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ )
lowerCAmelCase : List[Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ):
lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ )
lowerCAmelCase : Tuple = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : Tuple = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ):
lowerCAmelCase : str = self.num_labels
lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ )
lowerCAmelCase : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ):
lowerCAmelCase : Dict = self.num_choices
lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ )
lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : Union[str, Any] = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ):
lowerCAmelCase : List[Any] = self.num_labels
lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : Dict = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ):
lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ )
lowerCAmelCase : Dict = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : int = model(UpperCAmelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) : Union[str, Any] = config_and_inputs
lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : List[str] = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase_ : Optional[Any] = (
{
"feature-extraction": TFRoFormerModel,
"fill-mask": TFRoFormerForMaskedLM,
"question-answering": TFRoFormerForQuestionAnswering,
"text-classification": TFRoFormerForSequenceClassification,
"text-generation": TFRoFormerForCausalLM,
"token-classification": TFRoFormerForTokenClassification,
"zero-shot": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase_ : Optional[int] = False
lowerCAmelCase_ : int = False
def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def lowercase__ ( self : int ):
lowerCAmelCase : List[Any] = TFRoFormerModelTester(self )
lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowercase__ ( self : int ):
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ):
lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ )
def lowercase__ ( self : Tuple ):
lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ )
def lowercase__ ( self : Tuple ):
lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
def lowercase__ ( self : str ):
lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ )
def lowercase__ ( self : int ):
lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
@slow
def lowercase__ ( self : Dict ):
lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' )
self.assertIsNotNone(UpperCAmelCase_ )
@require_tf
class __A ( unittest.TestCase ):
@slow
def lowercase__ ( self : Any ):
lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] )
lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0]
# TODO Replace vocab size
lowerCAmelCase : Any = 50000
lowerCAmelCase : str = [1, 6, vocab_size]
self.assertEqual(output.shape , UpperCAmelCase_ )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
lowerCAmelCase : Union[str, Any] = tf.constant(
[
[
[-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46],
[-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07],
[-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 )
@require_tf
class __A ( unittest.TestCase ):
lowerCAmelCase_ : Optional[int] = 1E-4
def lowercase__ ( self : Any ):
lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] )
lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
lowerCAmelCase : int = emba(input_ids.shape )
lowerCAmelCase : str = tf.constant(
[[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] )
tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance )
def lowercase__ ( self : int ):
lowerCAmelCase : Dict = tf.constant(
[
[0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00],
[0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17],
[0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70],
] )
lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 )
emba([2, 16, 512] )
lowerCAmelCase : List[Any] = emba.weight[:3, :5]
tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance )
@require_tf
class __A ( unittest.TestCase ):
lowerCAmelCase_ : Optional[int] = 1E-4
def lowercase__ ( self : List[Any] ):
# 2,12,16,64
lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :]
lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = tf.constant(
[
[0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00],
[-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43],
[-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85],
[-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71],
[0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80],
[3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53],
] )
lowerCAmelCase : Union[str, Any] = tf.constant(
[
[0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00],
[0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43],
[1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85],
[2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71],
[-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80],
[-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
| 323
| 0
|
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
__A : Any = '''.'''
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
__A : List[str] = [
'''Assert''',
'''AssignVariableOp''',
'''EmptyTensorList''',
'''MergeV2Checkpoints''',
'''ReadVariableOp''',
'''ResourceGather''',
'''RestoreV2''',
'''SaveV2''',
'''ShardedFilename''',
'''StatefulPartitionedCall''',
'''StaticRegexFullMatch''',
'''VarHandleOp''',
]
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Dict:
'''simple docstring'''
lowerCAmelCase : Optional[Any] = SavedModel()
lowerCAmelCase : List[Any] = []
with open(os.path.join(_UpperCAmelCase, 'utils', 'tf_ops', 'onnx.json' ) ) as f:
lowerCAmelCase : Union[str, Any] = json.load(_UpperCAmelCase )['opsets']
for i in range(1, opset + 1 ):
onnx_ops.extend(onnx_opsets[str(_UpperCAmelCase )] )
with open(_UpperCAmelCase, 'rb' ) as f:
saved_model.ParseFromString(f.read() )
lowerCAmelCase : Any = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
lowerCAmelCase : str = sorted(_UpperCAmelCase )
lowerCAmelCase : str = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(_UpperCAmelCase )
if strict and len(_UpperCAmelCase ) > 0:
raise Exception(f"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops )
elif len(_UpperCAmelCase ) > 0:
print(f"Found the following incompatible ops for the opset {opset}:" )
print(*_UpperCAmelCase, sep='\n' )
else:
print(f"The saved model {saved_model_path} can properly be converted with ONNX." )
if __name__ == "__main__":
__A : Tuple = argparse.ArgumentParser()
parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''')
parser.add_argument(
'''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.'''
)
parser.add_argument(
'''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.'''
)
parser.add_argument(
'''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)'''
)
__A : List[str] = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 370
|
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class __A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ):
lowerCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) )
lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
lowerCAmelCase : Tuple = {'unk_token': '<unk>'}
lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(UpperCAmelCase_ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(UpperCAmelCase_ ) )
lowerCAmelCase : Dict = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(UpperCAmelCase_ , UpperCAmelCase_ )
def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : List[str] ):
lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase__ ( self : Any ):
lowerCAmelCase : List[str] = self.get_tokenizer()
lowerCAmelCase : List[str] = self.get_rust_tokenizer()
lowerCAmelCase : Optional[int] = self.get_image_processor()
lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ )
self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ )
self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ )
def lowercase__ ( self : Tuple ):
lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 )
lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase_ )
def lowercase__ ( self : List[str] ):
lowerCAmelCase : Any = self.get_image_processor()
lowerCAmelCase : Union[str, Any] = self.get_tokenizer()
lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : Dict = self.prepare_image_inputs()
lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' )
lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Union[str, Any] = self.get_image_processor()
lowerCAmelCase : Union[str, Any] = self.get_tokenizer()
lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = 'lower newer'
lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : Tuple = self.get_image_processor()
lowerCAmelCase : Dict = self.get_tokenizer()
lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = 'lower newer'
lowerCAmelCase : Optional[int] = self.prepare_image_inputs()
lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase_ ):
processor()
def lowercase__ ( self : List[str] ):
lowerCAmelCase : Optional[Any] = self.get_image_processor()
lowerCAmelCase : str = self.get_tokenizer()
lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ )
lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : List[Any] = self.get_image_processor()
lowerCAmelCase : Dict = self.get_tokenizer()
lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : Dict = 'lower newer'
lowerCAmelCase : Tuple = self.prepare_image_inputs()
lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 323
| 0
|
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__A : str = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class __A ( lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : Optional[int] = XGLMTokenizer
lowerCAmelCase_ : str = XGLMTokenizerFast
lowerCAmelCase_ : Optional[Any] = True
lowerCAmelCase_ : Tuple = True
def lowercase__ ( self : List[str] ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase : str = XGLMTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : str = '<pad>'
lowerCAmelCase : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ )
def lowercase__ ( self : int ):
lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(len(UpperCAmelCase_ ) , 1008 )
def lowercase__ ( self : List[str] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1008 )
def lowercase__ ( self : Optional[int] ):
lowerCAmelCase : Any = XGLMTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ )
lowerCAmelCase : str = tokenizer.tokenize('This is a test' )
self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
lowerCAmelCase : str = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
UpperCAmelCase_ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
lowerCAmelCase : int = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ )
self.assertListEqual(
UpperCAmelCase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ )
self.assertListEqual(
UpperCAmelCase_ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
@cached_property
def lowercase__ ( self : Union[str, Any] ):
return XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
def lowercase__ ( self : Optional[Any] ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(UpperCAmelCase_ , f.name )
lowerCAmelCase : Dict = XGLMTokenizer(f.name , keep_accents=UpperCAmelCase_ )
lowerCAmelCase : Dict = pickle.dumps(UpperCAmelCase_ )
pickle.loads(UpperCAmelCase_ )
def lowercase__ ( self : Any ):
if not self.test_rust_tokenizer:
return
lowerCAmelCase : Optional[Any] = self.get_tokenizer()
lowerCAmelCase : Any = self.get_rust_tokenizer()
lowerCAmelCase : str = 'I was born in 92000, and this is falsé.'
lowerCAmelCase : str = tokenizer.tokenize(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ )
lowerCAmelCase : Dict = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer()
lowerCAmelCase : str = tokenizer.encode(UpperCAmelCase_ )
lowerCAmelCase : List[Any] = rust_tokenizer.encode(UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
@slow
def lowercase__ ( self : int ):
lowerCAmelCase : str = 'Hello World!'
lowerCAmelCase : Any = [2, 31227, 4447, 35]
self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) )
@slow
def lowercase__ ( self : str ):
lowerCAmelCase : int = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'
)
# fmt: off
lowerCAmelCase : List[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735]
# fmt: on
self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) )
@slow
def lowercase__ ( self : Any ):
# fmt: off
lowerCAmelCase : Dict = {
'input_ids': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase_ , model_name='facebook/xglm-564M' , padding=UpperCAmelCase_ , )
| 371
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : List[Any] = {
'''configuration_xlm_roberta''': [
'''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XLMRobertaConfig''',
'''XLMRobertaOnnxConfig''',
],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = ['''XLMRobertaTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = ['''XLMRobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = [
'''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLMRobertaForCausalLM''',
'''XLMRobertaForMaskedLM''',
'''XLMRobertaForMultipleChoice''',
'''XLMRobertaForQuestionAnswering''',
'''XLMRobertaForSequenceClassification''',
'''XLMRobertaForTokenClassification''',
'''XLMRobertaModel''',
'''XLMRobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXLMRobertaForCausalLM''',
'''TFXLMRobertaForMaskedLM''',
'''TFXLMRobertaForMultipleChoice''',
'''TFXLMRobertaForQuestionAnswering''',
'''TFXLMRobertaForSequenceClassification''',
'''TFXLMRobertaForTokenClassification''',
'''TFXLMRobertaModel''',
'''TFXLMRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FlaxXLMRobertaForMaskedLM''',
'''FlaxXLMRobertaForCausalLM''',
'''FlaxXLMRobertaForMultipleChoice''',
'''FlaxXLMRobertaForQuestionAnswering''',
'''FlaxXLMRobertaForSequenceClassification''',
'''FlaxXLMRobertaForTokenClassification''',
'''FlaxXLMRobertaModel''',
'''FlaxXLMRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaConfig,
XLMRobertaOnnxConfig,
)
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta import XLMRobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForCausalLM,
TFXLMRobertaForMaskedLM,
TFXLMRobertaForMultipleChoice,
TFXLMRobertaForQuestionAnswering,
TFXLMRobertaForSequenceClassification,
TFXLMRobertaForTokenClassification,
TFXLMRobertaModel,
TFXLMRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xlm_roberta import (
FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxXLMRobertaForCausalLM,
FlaxXLMRobertaForMaskedLM,
FlaxXLMRobertaForMultipleChoice,
FlaxXLMRobertaForQuestionAnswering,
FlaxXLMRobertaForSequenceClassification,
FlaxXLMRobertaForTokenClassification,
FlaxXLMRobertaModel,
FlaxXLMRobertaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 323
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : Optional[int] = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
__A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 350
|
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class __A ( lowerCAmelCase ):
lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray]
lowerCAmelCase_ : Optional[List[bool]]
lowerCAmelCase_ : Optional[List[bool]]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
| 323
| 0
|
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : int = StableDiffusionLatentUpscalePipeline
lowerCAmelCase_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"height",
"width",
"cross_attention_kwargs",
"negative_prompt_embeds",
"prompt_embeds",
}
lowerCAmelCase_ : Optional[int] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
lowerCAmelCase_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
lowerCAmelCase_ : Any = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowerCAmelCase_ : Optional[Any] = frozenset([] )
lowerCAmelCase_ : List[Any] = True
@property
def lowercase__ ( self : Dict ):
lowerCAmelCase : Optional[Any] = 1
lowerCAmelCase : int = 4
lowerCAmelCase : Tuple = (16, 16)
lowerCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase_ )
return image
def lowercase__ ( self : List[Any] ):
torch.manual_seed(0 )
lowerCAmelCase : Tuple = UNetaDConditionModel(
act_fn='gelu' , attention_head_dim=8 , norm_num_groups=UpperCAmelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
'KDownBlock2D',
'KCrossAttnDownBlock2D',
'KCrossAttnDownBlock2D',
'KCrossAttnDownBlock2D',
) , in_channels=8 , mid_block_type=UpperCAmelCase_ , only_cross_attention=UpperCAmelCase_ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , )
lowerCAmelCase : Dict = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
'DownEncoderBlock2D',
'DownEncoderBlock2D',
'DownEncoderBlock2D',
'DownEncoderBlock2D',
] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
lowerCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type='sample' )
lowerCAmelCase : Optional[int] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='quick_gelu' , projection_dim=512 , )
lowerCAmelCase : Optional[int] = CLIPTextModel(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase : int = {
'unet': model.eval(),
'vae': vae.eval(),
'scheduler': scheduler,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=0 ):
if str(UpperCAmelCase_ ).startswith('mps' ):
lowerCAmelCase : Dict = torch.manual_seed(UpperCAmelCase_ )
else:
lowerCAmelCase : int = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
lowerCAmelCase : Dict = {
'prompt': 'A painting of a squirrel eating a burger',
'image': self.dummy_image.cpu(),
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def lowercase__ ( self : str ):
lowerCAmelCase : Tuple = 'cpu'
lowerCAmelCase : List[Any] = self.get_dummy_components()
lowerCAmelCase : Optional[int] = self.pipeline_class(**UpperCAmelCase_ )
pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowerCAmelCase : Tuple = self.get_dummy_inputs(UpperCAmelCase_ )
lowerCAmelCase : int = pipe(**UpperCAmelCase_ ).images
lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 256, 256, 3) )
lowerCAmelCase : Any = np.array(
[0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] )
lowerCAmelCase : Any = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCAmelCase_ , 1E-3 )
def lowercase__ ( self : int ):
super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 )
def lowercase__ ( self : Any ):
super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 )
def lowercase__ ( self : Optional[Any] ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def lowercase__ ( self : Optional[int] ):
super().test_inference_batch_single_identical(expected_max_diff=7E-3 )
def lowercase__ ( self : str ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 )
def lowercase__ ( self : Optional[Any] ):
super().test_save_load_local(expected_max_difference=3E-3 )
def lowercase__ ( self : Any ):
super().test_save_load_optional_components(expected_max_difference=3E-3 )
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : int = [
'DDIMScheduler',
'DDPMScheduler',
'PNDMScheduler',
'HeunDiscreteScheduler',
'EulerAncestralDiscreteScheduler',
'KDPM2DiscreteScheduler',
'KDPM2AncestralDiscreteScheduler',
'DPMSolverSDEScheduler',
]
lowerCAmelCase : Dict = self.get_dummy_components()
lowerCAmelCase : List[Any] = self.pipeline_class(**UpperCAmelCase_ )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=UpperCAmelCase_ )
pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowerCAmelCase : Dict = self.get_dummy_inputs(UpperCAmelCase_ )
lowerCAmelCase : int = 2
lowerCAmelCase : Any = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
lowerCAmelCase : Any = getattr(UpperCAmelCase_ , scheduler_enum.name )
lowerCAmelCase : Optional[Any] = scheduler_cls.from_config(pipe.scheduler.config )
lowerCAmelCase : List[Any] = pipe(**UpperCAmelCase_ )[0]
outputs.append(UpperCAmelCase_ )
assert check_same_shape(UpperCAmelCase_ )
@require_torch_gpu
@slow
class __A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Any ):
lowerCAmelCase : str = torch.manual_seed(33 )
lowerCAmelCase : str = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa )
pipe.to('cuda' )
lowerCAmelCase : Dict = StableDiffusionLatentUpscalePipeline.from_pretrained(
'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa )
upscaler.to('cuda' )
lowerCAmelCase : List[Any] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic'
lowerCAmelCase : Dict = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type='latent' ).images
lowerCAmelCase : Tuple = upscaler(
prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase_ , output_type='np' , ).images[0]
lowerCAmelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' )
assert np.abs((expected_image - image).mean() ) < 5E-2
def lowercase__ ( self : Tuple ):
lowerCAmelCase : int = torch.manual_seed(33 )
lowerCAmelCase : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained(
'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa )
upscaler.to('cuda' )
lowerCAmelCase : List[str] = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas'
lowerCAmelCase : List[Any] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' )
lowerCAmelCase : Optional[int] = upscaler(
prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase_ , output_type='np' , ).images[0]
lowerCAmelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' )
assert np.abs((expected_image - image).max() ) < 5E-2
| 351
|
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return x + 2
class __A ( unittest.TestCase ):
def lowercase__ ( self : int ):
lowerCAmelCase : List[str] = 'x = 3'
lowerCAmelCase : Optional[Any] = {}
lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
assert result == 3
self.assertDictEqual(UpperCAmelCase_ , {'x': 3} )
lowerCAmelCase : Dict = 'x = y'
lowerCAmelCase : List[Any] = {'y': 5}
lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} )
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : Any = 'y = add_two(x)'
lowerCAmelCase : int = {'x': 3}
lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ )
assert result == 5
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} )
# Won't work without the tool
with CaptureStdout() as out:
lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
assert result is None
assert "tried to execute add_two" in out.out
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Tuple = 'x = 3'
lowerCAmelCase : List[Any] = {}
lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
assert result == 3
self.assertDictEqual(UpperCAmelCase_ , {'x': 3} )
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}'
lowerCAmelCase : Dict = {'x': 3}
lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ )
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} )
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} )
def lowercase__ ( self : Any ):
lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5'
lowerCAmelCase : str = {}
lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\''
lowerCAmelCase : str = {'x': 3}
lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} )
def lowercase__ ( self : Dict ):
lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5'
lowerCAmelCase : Dict = {'x': 3}
lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} )
lowerCAmelCase : Any = {'x': 8}
lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} )
def lowercase__ ( self : List[Any] ):
lowerCAmelCase : int = 'test_list = [x, add_two(x)]'
lowerCAmelCase : Optional[Any] = {'x': 3}
lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , [3, 5] )
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} )
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : int = 'y = x'
lowerCAmelCase : Optional[int] = {'x': 3}
lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ )
assert result == 3
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} )
def lowercase__ ( self : List[str] ):
lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]'
lowerCAmelCase : List[str] = {'x': 3}
lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ )
assert result == 5
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} )
lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']'
lowerCAmelCase : List[Any] = {'x': 3}
lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ )
assert result == 5
self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} )
def lowercase__ ( self : int ):
lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i'
lowerCAmelCase : str = {}
lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ )
assert result == 2
self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
| 323
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : List[Any] = {
'''configuration_xlm_roberta''': [
'''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XLMRobertaConfig''',
'''XLMRobertaOnnxConfig''',
],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = ['''XLMRobertaTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = ['''XLMRobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = [
'''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLMRobertaForCausalLM''',
'''XLMRobertaForMaskedLM''',
'''XLMRobertaForMultipleChoice''',
'''XLMRobertaForQuestionAnswering''',
'''XLMRobertaForSequenceClassification''',
'''XLMRobertaForTokenClassification''',
'''XLMRobertaModel''',
'''XLMRobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXLMRobertaForCausalLM''',
'''TFXLMRobertaForMaskedLM''',
'''TFXLMRobertaForMultipleChoice''',
'''TFXLMRobertaForQuestionAnswering''',
'''TFXLMRobertaForSequenceClassification''',
'''TFXLMRobertaForTokenClassification''',
'''TFXLMRobertaModel''',
'''TFXLMRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FlaxXLMRobertaForMaskedLM''',
'''FlaxXLMRobertaForCausalLM''',
'''FlaxXLMRobertaForMultipleChoice''',
'''FlaxXLMRobertaForQuestionAnswering''',
'''FlaxXLMRobertaForSequenceClassification''',
'''FlaxXLMRobertaForTokenClassification''',
'''FlaxXLMRobertaModel''',
'''FlaxXLMRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaConfig,
XLMRobertaOnnxConfig,
)
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta import XLMRobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForCausalLM,
TFXLMRobertaForMaskedLM,
TFXLMRobertaForMultipleChoice,
TFXLMRobertaForQuestionAnswering,
TFXLMRobertaForSequenceClassification,
TFXLMRobertaForTokenClassification,
TFXLMRobertaModel,
TFXLMRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xlm_roberta import (
FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxXLMRobertaForCausalLM,
FlaxXLMRobertaForMaskedLM,
FlaxXLMRobertaForMultipleChoice,
FlaxXLMRobertaForQuestionAnswering,
FlaxXLMRobertaForSequenceClassification,
FlaxXLMRobertaForTokenClassification,
FlaxXLMRobertaModel,
FlaxXLMRobertaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 352
|
from math import pi, sqrt, tan
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float:
'''simple docstring'''
if side_length < 0:
raise ValueError('surface_area_cube() only accepts non-negative values' )
return 6 * side_length**2
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if length < 0 or breadth < 0 or height < 0:
raise ValueError('surface_area_cuboid() only accepts non-negative values' )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError('surface_area_sphere() only accepts non-negative values' )
return 4 * pi * radius**2
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError('surface_area_hemisphere() only accepts non-negative values' )
return 3 * pi * radius**2
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0 or height < 0:
raise ValueError('surface_area_cone() only accepts non-negative values' )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
'surface_area_conical_frustum() only accepts non-negative values' )
lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0 or height < 0:
raise ValueError('surface_area_cylinder() only accepts non-negative values' )
return 2 * pi * radius * (height + radius)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if torus_radius < 0 or tube_radius < 0:
raise ValueError('surface_area_torus() only accepts non-negative values' )
if torus_radius < tube_radius:
raise ValueError(
'surface_area_torus() does not support spindle or self intersecting tori' )
return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if length < 0 or width < 0:
raise ValueError('area_rectangle() only accepts non-negative values' )
return length * width
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float:
'''simple docstring'''
if side_length < 0:
raise ValueError('area_square() only accepts non-negative values' )
return side_length**2
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if base < 0 or height < 0:
raise ValueError('area_triangle() only accepts non-negative values' )
return (base * height) / 2
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError('area_triangle_three_sides() only accepts non-negative values' )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError('Given three sides do not form a triangle' )
lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2
lowerCAmelCase : Any = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if base < 0 or height < 0:
raise ValueError('area_parallelogram() only accepts non-negative values' )
return base * height
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if basea < 0 or basea < 0 or height < 0:
raise ValueError('area_trapezium() only accepts non-negative values' )
return 1 / 2 * (basea + basea) * height
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError('area_circle() only accepts non-negative values' )
return pi * radius**2
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if radius_x < 0 or radius_y < 0:
raise ValueError('area_ellipse() only accepts non-negative values' )
return pi * radius_x * radius_y
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError('area_rhombus() only accepts non-negative values' )
return 1 / 2 * diagonal_a * diagonal_a
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3:
raise ValueError(
'area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides' )
elif length < 0:
raise ValueError(
'area_reg_polygon() only accepts non-negative values as \
length of a side' )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print('''[DEMO] Areas of various geometric shapes: \n''')
print(F'Rectangle: {area_rectangle(10, 20) = }')
print(F'Square: {area_square(10) = }')
print(F'Triangle: {area_triangle(10, 10) = }')
print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }')
print(F'Parallelogram: {area_parallelogram(10, 20) = }')
print(F'Rhombus: {area_rhombus(10, 20) = }')
print(F'Trapezium: {area_trapezium(10, 20, 30) = }')
print(F'Circle: {area_circle(20) = }')
print(F'Ellipse: {area_ellipse(10, 20) = }')
print('''\nSurface Areas of various geometric shapes: \n''')
print(F'Cube: {surface_area_cube(20) = }')
print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }')
print(F'Sphere: {surface_area_sphere(20) = }')
print(F'Hemisphere: {surface_area_hemisphere(20) = }')
print(F'Cone: {surface_area_cone(10, 20) = }')
print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }')
print(F'Cylinder: {surface_area_cylinder(10, 20) = }')
print(F'Torus: {surface_area_torus(20, 10) = }')
print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }')
print(F'Square: {area_reg_polygon(4, 10) = }')
print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
| 323
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[str] = logging.get_logger(__name__)
__A : Any = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __A ( lowerCAmelCase ):
lowerCAmelCase_ : List[Any] = "ctrl"
lowerCAmelCase_ : Optional[int] = ["past_key_values"]
lowerCAmelCase_ : Any = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Tuple , UpperCAmelCase_ : Dict=246534 , UpperCAmelCase_ : List[str]=256 , UpperCAmelCase_ : List[Any]=1280 , UpperCAmelCase_ : Any=8192 , UpperCAmelCase_ : Tuple=48 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Tuple=1E-6 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : List[Any]=True , **UpperCAmelCase_ : List[Any] , ):
lowerCAmelCase : List[Any] = vocab_size
lowerCAmelCase : str = n_positions
lowerCAmelCase : Dict = n_embd
lowerCAmelCase : Any = n_layer
lowerCAmelCase : List[Any] = n_head
lowerCAmelCase : str = dff
lowerCAmelCase : Optional[int] = resid_pdrop
lowerCAmelCase : Any = embd_pdrop
lowerCAmelCase : List[Any] = layer_norm_epsilon
lowerCAmelCase : str = initializer_range
lowerCAmelCase : List[str] = use_cache
super().__init__(**UpperCAmelCase_ )
| 353
|
from __future__ import annotations
from typing import Any
class __A :
def __init__( self : Optional[Any] , UpperCAmelCase_ : int ):
lowerCAmelCase : Tuple = num_of_nodes
lowerCAmelCase : list[list[int]] = []
lowerCAmelCase : dict[int, int] = {}
def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ):
self.m_edges.append([u_node, v_node, weight] )
def lowercase__ ( self : Dict , UpperCAmelCase_ : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ )
def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ):
if component_size[u_node] <= component_size[v_node]:
lowerCAmelCase : Optional[int] = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase_ )
elif component_size[u_node] >= component_size[v_node]:
lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase_ )
def lowercase__ ( self : str ):
lowerCAmelCase : str = []
lowerCAmelCase : Tuple = 0
lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
lowerCAmelCase : int = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge
lowerCAmelCase : Optional[int] = self.m_component[u]
lowerCAmelCase : str = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
lowerCAmelCase : str = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge
lowerCAmelCase : Optional[Any] = self.m_component[u]
lowerCAmelCase : Optional[Any] = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" )
num_of_components -= 1
lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes
print(f"The total weight of the minimal spanning tree is: {mst_weight}" )
def SCREAMING_SNAKE_CASE__ ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323
| 0
|
import argparse
import requests
import torch
from PIL import Image
from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if "cls_token" in name:
lowerCAmelCase : str = name.replace('cls_token', 'vit.embeddings.cls_token' )
if "mask_token" in name:
lowerCAmelCase : str = name.replace('mask_token', 'decoder.mask_token' )
if "decoder_pos_embed" in name:
lowerCAmelCase : List[str] = name.replace('decoder_pos_embed', 'decoder.decoder_pos_embed' )
if "pos_embed" in name and "decoder" not in name:
lowerCAmelCase : Dict = name.replace('pos_embed', 'vit.embeddings.position_embeddings' )
if "patch_embed.proj" in name:
lowerCAmelCase : Union[str, Any] = name.replace('patch_embed.proj', 'vit.embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
lowerCAmelCase : Union[str, Any] = name.replace('patch_embed.norm', 'vit.embeddings.norm' )
if "decoder_blocks" in name:
lowerCAmelCase : Dict = name.replace('decoder_blocks', 'decoder.decoder_layers' )
if "blocks" in name:
lowerCAmelCase : Tuple = name.replace('blocks', 'vit.encoder.layer' )
if "attn.proj" in name:
lowerCAmelCase : Union[str, Any] = name.replace('attn.proj', 'attention.output.dense' )
if "attn" in name:
lowerCAmelCase : Optional[Any] = name.replace('attn', 'attention.self' )
if "norm1" in name:
lowerCAmelCase : Any = name.replace('norm1', 'layernorm_before' )
if "norm2" in name:
lowerCAmelCase : Dict = name.replace('norm2', 'layernorm_after' )
if "mlp.fc1" in name:
lowerCAmelCase : Tuple = name.replace('mlp.fc1', 'intermediate.dense' )
if "mlp.fc2" in name:
lowerCAmelCase : Union[str, Any] = name.replace('mlp.fc2', 'output.dense' )
if "decoder_embed" in name:
lowerCAmelCase : Dict = name.replace('decoder_embed', 'decoder.decoder_embed' )
if "decoder_norm" in name:
lowerCAmelCase : Tuple = name.replace('decoder_norm', 'decoder.decoder_norm' )
if "decoder_pred" in name:
lowerCAmelCase : Optional[Any] = name.replace('decoder_pred', 'decoder.decoder_pred' )
if "norm.weight" in name and "decoder" not in name:
lowerCAmelCase : List[Any] = name.replace('norm.weight', 'vit.layernorm.weight' )
if "norm.bias" in name and "decoder" not in name:
lowerCAmelCase : Optional[Any] = name.replace('norm.bias', 'vit.layernorm.bias' )
return name
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[str]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowerCAmelCase : Union[str, Any] = orig_state_dict.pop(_UpperCAmelCase )
if "qkv" in key:
lowerCAmelCase : Any = key.split('.' )
lowerCAmelCase : Optional[Any] = int(key_split[1] )
if "decoder_blocks" in key:
lowerCAmelCase : Optional[int] = config.decoder_hidden_size
lowerCAmelCase : str = 'decoder.decoder_layers.'
if "weight" in key:
lowerCAmelCase : Tuple = val[:dim, :]
lowerCAmelCase : Dict = val[dim : dim * 2, :]
lowerCAmelCase : Optional[int] = val[-dim:, :]
elif "bias" in key:
lowerCAmelCase : List[Any] = val[:dim]
lowerCAmelCase : Dict = val[dim : dim * 2]
lowerCAmelCase : Any = val[-dim:]
else:
lowerCAmelCase : Optional[int] = config.hidden_size
lowerCAmelCase : int = 'vit.encoder.layer.'
if "weight" in key:
lowerCAmelCase : Tuple = val[:dim, :]
lowerCAmelCase : List[Any] = val[dim : dim * 2, :]
lowerCAmelCase : List[str] = val[-dim:, :]
elif "bias" in key:
lowerCAmelCase : List[Any] = val[:dim]
lowerCAmelCase : Tuple = val[dim : dim * 2]
lowerCAmelCase : List[str] = val[-dim:]
else:
lowerCAmelCase : int = val
return orig_state_dict
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Dict:
'''simple docstring'''
lowerCAmelCase : Optional[int] = ViTMAEConfig()
if "large" in checkpoint_url:
lowerCAmelCase : int = 1_024
lowerCAmelCase : Any = 4_096
lowerCAmelCase : Dict = 24
lowerCAmelCase : str = 16
elif "huge" in checkpoint_url:
lowerCAmelCase : Union[str, Any] = 14
lowerCAmelCase : str = 1_280
lowerCAmelCase : int = 5_120
lowerCAmelCase : Any = 32
lowerCAmelCase : Union[str, Any] = 16
lowerCAmelCase : Optional[int] = ViTMAEForPreTraining(_UpperCAmelCase )
lowerCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['model']
lowerCAmelCase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size )
lowerCAmelCase : List[Any] = convert_state_dict(_UpperCAmelCase, _UpperCAmelCase )
model.load_state_dict(_UpperCAmelCase )
model.eval()
lowerCAmelCase : List[Any] = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg'
lowerCAmelCase : int = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw )
lowerCAmelCase : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size )
lowerCAmelCase : int = image_processor(images=_UpperCAmelCase, return_tensors='pt' )
# forward pass
torch.manual_seed(2 )
lowerCAmelCase : Optional[int] = model(**_UpperCAmelCase )
lowerCAmelCase : int = outputs.logits
if "large" in checkpoint_url:
lowerCAmelCase : str = torch.tensor(
[[-0.7_3_0_9, -0.7_1_2_8, -1.0_1_6_9], [-1.0_1_6_1, -0.9_0_5_8, -1.1_8_7_8], [-1.0_4_7_8, -0.9_4_1_1, -1.1_9_1_1]] )
elif "huge" in checkpoint_url:
lowerCAmelCase : Tuple = torch.tensor(
[[-1.1_5_9_9, -0.9_1_9_9, -1.2_2_2_1], [-1.1_9_5_2, -0.9_2_6_9, -1.2_3_0_7], [-1.2_1_4_3, -0.9_3_3_7, -1.2_2_6_2]] )
else:
lowerCAmelCase : List[Any] = torch.tensor(
[[-0.9_1_9_2, -0.8_4_8_1, -1.1_2_5_9], [-1.1_3_4_9, -1.0_0_3_4, -1.2_5_9_9], [-1.1_7_5_7, -1.0_4_2_9, -1.2_7_2_6]] )
# verify logits
assert torch.allclose(logits[0, :3, :3], _UpperCAmelCase, atol=1e-4 )
print(f"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(_UpperCAmelCase )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(_UpperCAmelCase )
if __name__ == "__main__":
__A : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
__A : Tuple = parser.parse_args()
convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 354
|
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : List[Any] = {
'''configuration_autoformer''': [
'''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''AutoformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''AutoformerForPrediction''',
'''AutoformerModel''',
'''AutoformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
__A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 323
| 0
|
import math
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list[int]:
'''simple docstring'''
lowerCAmelCase : List[Any] = []
lowerCAmelCase : Union[str, Any] = 2
lowerCAmelCase : Optional[Any] = int(math.sqrt(_UpperCAmelCase ) ) # Size of every segment
lowerCAmelCase : Any = [True] * (end + 1)
lowerCAmelCase : Union[str, Any] = []
while start <= end:
if temp[start] is True:
in_prime.append(_UpperCAmelCase )
for i in range(start * start, end + 1, _UpperCAmelCase ):
lowerCAmelCase : Dict = False
start += 1
prime += in_prime
lowerCAmelCase : Union[str, Any] = end + 1
lowerCAmelCase : int = min(2 * end, _UpperCAmelCase )
while low <= n:
lowerCAmelCase : Optional[Any] = [True] * (high - low + 1)
for each in in_prime:
lowerCAmelCase : str = math.floor(low / each ) * each
if t < low:
t += each
for j in range(_UpperCAmelCase, high + 1, _UpperCAmelCase ):
lowerCAmelCase : List[str] = False
for j in range(len(_UpperCAmelCase ) ):
if temp[j] is True:
prime.append(j + low )
lowerCAmelCase : str = high + 1
lowerCAmelCase : Optional[int] = min(high + end, _UpperCAmelCase )
return prime
print(sieve(10**6))
| 355
|
import math
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int:
'''simple docstring'''
lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) )
lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(F'{solution() = }')
| 323
| 0
|
from copy import deepcopy
class __A :
def __init__( self : Tuple , UpperCAmelCase_ : list[int] | None = None , UpperCAmelCase_ : int | None = None ):
if arr is None and size is not None:
lowerCAmelCase : Union[str, Any] = size
lowerCAmelCase : str = [0] * size
elif arr is not None:
self.init(UpperCAmelCase_ )
else:
raise ValueError('Either arr or size must be specified' )
def lowercase__ ( self : Any , UpperCAmelCase_ : list[int] ):
lowerCAmelCase : Tuple = len(UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = deepcopy(UpperCAmelCase_ )
for i in range(1 , self.size ):
lowerCAmelCase : Any = self.next_(UpperCAmelCase_ )
if j < self.size:
self.tree[j] += self.tree[i]
def lowercase__ ( self : int ):
lowerCAmelCase : int = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
lowerCAmelCase : List[str] = self.next_(UpperCAmelCase_ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def lowercase__ ( UpperCAmelCase_ : int ):
return index + (index & (-index))
@staticmethod
def lowercase__ ( UpperCAmelCase_ : int ):
return index - (index & (-index))
def lowercase__ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ):
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
lowerCAmelCase : Tuple = self.next_(UpperCAmelCase_ )
def lowercase__ ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int ):
self.add(UpperCAmelCase_ , value - self.get(UpperCAmelCase_ ) )
def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : int ):
if right == 0:
return 0
lowerCAmelCase : Optional[int] = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
lowerCAmelCase : Optional[int] = self.prev(UpperCAmelCase_ )
return result
def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ):
return self.prefix(UpperCAmelCase_ ) - self.prefix(UpperCAmelCase_ )
def lowercase__ ( self : str , UpperCAmelCase_ : int ):
return self.query(UpperCAmelCase_ , index + 1 )
def lowercase__ ( self : str , UpperCAmelCase_ : int ):
value -= self.tree[0]
if value < 0:
return -1
lowerCAmelCase : Tuple = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
lowerCAmelCase : Optional[int] = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 356
|
from collections.abc import Sequence
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
lowerCAmelCase : Optional[int] = 0.0
for coeff in reversed(_UpperCAmelCase ):
lowerCAmelCase : Union[str, Any] = result * x + coeff
return result
if __name__ == "__main__":
__A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0)
__A : str = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 323
| 0
|
import argparse
import json
import os
import re
import torch
from transformers import BloomConfig, BloomModel
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
from transformers.utils import logging
logging.set_verbosity_info()
__A : List[str] = [
'''word_embeddings_layernorm.weight''',
'''word_embeddings_layernorm.bias''',
'''input_layernorm.weight''',
'''input_layernorm.bias''',
'''post_attention_layernorm.weight''',
'''post_attention_layernorm.bias''',
'''self_attention.dense.bias''',
'''mlp.dense_4h_to_h.bias''',
'''ln_f.weight''',
'''ln_f.bias''',
]
__A : List[Any] = [
'''mlp.dense_4h_to_h.weight''',
'''self_attention.dense.weight''',
]
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[str]:
'''simple docstring'''
lowerCAmelCase : Optional[int] = {
'word_embeddings.weight': 'word_embeddings.weight',
'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight',
'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias',
'weight': 'ln_f.weight',
'bias': 'ln_f.bias',
}
if key in layer_rename_map:
return layer_rename_map[key]
# Handle transformer blocks
lowerCAmelCase : str = int(re.match(r'.*layer_(\d*).*', _UpperCAmelCase )[1] )
layer_number -= 3
return f"h.{layer_number}." + key
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
if dtype == torch.bool:
return 1 / 8
lowerCAmelCase : Tuple = re.search(r'[^\d](\d+)$', str(_UpperCAmelCase ) )
if bit_search is None:
raise ValueError(f"`dtype` is not a valid dtype: {dtype}." )
lowerCAmelCase : Optional[Any] = int(bit_search.groups()[0] )
return bit_size // 8
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]:
'''simple docstring'''
if bloom_config_file == "":
lowerCAmelCase : List[Any] = BloomConfig()
else:
lowerCAmelCase : Optional[Any] = BloomConfig.from_json_file(_UpperCAmelCase )
if shard_model:
lowerCAmelCase : Union[str, Any] = os.listdir(_UpperCAmelCase )
lowerCAmelCase : Optional[Any] = sorted(filter(lambda _UpperCAmelCase : s.startswith('layer' ) and "model_00" in s, _UpperCAmelCase ) )
lowerCAmelCase : List[Any] = {'weight_map': {}, 'metadata': {}}
lowerCAmelCase : int = 0
lowerCAmelCase : Union[str, Any] = None
lowerCAmelCase : Optional[Any] = BloomConfig()
for j, file in enumerate(_UpperCAmelCase ):
print('Processing file: {}'.format(_UpperCAmelCase ) )
lowerCAmelCase : Optional[int] = None
for i in range(_UpperCAmelCase ):
# load all TP files
lowerCAmelCase : Optional[int] = file.replace('model_00', f"model_0{i}" )
lowerCAmelCase : List[Any] = torch.load(os.path.join(_UpperCAmelCase, _UpperCAmelCase ), map_location='cpu' )
# Rename keys in the transformers names
lowerCAmelCase : Union[str, Any] = list(temp.keys() )
for key in keys:
lowerCAmelCase : List[Any] = temp.pop(_UpperCAmelCase )
if tensors is None:
lowerCAmelCase : Union[str, Any] = temp
else:
for key in tensors.keys():
if any(key.endswith(_UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
lowerCAmelCase : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
lowerCAmelCase : Optional[Any] = torch.cat([tensors[key], temp[key]], dim=_UpperCAmelCase )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(_UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
lowerCAmelCase : int = tensors[key] / pretraining_tp
torch.save(
_UpperCAmelCase, os.path.join(
_UpperCAmelCase, 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ), str(len(_UpperCAmelCase ) ).zfill(5 ) ), ), )
for key in tensors.keys():
lowerCAmelCase : str = tensors[key]
total_size += value.numel() * get_dtype_size(value.dtype )
if key not in index_dict["weight_map"]:
lowerCAmelCase : Union[str, Any] = 'pytorch_model_{}-of-{}.bin'.format(
str(j + 1 ).zfill(5 ), str(len(_UpperCAmelCase ) ).zfill(5 ) )
lowerCAmelCase : Optional[int] = BloomConfig()
lowerCAmelCase : Dict = pytorch_dump_folder_path + '/' + CONFIG_NAME
lowerCAmelCase : Union[str, Any] = total_size
with open(_UpperCAmelCase, 'w', encoding='utf-8' ) as f:
f.write(config.to_json_string() )
with open(os.path.join(_UpperCAmelCase, WEIGHTS_NAME + '.index.json' ), 'w', encoding='utf-8' ) as f:
lowerCAmelCase : Any = json.dumps(_UpperCAmelCase, indent=2, sort_keys=_UpperCAmelCase ) + '\n'
f.write(_UpperCAmelCase )
else:
lowerCAmelCase : Dict = BloomModel(_UpperCAmelCase )
lowerCAmelCase : Optional[Any] = os.listdir(_UpperCAmelCase )
lowerCAmelCase : Any = sorted(filter(lambda _UpperCAmelCase : s.startswith('layer' ) and "model_00" in s, _UpperCAmelCase ) )
lowerCAmelCase : Any = None
for i, file in enumerate(_UpperCAmelCase ):
lowerCAmelCase : str = None
for i in range(_UpperCAmelCase ):
# load all TP files
lowerCAmelCase : List[str] = file.replace('model_00', f"model_0{i}" )
lowerCAmelCase : List[str] = torch.load(os.path.join(_UpperCAmelCase, _UpperCAmelCase ), map_location='cpu' )
# Rename keys in the transformers names
lowerCAmelCase : str = list(temp.keys() )
for key in keys:
lowerCAmelCase : Tuple = temp.pop(_UpperCAmelCase )
if tensors is None:
lowerCAmelCase : Tuple = temp
else:
for key in tensors.keys():
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
if any(key.endswith(_UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
lowerCAmelCase : List[str] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
lowerCAmelCase : Optional[Any] = torch.cat([tensors[key], temp[key]], dim=_UpperCAmelCase )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(_UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
lowerCAmelCase : Union[str, Any] = tensors[key] / pretraining_tp
lowerCAmelCase : List[str] = model.load_state_dict(_UpperCAmelCase, strict=_UpperCAmelCase )
assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected"
if missing_keys is None:
lowerCAmelCase : List[Any] = set(other_keys.missing_keys )
else:
lowerCAmelCase : Optional[Any] = missing_keys.intersection(set(other_keys.missing_keys ) )
assert not missing_keys, f"The keys {missing_keys} are missing"
# Save pytorch-model
os.makedirs(_UpperCAmelCase, exist_ok=_UpperCAmelCase )
lowerCAmelCase : Tuple = pytorch_dump_folder_path + '/' + WEIGHTS_NAME
lowerCAmelCase : Tuple = pytorch_dump_folder_path + '/' + CONFIG_NAME
print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" )
if config.torch_dtype is not None:
lowerCAmelCase : str = model.to(config.torch_dtype )
torch.save(model.state_dict(), _UpperCAmelCase )
print(f"Save configuration file to {pytorch_config_dump_path}" )
with open(_UpperCAmelCase, 'w', encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--bloom_checkpoint_path''',
default=None,
type=str,
required=True,
help='''Path to the Megatron-LM checkpoint path.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--bloom_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--shard_model''',
action='''store_true''',
help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''',
)
parser.add_argument(
'''--pretraining_tp''',
default=4,
type=int,
help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''',
)
__A : Optional[int] = parser.parse_args()
convert_bloom_checkpoint_to_pytorch(
args.bloom_checkpoint_path,
args.bloom_config_file,
args.pytorch_dump_folder_path,
args.shard_model,
args.pretraining_tp,
)
| 357
|
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class __A ( unittest.TestCase ):
def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ):
lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20}
lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18}
lowerCAmelCase : List[Any] = parent
lowerCAmelCase : Optional[Any] = batch_size
lowerCAmelCase : int = num_channels
lowerCAmelCase : int = image_size
lowerCAmelCase : Tuple = min_resolution
lowerCAmelCase : Any = max_resolution
lowerCAmelCase : int = do_resize
lowerCAmelCase : Dict = size
lowerCAmelCase : int = do_center_crop
lowerCAmelCase : str = crop_size
def lowercase__ ( self : Optional[int] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __A ( lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None
def lowercase__ ( self : int ):
lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self )
@property
def lowercase__ ( self : int ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Dict ):
lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) )
self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) )
self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) )
self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) )
def lowercase__ ( self : int ):
lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def lowercase__ ( self : str ):
pass
def lowercase__ ( self : List[str] ):
# Initialize image_processing
lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image )
# Test not batched input
lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowercase__ ( self : Optional[Any] ):
# Initialize image_processing
lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowercase__ ( self : Dict ):
# Initialize image_processing
lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 323
| 0
|
# Imports
import numpy as np
class __A :
def __init__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None ):
self.set_matricies(red=UpperCAmelCase_ , green=UpperCAmelCase_ , blue=UpperCAmelCase_ , red_edge=UpperCAmelCase_ , nir=UpperCAmelCase_ )
def lowercase__ ( self : str , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Tuple=None ):
if red is not None:
lowerCAmelCase : str = red
if green is not None:
lowerCAmelCase : Union[str, Any] = green
if blue is not None:
lowerCAmelCase : Tuple = blue
if red_edge is not None:
lowerCAmelCase : Union[str, Any] = red_edge
if nir is not None:
lowerCAmelCase : Tuple = nir
return True
def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple="" , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Dict=None ):
self.set_matricies(red=UpperCAmelCase_ , green=UpperCAmelCase_ , blue=UpperCAmelCase_ , red_edge=UpperCAmelCase_ , nir=UpperCAmelCase_ )
lowerCAmelCase : Dict = {
'ARVI2': self.arvaa,
'CCCI': self.ccci,
'CVI': self.cvi,
'GLI': self.gli,
'NDVI': self.ndvi,
'BNDVI': self.bndvi,
'redEdgeNDVI': self.red_edge_ndvi,
'GNDVI': self.gndvi,
'GBNDVI': self.gbndvi,
'GRNDVI': self.grndvi,
'RBNDVI': self.rbndvi,
'PNDVI': self.pndvi,
'ATSAVI': self.atsavi,
'BWDRVI': self.bwdrvi,
'CIgreen': self.ci_green,
'CIrededge': self.ci_rededge,
'CI': self.ci,
'CTVI': self.ctvi,
'GDVI': self.gdvi,
'EVI': self.evi,
'GEMI': self.gemi,
'GOSAVI': self.gosavi,
'GSAVI': self.gsavi,
'Hue': self.hue,
'IVI': self.ivi,
'IPVI': self.ipvi,
'I': self.i,
'RVI': self.rvi,
'MRVI': self.mrvi,
'MSAVI': self.m_savi,
'NormG': self.norm_g,
'NormNIR': self.norm_nir,
'NormR': self.norm_r,
'NGRDI': self.ngrdi,
'RI': self.ri,
'S': self.s,
'IF': self._if,
'DVI': self.dvi,
'TVI': self.tvi,
'NDRE': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('Index not in the list!' )
return False
def lowercase__ ( self : str ):
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
def lowercase__ ( self : str ):
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def lowercase__ ( self : str ):
return self.nir * (self.red / (self.green**2))
def lowercase__ ( self : Union[str, Any] ):
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def lowercase__ ( self : Optional[int] ):
return (self.nir - self.red) / (self.nir + self.red)
def lowercase__ ( self : int ):
return (self.nir - self.blue) / (self.nir + self.blue)
def lowercase__ ( self : int ):
return (self.redEdge - self.red) / (self.redEdge + self.red)
def lowercase__ ( self : Optional[Any] ):
return (self.nir - self.green) / (self.nir + self.green)
def lowercase__ ( self : Dict ):
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def lowercase__ ( self : List[Any] ):
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def lowercase__ ( self : Union[str, Any] ):
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def lowercase__ ( self : int ):
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[Any]=0.08 , UpperCAmelCase_ : str=1.22 , UpperCAmelCase_ : List[Any]=0.03 ):
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def lowercase__ ( self : Union[str, Any] ):
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def lowercase__ ( self : Union[str, Any] ):
return (self.nir / self.green) - 1
def lowercase__ ( self : Dict ):
return (self.nir / self.redEdge) - 1
def lowercase__ ( self : Any ):
return (self.red - self.blue) / self.red
def lowercase__ ( self : int ):
lowerCAmelCase : Dict = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def lowercase__ ( self : int ):
return self.nir - self.green
def lowercase__ ( self : int ):
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def lowercase__ ( self : Dict ):
lowerCAmelCase : Union[str, Any] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red)
def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]=0.16 ):
return (self.nir - self.green) / (self.nir + self.green + y)
def lowercase__ ( self : List[Any] , UpperCAmelCase_ : List[Any]=0.5 ):
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def lowercase__ ( self : Tuple ):
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) )
def lowercase__ ( self : str , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None ):
return (self.nir - b) / (a * self.red)
def lowercase__ ( self : Dict ):
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def lowercase__ ( self : int ):
return (self.red + self.green + self.blue) / 30.5
def lowercase__ ( self : int ):
return self.nir / self.red
def lowercase__ ( self : Optional[int] ):
return (self.rvi() - 1) / (self.rvi() + 1)
def lowercase__ ( self : List[Any] ):
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def lowercase__ ( self : List[Any] ):
return self.green / (self.nir + self.red + self.green)
def lowercase__ ( self : int ):
return self.nir / (self.nir + self.red + self.green)
def lowercase__ ( self : Any ):
return self.red / (self.nir + self.red + self.green)
def lowercase__ ( self : int ):
return (self.green - self.red) / (self.green + self.red)
def lowercase__ ( self : int ):
return (self.red - self.green) / (self.red + self.green)
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Optional[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
lowerCAmelCase : Optional[int] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def lowercase__ ( self : Optional[Any] ):
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def lowercase__ ( self : int ):
return self.nir / self.red
def lowercase__ ( self : Tuple ):
return (self.ndvi() + 0.5) ** (1 / 2)
def lowercase__ ( self : Any ):
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 358
|
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
('module.cls_token', 'vit.embeddings.cls_token'),
('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'),
('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'),
('module.pos_embed', 'vit.embeddings.position_embeddings'),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('module.norm.weight', 'layernorm.weight'),
('module.norm.bias', 'layernorm.bias'),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('norm.weight', 'vit.layernorm.weight'),
('norm.bias', 'vit.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase : Optional[Any] = ''
else:
lowerCAmelCase : Optional[Any] = 'vit.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" )
lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase : str = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase : int = in_proj_bias[: config.hidden_size]
lowerCAmelCase : Dict = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase : Tuple = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase : str = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any:
'''simple docstring'''
lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase, _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str:
'''simple docstring'''
lowerCAmelCase : Optional[int] = [
'module.fc.fc1.weight',
'module.fc.fc1.bias',
'module.fc.bn1.weight',
'module.fc.bn1.bias',
'module.fc.bn1.running_mean',
'module.fc.bn1.running_var',
'module.fc.bn1.num_batches_tracked',
'module.fc.fc2.weight',
'module.fc.fc2.bias',
'module.fc.bn2.weight',
'module.fc.bn2.bias',
'module.fc.bn2.running_mean',
'module.fc.bn2.running_var',
'module.fc.bn2.num_batches_tracked',
'module.fc.fc3.weight',
'module.fc.fc3.bias',
]
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase, _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]:
'''simple docstring'''
lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase )
lowerCAmelCase : Dict = val
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple:
'''simple docstring'''
lowerCAmelCase : str = ViTMSNConfig()
lowerCAmelCase : str = 1_000
lowerCAmelCase : List[str] = 'datasets/huggingface/label-files'
lowerCAmelCase : int = 'imagenet-1k-id2label.json'
lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) )
lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()}
lowerCAmelCase : List[str] = idalabel
lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowerCAmelCase : Optional[Any] = 384
lowerCAmelCase : List[Any] = 1_536
lowerCAmelCase : Union[str, Any] = 6
elif "l16" in checkpoint_url:
lowerCAmelCase : List[Any] = 1_024
lowerCAmelCase : Any = 4_096
lowerCAmelCase : str = 24
lowerCAmelCase : Optional[int] = 16
lowerCAmelCase : Any = 0.1
elif "b4" in checkpoint_url:
lowerCAmelCase : Any = 4
elif "l7" in checkpoint_url:
lowerCAmelCase : int = 7
lowerCAmelCase : str = 1_024
lowerCAmelCase : Tuple = 4_096
lowerCAmelCase : str = 24
lowerCAmelCase : Tuple = 16
lowerCAmelCase : Dict = 0.1
lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase )
lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder']
lowerCAmelCase : int = ViTImageProcessor(size=config.image_size )
remove_projection_head(_UpperCAmelCase )
lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase )
for src, dest in rename_keys:
rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase )
model.load_state_dict(_UpperCAmelCase )
model.eval()
lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw )
lowerCAmelCase : Any = ViTImageProcessor(
size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase )
lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' )
# forward pass
torch.manual_seed(2 )
lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase )
lowerCAmelCase : List[str] = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] )
elif "b16" in checkpoint_url:
lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] )
elif "l16" in checkpoint_url:
lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] )
elif "b4" in checkpoint_url:
lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] )
else:
lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 )
print(f"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(_UpperCAmelCase )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(_UpperCAmelCase )
if __name__ == "__main__":
__A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
__A : List[str] = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 323
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__A : List[Any] = logging.get_logger(__name__)
__A : List[Any] = {
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class __A ( lowerCAmelCase ):
lowerCAmelCase_ : Union[str, Any] = "deberta-v2"
def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ):
super().__init__(**UpperCAmelCase_ )
lowerCAmelCase : Dict = hidden_size
lowerCAmelCase : List[Any] = num_hidden_layers
lowerCAmelCase : str = num_attention_heads
lowerCAmelCase : List[str] = intermediate_size
lowerCAmelCase : List[Any] = hidden_act
lowerCAmelCase : int = hidden_dropout_prob
lowerCAmelCase : int = attention_probs_dropout_prob
lowerCAmelCase : Any = max_position_embeddings
lowerCAmelCase : str = type_vocab_size
lowerCAmelCase : Union[str, Any] = initializer_range
lowerCAmelCase : Union[str, Any] = relative_attention
lowerCAmelCase : List[Any] = max_relative_positions
lowerCAmelCase : List[Any] = pad_token_id
lowerCAmelCase : Optional[Any] = position_biased_input
# Backwards compatibility
if type(UpperCAmelCase_ ) == str:
lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )]
lowerCAmelCase : str = pos_att_type
lowerCAmelCase : Dict = vocab_size
lowerCAmelCase : Optional[Any] = layer_norm_eps
lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ )
lowerCAmelCase : Tuple = pooler_dropout
lowerCAmelCase : Union[str, Any] = pooler_hidden_act
class __A ( lowerCAmelCase ):
@property
def lowercase__ ( self : Optional[Any] ):
if self.task == "multiple-choice":
lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def lowercase__ ( self : int ):
return 12
def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ):
lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 359
|
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int:
'''simple docstring'''
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError('String lengths must match!' )
lowerCAmelCase : Tuple = 0
for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__A : List[Any] = {
'''configuration_groupvit''': [
'''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''GroupViTConfig''',
'''GroupViTOnnxConfig''',
'''GroupViTTextConfig''',
'''GroupViTVisionConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[Any] = [
'''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GroupViTModel''',
'''GroupViTPreTrainedModel''',
'''GroupViTTextModel''',
'''GroupViTVisionModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFGroupViTModel''',
'''TFGroupViTPreTrainedModel''',
'''TFGroupViTTextModel''',
'''TFGroupViTVisionModel''',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
__A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 360
|
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
__A : List[Any] = trt.Logger(trt.Logger.WARNING)
__A : Optional[Any] = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
__A : List[Any] = logging.getLogger(__name__)
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--onnx_model_path''',
default=None,
type=str,
required=True,
help='''Path to ONNX model: ''',
)
parser.add_argument(
'''--output_dir''',
default=None,
type=str,
required=True,
help='''The output directory where the model checkpoints and predictions will be written.''',
)
# Other parameters
parser.add_argument(
'''--tokenizer_name''',
default='''''',
type=str,
required=True,
help='''Pretrained tokenizer name or path if not the same as model_name''',
)
parser.add_argument(
'''--version_2_with_negative''',
action='''store_true''',
help='''If true, the SQuAD examples contain some that do not have an answer.''',
)
parser.add_argument(
'''--null_score_diff_threshold''',
type=float,
default=0.0,
help='''If null_score - best_non_null is greater than the threshold predict null.''',
)
parser.add_argument(
'''--max_seq_length''',
default=384,
type=int,
help=(
'''The maximum total input sequence length after WordPiece tokenization. Sequences '''
'''longer than this will be truncated, and sequences shorter than this will be padded.'''
),
)
parser.add_argument(
'''--doc_stride''',
default=128,
type=int,
help='''When splitting up a long document into chunks, how much stride to take between chunks.''',
)
parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''')
parser.add_argument(
'''--n_best_size''',
default=20,
type=int,
help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''',
)
parser.add_argument(
'''--max_answer_length''',
default=30,
type=int,
help=(
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
),
)
parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''')
parser.add_argument(
'''--dataset_name''',
type=str,
default=None,
required=True,
help='''The name of the dataset to use (via the datasets library).''',
)
parser.add_argument(
'''--dataset_config_name''',
type=str,
default=None,
help='''The configuration name of the dataset to use (via the datasets library).''',
)
parser.add_argument(
'''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.'''
)
parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''')
parser.add_argument(
'''--fp16''',
action='''store_true''',
help='''Whether to use 16-bit (mixed) precision instead of 32-bit''',
)
parser.add_argument(
'''--int8''',
action='''store_true''',
help='''Whether to use INT8''',
)
__A : List[str] = parser.parse_args()
if args.tokenizer_name:
__A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported by this script.'''
'''You can do it from another script, save it, and load it from here, using --tokenizer_name.'''
)
logger.info('''Training/evaluation parameters %s''', args)
__A : List[Any] = args.per_device_eval_batch_size
__A : Any = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
__A : Any = True
__A : Union[str, Any] = '''temp_engine/bert-fp32.engine'''
if args.fpaa:
__A : List[str] = '''temp_engine/bert-fp16.engine'''
if args.inta:
__A : Dict = '''temp_engine/bert-int8.engine'''
# import ONNX file
if not os.path.exists('''temp_engine'''):
os.makedirs('''temp_engine''')
__A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, '''rb''') as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
__A : str = [network.get_input(i) for i in range(network.num_inputs)]
__A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
__A : Dict = 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
__A : List[Any] = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
__A : Union[str, Any] = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, '''wb''') as f:
f.write(engine.serialize())
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any:
'''simple docstring'''
lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa )
lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa )
lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase )
cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase )
cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase )
# start time
lowerCAmelCase : List[Any] = time.time()
# Run inference
context.execute_async(
bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
# Synchronize the stream and take time
stream.synchronize()
# end time
lowerCAmelCase : List[str] = time.time()
lowerCAmelCase : Tuple = end_time - start_time
lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
__A : List[str] = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError('''Evaluation requires a dataset name''')
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
__A : int = raw_datasets['''validation'''].column_names
__A : int = '''question''' if '''question''' in column_names else column_names[0]
__A : List[str] = '''context''' if '''context''' in column_names else column_names[1]
__A : int = '''answers''' if '''answers''' in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
__A : str = tokenizer.padding_side == '''right'''
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the'
F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.'
)
__A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple:
'''simple docstring'''
lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
lowerCAmelCase : Union[str, Any] = tokenizer(
examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
lowerCAmelCase : Tuple = []
for i in range(len(tokenized_examples['input_ids'] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase )
lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
lowerCAmelCase : List[str] = sample_mapping[i]
tokenized_examples["example_id"].append(examples['id'][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
lowerCAmelCase : List[Any] = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples['offset_mapping'][i] )
]
return tokenized_examples
__A : int = raw_datasets['''validation''']
# Validation Feature Creation
__A : Any = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc='''Running tokenizer on validation dataset''',
)
__A : List[str] = default_data_collator
__A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping'''])
__A : Union[str, Any] = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int:
'''simple docstring'''
lowerCAmelCase : str = postprocess_qa_predictions(
examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
lowerCAmelCase : Union[str, Any] = [
{'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items()
]
else:
lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()]
lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase )
__A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''')
# Evaluation!
logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path)
with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize
# Allocate device memory for inputs and outputs.
__A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
__A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
__A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
__A : Tuple = cuda.mem_alloc(h_outputa.nbytes)
__A : Tuple = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
__A : Union[str, Any] = cuda.Stream()
# Evaluation
logger.info('''***** Running Evaluation *****''')
logger.info(F' Num examples = {len(eval_dataset)}')
logger.info(F' Batch size = {args.per_device_eval_batch_size}')
__A : Union[str, Any] = 0.0
__A : Optional[Any] = 0
__A : Optional[Any] = timeit.default_timer()
__A : Optional[int] = None
for step, batch in enumerate(eval_dataloader):
__A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
__A , __A : str = outputs
__A : Optional[Any] = torch.tensor(start_logits)
__A : Any = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
__A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100)
__A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100)
__A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
__A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if all_preds is not None:
__A : str = nested_truncate(all_preds, len(eval_dataset))
__A : Any = timeit.default_timer() - start_time
logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter))
logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000))
logger.info('''Total Number of Inference = %d''', niter)
__A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds)
__A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(F'Evaluation metrics: {eval_metric}')
| 323
| 0
|
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
__A : int = logging.get_logger(__name__)
__A : Tuple = Dict[str, Any]
__A : Union[str, Any] = List[Prediction]
@add_end_docstrings(lowerCAmelCase )
class __A ( lowerCAmelCase ):
def __init__( self : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ):
super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
if self.framework == "tf":
raise ValueError(f"The {self.__class__} is only available in PyTorch." )
requires_backends(self , 'vision' )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def lowercase__ ( self : int , **UpperCAmelCase_ : List[str] ):
lowerCAmelCase : Union[str, Any] = {}
if "threshold" in kwargs:
lowerCAmelCase : Union[str, Any] = kwargs['threshold']
return {}, {}, postprocess_kwargs
def __call__( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Any ):
return super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_ )
def lowercase__ ( self : int , UpperCAmelCase_ : Optional[int] ):
lowerCAmelCase : Tuple = load_image(UpperCAmelCase_ )
lowerCAmelCase : Dict = torch.IntTensor([[image.height, image.width]] )
lowerCAmelCase : Optional[int] = self.image_processor(images=[image] , return_tensors='pt' )
if self.tokenizer is not None:
lowerCAmelCase : int = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' )
lowerCAmelCase : Union[str, Any] = target_size
return inputs
def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : List[str] ):
lowerCAmelCase : Tuple = model_inputs.pop('target_size' )
lowerCAmelCase : Dict = self.model(**UpperCAmelCase_ )
lowerCAmelCase : List[str] = outputs.__class__({'target_size': target_size, **outputs} )
if self.tokenizer is not None:
lowerCAmelCase : Optional[Any] = model_inputs['bbox']
return model_outputs
def lowercase__ ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple=0.9 ):
lowerCAmelCase : Tuple = model_outputs['target_size']
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
lowerCAmelCase : Dict = target_size[0].tolist()
def unnormalize(UpperCAmelCase_ : Dict ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
] ) )
lowerCAmelCase : Optional[Any] = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
lowerCAmelCase : List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
lowerCAmelCase : Optional[int] = [unnormalize(UpperCAmelCase_ ) for bbox in model_outputs['bbox'].squeeze(0 )]
lowerCAmelCase : List[str] = ['score', 'label', 'box']
lowerCAmelCase : Union[str, Any] = [dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) for vals in zip(scores.tolist() , UpperCAmelCase_ , UpperCAmelCase_ ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
lowerCAmelCase : str = self.image_processor.post_process_object_detection(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : str = raw_annotations[0]
lowerCAmelCase : Optional[Any] = raw_annotation['scores']
lowerCAmelCase : Tuple = raw_annotation['labels']
lowerCAmelCase : List[Any] = raw_annotation['boxes']
lowerCAmelCase : Optional[int] = scores.tolist()
lowerCAmelCase : Tuple = [self.model.config.idalabel[label.item()] for label in labels]
lowerCAmelCase : Union[str, Any] = [self._get_bounding_box(UpperCAmelCase_ ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
lowerCAmelCase : Optional[Any] = ['score', 'label', 'box']
lowerCAmelCase : Any = [
dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) )
for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] )
]
return annotation
def lowercase__ ( self : Tuple , UpperCAmelCase_ : "torch.Tensor" ):
if self.framework != "pt":
raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' )
lowerCAmelCase : List[str] = box.int().tolist()
lowerCAmelCase : Optional[Any] = {
'xmin': xmin,
'ymin': ymin,
'xmax': xmax,
'ymax': ymax,
}
return bbox
| 361
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A : Any = logging.get_logger(__name__)
__A : Union[str, Any] = {
'''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''',
# See all Dinat models at https://huggingface.co/models?filter=dinat
}
class __A ( lowerCAmelCase , lowerCAmelCase ):
lowerCAmelCase_ : Optional[Any] = "dinat"
lowerCAmelCase_ : Dict = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ):
super().__init__(**UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = patch_size
lowerCAmelCase : Optional[Any] = num_channels
lowerCAmelCase : str = embed_dim
lowerCAmelCase : Any = depths
lowerCAmelCase : List[Any] = len(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = num_heads
lowerCAmelCase : Tuple = kernel_size
lowerCAmelCase : List[str] = dilations
lowerCAmelCase : Any = mlp_ratio
lowerCAmelCase : Optional[int] = qkv_bias
lowerCAmelCase : int = hidden_dropout_prob
lowerCAmelCase : str = attention_probs_dropout_prob
lowerCAmelCase : Union[str, Any] = drop_path_rate
lowerCAmelCase : Any = hidden_act
lowerCAmelCase : Union[str, Any] = layer_norm_eps
lowerCAmelCase : Optional[int] = initializer_range
# we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) )
lowerCAmelCase : int = layer_scale_init_value
lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )]
lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices(
out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
| 323
| 0
|
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__A : Any = '''platform'''
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __A :
lowerCAmelCase_ : List[Any] = PegasusConfig
lowerCAmelCase_ : Optional[int] = {}
lowerCAmelCase_ : int = "gelu"
def __init__( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Tuple=99 , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : List[Any]=5 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Tuple=20 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Tuple=0 , ):
lowerCAmelCase : Optional[Any] = parent
lowerCAmelCase : Union[str, Any] = batch_size
lowerCAmelCase : List[Any] = seq_length
lowerCAmelCase : Tuple = is_training
lowerCAmelCase : Dict = use_labels
lowerCAmelCase : List[str] = vocab_size
lowerCAmelCase : List[str] = hidden_size
lowerCAmelCase : str = num_hidden_layers
lowerCAmelCase : Any = num_attention_heads
lowerCAmelCase : Optional[Any] = intermediate_size
lowerCAmelCase : Dict = hidden_dropout_prob
lowerCAmelCase : Optional[int] = attention_probs_dropout_prob
lowerCAmelCase : List[str] = max_position_embeddings
lowerCAmelCase : Optional[Any] = eos_token_id
lowerCAmelCase : List[str] = pad_token_id
lowerCAmelCase : Optional[int] = bos_token_id
def lowercase__ ( self : Optional[int] ):
lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
lowerCAmelCase : int = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase : int = np.concatenate([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase : Optional[int] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowerCAmelCase : Tuple = prepare_pegasus_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
return config, inputs_dict
def lowercase__ ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ):
lowerCAmelCase : Union[str, Any] = 20
lowerCAmelCase : Tuple = model_class_name(UpperCAmelCase_ )
lowerCAmelCase : Tuple = model.encode(inputs_dict['input_ids'] )
lowerCAmelCase : Dict = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
lowerCAmelCase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )
lowerCAmelCase : List[Any] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCAmelCase : int = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
lowerCAmelCase : List[str] = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , )
lowerCAmelCase : List[Any] = model.decode(UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def lowercase__ ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] ):
lowerCAmelCase : Tuple = 20
lowerCAmelCase : Tuple = model_class_name(UpperCAmelCase_ )
lowerCAmelCase : Any = model.encode(inputs_dict['input_ids'] )
lowerCAmelCase : List[str] = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
lowerCAmelCase : Union[str, Any] = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
lowerCAmelCase : str = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : str = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCAmelCase : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCAmelCase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
lowerCAmelCase : Dict = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCAmelCase : int = model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ )
lowerCAmelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=None, ):
'''simple docstring'''
if attention_mask is None:
lowerCAmelCase : Dict = np.not_equal(_UpperCAmelCase, config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
lowerCAmelCase : str = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ),
], axis=-1, )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __A ( lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : Optional[Any] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
lowerCAmelCase_ : Dict = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
lowerCAmelCase_ : Optional[Any] = True
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Union[str, Any] = False
lowerCAmelCase_ : Union[str, Any] = False
def lowercase__ ( self : Optional[int] ):
lowerCAmelCase : Optional[int] = FlaxPegasusModelTester(self )
lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCAmelCase_ )
def lowercase__ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowercase__ ( self : List[str] ):
lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCAmelCase : Any = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : int = model_class(UpperCAmelCase_ )
@jax.jit
def encode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Any ):
return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )
with self.subTest('JIT Enabled' ):
lowerCAmelCase : Optional[Any] = encode_jitted(**UpperCAmelCase_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
lowerCAmelCase : Tuple = encode_jitted(**UpperCAmelCase_ ).to_tuple()
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def lowercase__ ( self : List[str] ):
lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCAmelCase : Dict = model_class(UpperCAmelCase_ )
lowerCAmelCase : Tuple = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )
lowerCAmelCase : Union[str, Any] = {
'decoder_input_ids': inputs_dict['decoder_input_ids'],
'decoder_attention_mask': inputs_dict['decoder_attention_mask'],
'encoder_outputs': encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ):
return model.decode(
decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , )
with self.subTest('JIT Enabled' ):
lowerCAmelCase : Optional[int] = decode_jitted(**UpperCAmelCase_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
lowerCAmelCase : Optional[Any] = decode_jitted(**UpperCAmelCase_ ).to_tuple()
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase__ ( self : Tuple ):
for model_class_name in self.all_model_classes:
lowerCAmelCase : Any = model_class_name.from_pretrained('google/pegasus-large' , from_pt=UpperCAmelCase_ )
lowerCAmelCase : List[Any] = np.ones((1, 1) )
lowerCAmelCase : Dict = model(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@slow
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : str = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' )
lowerCAmelCase : int = PegasusTokenizer.from_pretrained('google/pegasus-xsum' )
lowerCAmelCase : Optional[int] = [
' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.',
' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ',
]
lowerCAmelCase : List[str] = [
'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.',
'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.',
]
lowerCAmelCase : List[Any] = tokenizer(UpperCAmelCase_ , return_tensors='np' , truncation=UpperCAmelCase_ , max_length=512 , padding=UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = model.generate(**UpperCAmelCase_ , num_beams=2 ).sequences
lowerCAmelCase : List[str] = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ )
assert tgt_text == decoded
| 362
|
from manim import *
class __A ( lowerCAmelCase ):
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 )
lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 )
lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )]
lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )]
lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : str = Text('CPU' , font_size=24 )
lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(UpperCAmelCase_ )
lowerCAmelCase : int = [mem.copy() for i in range(4 )]
lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : int = Text('GPU' , font_size=24 )
lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ )
gpu.move_to([-1, -1, 0] )
self.add(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )]
lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : List[str] = Text('Model' , font_size=24 )
lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ )
model.move_to([3, -1.0, 0] )
self.add(UpperCAmelCase_ )
lowerCAmelCase : Any = []
lowerCAmelCase : Dict = []
for i, rect in enumerate(UpperCAmelCase_ ):
lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 )
target.move_to(UpperCAmelCase_ )
model_arr.append(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(UpperCAmelCase_ )
self.add(*UpperCAmelCase_ , *UpperCAmelCase_ )
lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )]
lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )]
lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 )
lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 )
lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ )
disk.move_to([-4, -1.25, 0] )
self.add(UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : List[Any] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowerCAmelCase : Optional[int] = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : Dict = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , )
blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(UpperCAmelCase_ )
lowerCAmelCase : str = MarkupText(
f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(UpperCAmelCase_ ) )
lowerCAmelCase : Optional[Any] = Square(0.3 )
input.set_fill(UpperCAmelCase_ , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 )
self.play(Write(UpperCAmelCase_ ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 )
self.play(MoveToTarget(UpperCAmelCase_ ) )
self.play(FadeOut(UpperCAmelCase_ ) )
lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 )
a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
lowerCAmelCase : int = MarkupText(
f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(UpperCAmelCase_ , run_time=3 ) )
lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
lowerCAmelCase : Any = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
lowerCAmelCase : int = AnimationGroup(
FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 )
self.play(UpperCAmelCase_ )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
lowerCAmelCase : List[str] = 0.7
self.play(
Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
lowerCAmelCase : int = a_c
lowerCAmelCase : Union[str, Any] = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , )
lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) )
self.wait()
| 323
| 0
|
from __future__ import annotations
import math
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int:
'''simple docstring'''
if depth < 0:
raise ValueError('Depth cannot be less than 0' )
if len(_UpperCAmelCase ) == 0:
raise ValueError('Scores cannot be empty' )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1, node_index * 2, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), )
return min(
minimax(depth + 1, node_index * 2, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), )
def SCREAMING_SNAKE_CASE__ ( ) -> None:
'''simple docstring'''
lowerCAmelCase : List[str] = [90, 23, 6, 33, 21, 65, 123, 34_423]
lowerCAmelCase : int = math.log(len(_UpperCAmelCase ), 2 )
print('Optimal value : ', end='' )
print(minimax(0, 0, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 363
|
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : Union[str, Any] = {
'''configuration_informer''': [
'''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''InformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = [
'''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''InformerForPrediction''',
'''InformerModel''',
'''InformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 323
| 0
|
import operator as op
__A : int = '''scaler.pt'''
__A : Any = '''pytorch_model'''
__A : int = '''random_states'''
__A : List[str] = '''optimizer'''
__A : Optional[int] = '''scheduler'''
__A : List[Any] = '''pytorch_model.bin'''
__A : str = '''pytorch_model.bin.index.json'''
__A : List[str] = '''model.safetensors'''
__A : Optional[int] = '''model.safetensors.index.json'''
__A : List[Any] = '''1.10.2'''
__A : int = '''py38'''
__A : int = '''4.17.0'''
__A : Union[str, Any] = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge''']
__A : Optional[int] = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2''']
__A : List[str] = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP''']
__A : List[str] = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH''']
__A : Optional[Any] = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT''']
__A : Optional[Any] = '''2.0.1'''
__A : int = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich''']
__A : Union[str, Any] = ['''default''', '''reduce-overhead''', '''max-autotune''']
__A : Any = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt}
# These are the args for `torch.distributed.launch` for pytorch < 1.9
__A : Any = [
'''nnodes''',
'''nproc_per_node''',
'''rdzv_backend''',
'''rdzv_endpoint''',
'''rdzv_id''',
'''rdzv_conf''',
'''standalone''',
'''max_restarts''',
'''monitor_interval''',
'''start_method''',
'''role''',
'''module''',
'''m''',
'''no_python''',
'''run_path''',
'''log_dir''',
'''r''',
'''redirects''',
'''t''',
'''tee''',
'''node_rank''',
'''master_addr''',
'''master_port''',
]
__A : Dict = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM''']
__A : Optional[int] = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
| 364
|
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__A : Dict = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='''relu'''))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='''relu'''))
classifier.add(layers.Dense(units=1, activation='''sigmoid'''))
# Compiling the CNN
classifier.compile(
optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy''']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__A : Any = train_datagen.flow_from_directory(
'''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
__A : Tuple = test_datagen.flow_from_directory(
'''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('''cnn.h5''')
# Part 3 - Making new predictions
__A : Any = tf.keras.preprocessing.image.load_img(
'''dataset/single_prediction/image.png''', target_size=(64, 64)
)
__A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image)
__A : Optional[Any] = np.expand_dims(test_image, axis=0)
__A : int = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__A : Optional[int] = '''Normal'''
if result[0][0] == 1:
__A : str = '''Abnormality detected'''
| 323
| 0
|
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __A ( unittest.TestCase ):
def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Dict=224 , UpperCAmelCase_ : Union[str, Any]=30 , UpperCAmelCase_ : Tuple=400 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : str=[0.5, 0.5, 0.5] , ):
lowerCAmelCase : Tuple = size if size is not None else {'height': 18, 'width': 18}
lowerCAmelCase : str = parent
lowerCAmelCase : Optional[int] = batch_size
lowerCAmelCase : Union[str, Any] = num_channels
lowerCAmelCase : Dict = image_size
lowerCAmelCase : Optional[Any] = min_resolution
lowerCAmelCase : Any = max_resolution
lowerCAmelCase : str = do_resize
lowerCAmelCase : Union[str, Any] = size
lowerCAmelCase : Union[str, Any] = do_normalize
lowerCAmelCase : str = image_mean
lowerCAmelCase : Optional[int] = image_std
def lowercase__ ( self : Optional[int] ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class __A ( lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : Any = ViTImageProcessor if is_vision_available() else None
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Union[str, Any] = EfficientFormerImageProcessorTester(self )
@property
def lowercase__ ( self : Any ):
return self.image_proc_tester.prepare_image_processor_dict()
def lowercase__ ( self : str ):
lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , 'image_mean' ) )
self.assertTrue(hasattr(UpperCAmelCase_ , 'image_std' ) )
self.assertTrue(hasattr(UpperCAmelCase_ , 'do_normalize' ) )
self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) )
self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) )
def lowercase__ ( self : Union[str, Any] ):
pass
def lowercase__ ( self : str ):
# Initialize image_processor
lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image )
# Test not batched input
lowerCAmelCase : Dict = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) , )
# Test batched
lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) , )
def lowercase__ ( self : List[str] ):
# Initialize image_processor
lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : Dict = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) , )
# Test batched
lowerCAmelCase : Optional[Any] = image_processor(UpperCAmelCase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) , )
def lowercase__ ( self : List[Any] ):
# Initialize image_processor
lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : int = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) , )
# Test batched
lowerCAmelCase : Optional[int] = image_processor(UpperCAmelCase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) , )
| 365
|
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
__A : str = logging.getLogger(__name__)
class __A ( lowerCAmelCase ):
def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ):
lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] )
lowerCAmelCase : Optional[Any] = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , )
class __A ( lowerCAmelCase ):
def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ):
super().__init__(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ )
self.init_weights()
lowerCAmelCase : str = 0
lowerCAmelCase : Optional[Any] = 0
lowerCAmelCase : str = 0
lowerCAmelCase : Dict = 0
def lowercase__ ( self : int , UpperCAmelCase_ : Any ):
lowerCAmelCase : int = threshold
def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ):
lowerCAmelCase : Optional[Any] = patience
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Tuple = 0
lowerCAmelCase : Tuple = 0
def lowercase__ ( self : Dict ):
lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num
lowerCAmelCase : List[Any] = (
f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="
f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"
)
print(UpperCAmelCase_ )
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
lowerCAmelCase : Optional[int] = input_ids.size()
elif inputs_embeds is not None:
lowerCAmelCase : List[str] = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ )
if token_type_ids is None:
lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size()
lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ )
lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ )
else:
lowerCAmelCase : List[Any] = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers )
lowerCAmelCase : int = self.embeddings(
input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ )
lowerCAmelCase : List[str] = embedding_output
if self.training:
lowerCAmelCase : Tuple = []
for i in range(self.config.num_hidden_layers ):
lowerCAmelCase : Dict = self.encoder.adaptive_forward(
UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ )
lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) )
res.append(UpperCAmelCase_ )
elif self.patience == 0: # Use all layers for inference
lowerCAmelCase : Union[str, Any] = self.encoder(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , )
lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] )
lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )]
else:
lowerCAmelCase : Tuple = 0
lowerCAmelCase : List[str] = None
lowerCAmelCase : Optional[Any] = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward(
UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ )
lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ )
if regression:
lowerCAmelCase : List[str] = logits.detach()
if patient_result is not None:
lowerCAmelCase : List[Any] = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
lowerCAmelCase : Any = 0
else:
lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 )
if patient_result is not None:
lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ):
patient_counter += 1
else:
lowerCAmelCase : Tuple = 0
lowerCAmelCase : List[Any] = logits
if patient_counter == self.patience:
break
lowerCAmelCase : Dict = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , )
class __A ( lowerCAmelCase ):
def __init__( self : Tuple , UpperCAmelCase_ : Tuple ):
super().__init__(UpperCAmelCase_ )
lowerCAmelCase : Tuple = config.num_labels
lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob )
lowerCAmelCase : List[Any] = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ):
lowerCAmelCase : int = self.bert(
input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
lowerCAmelCase : Any = (logits[-1],)
if labels is not None:
lowerCAmelCase : Tuple = None
lowerCAmelCase : Optional[int] = 0
for ix, logits_item in enumerate(UpperCAmelCase_ ):
if self.num_labels == 1:
# We are doing regression
lowerCAmelCase : Tuple = MSELoss()
lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
lowerCAmelCase : Tuple = CrossEntropyLoss()
lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
lowerCAmelCase : Any = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
lowerCAmelCase : str = (total_loss / total_weights,) + outputs
return outputs
| 323
| 0
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> bool:
'''simple docstring'''
if p < 2:
raise ValueError('p should not be less than 2!' )
elif p == 2:
return True
lowerCAmelCase : Optional[Any] = 4
lowerCAmelCase : Any = (1 << p) - 1
for _ in range(p - 2 ):
lowerCAmelCase : List[Any] = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 366
|
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__A : List[Any] = logging.get_logger(__name__)
__A : List[Any] = {
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class __A ( lowerCAmelCase ):
lowerCAmelCase_ : Union[str, Any] = "deberta-v2"
def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ):
super().__init__(**UpperCAmelCase_ )
lowerCAmelCase : Dict = hidden_size
lowerCAmelCase : List[Any] = num_hidden_layers
lowerCAmelCase : str = num_attention_heads
lowerCAmelCase : List[str] = intermediate_size
lowerCAmelCase : List[Any] = hidden_act
lowerCAmelCase : int = hidden_dropout_prob
lowerCAmelCase : int = attention_probs_dropout_prob
lowerCAmelCase : Any = max_position_embeddings
lowerCAmelCase : str = type_vocab_size
lowerCAmelCase : Union[str, Any] = initializer_range
lowerCAmelCase : Union[str, Any] = relative_attention
lowerCAmelCase : List[Any] = max_relative_positions
lowerCAmelCase : List[Any] = pad_token_id
lowerCAmelCase : Optional[Any] = position_biased_input
# Backwards compatibility
if type(UpperCAmelCase_ ) == str:
lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )]
lowerCAmelCase : str = pos_att_type
lowerCAmelCase : Dict = vocab_size
lowerCAmelCase : Optional[Any] = layer_norm_eps
lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ )
lowerCAmelCase : Tuple = pooler_dropout
lowerCAmelCase : Union[str, Any] = pooler_hidden_act
class __A ( lowerCAmelCase ):
@property
def lowercase__ ( self : Optional[Any] ):
if self.task == "multiple-choice":
lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def lowercase__ ( self : int ):
return 12
def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ):
lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 323
| 0
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
return round(float(moles / volume ) * nfactor )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float:
'''simple docstring'''
return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 367
|
__A : Dict = [
999,
800,
799,
600,
599,
500,
400,
399,
377,
355,
333,
311,
288,
266,
244,
222,
200,
199,
177,
155,
133,
111,
88,
66,
44,
22,
0,
]
__A : List[Any] = [
999,
976,
952,
928,
905,
882,
858,
857,
810,
762,
715,
714,
572,
429,
428,
286,
285,
238,
190,
143,
142,
118,
95,
71,
47,
24,
0,
]
__A : Dict = [
999,
988,
977,
966,
955,
944,
933,
922,
911,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
350,
300,
299,
266,
233,
200,
199,
179,
159,
140,
120,
100,
99,
88,
77,
66,
55,
44,
33,
22,
11,
0,
]
__A : Optional[int] = [
999,
995,
992,
989,
985,
981,
978,
975,
971,
967,
964,
961,
957,
956,
951,
947,
942,
937,
933,
928,
923,
919,
914,
913,
908,
903,
897,
892,
887,
881,
876,
871,
870,
864,
858,
852,
846,
840,
834,
828,
827,
820,
813,
806,
799,
792,
785,
784,
777,
770,
763,
756,
749,
742,
741,
733,
724,
716,
707,
699,
698,
688,
677,
666,
656,
655,
645,
634,
623,
613,
612,
598,
584,
570,
569,
555,
541,
527,
526,
505,
484,
483,
462,
440,
439,
396,
395,
352,
351,
308,
307,
264,
263,
220,
219,
176,
132,
88,
44,
0,
]
__A : Optional[int] = [
999,
997,
995,
992,
990,
988,
986,
984,
981,
979,
977,
975,
972,
970,
968,
966,
964,
961,
959,
957,
956,
954,
951,
949,
946,
944,
941,
939,
936,
934,
931,
929,
926,
924,
921,
919,
916,
914,
913,
910,
907,
905,
902,
899,
896,
893,
891,
888,
885,
882,
879,
877,
874,
871,
870,
867,
864,
861,
858,
855,
852,
849,
846,
843,
840,
837,
834,
831,
828,
827,
824,
821,
817,
814,
811,
808,
804,
801,
798,
795,
791,
788,
785,
784,
780,
777,
774,
770,
766,
763,
760,
756,
752,
749,
746,
742,
741,
737,
733,
730,
726,
722,
718,
714,
710,
707,
703,
699,
698,
694,
690,
685,
681,
677,
673,
669,
664,
660,
656,
655,
650,
646,
641,
636,
632,
627,
622,
618,
613,
612,
607,
602,
596,
591,
586,
580,
575,
570,
569,
563,
557,
551,
545,
539,
533,
527,
526,
519,
512,
505,
498,
491,
484,
483,
474,
466,
457,
449,
440,
439,
428,
418,
407,
396,
395,
381,
366,
352,
351,
330,
308,
307,
286,
264,
263,
242,
220,
219,
176,
175,
132,
131,
88,
44,
0,
]
__A : Tuple = [
999,
991,
982,
974,
966,
958,
950,
941,
933,
925,
916,
908,
900,
899,
874,
850,
825,
800,
799,
700,
600,
500,
400,
300,
200,
100,
0,
]
__A : int = [
999,
992,
985,
978,
971,
964,
957,
949,
942,
935,
928,
921,
914,
907,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
300,
299,
200,
199,
100,
99,
0,
]
__A : Optional[Any] = [
999,
996,
992,
989,
985,
982,
979,
975,
972,
968,
965,
961,
958,
955,
951,
948,
944,
941,
938,
934,
931,
927,
924,
920,
917,
914,
910,
907,
903,
900,
899,
891,
884,
876,
869,
861,
853,
846,
838,
830,
823,
815,
808,
800,
799,
788,
777,
766,
755,
744,
733,
722,
711,
700,
699,
688,
677,
666,
655,
644,
633,
622,
611,
600,
599,
585,
571,
557,
542,
528,
514,
500,
499,
485,
471,
457,
442,
428,
414,
400,
399,
379,
359,
340,
320,
300,
299,
279,
259,
240,
220,
200,
199,
166,
133,
100,
99,
66,
33,
0,
]
| 323
| 0
|
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int:
'''simple docstring'''
return number | (1 << position)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int:
'''simple docstring'''
return number & ~(1 << position)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int:
'''simple docstring'''
return number ^ (1 << position)
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> bool:
'''simple docstring'''
return ((number >> position) & 1) == 1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int:
'''simple docstring'''
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 368
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = [
'''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''UniSpeechForCTC''',
'''UniSpeechForPreTraining''',
'''UniSpeechForSequenceClassification''',
'''UniSpeechModel''',
'''UniSpeechPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 323
| 0
|
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class __A ( lowerCAmelCase ):
def __init__( self : List[str] , UpperCAmelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , UpperCAmelCase_ : Optional[NamedSplit] = None , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Tuple , ):
lowerCAmelCase : List[Any] = path_or_paths
lowerCAmelCase : List[Any] = split if split or isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else 'train'
lowerCAmelCase : List[str] = features
lowerCAmelCase : Dict = cache_dir
lowerCAmelCase : Dict = keep_in_memory
lowerCAmelCase : List[Any] = streaming
lowerCAmelCase : Dict = num_proc
lowerCAmelCase : Any = kwargs
@abstractmethod
def lowercase__ ( self : List[Any] ):
pass
class __A ( lowerCAmelCase ):
def __init__( self : Tuple , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Union[str, Any] , ):
lowerCAmelCase : int = features
lowerCAmelCase : Optional[Any] = cache_dir
lowerCAmelCase : Union[str, Any] = keep_in_memory
lowerCAmelCase : Any = streaming
lowerCAmelCase : Dict = num_proc
lowerCAmelCase : Any = kwargs
@abstractmethod
def lowercase__ ( self : str ):
pass
| 369
|
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class __A :
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ):
lowerCAmelCase : int = parent
lowerCAmelCase : Any = 13
lowerCAmelCase : Union[str, Any] = 7
lowerCAmelCase : List[Any] = True
lowerCAmelCase : List[str] = True
lowerCAmelCase : Tuple = True
lowerCAmelCase : Union[str, Any] = True
lowerCAmelCase : Tuple = 99
lowerCAmelCase : Optional[Any] = 32
lowerCAmelCase : List[str] = 2
lowerCAmelCase : str = 4
lowerCAmelCase : Optional[Any] = 37
lowerCAmelCase : List[Any] = 'gelu'
lowerCAmelCase : Any = 0.1
lowerCAmelCase : Any = 0.1
lowerCAmelCase : Optional[Any] = 512
lowerCAmelCase : Dict = 16
lowerCAmelCase : Optional[Any] = 2
lowerCAmelCase : Union[str, Any] = 0.02
lowerCAmelCase : Optional[int] = 3
lowerCAmelCase : List[str] = 4
lowerCAmelCase : Any = None
def lowercase__ ( self : List[str] ):
lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase : Any = None
if self.use_input_mask:
lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase : Dict = None
if self.use_token_type_ids:
lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase : List[str] = None
lowerCAmelCase : Any = None
lowerCAmelCase : Tuple = None
if self.use_labels:
lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase : Tuple = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ):
lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ )
lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowerCAmelCase : str = [input_ids, input_mask]
lowerCAmelCase : Any = model(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ):
lowerCAmelCase : str = True
lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ )
lowerCAmelCase : List[Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ):
lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ )
lowerCAmelCase : Tuple = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : Tuple = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ):
lowerCAmelCase : str = self.num_labels
lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ )
lowerCAmelCase : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ):
lowerCAmelCase : Dict = self.num_choices
lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ )
lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : Union[str, Any] = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ):
lowerCAmelCase : List[Any] = self.num_labels
lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : Dict = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ):
lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ )
lowerCAmelCase : Dict = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowerCAmelCase : int = model(UpperCAmelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) : Union[str, Any] = config_and_inputs
lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : List[str] = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase_ : Optional[Any] = (
{
"feature-extraction": TFRoFormerModel,
"fill-mask": TFRoFormerForMaskedLM,
"question-answering": TFRoFormerForQuestionAnswering,
"text-classification": TFRoFormerForSequenceClassification,
"text-generation": TFRoFormerForCausalLM,
"token-classification": TFRoFormerForTokenClassification,
"zero-shot": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase_ : Optional[int] = False
lowerCAmelCase_ : int = False
def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def lowercase__ ( self : int ):
lowerCAmelCase : List[Any] = TFRoFormerModelTester(self )
lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowercase__ ( self : int ):
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ):
lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ )
def lowercase__ ( self : Tuple ):
lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ )
def lowercase__ ( self : Tuple ):
lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
def lowercase__ ( self : str ):
lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ )
def lowercase__ ( self : int ):
lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
@slow
def lowercase__ ( self : Dict ):
lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' )
self.assertIsNotNone(UpperCAmelCase_ )
@require_tf
class __A ( unittest.TestCase ):
@slow
def lowercase__ ( self : Any ):
lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] )
lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0]
# TODO Replace vocab size
lowerCAmelCase : Any = 50000
lowerCAmelCase : str = [1, 6, vocab_size]
self.assertEqual(output.shape , UpperCAmelCase_ )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
lowerCAmelCase : Union[str, Any] = tf.constant(
[
[
[-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46],
[-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07],
[-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 )
@require_tf
class __A ( unittest.TestCase ):
lowerCAmelCase_ : Optional[int] = 1E-4
def lowercase__ ( self : Any ):
lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] )
lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
lowerCAmelCase : int = emba(input_ids.shape )
lowerCAmelCase : str = tf.constant(
[[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] )
tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance )
def lowercase__ ( self : int ):
lowerCAmelCase : Dict = tf.constant(
[
[0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00],
[0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17],
[0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70],
] )
lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 )
emba([2, 16, 512] )
lowerCAmelCase : List[Any] = emba.weight[:3, :5]
tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance )
@require_tf
class __A ( unittest.TestCase ):
lowerCAmelCase_ : Optional[int] = 1E-4
def lowercase__ ( self : List[Any] ):
# 2,12,16,64
lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :]
lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = tf.constant(
[
[0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00],
[-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43],
[-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85],
[-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71],
[0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80],
[3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53],
] )
lowerCAmelCase : Union[str, Any] = tf.constant(
[
[0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00],
[0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43],
[1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85],
[2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71],
[-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80],
[-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
| 323
| 0
|
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : List[Any] = StableUnCLIPImgaImgPipeline
lowerCAmelCase_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
lowerCAmelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
lowerCAmelCase_ : Dict = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowerCAmelCase_ : Any = frozenset([] )
def lowercase__ ( self : int ):
lowerCAmelCase : str = 32
lowerCAmelCase : List[str] = embedder_hidden_size
# image encoding components
lowerCAmelCase : List[Any] = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
lowerCAmelCase : Optional[int] = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=UpperCAmelCase_ , projection_dim=UpperCAmelCase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
lowerCAmelCase : Dict = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase_ )
lowerCAmelCase : List[str] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' )
torch.manual_seed(0 )
lowerCAmelCase : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
torch.manual_seed(0 )
lowerCAmelCase : Tuple = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase_ , layers_per_block=1 , upcast_attention=UpperCAmelCase_ , use_linear_projection=UpperCAmelCase_ , )
torch.manual_seed(0 )
lowerCAmelCase : Union[str, Any] = DDIMScheduler(
beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , )
torch.manual_seed(0 )
lowerCAmelCase : Any = AutoencoderKL()
lowerCAmelCase : Optional[int] = {
# image encoding components
'feature_extractor': feature_extractor,
'image_encoder': image_encoder.eval(),
# image noising components
'image_normalizer': image_normalizer.eval(),
'image_noising_scheduler': image_noising_scheduler,
# regular denoising components
'tokenizer': tokenizer,
'text_encoder': text_encoder.eval(),
'unet': unet.eval(),
'scheduler': scheduler,
'vae': vae.eval(),
}
return components
def lowercase__ ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Optional[int]=True ):
if str(UpperCAmelCase_ ).startswith('mps' ):
lowerCAmelCase : Union[str, Any] = torch.manual_seed(UpperCAmelCase_ )
else:
lowerCAmelCase : Optional[Any] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
lowerCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if pil_image:
lowerCAmelCase : str = input_image * 0.5 + 0.5
lowerCAmelCase : str = input_image.clamp(0 , 1 )
lowerCAmelCase : Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
lowerCAmelCase : Any = DiffusionPipeline.numpy_to_pil(UpperCAmelCase_ )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def lowercase__ ( self : Any ):
lowerCAmelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase : Any = self.get_dummy_components()
lowerCAmelCase : Any = StableUnCLIPImgaImgPipeline(**UpperCAmelCase_ )
lowerCAmelCase : int = sd_pipe.to(UpperCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(UpperCAmelCase_ )
inputs.update({'image_embeds': None} )
lowerCAmelCase : Tuple = sd_pipe(**UpperCAmelCase_ ).images
lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowerCAmelCase : Tuple = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def lowercase__ ( self : List[str] ):
lowerCAmelCase : int = torch_device in ['cpu', 'mps']
self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase_ )
def lowercase__ ( self : int ):
lowerCAmelCase : Any = torch_device in ['cpu', 'mps']
self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase_ )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def lowercase__ ( self : str ):
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase_ )
@slow
@require_torch_gpu
class __A ( unittest.TestCase ):
def lowercase__ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : int ):
lowerCAmelCase : int = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' )
lowerCAmelCase : Optional[Any] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' )
lowerCAmelCase : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained(
'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa )
pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowerCAmelCase : List[str] = torch.Generator(device='cpu' ).manual_seed(0 )
lowerCAmelCase : Tuple = pipe(UpperCAmelCase_ , 'anime turle' , generator=UpperCAmelCase_ , output_type='np' )
lowerCAmelCase : int = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : List[Any] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' )
lowerCAmelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' )
lowerCAmelCase : Dict = StableUnCLIPImgaImgPipeline.from_pretrained(
'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa )
pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowerCAmelCase : Tuple = torch.Generator(device='cpu' ).manual_seed(0 )
lowerCAmelCase : Any = pipe(UpperCAmelCase_ , 'anime turle' , generator=UpperCAmelCase_ , output_type='np' )
lowerCAmelCase : List[Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
def lowercase__ ( self : Optional[int] ):
lowerCAmelCase : Any = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCAmelCase : Optional[int] = StableUnCLIPImgaImgPipeline.from_pretrained(
'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa )
lowerCAmelCase : Optional[Any] = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowerCAmelCase : Union[str, Any] = pipe(
UpperCAmelCase_ , 'anime turtle' , num_inference_steps=2 , output_type='np' , )
lowerCAmelCase : int = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 370
|
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class __A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ):
lowerCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) )
lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
lowerCAmelCase : Tuple = {'unk_token': '<unk>'}
lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(UpperCAmelCase_ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(UpperCAmelCase_ ) )
lowerCAmelCase : Dict = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(UpperCAmelCase_ , UpperCAmelCase_ )
def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : List[str] ):
lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase__ ( self : Any ):
lowerCAmelCase : List[str] = self.get_tokenizer()
lowerCAmelCase : List[str] = self.get_rust_tokenizer()
lowerCAmelCase : Optional[int] = self.get_image_processor()
lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ )
self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ )
self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ )
def lowercase__ ( self : Tuple ):
lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 )
lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase_ )
def lowercase__ ( self : List[str] ):
lowerCAmelCase : Any = self.get_image_processor()
lowerCAmelCase : Union[str, Any] = self.get_tokenizer()
lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : Dict = self.prepare_image_inputs()
lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' )
lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : Union[str, Any] = self.get_image_processor()
lowerCAmelCase : Union[str, Any] = self.get_tokenizer()
lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = 'lower newer'
lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : Tuple = self.get_image_processor()
lowerCAmelCase : Dict = self.get_tokenizer()
lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = 'lower newer'
lowerCAmelCase : Optional[int] = self.prepare_image_inputs()
lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase_ ):
processor()
def lowercase__ ( self : List[str] ):
lowerCAmelCase : Optional[Any] = self.get_image_processor()
lowerCAmelCase : str = self.get_tokenizer()
lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ )
lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ):
lowerCAmelCase : List[Any] = self.get_image_processor()
lowerCAmelCase : Dict = self.get_tokenizer()
lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
lowerCAmelCase : Dict = 'lower newer'
lowerCAmelCase : Tuple = self.prepare_image_inputs()
lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 323
| 0
|
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class __A ( lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : Union[str, Any] = PriorTransformer
lowerCAmelCase_ : List[Any] = "hidden_states"
@property
def lowercase__ ( self : Any ):
lowerCAmelCase : List[str] = 4
lowerCAmelCase : str = 8
lowerCAmelCase : Optional[Any] = 7
lowerCAmelCase : Optional[int] = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ )
lowerCAmelCase : List[Any] = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ )
lowerCAmelCase : str = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def lowercase__ ( self : Dict , UpperCAmelCase_ : List[str]=0 ):
torch.manual_seed(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = 4
lowerCAmelCase : Any = 8
lowerCAmelCase : List[Any] = 7
lowerCAmelCase : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ )
lowerCAmelCase : str = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ )
lowerCAmelCase : str = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def lowercase__ ( self : Tuple ):
return (4, 8)
@property
def lowercase__ ( self : int ):
return (4, 8)
def lowercase__ ( self : str ):
lowerCAmelCase : Union[str, Any] = {
'num_attention_heads': 2,
'attention_head_dim': 4,
'num_layers': 2,
'embedding_dim': 8,
'num_embeddings': 7,
'additional_embeddings': 4,
}
lowerCAmelCase : Any = self.dummy_input
return init_dict, inputs_dict
def lowercase__ ( self : int ):
lowerCAmelCase : List[str] = PriorTransformer.from_pretrained(
'hf-internal-testing/prior-dummy' , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info['missing_keys'] ) , 0 )
model.to(UpperCAmelCase_ )
lowerCAmelCase : int = model(**self.dummy_input )[0]
assert hidden_states is not None, "Make sure output is not None"
def lowercase__ ( self : Optional[int] ):
lowerCAmelCase : List[str] = self.prepare_init_args_and_inputs_for_common()
lowerCAmelCase : Dict = self.model_class(**UpperCAmelCase_ )
lowerCAmelCase : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase : Dict = [*signature.parameters.keys()]
lowerCAmelCase : Tuple = ['hidden_states', 'timestep']
self.assertListEqual(arg_names[:2] , UpperCAmelCase_ )
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : Optional[Any] = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' )
lowerCAmelCase : Optional[int] = model.to(UpperCAmelCase_ )
if hasattr(UpperCAmelCase_ , 'set_default_attn_processor' ):
model.set_default_attn_processor()
lowerCAmelCase : Union[str, Any] = self.get_dummy_seed_input()
with torch.no_grad():
lowerCAmelCase : Optional[int] = model(**UpperCAmelCase_ )[0]
lowerCAmelCase : List[Any] = output[0, :5].flatten().cpu()
print(UpperCAmelCase_ )
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
lowerCAmelCase : int = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] )
self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-2 ) )
@slow
class __A ( unittest.TestCase ):
def lowercase__ ( self : int , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : Tuple=77 , UpperCAmelCase_ : List[str]=0 ):
torch.manual_seed(UpperCAmelCase_ )
lowerCAmelCase : Dict = batch_size
lowerCAmelCase : Dict = embedding_dim
lowerCAmelCase : Dict = num_embeddings
lowerCAmelCase : Tuple = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ )
lowerCAmelCase : Tuple = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def lowercase__ ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]],
[37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]],
# fmt: on
] )
def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ):
lowerCAmelCase : Dict = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' )
model.to(UpperCAmelCase_ )
lowerCAmelCase : Tuple = self.get_dummy_seed_input(seed=UpperCAmelCase_ )
with torch.no_grad():
lowerCAmelCase : Optional[Any] = model(**UpperCAmelCase_ )[0]
assert list(sample.shape ) == [1, 768]
lowerCAmelCase : Union[str, Any] = sample[0, :8].flatten().cpu()
print(UpperCAmelCase_ )
lowerCAmelCase : Optional[Any] = torch.tensor(UpperCAmelCase_ )
assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 )
| 371
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : List[Any] = {
'''configuration_xlm_roberta''': [
'''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XLMRobertaConfig''',
'''XLMRobertaOnnxConfig''',
],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = ['''XLMRobertaTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = ['''XLMRobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = [
'''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLMRobertaForCausalLM''',
'''XLMRobertaForMaskedLM''',
'''XLMRobertaForMultipleChoice''',
'''XLMRobertaForQuestionAnswering''',
'''XLMRobertaForSequenceClassification''',
'''XLMRobertaForTokenClassification''',
'''XLMRobertaModel''',
'''XLMRobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXLMRobertaForCausalLM''',
'''TFXLMRobertaForMaskedLM''',
'''TFXLMRobertaForMultipleChoice''',
'''TFXLMRobertaForQuestionAnswering''',
'''TFXLMRobertaForSequenceClassification''',
'''TFXLMRobertaForTokenClassification''',
'''TFXLMRobertaModel''',
'''TFXLMRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FlaxXLMRobertaForMaskedLM''',
'''FlaxXLMRobertaForCausalLM''',
'''FlaxXLMRobertaForMultipleChoice''',
'''FlaxXLMRobertaForQuestionAnswering''',
'''FlaxXLMRobertaForSequenceClassification''',
'''FlaxXLMRobertaForTokenClassification''',
'''FlaxXLMRobertaModel''',
'''FlaxXLMRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaConfig,
XLMRobertaOnnxConfig,
)
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta import XLMRobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForCausalLM,
TFXLMRobertaForMaskedLM,
TFXLMRobertaForMultipleChoice,
TFXLMRobertaForQuestionAnswering,
TFXLMRobertaForSequenceClassification,
TFXLMRobertaForTokenClassification,
TFXLMRobertaModel,
TFXLMRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xlm_roberta import (
FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxXLMRobertaForCausalLM,
FlaxXLMRobertaForMaskedLM,
FlaxXLMRobertaForMultipleChoice,
FlaxXLMRobertaForQuestionAnswering,
FlaxXLMRobertaForSequenceClassification,
FlaxXLMRobertaForTokenClassification,
FlaxXLMRobertaModel,
FlaxXLMRobertaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 323
| 0
|
"""simple docstring"""
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Tuple = argparse.ArgumentParser()
parser.add_argument("""-f""" )
_a : str = parser.parse_args()
return args.f
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[Any] = {}
_a : int = os.path.join(UpperCamelCase__ , """all_results.json""" )
if os.path.exists(UpperCamelCase__ ):
with open(UpperCamelCase__ , """r""" ) as f:
_a : str = json.load(UpperCamelCase__ )
else:
raise ValueError(F"""can't find {path}""" )
return results
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Union[str, Any] = torch.cuda.is_available() and torch_device == """cuda"""
return is_using_cuda and is_apex_available()
_snake_case = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class UpperCamelCase ( snake_case_ ):
@classmethod
def _lowercase ( cls : Optional[Any] ) -> Union[str, Any]:
# Write Accelerate config, will pick up on CPU, GPU, and multi-GPU
_a : List[Any] = tempfile.mkdtemp()
_a : int = os.path.join(cls.tmpdir , """default_config.yml""" )
write_basic_config(save_location=cls.configPath )
_a : str = ["""accelerate""", """launch""", """--config_file""", cls.configPath]
@classmethod
def _lowercase ( cls : Optional[Any] ) -> Tuple:
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _lowercase ( self : int ) -> Tuple:
_a : Optional[int] = self.get_auto_remove_tmp_dir()
_a : Dict = f"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append("""--fp16""" )
run_command(self._launch_args + testargs )
_a : Optional[int] = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """glue_no_trainer""" ) ) )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]:
_a : List[Any] = self.get_auto_remove_tmp_dir()
_a : Union[str, Any] = f"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
_a : Union[str, Any] = get_results(UpperCAmelCase__ )
self.assertLess(result["""perplexity"""] , 100 )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """clm_no_trainer""" ) ) )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _lowercase ( self : Tuple ) -> Dict:
_a : Optional[int] = self.get_auto_remove_tmp_dir()
_a : int = f"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_a : List[str] = get_results(UpperCAmelCase__ )
self.assertLess(result["""perplexity"""] , 42 )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """mlm_no_trainer""" ) ) )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _lowercase ( self : Optional[Any] ) -> int:
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
_a : str = 7 if get_gpu_count() > 1 else 2
_a : Any = self.get_auto_remove_tmp_dir()
_a : Tuple = f"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_a : Tuple = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 )
self.assertLess(result["""train_loss"""] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """ner_no_trainer""" ) ) )
@unittest.skip(reason="""Fix me @muellerzr""" )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _lowercase ( self : Optional[Any] ) -> Optional[int]:
_a : Optional[Any] = self.get_auto_remove_tmp_dir()
_a : Optional[int] = f"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_a : Union[str, Any] = get_results(UpperCAmelCase__ )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result["""eval_f1"""] , 28 )
self.assertGreaterEqual(result["""eval_exact"""] , 28 )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """qa_no_trainer""" ) ) )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _lowercase ( self : List[Any] ) -> Any:
_a : Union[str, Any] = self.get_auto_remove_tmp_dir()
_a : Union[str, Any] = f"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_a : List[str] = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """swag_no_trainer""" ) ) )
@slow
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _lowercase ( self : Optional[Any] ) -> Dict:
_a : Tuple = self.get_auto_remove_tmp_dir()
_a : Any = f"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_a : List[str] = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_rouge1"""] , 10 )
self.assertGreaterEqual(result["""eval_rouge2"""] , 2 )
self.assertGreaterEqual(result["""eval_rougeL"""] , 7 )
self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """summarization_no_trainer""" ) ) )
@slow
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _lowercase ( self : Optional[int] ) -> Union[str, Any]:
_a : int = self.get_auto_remove_tmp_dir()
_a : List[Any] = f"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_a : Optional[Any] = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_bleu"""] , 30 )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """translation_no_trainer""" ) ) )
@slow
def _lowercase ( self : str ) -> List[Any]:
_a : List[Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(UpperCAmelCase__ )
_a : Optional[int] = self.get_auto_remove_tmp_dir()
_a : List[str] = f"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
_a : Any = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.1_0 )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _lowercase ( self : Union[str, Any] ) -> List[Any]:
_a : Dict = self.get_auto_remove_tmp_dir()
_a : List[str] = f"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append("""--fp16""" )
run_command(self._launch_args + testargs )
_a : int = get_results(UpperCAmelCase__ )
# The base model scores a 25%
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """step_1""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , """image_classification_no_trainer""" ) ) )
| 324
|
"""simple docstring"""
_snake_case = 8.31_44_62 # Unit - J mol-1 K-1
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if moles < 0 or kelvin < 0 or volume < 0:
raise ValueError("""Invalid inputs. Enter positive value.""" )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if moles < 0 or kelvin < 0 or pressure < 0:
raise ValueError("""Invalid inputs. Enter positive value.""" )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
if __name__ == "__main__":
from doctest import testmod
testmod()
| 324
| 1
|
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : List[str] = torch.load(UpperCamelCase__ , map_location="""cpu""" )
if "model" in sd.keys():
_a : int = torch.load(UpperCamelCase__ , map_location="""cpu""" )["""model"""]
# pop unnecessary weights
_a : str = [
"""decoder.version""",
"""decoder.output_projection.weight""",
]
for key in keys_to_delete:
if key in sd:
sd.pop(UpperCamelCase__ )
_a : Optional[int] = {
"""decoder.project_in_dim.weight""": """decoder.project_in.weight""",
"""decoder.project_out_dim.weight""": """decoder.project_out.weight""",
"""decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""",
"""decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
_a : Tuple = sd.pop(UpperCamelCase__ )
_a : Any = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
_a : Any = sd[key]
# We split QKV in separate Q,K,V
_a : List[str] = key.replace(""".qkv_proj.""" , """.q_proj.""" )
_a : Optional[Any] = key.replace(""".qkv_proj.""" , """.k_proj.""" )
_a : int = key.replace(""".qkv_proj.""" , """.v_proj.""" )
_a : Optional[Any] = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
_a , _a , _a : List[Any] = torch.split(UpperCamelCase__ , depth // 3 , dim=0 )
_a : Optional[int] = q
_a : int = k
_a : Union[str, Any] = v
del sd[key]
return sd
@torch.no_grad()
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ):
'''simple docstring'''
_a : Union[str, Any] = load_checkpoint(UpperCamelCase__ )
if config is not None:
_a : List[Any] = OPTConfig.from_pretrained(UpperCamelCase__ )
else:
_a : Tuple = OPTConfig()
_a : Any = OPTModel(UpperCamelCase__ ).half().eval()
model.load_state_dict(UpperCamelCase__ )
# Check results
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--fairseq_path',
type=str,
help=(
'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:'
' https://huggingface.co/models?other=opt_metasq'
),
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.')
_snake_case = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 324
|
"""simple docstring"""
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
_snake_case = logging.getLogger(__name__)
_snake_case = 'pytorch_model.bin'
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , )
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} )
UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , )
UpperCamelCase : Optional[List[str]] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} )
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(
metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default='''no''' , metadata={
'''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]'''
} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , )
UpperCamelCase : Optional[float] = dataclasses.field(
default=0.0 , metadata={
'''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.'''
} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , )
UpperCamelCase : Optional[float] = dataclasses.field(
default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
_a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
_a : Any = int(eval_result * len(UpperCamelCase__ ) )
print(UpperCamelCase__ )
_a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ )
_a : Any = dataset.select(range(UpperCamelCase__ ) )
_a : Tuple = dataset.remove_columns(["""label""", """probability"""] )
_a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" )
_a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} )
_a : Union[str, Any] = dataset.shuffle(seed=args.seed )
_a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" )
if args.data_file_extension == "csv":
dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ )
else:
dataset.to_json(UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
_a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ )
_a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ )
_a : Any = STTrainingArguments(output_dir=UpperCamelCase__ )
_a : Any = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(UpperCamelCase__ ).items():
setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for key, value in kwargs.items():
if hasattr(UpperCamelCase__ , UpperCamelCase__ ):
setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Sanity checks
_a : Union[str, Any] = {}
_a : Tuple = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
_a : int = args.train_file
_a : List[Any] = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
_a : Union[str, Any] = args.eval_file
for key in data_files:
_a : Optional[Any] = data_files[key].split(""".""" )[-1]
assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file."""
if args.data_file_extension is None:
_a : str = extension
else:
assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`."""
assert (
args.eval_metric in datasets.list_metrics()
), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}."""
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info("""Creating the initial data directory for self-training...""" )
_a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format
_a : Dict = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ )
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
accelerator.wait_for_everyone()
_a : str = None
_a : int = None
_a : str = 0
_a : List[Any] = False
# Show the progress bar
_a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
_a : Union[str, Any] = data_dir_format(UpperCamelCase__ )
assert os.path.exists(UpperCamelCase__ )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
_a : str = os.path.join(UpperCamelCase__ , """stage-1""" )
_a : Tuple = {
"""accelerator""": accelerator,
"""model_name_or_path""": args.model_name_or_path,
"""cache_dir""": args.cache_dir,
"""do_train""": True,
"""train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""],
"""do_eval""": True if args.eval_file is not None else False,
"""eval_file""": data_files["""eval"""],
"""do_predict""": True,
"""infer_file""": data_files["""infer"""],
"""task_name""": args.task_name,
"""label_list""": args.label_list,
"""output_dir""": current_output_dir,
"""eval_metric""": args.eval_metric,
"""evaluation_strategy""": args.evaluation_strategy,
"""early_stopping_patience""": args.early_stopping_patience,
"""early_stopping_threshold""": args.early_stopping_threshold,
"""seed""": args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
arguments_dict.update({key: value} )
_a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ )
if os.path.exists(UpperCamelCase__ ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ )
finetune(**UpperCamelCase__ )
accelerator.wait_for_everyone()
assert os.path.exists(UpperCamelCase__ )
logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
_a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" )
_a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" )
# Update arguments_dict
_a : int = model_path
_a : Dict = data_files["""train"""]
_a : int = current_output_dir
_a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ )
if os.path.exists(UpperCamelCase__ ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ )
finetune(**UpperCamelCase__ )
accelerator.wait_for_everyone()
assert os.path.exists(UpperCamelCase__ )
logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ )
_a : List[Any] = iteration
_a : int = data_dir_format(iteration + 1 )
_a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) )
_a : Union[str, Any] = config.idalabel
_a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" )
_a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" )
assert os.path.exists(UpperCamelCase__ )
with open(UpperCamelCase__ , """r""" ) as f:
_a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] )
_a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" )
assert os.path.exists(UpperCamelCase__ )
# Loading the dataset from local csv or json files.
_a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""]
_a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""]
if accelerator.is_main_process:
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) )
if os.path.exists(UpperCamelCase__ ):
shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) )
create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
accelerator.wait_for_everyone()
_a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" )
if args.evaluation_strategy != IntervalStrategy.NO.value:
_a : Any = eval_result
if best_iteration is None:
_a : Union[str, Any] = new_iteration
_a : str = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
_a : Union[str, Any] = new_iteration
_a : List[str] = new_eval_result
_a : Optional[Any] = 0
else:
if new_eval_result == best_eval_result:
_a : Tuple = new_iteration
_a : List[Any] = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
_a : Union[str, Any] = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info("""Best iteration: %d""" , UpperCamelCase__ )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
else:
# Assume that the last iteration is the best
logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
| 324
| 1
|
"""simple docstring"""
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
_snake_case = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Any = argparse.ArgumentParser()
parser.add_argument("""-f""" )
_a : Dict = parser.parse_args()
return args.f
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__="eval" ):
'''simple docstring'''
_a : List[Any] = os.path.join(UpperCamelCase__ , F"""{split}_results.json""" )
if os.path.exists(UpperCamelCase__ ):
with open(UpperCamelCase__ , """r""" ) as f:
return json.load(UpperCamelCase__ )
raise ValueError(F"""can't find {path}""" )
_snake_case = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class UpperCamelCase ( snake_case_ ):
def _lowercase ( self : Optional[int] ) -> int:
_a : Optional[int] = self.get_auto_remove_tmp_dir()
_a : Union[str, Any] = f"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_flax_glue.main()
_a : Tuple = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 )
@slow
def _lowercase ( self : Union[str, Any] ) -> int:
_a : str = self.get_auto_remove_tmp_dir()
_a : List[str] = f"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_clm_flax.main()
_a : Union[str, Any] = get_results(UpperCAmelCase__ )
self.assertLess(result["""eval_perplexity"""] , 100 )
@slow
def _lowercase ( self : str ) -> int:
_a : Any = self.get_auto_remove_tmp_dir()
_a : Tuple = f"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_summarization_flax.main()
_a : Tuple = get_results(UpperCAmelCase__ , split="""test""" )
self.assertGreaterEqual(result["""test_rouge1"""] , 10 )
self.assertGreaterEqual(result["""test_rouge2"""] , 2 )
self.assertGreaterEqual(result["""test_rougeL"""] , 7 )
self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 )
@slow
def _lowercase ( self : Union[str, Any] ) -> Optional[int]:
_a : Dict = self.get_auto_remove_tmp_dir()
_a : Optional[Any] = f"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_mlm_flax.main()
_a : Optional[int] = get_results(UpperCAmelCase__ )
self.assertLess(result["""eval_perplexity"""] , 42 )
@slow
def _lowercase ( self : Any ) -> Optional[Any]:
_a : int = self.get_auto_remove_tmp_dir()
_a : Optional[Any] = f"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_ta_mlm_flax.main()
_a : Optional[Any] = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.4_2 )
@slow
def _lowercase ( self : Any ) -> Any:
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
_a : Dict = 7 if get_gpu_count() > 1 else 2
_a : Optional[int] = self.get_auto_remove_tmp_dir()
_a : str = f"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_flax_ner.main()
_a : Optional[Any] = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 )
self.assertGreaterEqual(result["""eval_f1"""] , 0.3 )
@slow
def _lowercase ( self : str ) -> int:
_a : int = self.get_auto_remove_tmp_dir()
_a : Optional[Any] = f"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_qa.main()
_a : Optional[Any] = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_f1"""] , 30 )
self.assertGreaterEqual(result["""eval_exact"""] , 30 )
| 324
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
_snake_case = None
_snake_case = logging.get_logger(__name__)
_snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
_snake_case = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
},
'tokenizer_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json',
},
}
_snake_case = {
'camembert-base': 512,
}
_snake_case = '▁'
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : Any = VOCAB_FILES_NAMES
UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase : Dict = ['''input_ids''', '''attention_mask''']
UpperCamelCase : Optional[Any] = CamembertTokenizer
def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token
super().__init__(
UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , )
_a : int = vocab_file
_a : int = False if not self.vocab_file else True
def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a : List[Any] = [self.cls_token_id]
_a : Dict = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
_a : Union[str, Any] = [self.sep_token_id]
_a : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(UpperCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_a : List[str] = os.path.join(
UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ):
copyfile(self.vocab_file , UpperCAmelCase__ )
return (out_vocab_file,)
| 324
| 1
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case = logging.get_logger(__name__)
_snake_case = {
'microsoft/swin-tiny-patch4-window7-224': (
'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class UpperCamelCase ( snake_case_ , snake_case_ ):
UpperCamelCase : Any = '''swin'''
UpperCamelCase : Optional[Any] = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[int]=224 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Optional[Any]=96 , UpperCAmelCase__ : str=[2, 2, 6, 2] , UpperCAmelCase__ : Optional[Any]=[3, 6, 12, 24] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : List[Any]=4.0 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : str=0.0_2 , UpperCAmelCase__ : Dict=1E-5 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : str , ) -> int:
super().__init__(**UpperCAmelCase__ )
_a : Optional[int] = image_size
_a : Tuple = patch_size
_a : List[str] = num_channels
_a : str = embed_dim
_a : List[Any] = depths
_a : List[Any] = len(UpperCAmelCase__ )
_a : List[str] = num_heads
_a : List[Any] = window_size
_a : str = mlp_ratio
_a : List[Any] = qkv_bias
_a : Tuple = hidden_dropout_prob
_a : List[Any] = attention_probs_dropout_prob
_a : List[str] = drop_path_rate
_a : str = hidden_act
_a : List[str] = use_absolute_embeddings
_a : List[Any] = layer_norm_eps
_a : Tuple = initializer_range
_a : str = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_a : str = int(embed_dim * 2 ** (len(UpperCAmelCase__ ) - 1) )
_a : Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase__ ) + 1 )]
_a , _a : Dict = get_aligned_output_features_output_indices(
out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names )
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : int = version.parse('''1.11''' )
@property
def _lowercase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _lowercase ( self : Optional[Any] ) -> float:
return 1E-4
| 324
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_snake_case = logging.get_logger(__name__)
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : Dict = ['''pixel_values''']
def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None:
_a : int = do_resize
_a : Union[str, Any] = do_rescale
_a : Any = size_divisor
_a : Any = resample
super().__init__(**UpperCAmelCase__ )
def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray:
_a , _a : Tuple = get_image_size(UpperCAmelCase__ )
# Rounds the height and width down to the closest multiple of size_divisor
_a : Optional[Any] = height // size_divisor * size_divisor
_a : Union[str, Any] = width // size_divisor * size_divisor
_a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ )
return image
def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray:
return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ )
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature:
_a : Dict = do_resize if do_resize is not None else self.do_resize
_a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale
_a : str = size_divisor if size_divisor is not None else self.size_divisor
_a : Any = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError("""size_divisor is required for resizing""" )
_a : List[str] = make_list_of_images(UpperCAmelCase__ )
if not valid_images(UpperCAmelCase__ ):
raise ValueError("""Invalid image(s)""" )
# All transformations expect numpy arrays.
_a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images]
if do_resize:
_a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images]
if do_rescale:
_a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images]
_a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images]
_a : Optional[int] = {"""pixel_values""": images}
return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
| 324
| 1
|
"""simple docstring"""
import operator as op
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = []
_a : List[Any] = lambda UpperCamelCase__ , UpperCamelCase__ : int(x / y ) # noqa: E731 integer division operation
_a : int = {
"""^""": op.pow,
"""*""": op.mul,
"""/""": div,
"""+""": op.add,
"""-""": op.sub,
} # operators & their respective operation
# print table header
print("""Symbol""".center(8 ) , """Action""".center(1_2 ) , """Stack""" , sep=""" | """ )
print("""-""" * (3_0 + len(UpperCamelCase__ )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(UpperCamelCase__ ) # append x to stack
# output in tabular format
print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(1_2 ) , """,""".join(UpperCamelCase__ ) , sep=""" | """ )
else:
_a : int = stack.pop() # pop stack
# output in tabular format
print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(1_2 ) , """,""".join(UpperCamelCase__ ) , sep=""" | """ )
_a : Union[str, Any] = stack.pop() # pop stack
# output in tabular format
print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(1_2 ) , """,""".join(UpperCamelCase__ ) , sep=""" | """ )
stack.append(
str(opr[x](int(UpperCamelCase__ ) , int(UpperCamelCase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(1_2 ) , """,""".join(UpperCamelCase__ ) , sep=""" | """ , )
return int(stack[0] )
if __name__ == "__main__":
_snake_case = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ')
print('\n\tResult = ', solve(Postfix))
| 324
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class UpperCamelCase ( unittest.TestCase ):
@property
def _lowercase ( self : Optional[int] ) -> Union[str, Any]:
torch.manual_seed(0 )
_a : List[str] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
def _lowercase ( self : Dict ) -> Dict:
_a : str = self.dummy_uncond_unet
_a : Optional[int] = KarrasVeScheduler()
_a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : int = torch.manual_seed(0 )
_a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images
_a : Tuple = torch.manual_seed(0 )
_a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0]
_a : int = image[0, -3:, -3:, -1]
_a : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class UpperCamelCase ( unittest.TestCase ):
def _lowercase ( self : Tuple ) -> List[str]:
_a : Optional[Any] = """google/ncsnpp-celebahq-256"""
_a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ )
_a : Dict = KarrasVeScheduler()
_a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : Optional[int] = torch.manual_seed(0 )
_a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images
_a : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
_a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 324
| 1
|
"""simple docstring"""
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def lowerCAmelCase__ ( ):
'''simple docstring'''
print("""Making key files...""" )
make_key_files("""rsa""" , 1_0_2_4 )
print("""Key files generation successful.""" )
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
print("""Generating prime p...""" )
_a : Union[str, Any] = rabinMiller.generate_large_prime(UpperCamelCase__ )
print("""Generating prime q...""" )
_a : List[Any] = rabinMiller.generate_large_prime(UpperCamelCase__ )
_a : Union[str, Any] = p * q
print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" )
while True:
_a : Optional[int] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(UpperCamelCase__ , (p - 1) * (q - 1) ) == 1:
break
print("""Calculating d that is mod inverse of e...""" )
_a : List[str] = cryptoMath.find_mod_inverse(UpperCamelCase__ , (p - 1) * (q - 1) )
_a : Any = (n, e)
_a : int = (n, d)
return (public_key, private_key)
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ):
print("""\nWARNING:""" )
print(
F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
"""Use a different name or delete these files and re-run this program.""" )
sys.exit()
_a , _a : List[str] = generate_key(UpperCamelCase__ )
print(F"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(F"""{name}_pubkey.txt""" , """w""" ) as out_file:
out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" )
print(F"""Writing private key to file {name}_privkey.txt...""" )
with open(F"""{name}_privkey.txt""" , """w""" ) as out_file:
out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" )
if __name__ == "__main__":
main()
| 324
|
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_snake_case = 16
_snake_case = 32
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ):
'''simple docstring'''
_a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" )
_a : Dict = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(UpperCamelCase__ ):
# max_length=None => use the model max length (it's actually the default)
_a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_a : Tuple = datasets.map(
UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(UpperCamelCase__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_a : int = 1_6
elif accelerator.mixed_precision != "no":
_a : int = 8
else:
_a : str = None
return tokenizer.pad(
UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , )
# Instantiate dataloaders.
_a : int = DataLoader(
tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ )
_a : List[str] = DataLoader(
tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_snake_case = mocked_dataloaders # noqa: F811
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1":
_a : str = 2
# Initialize accelerator
_a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_a : Any = config["""lr"""]
_a : Union[str, Any] = int(config["""num_epochs"""] )
_a : str = int(config["""seed"""] )
_a : List[Any] = int(config["""batch_size"""] )
_a : Tuple = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
_a : Optional[Any] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
_a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE
_a : str = MAX_GPU_BATCH_SIZE
set_seed(UpperCamelCase__ )
_a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_a : List[str] = model.to(accelerator.device )
# Instantiate optimizer
_a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ )
# Instantiate scheduler
_a : List[str] = get_linear_schedule_with_warmup(
optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Now we train the model
for epoch in range(UpperCamelCase__ ):
model.train()
for step, batch in enumerate(UpperCamelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
_a : Optional[Any] = model(**UpperCamelCase__ )
_a : str = outputs.loss
_a : Optional[int] = loss / gradient_accumulation_steps
accelerator.backward(UpperCamelCase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
_a : Union[str, Any] = 0
for step, batch in enumerate(UpperCamelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_a : Dict = model(**UpperCamelCase__ )
_a : Optional[Any] = outputs.logits.argmax(dim=-1 )
_a , _a : int = accelerator.gather((predictions, batch["""labels"""]) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(UpperCamelCase__ ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
_a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen]
_a : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=UpperCamelCase__ , references=UpperCamelCase__ , )
_a : int = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ )
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
_a : Optional[Any] = parser.parse_args()
_a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6}
training_function(UpperCamelCase__ , UpperCamelCase__ )
if __name__ == "__main__":
main()
| 324
| 1
|
"""simple docstring"""
import json
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import numpy as np
import torch
import torchaudio
from packaging import version
from torch import nn
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaProcessor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'):
_snake_case = True
from torch.cuda.amp import autocast
_snake_case = logging.getLogger(__name__)
def lowerCAmelCase__ ( UpperCamelCase__=None , UpperCamelCase__=None ):
'''simple docstring'''
return field(default_factory=lambda: default , metadata=UpperCamelCase__ )
@dataclass
class UpperCamelCase :
UpperCamelCase : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCamelCase : Optional[bool] = field(
default=snake_case_ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} )
UpperCamelCase : Optional[float] = field(
default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} )
UpperCamelCase : Optional[float] = field(
default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} )
UpperCamelCase : Optional[float] = field(
default=0.1 , metadata={
'''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.'''
} , )
UpperCamelCase : Optional[float] = field(
default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , )
UpperCamelCase : Optional[float] = field(
default=0.0_5 , metadata={
'''help''': (
'''Propability of each feature vector along the time axis to be chosen as the start of the vector'''
'''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature'''
'''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.'''
)
} , )
UpperCamelCase : Optional[float] = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} )
@dataclass
class UpperCamelCase :
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
UpperCamelCase : Optional[str] = field(
default='''train+validation''' , metadata={
'''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\''''
} , )
UpperCamelCase : bool = field(
default=snake_case_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} )
UpperCamelCase : Optional[int] = field(
default=snake_case_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCamelCase : Optional[int] = field(
default=snake_case_ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCamelCase : Optional[int] = field(
default=snake_case_ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of validation examples to this '''
'''value if set.'''
)
} , )
UpperCamelCase : List[str] = list_field(
default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , )
@dataclass
class UpperCamelCase :
UpperCamelCase : WavaVecaProcessor
UpperCamelCase : Union[bool, str] = True
UpperCamelCase : Optional[int] = None
UpperCamelCase : Optional[int] = None
UpperCamelCase : Optional[int] = None
UpperCamelCase : Optional[int] = None
def __call__( self : List[Any] , UpperCAmelCase__ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lenghts and need
# different padding methods
_a : Union[str, Any] = [{"""input_values""": feature["""input_values"""]} for feature in features]
_a : str = [{"""input_ids""": feature["""labels"""]} for feature in features]
_a : Optional[Any] = self.processor.pad(
UpperCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , )
_a : List[str] = self.processor.pad(
labels=UpperCAmelCase__ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="""pt""" , )
# replace padding with -100 to ignore loss correctly
_a : Union[str, Any] = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 )
_a : Any = labels
return batch
class UpperCamelCase ( snake_case_ ):
def _lowercase ( self : Any , UpperCAmelCase__ : nn.Module , UpperCAmelCase__ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor:
model.train()
_a : Optional[Any] = self._prepare_inputs(UpperCAmelCase__ )
if self.use_amp:
with autocast():
_a : Optional[int] = self.compute_loss(UpperCAmelCase__ , UpperCAmelCase__ )
else:
_a : Union[str, Any] = self.compute_loss(UpperCAmelCase__ , UpperCAmelCase__ )
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
_a : List[str] = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
_a : List[Any] = loss.sum() / (inputs["""labels"""] >= 0).sum()
else:
raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" )
if self.args.gradient_accumulation_steps > 1:
_a : Any = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(UpperCAmelCase__ ).backward()
elif self.use_apex:
with amp.scale_loss(UpperCAmelCase__ , self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(UpperCAmelCase__ )
else:
loss.backward()
return loss.detach()
def lowerCAmelCase__ ( ):
'''simple docstring'''
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_a : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_a , _a , _a : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_a , _a , _a : List[str] = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
_a : Union[str, Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_a : Union[str, Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets:
_a : str = datasets.load_dataset(
"""common_voice""" , data_args.dataset_config_name , split=data_args.train_split_name )
_a : int = datasets.load_dataset("""common_voice""" , data_args.dataset_config_name , split="""test""" )
# Create and save tokenizer
_a : str = F"""[{''.join(data_args.chars_to_ignore )}]"""
def remove_special_characters(UpperCamelCase__ ):
_a : int = re.sub(UpperCamelCase__ , """""" , batch["""sentence"""] ).lower() + """ """
return batch
_a : List[Any] = train_dataset.map(UpperCamelCase__ , remove_columns=["""sentence"""] )
_a : Union[str, Any] = eval_dataset.map(UpperCamelCase__ , remove_columns=["""sentence"""] )
def extract_all_chars(UpperCamelCase__ ):
_a : Any = """ """.join(batch["""text"""] )
_a : List[Any] = list(set(UpperCamelCase__ ) )
return {"vocab": [vocab], "all_text": [all_text]}
_a : Optional[Any] = train_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , batch_size=-1 , keep_in_memory=UpperCamelCase__ , remove_columns=train_dataset.column_names , )
_a : Tuple = train_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , batch_size=-1 , keep_in_memory=UpperCamelCase__ , remove_columns=eval_dataset.column_names , )
_a : Tuple = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) )
_a : str = {v: k for k, v in enumerate(UpperCamelCase__ )}
_a : Dict = vocab_dict[""" """]
del vocab_dict[" "]
_a : Any = len(UpperCamelCase__ )
_a : Union[str, Any] = len(UpperCamelCase__ )
with open("""vocab.json""" , """w""" ) as vocab_file:
json.dump(UpperCamelCase__ , UpperCamelCase__ )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_a : Union[str, Any] = WavaVecaCTCTokenizer(
"""vocab.json""" , unk_token="""[UNK]""" , pad_token="""[PAD]""" , word_delimiter_token="""|""" , )
_a : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0.0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ )
_a : Dict = WavaVecaProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ )
_a : Any = WavaVecaForCTC.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="""mean""" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , )
if data_args.max_train_samples is not None:
_a : Any = min(len(UpperCamelCase__ ) , data_args.max_train_samples )
_a : Optional[int] = train_dataset.select(range(UpperCamelCase__ ) )
if data_args.max_val_samples is not None:
_a : Dict = eval_dataset.select(range(data_args.max_val_samples ) )
_a : List[Any] = torchaudio.transforms.Resample(4_8_0_0_0 , 1_6_0_0_0 )
# Preprocessing the datasets.
# We need to read the aduio files as arrays and tokenize the targets.
def speech_file_to_array_fn(UpperCamelCase__ ):
_a , _a : str = torchaudio.load(batch["""path"""] )
_a : Tuple = resampler(UpperCamelCase__ ).squeeze().numpy()
_a : List[Any] = 1_6_0_0_0
_a : Optional[int] = batch["""text"""]
return batch
_a : Tuple = train_dataset.map(
UpperCamelCase__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
_a : int = eval_dataset.map(
UpperCamelCase__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
def prepare_dataset(UpperCamelCase__ ):
# check that all files have the correct sampling rate
assert (
len(set(batch["""sampling_rate"""] ) ) == 1
), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."""
_a : str = processor(
audio=batch["""speech"""] , text=batch["""target_text"""] , sampling_rate=batch["""sampling_rate"""][0] )
batch.update(UpperCamelCase__ )
return batch
_a : Optional[int] = train_dataset.map(
UpperCamelCase__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , )
_a : str = eval_dataset.map(
UpperCamelCase__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , )
# Metric
_a : str = datasets.load_metric("""wer""" )
def compute_metrics(UpperCamelCase__ ):
_a : List[Any] = pred.predictions
_a : int = np.argmax(UpperCamelCase__ , axis=-1 )
_a : Any = processor.tokenizer.pad_token_id
_a : List[Any] = processor.batch_decode(UpperCamelCase__ )
# we do not want to group tokens when computing the metrics
_a : int = processor.batch_decode(pred.label_ids , group_tokens=UpperCamelCase__ )
_a : Any = wer_metric.compute(predictions=UpperCamelCase__ , references=UpperCamelCase__ )
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# Data collator
_a : Optional[Any] = DataCollatorCTCWithPadding(processor=UpperCamelCase__ , padding=UpperCamelCase__ )
# Initialize our Trainer
_a : Any = CTCTrainer(
model=UpperCamelCase__ , data_collator=UpperCamelCase__ , args=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
_a : Any = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path ):
_a : Tuple = model_args.model_name_or_path
else:
_a : List[str] = None
# Save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank ):
processor.save_pretrained(training_args.output_dir )
_a : Optional[Any] = trainer.train(resume_from_checkpoint=UpperCamelCase__ )
trainer.save_model()
_a : Optional[int] = train_result.metrics
_a : List[str] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ )
)
_a : Optional[int] = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics("""train""" , UpperCamelCase__ )
trainer.save_metrics("""train""" , UpperCamelCase__ )
trainer.save_state()
# Evaluation
_a : List[Any] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
_a : str = trainer.evaluate()
_a : Optional[int] = data_args.max_val_samples if data_args.max_val_samples is not None else len(UpperCamelCase__ )
_a : Dict = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics("""eval""" , UpperCamelCase__ )
trainer.save_metrics("""eval""" , UpperCamelCase__ )
return results
if __name__ == "__main__":
main()
| 324
|
"""simple docstring"""
import numpy as np
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
return vector * sigmoid(1.702 * vector )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 324
| 1
|
"""simple docstring"""
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ):
'''simple docstring'''
# set parameter of one layer
assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match"""
_a : Optional[Any] = nn.Parameter(UpperCamelCase__ )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match"""
_a : Optional[int] = nn.Parameter(UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
# set torch weights for 1-to-1 comparison
_a : Any = np.asarray(weights[0] )
_a : str = np.asarray(weights[1] )
_a : List[str] = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , )
set_param(
torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
# set torch weights for 1-to-1 comparison
_a : List[Any] = np.asarray(weights[0] )
_a : Dict = np.asarray(weights[1] )
_a : Any = np.asarray(weights[2] )
_a : List[Any] = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , )
set_param(
torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
# layernorm 1
_a : Any = weights[0][0][0]
_a : str = np.asarray(layer_norm_a[0] )
_a : int = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , )
# lsh weights + output
_a : Optional[int] = weights[0][1]
if len(UpperCamelCase__ ) < 4:
set_layer_weights_in_torch_lsh(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ )
else:
set_layer_weights_in_torch_local(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ )
# intermediate weighs
_a : int = weights[2][0][1][2]
# Chunked Feed Forward
if len(UpperCamelCase__ ) == 4:
_a : int = intermediate_weights[2]
# layernorm 2
_a : List[str] = np.asarray(intermediate_weights[0][0] )
_a : Any = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , )
# intermediate dense
_a : Optional[Any] = np.asarray(intermediate_weights[1][0] )
_a : Tuple = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , )
# intermediate out
_a : Optional[Any] = np.asarray(intermediate_weights[4][0] )
_a : List[str] = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
# reformer model
_a : int = torch_model.reformer
# word embeds
_a : Any = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCamelCase__ ) , )
if isinstance(weights[3] , UpperCamelCase__ ):
_a : Union[str, Any] = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
_a : List[str] = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), F"""{position_embeddings[emb_idx]} emb does not match"""
_a : List[str] = nn.Parameter(torch.tensor(UpperCamelCase__ ) )
_a : str = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
UpperCamelCase__ ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
_a : int = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# output layer norm
_a : Optional[int] = np.asarray(weights[7][0] )
_a : Dict = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , )
# output embeddings
_a : List[str] = np.asarray(weights[9][0] )
_a : str = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
# Initialise PyTorch model
_a : List[Any] = ReformerConfig.from_json_file(UpperCamelCase__ )
print(F"""Building PyTorch model from configuration: {config}""" )
_a : Any = ReformerModelWithLMHead(UpperCamelCase__ )
with open(UpperCamelCase__ , """rb""" ) as f:
_a : Union[str, Any] = pickle.load(UpperCamelCase__ )["""weights"""]
set_model_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , config.hidden_size )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , UpperCamelCase__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained Reformer model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_snake_case = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 324
|
"""simple docstring"""
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
_snake_case = get_tests_dir('fixtures/test_sentencepiece.model')
_snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model')
_snake_case = 'pt' if is_torch_available() else 'tf'
@require_sentencepiece
@require_tokenizers
class UpperCamelCase ( snake_case_ , unittest.TestCase ):
UpperCamelCase : str = CamembertTokenizer
UpperCamelCase : List[Any] = CamembertTokenizerFast
UpperCamelCase : Optional[int] = True
UpperCamelCase : Union[str, Any] = True
def _lowercase ( self : List[Any] ) -> Union[str, Any]:
super().setUp()
# We have a SentencePiece fixture for testing
_a : List[Any] = CamembertTokenizer(UpperCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self : List[str] ) -> Tuple:
_a : Optional[Any] = """<pad>"""
_a : Tuple = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ) -> str:
_a : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(UpperCAmelCase__ ) , 1004 )
def _lowercase ( self : List[str] ) -> List[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 1005 )
def _lowercase ( self : Union[str, Any] ) -> str:
_a : Tuple = CamembertTokenizer(UpperCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
_a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
_a : Any = """I was born in 92000, and this is falsé."""
_a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ )
_a : Dict = rust_tokenizer.encode(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
_a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
_a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
_a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ )
_a : int = rust_tokenizer.tokenize(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def _lowercase ( self : Dict ) -> List[str]:
if not self.test_rust_tokenizer:
return
_a : Optional[int] = self.get_tokenizer()
_a : Tuple = self.get_rust_tokenizer()
_a : List[Any] = """I was born in 92000, and this is falsé."""
_a : List[str] = tokenizer.tokenize(UpperCAmelCase__ )
_a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
_a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
_a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
_a : int = self.get_rust_tokenizer()
_a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ )
_a : Dict = rust_tokenizer.encode(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
@slow
def _lowercase ( self : Tuple ) -> List[Any]:
# fmt: off
_a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
_a : Union[str, Any] = [
"""Le transformeur est un modèle d'apprentissage profond introduit en 2017, """
"""utilisé principalement dans le domaine du traitement automatique des langues (TAL).""",
"""À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """
"""pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """
"""telles que la traduction et la synthèse de texte.""",
]
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
| 324
| 1
|
"""simple docstring"""
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_snake_case = get_tests_dir('fixtures/test_sentencepiece_no_bos.model')
@require_sentencepiece
@require_tokenizers
class UpperCamelCase ( snake_case_ , unittest.TestCase ):
UpperCamelCase : str = PegasusTokenizer
UpperCamelCase : int = PegasusTokenizerFast
UpperCamelCase : Union[str, Any] = True
UpperCamelCase : Tuple = True
def _lowercase ( self : Optional[Any] ) -> str:
super().setUp()
# We have a SentencePiece fixture for testing
_a : Dict = PegasusTokenizer(UpperCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase ( self : Tuple ) -> List[str]:
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def _lowercase ( self : Tuple , **UpperCAmelCase__ : str ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
def _lowercase ( self : Tuple , UpperCAmelCase__ : List[Any] ) -> Any:
return ("This is a test", "This is a test")
def _lowercase ( self : Any ) -> List[str]:
_a : Optional[int] = """</s>"""
_a : List[Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ )
def _lowercase ( self : List[Any] ) -> List[Any]:
_a : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(UpperCAmelCase__ ) , 1103 )
def _lowercase ( self : Union[str, Any] ) -> Optional[int]:
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def _lowercase ( self : Any ) -> Union[str, Any]:
_a : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
_a : int = self.tokenizer_class.from_pretrained(self.tmpdirname )
_a : str = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
_a : Any = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ).input_ids[0]
_a : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ).input_ids[0]
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def _lowercase ( self : int ) -> Dict:
_a : str = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
_a : List[Any] = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
_a : List[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
_a : str = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase__ ).input_ids[0]
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ) -> List[Any]:
_a : Union[str, Any] = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
_a : List[Any] = """To ensure a smooth flow of bank resolutions."""
_a : List[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
_a : Tuple = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase__ ).input_ids[0]
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _lowercase ( self : Any ) -> str:
_a : Any = ["""This is going to be way too long.""" * 150, """short example"""]
_a : str = ["""not super long but more than 5 tokens""", """tiny"""]
_a : Optional[Any] = self._large_tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="""pt""" )
_a : Dict = self._large_tokenizer(
text_target=UpperCAmelCase__ , max_length=5 , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(UpperCAmelCase__ ) == 2 # input_ids, attention_mask.
@slow
def _lowercase ( self : Tuple ) -> List[Any]:
# fmt: off
_a : Union[str, Any] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class UpperCamelCase ( snake_case_ , unittest.TestCase ):
UpperCamelCase : Optional[Any] = PegasusTokenizer
UpperCamelCase : int = PegasusTokenizerFast
UpperCamelCase : Dict = True
UpperCamelCase : List[str] = True
def _lowercase ( self : Optional[Any] ) -> str:
super().setUp()
# We have a SentencePiece fixture for testing
_a : int = PegasusTokenizer(UpperCAmelCase__ , offset=0 , mask_token_sent=UpperCAmelCase__ , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase ( self : Optional[int] ) -> Dict:
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def _lowercase ( self : Tuple , **UpperCAmelCase__ : int ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
def _lowercase ( self : Any , UpperCAmelCase__ : Dict ) -> Union[str, Any]:
return ("This is a test", "This is a test")
def _lowercase ( self : List[Any] ) -> Optional[Any]:
_a : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
_a : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname )
_a : Optional[int] = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
_a : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ).input_ids[0]
_a : int = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ).input_ids[0]
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
@require_torch
def _lowercase ( self : Any ) -> Optional[int]:
_a : List[Any] = ["""This is going to be way too long.""" * 1000, """short example"""]
_a : int = ["""not super long but more than 5 tokens""", """tiny"""]
_a : List[str] = self._large_tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="""pt""" )
_a : List[Any] = self._large_tokenizer(
text_target=UpperCAmelCase__ , max_length=5 , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(UpperCAmelCase__ ) == 2 # input_ids, attention_mask.
def _lowercase ( self : List[str] ) -> List[Any]:
_a : Optional[int] = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
_a : str = self._large_tokenizer(UpperCAmelCase__ ).input_ids
self.assertListEqual(
UpperCAmelCase__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 324
|
"""simple docstring"""
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
_snake_case = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
_snake_case = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
_snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
_snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
_snake_case = [
('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'),
('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'),
('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'),
('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'),
('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'),
('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'),
('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'),
('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'),
('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'),
(
'zero-shot-object-detection',
'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES',
'AutoModelForZeroShotObjectDetection',
),
('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'),
('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'),
('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'),
('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'),
(
'table-question-answering',
'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForTableQuestionAnswering',
),
('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'),
('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'),
(
'next-sentence-prediction',
'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES',
'AutoModelForNextSentencePrediction',
),
(
'audio-frame-classification',
'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForAudioFrameClassification',
),
('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'),
(
'document-question-answering',
'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForDocumentQuestionAnswering',
),
(
'visual-question-answering',
'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForVisualQuestionAnswering',
),
('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'),
(
'zero-shot-image-classification',
'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForZeroShotImageClassification',
),
('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'),
('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'),
('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'),
]
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ )
return [m.group(0 ) for m in matches]
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
_a : Optional[int] = {
config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
_a : List[Any] = collections.defaultdict(UpperCamelCase__ )
_a : List[str] = collections.defaultdict(UpperCamelCase__ )
_a : Tuple = collections.defaultdict(UpperCamelCase__ )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(UpperCamelCase__ ):
_a : str = None
if _re_tf_models.match(UpperCamelCase__ ) is not None:
_a : List[Any] = tf_models
_a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0]
elif _re_flax_models.match(UpperCamelCase__ ) is not None:
_a : Any = flax_models
_a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0]
elif _re_pt_models.match(UpperCamelCase__ ) is not None:
_a : int = pt_models
_a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0]
if lookup_dict is not None:
while len(UpperCamelCase__ ) > 0:
if attr_name in model_prefix_to_model_type:
_a : Optional[int] = True
break
# Try again after removing the last word in the name
_a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] )
_a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
_a : Dict = list(UpperCamelCase__ )
all_models.sort()
_a : str = {"""model_type""": all_models}
_a : List[Any] = [pt_models[t] for t in all_models]
_a : str = [tf_models[t] for t in all_models]
_a : Optional[int] = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
_a : str = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
_a : List[str] = """AutoProcessor"""
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
_a : str = """AutoTokenizer"""
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
_a : int = """AutoFeatureExtractor"""
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
_a : int = """AutoTokenizer"""
_a : Any = [processors[t] for t in all_models]
return pd.DataFrame(UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : List[Any] = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
_a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""]
_a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""]
# Loop through all three frameworks
for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
# The type of pipeline may not exist in this framework
if not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
continue
# First extract all model_names
_a : str = []
for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values():
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
model_names.append(UpperCamelCase__ )
else:
model_names.extend(list(UpperCamelCase__ ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Dict = get_frameworks_table()
_a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ )
_a : Any = hf_hub_download(
"""huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ )
_a : List[Any] = Dataset.from_json(UpperCamelCase__ )
_a : List[str] = {
tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""])
for i in range(len(UpperCamelCase__ ) )
}
_a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
_a : int = sorted(table.keys() )
_a : Union[str, Any] = pd.DataFrame(
{
"""model_class""": model_classes,
"""pipeline_tag""": [table[m][0] for m in model_classes],
"""auto_class""": [table[m][1] for m in model_classes],
} )
_a : Dict = Dataset.from_pandas(UpperCamelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) )
tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) )
if commit_sha is not None:
_a : List[str] = (
F"""Update with commit {commit_sha}\n\nSee: """
F"""https://github.com/huggingface/transformers/commit/{commit_sha}"""
)
else:
_a : Optional[Any] = """Update"""
upload_folder(
repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , )
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
_a : Any = transformers_module.pipelines.SUPPORTED_TASKS
_a : List[str] = []
for key in pipeline_tasks:
if key not in in_table:
_a : Tuple = pipeline_tasks[key]["""pt"""]
if isinstance(UpperCamelCase__ , (list, tuple) ):
_a : Dict = model[0]
_a : List[str] = model.__name__
if model not in in_table.values():
missing.append(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
_a : Union[str, Any] = """, """.join(UpperCamelCase__ )
raise ValueError(
"""The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """
F"""`utils/update_metadata.py`: {msg}. Please add them!""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.')
parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.')
parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.')
_snake_case = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 324
| 1
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class UpperCamelCase ( unittest.TestCase ):
def __init__( self : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : Dict=18 , UpperCAmelCase__ : str=30 , UpperCAmelCase__ : str=400 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , ) -> Any:
_a : Optional[Any] = size if size is not None else {"""shortest_edge""": 18}
_a : Optional[int] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_a : int = parent
_a : Union[str, Any] = batch_size
_a : Union[str, Any] = num_channels
_a : Any = image_size
_a : Optional[int] = min_resolution
_a : str = max_resolution
_a : List[Any] = do_resize
_a : Union[str, Any] = size
_a : List[str] = do_center_crop
_a : List[Any] = crop_size
_a : Tuple = do_normalize
_a : Any = image_mean
_a : Tuple = image_std
def _lowercase ( self : List[str] ) -> List[Any]:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCamelCase ( snake_case_ , unittest.TestCase ):
UpperCamelCase : Dict = LevitImageProcessor if is_vision_available() else None
def _lowercase ( self : Any ) -> int:
_a : Any = LevitImageProcessingTester(self )
@property
def _lowercase ( self : Dict ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self : Optional[Any] ) -> List[str]:
_a : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(UpperCAmelCase__ , """image_std""" ) )
self.assertTrue(hasattr(UpperCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(UpperCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase__ , """do_center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase__ , """size""" ) )
def _lowercase ( self : str ) -> Optional[Any]:
_a : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
_a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def _lowercase ( self : Any ) -> Any:
pass
def _lowercase ( self : Optional[Any] ) -> Optional[int]:
# Initialize image_processing
_a : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image )
# Test not batched input
_a : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_a : List[str] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _lowercase ( self : Optional[Any] ) -> List[Any]:
# Initialize image_processing
_a : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , np.ndarray )
# Test not batched input
_a : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_a : List[Any] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _lowercase ( self : str ) -> List[Any]:
# Initialize image_processing
_a : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor )
# Test not batched input
_a : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_a : Optional[int] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 324
|
"""simple docstring"""
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"""files""" , [
["""full:README.md""", """dataset_infos.json"""],
["""empty:README.md""", """dataset_infos.json"""],
["""dataset_infos.json"""],
["""full:README.md"""],
] , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" )
if "full:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""---\ndataset_info:\n dataset_size: 42\n---""" )
if "empty:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""""" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f:
f.write("""{\"default\": {\"dataset_size\": 42}}""" )
_a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 4_2
@pytest.mark.parametrize(
"""dataset_info""" , [
DatasetInfo(),
DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ),
] , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = str(UpperCamelCase__ )
dataset_info.write_to_directory(UpperCamelCase__ )
_a : Any = DatasetInfo.from_directory(UpperCamelCase__ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) )
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Dict = DatasetInfo(
description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , )
_a : int = dataset_info._to_yaml_dict()
assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) )
_a : List[str] = yaml.safe_dump(UpperCamelCase__ )
_a : Optional[int] = yaml.safe_load(UpperCamelCase__ )
assert dataset_info_yaml_dict == reloaded
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : List[Any] = DatasetInfo()
_a : Any = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"""dataset_infos_dict""" , [
DatasetInfosDict(),
DatasetInfosDict({"""default""": DatasetInfo()} ),
DatasetInfosDict({"""my_config_name""": DatasetInfo()} ),
DatasetInfosDict(
{
"""default""": DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , )
} ),
DatasetInfosDict(
{
"""v1""": DatasetInfo(dataset_size=4_2 ),
"""v2""": DatasetInfo(dataset_size=1_3_3_7 ),
} ),
] , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : List[Any] = str(UpperCamelCase__ )
dataset_infos_dict.write_to_directory(UpperCamelCase__ )
_a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_a : str = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
| 324
| 1
|
"""simple docstring"""
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class UpperCamelCase ( unittest.TestCase ):
def __init__( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Any=18 , UpperCAmelCase__ : List[str]=30 , UpperCAmelCase__ : Tuple=400 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[Any]=False , ) -> Optional[Any]:
_a : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20}
_a : int = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_a : Optional[int] = parent
_a : int = batch_size
_a : List[Any] = num_channels
_a : Dict = image_size
_a : Optional[Any] = min_resolution
_a : Any = max_resolution
_a : Dict = do_resize
_a : Union[str, Any] = size
_a : str = do_center_crop
_a : Tuple = crop_size
_a : int = do_normalize
_a : Optional[Any] = image_mean
_a : List[str] = image_std
_a : int = do_reduce_labels
def _lowercase ( self : Dict ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Dict = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
_a : Optional[int] = Image.open(dataset[0]["""file"""] )
_a : Tuple = Image.open(dataset[1]["""file"""] )
return image, map
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : List[Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
_a : List[Any] = Image.open(ds[0]["""file"""] )
_a : Tuple = Image.open(ds[1]["""file"""] )
_a : List[Any] = Image.open(ds[2]["""file"""] )
_a : List[Any] = Image.open(ds[3]["""file"""] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class UpperCamelCase ( snake_case_ , unittest.TestCase ):
UpperCamelCase : List[str] = BeitImageProcessor if is_vision_available() else None
def _lowercase ( self : Tuple ) -> Optional[Any]:
_a : Union[str, Any] = BeitImageProcessingTester(self )
@property
def _lowercase ( self : Optional[Any] ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self : Dict ) -> Tuple:
_a : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase__ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase__ , """do_center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase__ , """center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(UpperCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(UpperCAmelCase__ , """image_std""" ) )
def _lowercase ( self : Any ) -> Any:
_a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase__ )
_a : List[str] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=UpperCAmelCase__ )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase__ )
def _lowercase ( self : List[str] ) -> int:
pass
def _lowercase ( self : Any ) -> Dict:
# Initialize image_processing
_a : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image )
# Test not batched input
_a : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_a : Dict = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _lowercase ( self : Union[str, Any] ) -> Tuple:
# Initialize image_processing
_a : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , np.ndarray )
# Test not batched input
_a : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_a : int = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _lowercase ( self : Optional[Any] ) -> List[str]:
# Initialize image_processing
_a : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_a : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor )
# Test not batched input
_a : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_a : Dict = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _lowercase ( self : int ) -> Union[str, Any]:
# Initialize image_processing
_a : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ )
_a : List[Any] = []
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
_a : int = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test batched
_a : List[Any] = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test not batched input (PIL images)
_a , _a : Optional[int] = prepare_semantic_single_inputs()
_a : List[str] = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test batched input (PIL images)
_a , _a : Any = prepare_semantic_batch_inputs()
_a : int = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
2,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
def _lowercase ( self : Optional[int] ) -> Dict:
# Initialize image_processing
_a : int = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
_a , _a : Union[str, Any] = prepare_semantic_single_inputs()
_a : Union[str, Any] = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 150 )
_a : List[str] = True
_a : Union[str, Any] = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
| 324
|
"""simple docstring"""
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class UpperCamelCase ( unittest.TestCase , snake_case_ ):
def _lowercase ( self : int ) -> int:
_a : Optional[Any] = load_tool("""text-to-speech""" )
self.tool.setup()
def _lowercase ( self : List[str] ) -> Union[str, Any]:
# SpeechT5 isn't deterministic
torch.manual_seed(0 )
_a : str = self.tool("""hey""" )
_a : List[str] = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
def _lowercase ( self : Optional[int] ) -> Optional[Any]:
# SpeechT5 isn't deterministic
torch.manual_seed(0 )
_a : int = self.tool("""hey""" )
_a : str = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
| 324
| 1
|
"""simple docstring"""
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : Union[str, Any] = tmp_path / """file.csv"""
_a : Optional[int] = textwrap.dedent(
"""\
header1,header2
1,2
10,20
""" )
with open(UpperCamelCase__ , """w""" ) as f:
f.write(UpperCamelCase__ )
return str(UpperCamelCase__ )
@pytest.fixture
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : List[str] = tmp_path / """malformed_file.csv"""
_a : Optional[int] = textwrap.dedent(
"""\
header1,header2
1,2
10,20,
""" )
with open(UpperCamelCase__ , """w""" ) as f:
f.write(UpperCamelCase__ )
return str(UpperCamelCase__ )
@pytest.fixture
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Tuple = tmp_path / """csv_with_image.csv"""
_a : str = textwrap.dedent(
F"""\
image
{image_file}
""" )
with open(UpperCamelCase__ , """w""" ) as f:
f.write(UpperCamelCase__ )
return str(UpperCamelCase__ )
@pytest.fixture
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : str = tmp_path / """csv_with_label.csv"""
_a : int = textwrap.dedent(
"""\
label
good
bad
good
""" )
with open(UpperCamelCase__ , """w""" ) as f:
f.write(UpperCamelCase__ )
return str(UpperCamelCase__ )
@pytest.fixture
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : Any = tmp_path / """csv_with_int_list.csv"""
_a : Optional[int] = textwrap.dedent(
"""\
int_list
1 2 3
4 5 6
7 8 9
""" )
with open(UpperCamelCase__ , """w""" ) as f:
f.write(UpperCamelCase__ )
return str(UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Tuple = Csv()
_a : Tuple = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(UpperCamelCase__ , match="""Error tokenizing data""" ):
for _ in generator:
pass
assert any(
record.levelname == """ERROR"""
and """Failed to read file""" in record.message
and os.path.basename(UpperCamelCase__ ) in record.message
for record in caplog.records )
@require_pil
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
with open(UpperCamelCase__ , encoding="""utf-8""" ) as f:
_a : List[Any] = f.read().splitlines()[1]
_a : List[str] = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) )
_a : Optional[Any] = csv._generate_tables([[csv_file_with_image]] )
_a : int = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""image""" ).type == Image()()
_a : List[str] = pa_table.to_pydict()["""image"""]
assert generated_content == [{"path": image_file, "bytes": None}]
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
with open(UpperCamelCase__ , encoding="""utf-8""" ) as f:
_a : Any = f.read().splitlines()[1:]
_a : List[str] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) )
_a : Any = csv._generate_tables([[csv_file_with_label]] )
_a : Any = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )()
_a : List[str] = pa_table.to_pydict()["""label"""]
assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(UpperCamelCase__ ) for label in labels]
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : int = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda UpperCamelCase__ : [int(UpperCamelCase__ ) for i in x.split()]} )
_a : List[Any] = csv._generate_tables([[csv_file_with_int_list]] )
_a : Tuple = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type )
_a : Dict = pa_table.to_pydict()["""int_list"""]
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 324
|
"""simple docstring"""
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class UpperCamelCase ( snake_case_ ):
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int:
_a : str = parent
_a : Union[str, Any] = config_class
_a : List[Any] = has_text_modality
_a : List[Any] = kwargs
_a : List[Any] = common_properties
def _lowercase ( self : int ) -> Tuple:
_a : List[str] = self.config_class(**self.inputs_dict )
_a : Dict = (
["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""]
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(["""vocab_size"""] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" )
# Test that config has the common properties as setter
for idx, name in enumerate(UpperCAmelCase__ ):
try:
setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
self.parent.assertEqual(
getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(UpperCAmelCase__ ):
try:
_a : Optional[int] = self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def _lowercase ( self : Optional[int] ) -> Optional[Any]:
_a : Optional[Any] = self.config_class(**self.inputs_dict )
_a : List[str] = json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , UpperCAmelCase__ )
def _lowercase ( self : int ) -> List[str]:
_a : Optional[Any] = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" )
config_first.to_json_file(UpperCAmelCase__ )
_a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def _lowercase ( self : Union[str, Any] ) -> Dict:
_a : Dict = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(UpperCAmelCase__ )
_a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def _lowercase ( self : Dict ) -> Tuple:
_a : List[Any] = self.config_class(**self.inputs_dict )
_a : Any = """test"""
with tempfile.TemporaryDirectory() as tmpdirname:
_a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
config_first.save_pretrained(UpperCAmelCase__ )
_a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def _lowercase ( self : List[str] ) -> Union[str, Any]:
_a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
_a : Union[str, Any] = 3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def _lowercase ( self : Tuple ) -> List[str]:
if self.config_class.is_composition:
return
_a : str = self.config_class()
self.parent.assertIsNotNone(UpperCAmelCase__ )
def _lowercase ( self : List[Any] ) -> Optional[Any]:
_a : Dict = copy.deepcopy(UpperCAmelCase__ )
_a : Any = self.config_class(**UpperCAmelCase__ )
_a : str = []
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) )
elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value:
wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) )
if len(UpperCAmelCase__ ) > 0:
_a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] )
raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" )
def _lowercase ( self : int ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 324
| 1
|
"""simple docstring"""
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
_snake_case = logging.getLogger(__name__)
_snake_case = 'Hello world! cécé herlolip'
_snake_case = namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : int = BertAbsConfig(
temp_dir=""".""" , finetune_bert=UpperCamelCase__ , large=UpperCamelCase__ , share_emb=UpperCamelCase__ , use_bert_emb=UpperCamelCase__ , encoder="""bert""" , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , )
_a : List[Any] = torch.load(UpperCamelCase__ , lambda UpperCamelCase__ , UpperCamelCase__ : storage )
_a : str = AbsSummarizer(UpperCamelCase__ , torch.device("""cpu""" ) , UpperCamelCase__ )
original.eval()
_a : Any = BertAbsSummarizer(UpperCamelCase__ , torch.device("""cpu""" ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("""convert the model""" )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("""Make sure that the models' outputs are identical""" )
_a : str = BertTokenizer.from_pretrained("""bert-base-uncased""" )
# prepare the model inputs
_a : Optional[Any] = tokenizer.encode("""This is sample éàalj'-.""" )
encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(UpperCamelCase__ )) )
_a : str = torch.tensor(UpperCamelCase__ ).unsqueeze(0 )
_a : Optional[int] = tokenizer.encode("""This is sample 3 éàalj'-.""" )
decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(UpperCamelCase__ )) )
_a : Optional[Any] = torch.tensor(UpperCamelCase__ ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
_a : Any = encoder_input_ids
_a : Dict = decoder_input_ids
_a : Dict = None
_a : int = None
_a : List[Any] = None
_a : List[str] = None
_a : Optional[Any] = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
_a : List[str] = original(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )[0]
_a : Optional[int] = original.generator(UpperCamelCase__ )
_a : int = new_model(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )[0]
_a : List[str] = new_model.generator(UpperCamelCase__ )
_a : Dict = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase__ ) )
_a : List[str] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase__ ) )
_a : Optional[Any] = torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
if are_identical:
logging.info("""all weights are equal up to 1e-3""" )
else:
raise ValueError("""the weights are different. The new model is likely different from the original one.""" )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("""saving the model's state dictionary""" )
torch.save(
new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
_snake_case = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 324
|
"""simple docstring"""
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
_snake_case = HUGGINGFACE_HUB_CACHE
_snake_case = 'config.json'
_snake_case = 'diffusion_pytorch_model.bin'
_snake_case = 'diffusion_flax_model.msgpack'
_snake_case = 'model.onnx'
_snake_case = 'diffusion_pytorch_model.safetensors'
_snake_case = 'weights.pb'
_snake_case = 'https://huggingface.co'
_snake_case = default_cache_path
_snake_case = 'diffusers_modules'
_snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
_snake_case = ['fp16', 'non-ema']
_snake_case = '.self_attn'
| 324
| 1
|
"""simple docstring"""
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : List[str] = list(UpperCamelCase__ )
_a : str = list(UpperCamelCase__ )
_a : int = 0
for i in range(len(UpperCamelCase__ ) ):
if lista[i] != lista[i]:
count += 1
_a : List[str] = """_"""
if count > 1:
return False
else:
return "".join(UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : Dict = []
while True:
_a : Optional[int] = ["""$"""] * len(UpperCamelCase__ )
_a : Dict = []
for i in range(len(UpperCamelCase__ ) ):
for j in range(i + 1 , len(UpperCamelCase__ ) ):
_a : Union[str, Any] = compare_string(binary[i] , binary[j] )
if k is False:
_a : List[str] = """*"""
_a : Union[str, Any] = """*"""
temp.append("""X""" )
for i in range(len(UpperCamelCase__ ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(UpperCamelCase__ ) == 0:
return pi
_a : Union[str, Any] = list(set(UpperCamelCase__ ) )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : int = []
for minterm in minterms:
_a : str = """"""
for _ in range(UpperCamelCase__ ):
_a : Tuple = str(minterm % 2 ) + string
minterm //= 2
temp.append(UpperCamelCase__ )
return temp
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : List[str] = list(UpperCamelCase__ )
_a : Tuple = list(UpperCamelCase__ )
_a : str = 0
for i in range(len(UpperCamelCase__ ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : List[Any] = []
_a : Any = [0] * len(UpperCamelCase__ )
for i in range(len(chart[0] ) ):
_a : int = 0
_a : Any = -1
for j in range(len(UpperCamelCase__ ) ):
if chart[j][i] == 1:
count += 1
_a : Tuple = j
if count == 1:
_a : Tuple = 1
for i in range(len(UpperCamelCase__ ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(UpperCamelCase__ ) ):
_a : Dict = 0
temp.append(prime_implicants[i] )
while True:
_a : Union[str, Any] = 0
_a : Dict = -1
_a : int = 0
for i in range(len(UpperCamelCase__ ) ):
_a : Union[str, Any] = chart[i].count(1 )
if count_n > max_n:
_a : Any = count_n
_a : str = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(UpperCamelCase__ ) ):
_a : Dict = 0
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : List[Any] = [[0 for x in range(len(UpperCamelCase__ ) )] for x in range(len(UpperCamelCase__ ) )]
for i in range(len(UpperCamelCase__ ) ):
_a : Optional[int] = prime_implicants[i].count("""_""" )
for j in range(len(UpperCamelCase__ ) ):
if is_for_table(prime_implicants[i] , binary[j] , UpperCamelCase__ ):
_a : Dict = 1
return chart
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Tuple = int(input("""Enter the no. of variables\n""" ) )
_a : Dict = [
float(UpperCamelCase__ )
for x in input(
"""Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split()
]
_a : int = decimal_to_binary(UpperCamelCase__ , UpperCamelCase__ )
_a : Optional[int] = check(UpperCamelCase__ )
print("""Prime Implicants are:""" )
print(UpperCamelCase__ )
_a : Optional[Any] = prime_implicant_chart(UpperCamelCase__ , UpperCamelCase__ )
_a : List[Any] = selection(UpperCamelCase__ , UpperCamelCase__ )
print("""Essential Prime Implicants are:""" )
print(UpperCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 324
|
"""simple docstring"""
from math import factorial
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
_a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
_a : Optional[int] = float(factorial(UpperCamelCase__ ) )
coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print('Probability of 2 successes out of 4 trails')
print('with probability of 0.75 is:', end=' ')
print(binomial_distribution(2, 4, 0.75))
| 324
| 1
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json',
'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json',
'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json',
'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json',
'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json',
'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json',
'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json',
'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json',
'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json',
}
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : Optional[Any] = '''xmod'''
def __init__( self : Optional[int] , UpperCAmelCase__ : Dict=30522 , UpperCAmelCase__ : int=768 , UpperCAmelCase__ : Optional[int]=12 , UpperCAmelCase__ : Tuple=12 , UpperCAmelCase__ : Any=3072 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : List[str]=512 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : int=0.0_2 , UpperCAmelCase__ : Any=1E-12 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Optional[int]=0 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=False , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Optional[Any]=("en_XX",) , UpperCAmelCase__ : Optional[int]=None , **UpperCAmelCase__ : Any , ) -> Optional[Any]:
super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
_a : List[str] = vocab_size
_a : List[str] = hidden_size
_a : Tuple = num_hidden_layers
_a : str = num_attention_heads
_a : int = hidden_act
_a : str = intermediate_size
_a : Optional[Any] = hidden_dropout_prob
_a : Union[str, Any] = attention_probs_dropout_prob
_a : int = max_position_embeddings
_a : Optional[Any] = type_vocab_size
_a : List[Any] = initializer_range
_a : str = layer_norm_eps
_a : int = position_embedding_type
_a : int = use_cache
_a : int = classifier_dropout
_a : int = pre_norm
_a : Dict = adapter_reduction_factor
_a : List[str] = adapter_layer_norm
_a : List[str] = adapter_reuse_layer_norm
_a : str = ln_before_adapter
_a : Optional[Any] = list(UpperCAmelCase__ )
_a : Any = default_language
class UpperCamelCase ( snake_case_ ):
@property
def _lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_a : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_a : Any = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 324
|
"""simple docstring"""
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] )
if (
min(UpperCamelCase__ , UpperCamelCase__ ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
_a : Any = 0
count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ )
count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ )
count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ )
count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 324
| 1
|
"""simple docstring"""
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class UpperCamelCase ( unittest.TestCase ):
def _lowercase ( self : Dict ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowercase ( self : List[str] ) -> Dict:
_a : Tuple = 1
_a : Optional[Any] = 3
_a : Optional[int] = (32, 32)
_a : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase__ )
return image
@property
def _lowercase ( self : int ) -> Dict:
torch.manual_seed(0 )
_a : Any = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def _lowercase ( self : Union[str, Any] ) -> int:
torch.manual_seed(0 )
_a : Optional[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _lowercase ( self : Optional[int] ) -> int:
torch.manual_seed(0 )
_a : List[str] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(UpperCAmelCase__ )
@property
def _lowercase ( self : Dict ) -> Optional[Any]:
def extract(*UpperCAmelCase__ : int , **UpperCAmelCase__ : str ):
class UpperCamelCase :
def __init__( self : Any ) -> int:
_a : List[Any] = torch.ones([0] )
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> str:
self.pixel_values.to(UpperCAmelCase__ )
return self
return Out()
return extract
def _lowercase ( self : Any ) -> List[Any]:
_a : int = """cpu""" # ensure determinism for the device-dependent torch.Generator
_a : Union[str, Any] = self.dummy_cond_unet
_a : Optional[int] = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , )
_a : List[str] = self.dummy_vae
_a : Tuple = self.dummy_text_encoder
_a : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
_a : int = StableDiffusionPipeline(
unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , feature_extractor=self.dummy_extractor , )
_a : Optional[Any] = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : int = """A painting of a squirrel eating a burger"""
_a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 )
_a : Optional[Any] = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
_a : Any = output.images
_a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 )
_a : Tuple = sd_pipe(
[prompt] , generator=UpperCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=UpperCAmelCase__ , )[0]
_a : Optional[Any] = image[0, -3:, -3:, -1]
_a : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_a : Any = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowercase ( self : Any ) -> List[str]:
_a : int = """cpu""" # ensure determinism for the device-dependent torch.Generator
_a : Tuple = self.dummy_cond_unet
_a : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase__ )
_a : int = self.dummy_vae
_a : Optional[Any] = self.dummy_text_encoder
_a : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
_a : Any = StableDiffusionPipeline(
unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , feature_extractor=self.dummy_extractor , )
_a : Any = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : Union[str, Any] = """A painting of a squirrel eating a burger"""
_a : str = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 )
_a : Optional[Any] = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
_a : Dict = output.images
_a : int = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 )
_a : int = sd_pipe(
[prompt] , generator=UpperCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=UpperCAmelCase__ , )[0]
_a : List[Any] = image[0, -3:, -3:, -1]
_a : Tuple = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_a : int = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowercase ( self : int ) -> Dict:
_a : Any = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=UpperCAmelCase__ )
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
assert isinstance(pipe.scheduler , UpperCAmelCase__ )
assert pipe.safety_checker is None
_a : Any = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(UpperCAmelCase__ )
_a : Union[str, Any] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
_a : Optional[int] = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowercase ( self : List[str] ) -> List[str]:
_a : Union[str, Any] = self.dummy_cond_unet
_a : List[Any] = PNDMScheduler(skip_prk_steps=UpperCAmelCase__ )
_a : List[str] = self.dummy_vae
_a : Optional[Any] = self.dummy_text_encoder
_a : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
_a : Any = unet.half()
_a : List[Any] = vae.half()
_a : List[Any] = bert.half()
# make sure here that pndm scheduler skips prk
_a : Optional[int] = StableDiffusionPipeline(
unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , feature_extractor=self.dummy_extractor , )
_a : Tuple = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : str = """A painting of a squirrel eating a burger"""
_a : Union[str, Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class UpperCamelCase ( unittest.TestCase ):
def _lowercase ( self : List[Any] ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : Tuple ) -> Dict:
_a : Dict = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=UpperCAmelCase__ )
_a : Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
_a : Dict = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : List[str] = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
_a : Optional[int] = 4003660346
_a : int = 7
# without safety guidance (sld_guidance_scale = 0)
_a : List[Any] = torch.manual_seed(UpperCAmelCase__ )
_a : List[Any] = sd_pipe(
[prompt] , generator=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
_a : Optional[int] = output.images
_a : List[str] = image[0, -3:, -3:, -1]
_a : int = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
_a : Optional[int] = torch.manual_seed(UpperCAmelCase__ )
_a : List[Any] = sd_pipe(
[prompt] , generator=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
_a : Union[str, Any] = output.images
_a : int = image[0, -3:, -3:, -1]
_a : List[str] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _lowercase ( self : int ) -> Tuple:
_a : Optional[int] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=UpperCAmelCase__ )
_a : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
_a : int = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : Optional[int] = """padme amidala taking a bath artwork, safe for work, no nudity"""
_a : List[Any] = 2734971755
_a : Any = 7
_a : str = torch.manual_seed(UpperCAmelCase__ )
_a : Optional[int] = sd_pipe(
[prompt] , generator=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
_a : Tuple = output.images
_a : str = image[0, -3:, -3:, -1]
_a : List[str] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
_a : List[str] = torch.manual_seed(UpperCAmelCase__ )
_a : List[str] = sd_pipe(
[prompt] , generator=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
_a : List[Any] = output.images
_a : List[str] = image[0, -3:, -3:, -1]
_a : int = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _lowercase ( self : Union[str, Any] ) -> List[Any]:
_a : str = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
_a : Optional[int] = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : Union[str, Any] = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
_a : Tuple = 1044355234
_a : Any = 12
_a : int = torch.manual_seed(UpperCAmelCase__ )
_a : Union[str, Any] = sd_pipe(
[prompt] , generator=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
_a : Optional[int] = output.images
_a : Union[str, Any] = image[0, -3:, -3:, -1]
_a : List[str] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
_a : str = torch.manual_seed(UpperCAmelCase__ )
_a : List[str] = sd_pipe(
[prompt] , generator=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
_a : Dict = output.images
_a : Union[str, Any] = image[0, -3:, -3:, -1]
_a : List[Any] = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 324
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_snake_case = {
'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['VisionEncoderDecoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['TFVisionEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['FlaxVisionEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
_snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324
| 1
|
"""simple docstring"""
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError("""check_bouncy() accepts only integer arguments""" )
_a : int = str(UpperCamelCase__ )
_a : str = """""".join(sorted(UpperCamelCase__ ) )
return sorted_str_n != str_n and sorted_str_n[::-1] != str_n
def lowerCAmelCase__ ( UpperCamelCase__ = 9_9 ):
'''simple docstring'''
if not 0 < percent < 1_0_0:
raise ValueError("""solution() only accepts values from 0 to 100""" )
_a : List[str] = 0
_a : List[str] = 1
while True:
if check_bouncy(UpperCamelCase__ ):
bouncy_num += 1
if (bouncy_num / num) * 1_0_0 >= percent:
return num
num += 1
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F'''{solution(99)}''')
| 324
|
"""simple docstring"""
from __future__ import annotations
import time
_snake_case = list[tuple[int, int]]
_snake_case = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
_snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class UpperCamelCase :
def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]:
_a : int = pos_x
_a : Union[str, Any] = pos_y
_a : Tuple = (pos_y, pos_x)
_a : Tuple = goal_x
_a : int = goal_y
_a : str = parent
class UpperCamelCase :
def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]:
_a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ )
_a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ )
_a : Optional[int] = [self.start]
_a : Tuple = False
def _lowercase ( self : str ) -> Path | None:
while self.node_queue:
_a : Tuple = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
_a : Dict = True
return self.retrace_path(UpperCAmelCase__ )
_a : Tuple = self.get_successors(UpperCAmelCase__ )
for node in successors:
self.node_queue.append(UpperCAmelCase__ )
if not self.reached:
return [self.start.pos]
return None
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]:
_a : Optional[Any] = []
for action in delta:
_a : str = parent.pos_x + action[1]
_a : List[Any] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) )
return successors
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path:
_a : Dict = node
_a : List[str] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
_a : Any = current_node.parent
path.reverse()
return path
class UpperCamelCase :
def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any:
_a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ )
_a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ )
_a : Dict = False
def _lowercase ( self : Any ) -> Path | None:
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
_a : List[Any] = self.fwd_bfs.node_queue.pop(0 )
_a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
_a : Optional[int] = True
return self.retrace_bidirectional_path(
UpperCAmelCase__ , UpperCAmelCase__ )
_a : List[str] = current_bwd_node
_a : int = current_fwd_node
_a : Optional[Any] = {
self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ),
self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(UpperCAmelCase__ )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path:
_a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ )
_a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ )
bwd_path.pop()
bwd_path.reverse()
_a : Tuple = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
_snake_case = (0, 0)
_snake_case = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
_snake_case = time.time()
_snake_case = BreadthFirstSearch(init, goal)
_snake_case = bfs.search()
_snake_case = time.time() - start_bfs_time
print('Unidirectional BFS computation time : ', bfs_time)
_snake_case = time.time()
_snake_case = BidirectionalBreadthFirstSearch(init, goal)
_snake_case = bd_bfs.search()
_snake_case = time.time() - start_bd_bfs_time
print('Bidirectional BFS computation time : ', bd_bfs_time)
| 324
| 1
|
"""simple docstring"""
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class UpperCamelCase ( snake_case_ , snake_case_ ):
@register_to_config
def __init__( self : Dict , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : float = 2_0_0_0.0 , UpperCAmelCase__ : int = 768 , UpperCAmelCase__ : int = 12 , UpperCAmelCase__ : int = 12 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2048 , UpperCAmelCase__ : float = 0.1 , ) -> Optional[int]:
super().__init__()
_a : Optional[Any] = nn.Sequential(
nn.Linear(UpperCAmelCase__ , d_model * 4 , bias=UpperCAmelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCAmelCase__ ) , nn.SiLU() , )
_a : Optional[int] = nn.Embedding(UpperCAmelCase__ , UpperCAmelCase__ )
_a : Dict = False
_a : Union[str, Any] = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ )
_a : Optional[Any] = nn.Dropout(p=UpperCAmelCase__ )
_a : List[Any] = nn.ModuleList()
for lyr_num in range(UpperCAmelCase__ ):
# FiLM conditional T5 decoder
_a : List[Any] = DecoderLayer(d_model=UpperCAmelCase__ , d_kv=UpperCAmelCase__ , num_heads=UpperCAmelCase__ , d_ff=UpperCAmelCase__ , dropout_rate=UpperCAmelCase__ )
self.decoders.append(UpperCAmelCase__ )
_a : Dict = TaLayerNorm(UpperCAmelCase__ )
_a : List[str] = nn.Dropout(p=UpperCAmelCase__ )
_a : Any = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ )
def _lowercase ( self : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any ) -> Dict:
_a : Dict = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def _lowercase ( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict ) -> Tuple:
_a , _a , _a : Optional[int] = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
_a : Optional[int] = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
_a : Optional[int] = self.conditioning_emb(UpperCAmelCase__ ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
_a : Optional[int] = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
_a : Optional[int] = torch.broadcast_to(
torch.arange(UpperCAmelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , )
_a : Optional[int] = self.position_encoding(UpperCAmelCase__ )
_a : List[str] = self.continuous_inputs_projection(UpperCAmelCase__ )
inputs += position_encodings
_a : List[str] = self.dropout(UpperCAmelCase__ )
# decoder: No padding present.
_a : Any = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
_a : List[str] = [(x, self.encoder_decoder_mask(UpperCAmelCase__ , UpperCAmelCase__ )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
_a : Union[str, Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
_a : Optional[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
_a : Tuple = lyr(
UpperCAmelCase__ , conditioning_emb=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , )[0]
_a : Optional[int] = self.decoder_norm(UpperCAmelCase__ )
_a : List[str] = self.post_dropout(UpperCAmelCase__ )
_a : int = self.spec_out(UpperCAmelCase__ )
return spec_out
class UpperCamelCase ( nn.Module ):
def __init__( self : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=1E-6 ) -> Optional[int]:
super().__init__()
_a : Tuple = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=UpperCAmelCase__ , d_kv=UpperCAmelCase__ , num_heads=UpperCAmelCase__ , dropout_rate=UpperCAmelCase__ ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=UpperCAmelCase__ , d_kv=UpperCAmelCase__ , num_heads=UpperCAmelCase__ , dropout_rate=UpperCAmelCase__ , layer_norm_epsilon=UpperCAmelCase__ , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=UpperCAmelCase__ , d_ff=UpperCAmelCase__ , dropout_rate=UpperCAmelCase__ , layer_norm_epsilon=UpperCAmelCase__ ) )
def _lowercase ( self : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[str]=None , ) -> Dict:
_a : Optional[Any] = self.layer[0](
UpperCAmelCase__ , conditioning_emb=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , )
if encoder_hidden_states is not None:
_a : List[Any] = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to(
encoder_hidden_states.dtype )
_a : List[str] = self.layer[1](
UpperCAmelCase__ , key_value_states=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , )
# Apply Film Conditional Feed Forward layer
_a : List[Any] = self.layer[-1](UpperCAmelCase__ , UpperCAmelCase__ )
return (hidden_states,)
class UpperCamelCase ( nn.Module ):
def __init__( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] ) -> Tuple:
super().__init__()
_a : Optional[Any] = TaLayerNorm(UpperCAmelCase__ )
_a : int = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase__ )
_a : Any = Attention(query_dim=UpperCAmelCase__ , heads=UpperCAmelCase__ , dim_head=UpperCAmelCase__ , out_bias=UpperCAmelCase__ , scale_qk=UpperCAmelCase__ )
_a : List[str] = nn.Dropout(UpperCAmelCase__ )
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Union[str, Any]=None , ) -> Any:
# pre_self_attention_layer_norm
_a : str = self.layer_norm(UpperCAmelCase__ )
if conditioning_emb is not None:
_a : int = self.FiLMLayer(UpperCAmelCase__ , UpperCAmelCase__ )
# Self-attention block
_a : Tuple = self.attention(UpperCAmelCase__ )
_a : Optional[Any] = hidden_states + self.dropout(UpperCAmelCase__ )
return hidden_states
class UpperCamelCase ( nn.Module ):
def __init__( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> List[str]:
super().__init__()
_a : Any = Attention(query_dim=UpperCAmelCase__ , heads=UpperCAmelCase__ , dim_head=UpperCAmelCase__ , out_bias=UpperCAmelCase__ , scale_qk=UpperCAmelCase__ )
_a : int = TaLayerNorm(UpperCAmelCase__ , eps=UpperCAmelCase__ )
_a : int = nn.Dropout(UpperCAmelCase__ )
def _lowercase ( self : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[str]=None , ) -> Optional[Any]:
_a : Tuple = self.layer_norm(UpperCAmelCase__ )
_a : Any = self.attention(
UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , attention_mask=attention_mask.squeeze(1 ) , )
_a : int = hidden_states + self.dropout(UpperCAmelCase__ )
return layer_output
class UpperCamelCase ( nn.Module ):
def __init__( self : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]:
super().__init__()
_a : str = TaDenseGatedActDense(d_model=UpperCAmelCase__ , d_ff=UpperCAmelCase__ , dropout_rate=UpperCAmelCase__ )
_a : Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase__ )
_a : Tuple = TaLayerNorm(UpperCAmelCase__ , eps=UpperCAmelCase__ )
_a : str = nn.Dropout(UpperCAmelCase__ )
def _lowercase ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any]=None ) -> Optional[int]:
_a : Any = self.layer_norm(UpperCAmelCase__ )
if conditioning_emb is not None:
_a : Optional[Any] = self.film(UpperCAmelCase__ , UpperCAmelCase__ )
_a : Optional[int] = self.DenseReluDense(UpperCAmelCase__ )
_a : List[Any] = hidden_states + self.dropout(UpperCAmelCase__ )
return hidden_states
class UpperCamelCase ( nn.Module ):
def __init__( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict ) -> List[Any]:
super().__init__()
_a : List[str] = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ )
_a : List[Any] = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ )
_a : List[str] = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ )
_a : Dict = nn.Dropout(UpperCAmelCase__ )
_a : List[Any] = NewGELUActivation()
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any ) -> Optional[int]:
_a : Tuple = self.act(self.wi_a(UpperCAmelCase__ ) )
_a : List[Any] = self.wi_a(UpperCAmelCase__ )
_a : List[str] = hidden_gelu * hidden_linear
_a : Optional[Any] = self.dropout(UpperCAmelCase__ )
_a : Tuple = self.wo(UpperCAmelCase__ )
return hidden_states
class UpperCamelCase ( nn.Module ):
def __init__( self : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any]=1E-6 ) -> List[Any]:
super().__init__()
_a : Optional[int] = nn.Parameter(torch.ones(UpperCAmelCase__ ) )
_a : str = eps
def _lowercase ( self : Any , UpperCAmelCase__ : Any ) -> str:
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
_a : List[Any] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCAmelCase__ )
_a : Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
_a : Optional[int] = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class UpperCamelCase ( nn.Module ):
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : torch.Tensor ) -> torch.Tensor:
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(UpperCAmelCase__ , 3.0 )) ))
class UpperCamelCase ( nn.Module ):
def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> List[str]:
super().__init__()
_a : Optional[Any] = nn.Linear(UpperCAmelCase__ , out_features * 2 , bias=UpperCAmelCase__ )
def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> Any:
_a : List[Any] = self.scale_bias(UpperCAmelCase__ )
_a , _a : Any = torch.chunk(UpperCAmelCase__ , 2 , -1 )
_a : Dict = x * (1 + scale) + shift
return x
| 324
|
"""simple docstring"""
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_snake_case = logging.getLogger(__name__)
_snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
_snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class UpperCamelCase :
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={
'''help''': (
'''The model checkpoint for weights initialization. Leave None if you want to train a model from'''
''' scratch.'''
)
} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class UpperCamelCase :
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={
'''help''': (
'''The input training data files (multiple files in glob format). '''
'''Very often splitting large files to smaller files can prevent tokenizer going out of memory'''
)
} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , )
UpperCamelCase : bool = field(
default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , )
UpperCamelCase : bool = field(
default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} )
UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} )
UpperCamelCase : float = field(
default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} )
UpperCamelCase : float = field(
default=1 / 6 , metadata={
'''help''': (
'''Ratio of length of a span of masked tokens to surrounding context length for permutation language'''
''' modeling.'''
)
} , )
UpperCamelCase : int = field(
default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} )
UpperCamelCase : int = field(
default=-1 , metadata={
'''help''': (
'''Optional input sequence length after tokenization.'''
'''The training dataset will be truncated in block of this size for training.'''
'''Default to the model max input length for single sentence inputs (take into account special tokens).'''
)
} , )
UpperCamelCase : bool = field(
default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ):
'''simple docstring'''
def _dataset(UpperCamelCase__ , UpperCamelCase__=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" )
return LineByLineWithRefDataset(
tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , )
return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size )
else:
return TextDataset(
tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def lowerCAmelCase__ ( ):
'''simple docstring'''
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_a , _a , _a : List[str] = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
"""Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """
"""or remove the --do_eval argument.""" )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
_a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
_a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
_a : str = CONFIG_MAPPING[model_args.model_type]()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.tokenizer_name:
_a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
_a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another"""
""" script, save it,and load it from here, using --tokenizer_name""" )
if model_args.model_name_or_path:
_a : Optional[Any] = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , )
else:
logger.info("""Training new model from scratch""" )
_a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ )
model.resize_token_embeddings(len(UpperCamelCase__ ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
"""BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"""
"""--mlm flag (masked language modeling).""" )
if data_args.block_size <= 0:
_a : int = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
_a : Optional[Any] = min(data_args.block_size , tokenizer.max_len )
# Get datasets
_a : Optional[Any] = (
get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
_a : Optional[int] = (
get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
_a : Any = DataCollatorForPermutationLanguageModeling(
tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
_a : Union[str, Any] = DataCollatorForWholeWordMask(
tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability )
else:
_a : str = DataCollatorForLanguageModeling(
tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
_a : Union[str, Any] = Trainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , )
# Training
if training_args.do_train:
_a : Optional[Any] = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=UpperCamelCase__ )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_a : Union[str, Any] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
_a : int = trainer.evaluate()
_a : Dict = math.exp(eval_output["""eval_loss"""] )
_a : Union[str, Any] = {"""perplexity""": perplexity}
_a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" )
if trainer.is_world_master():
with open(UpperCamelCase__ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key in sorted(result.keys() ):
logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) )
writer.write("""%s = %s\n""" % (key, str(result[key] )) )
results.update(UpperCamelCase__ )
return results
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 324
| 1
|
"""simple docstring"""
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Union[str, Any] = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch """
"""helper utility that will spawn up """
"""multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=UpperCamelCase__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=UpperCamelCase__ , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=UpperCamelCase__ )
return parser.parse_args()
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Any = parse_args()
# Import training_script as a module.
_a : str = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
_a : List[Any] = script_fpath.stem
_a : Tuple = importlib.import_module(UpperCamelCase__ )
# Patch sys.argv
_a : int = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 324
|
"""simple docstring"""
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_snake_case = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['memory_attention', 'encoder_attn'],
['attention', 'attn'],
['/', '.'],
['.LayerNorm.gamma', '_layer_norm.weight'],
['.LayerNorm.beta', '_layer_norm.bias'],
['r.layer_', 'r.layers.'],
['output_proj', 'out_proj'],
['ffn.dense_1.', 'fc2.'],
['ffn.dense.', 'fc1.'],
['ffn_layer_norm', 'final_layer_norm'],
['kernel', 'weight'],
['encoder_layer_norm.', 'encoder.layer_norm.'],
['decoder_layer_norm.', 'decoder.layer_norm.'],
['embeddings.weights', 'shared.weight'],
]
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
for pegasus_name, hf_name in PATTERNS:
_a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ )
return k
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Union[str, Any] = DEFAULTS.copy()
cfg_kwargs.update(UpperCamelCase__ )
_a : Optional[Any] = PegasusConfig(**UpperCamelCase__ )
_a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ )
_a : str = torch_model.model.state_dict()
_a : Union[str, Any] = {}
for k, v in tf_weights.items():
_a : Any = rename_state_dict_key(UpperCamelCase__ )
if new_k not in sd:
raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" )
if "dense" in k or "proj" in new_k:
_a : str = v.T
_a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}"""
# make sure embedding.padding_idx is respected
_a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] )
_a : str = mapping["""shared.weight"""]
_a : Union[str, Any] = mapping["""shared.weight"""]
_a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping}
mapping.update(**UpperCamelCase__ )
_a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
_a : Optional[Any] = [
k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""]
]
assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], F"""no matches found for the following tf keys {extra}"""
return torch_model
def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ):
'''simple docstring'''
_a : List[Any] = tf.train.list_variables(UpperCamelCase__ )
_a : Optional[int] = {}
_a : Dict = ["""Adafactor""", """global_step"""]
for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ):
_a : Optional[Any] = any(pat in name for pat in ignore_name )
if skip_key:
continue
_a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ )
_a : int = array
return tf_weights
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
# save tokenizer first
_a : Dict = Path(UpperCamelCase__ ).parent.name
_a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""]
_a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(UpperCamelCase__ )
# convert model
_a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ )
_a : Dict = task_specific_params[F"""summarization_{dataset}"""]
if dataset == "large":
_a : Tuple = task_specific_params
_a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ )
torch_model.save_pretrained(UpperCamelCase__ )
_a : Dict = torch_model.state_dict()
sd.pop("""model.decoder.embed_positions.weight""" )
sd.pop("""model.encoder.embed_positions.weight""" )
torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables')
parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.')
_snake_case = parser.parse_args()
if args.save_dir is None:
_snake_case = Path(args.tf_ckpt_path).parent.name
_snake_case = os.path.join('pegasus', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 324
| 1
|
"""simple docstring"""
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
return 1 / (1 + np.exp(-z ))
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
return (-y * np.log(UpperCamelCase__ ) - (1 - y) * np.log(1 - h )).mean()
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = np.dot(UpperCamelCase__ , UpperCamelCase__ )
return np.sum(y * scores - np.log(1 + np.exp(UpperCamelCase__ ) ) )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=7_0_0_0_0 ):
'''simple docstring'''
_a : List[str] = np.zeros(x.shape[1] )
for iterations in range(UpperCamelCase__ ):
_a : Optional[Any] = np.dot(UpperCamelCase__ , UpperCamelCase__ )
_a : Union[str, Any] = sigmoid_function(UpperCamelCase__ )
_a : List[str] = np.dot(x.T , h - y ) / y.size
_a : Any = theta - alpha * gradient # updating the weights
_a : Optional[int] = np.dot(UpperCamelCase__ , UpperCamelCase__ )
_a : Any = sigmoid_function(UpperCamelCase__ )
_a : Any = cost_function(UpperCamelCase__ , UpperCamelCase__ )
if iterations % 1_0_0 == 0:
print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
_snake_case = datasets.load_iris()
_snake_case = iris.data[:, :2]
_snake_case = (iris.target != 0) * 1
_snake_case = 0.1
_snake_case = logistic_reg(alpha, x, y, max_iterations=7_0000)
print('theta: ', theta) # printing the theta i.e our weights vector
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
return sigmoid_function(
np.dot(UpperCamelCase__ , UpperCamelCase__ ) ) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1')
((_snake_case) , (_snake_case)) = (x[:, 0].min(), x[:, 0].max())
((_snake_case) , (_snake_case)) = (x[:, 1].min(), x[:, 1].max())
((_snake_case) , (_snake_case)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
_snake_case = np.c_[xxa.ravel(), xxa.ravel()]
_snake_case = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black')
plt.legend()
plt.show()
| 324
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ):
UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline
UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''}
UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def _lowercase ( self : Any ) -> List[Any]:
torch.manual_seed(0 )
_a : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , )
_a : Union[str, Any] = EulerDiscreteScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , )
torch.manual_seed(0 )
_a : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
_a : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , )
_a : Tuple = CLIPTextModel(UpperCAmelCase__ )
_a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ )
_a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ )
_a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ )
_a : Any = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""text_encoder_2""": text_encoder_a,
"""tokenizer_2""": tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int:
_a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
_a : Any = image / 2 + 0.5
if str(UpperCAmelCase__ ).startswith("""mps""" ):
_a : Any = torch.manual_seed(UpperCAmelCase__ )
else:
_a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
_a : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 5.0,
"""output_type""": """numpy""",
"""strength""": 0.7_5,
}
return inputs
def _lowercase ( self : Any ) -> List[Any]:
_a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
_a : Dict = self.get_dummy_components()
_a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ )
_a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ )
_a : List[str] = sd_pipe(**UpperCAmelCase__ ).images
_a : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _lowercase ( self : Any ) -> Any:
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def _lowercase ( self : List[Any] ) -> Optional[Any]:
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def _lowercase ( self : Any ) -> Any:
pass
def _lowercase ( self : Tuple ) -> Union[str, Any]:
_a : int = self.get_dummy_components()
_a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ )
_a : Dict = sd_pipe.to(UpperCAmelCase__ )
_a : List[str] = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
# forward without prompt embeds
_a : int = self.get_dummy_inputs(UpperCAmelCase__ )
_a : List[str] = 3 * ["""this is a negative prompt"""]
_a : Dict = negative_prompt
_a : Dict = 3 * [inputs["""prompt"""]]
_a : Optional[Any] = sd_pipe(**UpperCAmelCase__ )
_a : Tuple = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
_a : int = self.get_dummy_inputs(UpperCAmelCase__ )
_a : Union[str, Any] = 3 * ["""this is a negative prompt"""]
_a : int = 3 * [inputs.pop("""prompt""" )]
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ )
_a : Tuple = sd_pipe(
**UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , )
_a : Dict = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class UpperCamelCase ( unittest.TestCase ):
def _lowercase ( self : List[str] ) -> Union[str, Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]:
_a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
_a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) )
_a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ )
_a : Any = {
"""prompt""": """a photograph of an astronaut riding a horse""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def _lowercase ( self : int ) -> Union[str, Any]:
_a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : List[str] = self.get_inputs(UpperCAmelCase__ )
_a : Tuple = pipe(**UpperCAmelCase__ ).images
_a : List[str] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
_a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 324
| 1
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCamelCase ( snake_case_ , unittest.TestCase ):
UpperCamelCase : Dict = CanineTokenizer
UpperCamelCase : List[Any] = False
def _lowercase ( self : int ) -> Tuple:
super().setUp()
_a : Dict = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowercase ( self : str ) -> Tuple:
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def _lowercase ( self : Tuple , **UpperCAmelCase__ : Tuple ) -> CanineTokenizer:
_a : Any = self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
_a : Dict = 1024
return tokenizer
@require_torch
def _lowercase ( self : Optional[Any] ) -> Optional[Any]:
_a : Any = self.canine_tokenizer
_a : int = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
_a : int = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0]
# fmt: on
_a : List[str] = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors="""pt""" )
self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ )
_a : Tuple = list(batch.input_ids.numpy()[0] )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def _lowercase ( self : Any ) -> List[str]:
_a : Dict = self.canine_tokenizer
_a : Any = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
_a : Tuple = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , UpperCAmelCase__ )
self.assertIn("""attention_mask""" , UpperCAmelCase__ )
self.assertIn("""token_type_ids""" , UpperCAmelCase__ )
@require_torch
def _lowercase ( self : str ) -> Tuple:
_a : Optional[int] = self.canine_tokenizer
_a : List[Any] = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
_a : str = tokenizer(
text_target=UpperCAmelCase__ , max_length=32 , padding="""max_length""" , truncation=UpperCAmelCase__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def _lowercase ( self : List[str] ) -> str:
# safety check on max_len default value so we are sure the test works
_a : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
_a : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_a : List[str] = tempfile.mkdtemp()
_a : Dict = """ He is very happy, UNwant\u00E9d,running"""
_a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
tokenizer.save_pretrained(UpperCAmelCase__ )
_a : Dict = tokenizer.__class__.from_pretrained(UpperCAmelCase__ )
_a : Optional[int] = after_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
shutil.rmtree(UpperCAmelCase__ )
_a : int = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_a : Dict = tempfile.mkdtemp()
_a : Dict = """ He is very happy, UNwant\u00E9d,running"""
_a : Optional[int] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
_a : Optional[int] = chr(0xe007 )
additional_special_tokens.append(UpperCAmelCase__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
_a : Optional[int] = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
tokenizer.save_pretrained(UpperCAmelCase__ )
_a : List[Any] = tokenizer.__class__.from_pretrained(UpperCAmelCase__ )
_a : int = after_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
self.assertIn(UpperCAmelCase__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
_a : Union[str, Any] = tokenizer.__class__.from_pretrained(UpperCAmelCase__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(UpperCAmelCase__ )
def _lowercase ( self : str ) -> Optional[int]:
_a : Tuple = self.get_tokenizers(do_lower_case=UpperCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
_a , _a : Union[str, Any] = self.get_clean_sequence(UpperCAmelCase__ )
# a special token for Canine can be defined as follows:
_a : str = 0xe005
_a : Optional[Any] = chr(UpperCAmelCase__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
_a : Optional[int] = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertEqual(len(UpperCAmelCase__ ) , 1 )
_a : str = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=UpperCAmelCase__ )
_a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
_a : Any = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
_a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertEqual(UpperCAmelCase__ , input_encoded + special_token_id )
_a : Optional[int] = tokenizer.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ )
self.assertTrue(special_token not in decoded )
def _lowercase ( self : List[Any] ) -> Dict:
_a : Union[str, Any] = self.get_tokenizers(do_lower_case=UpperCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
_a : Any = chr(0xe005 )
_a : Union[str, Any] = chr(0xe006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=UpperCAmelCase__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
_a : List[Any] = tokenizer.tokenize(UpperCAmelCase__ )
_a : Optional[int] = tokenizer.tokenize(UpperCAmelCase__ )
self.assertEqual(len(UpperCAmelCase__ ) , 1 )
self.assertEqual(len(UpperCAmelCase__ ) , 1 )
self.assertEqual(token_a[0] , UpperCAmelCase__ )
self.assertEqual(token_a[0] , UpperCAmelCase__ )
@require_tokenizers
def _lowercase ( self : str ) -> Tuple:
_a : Optional[int] = self.get_tokenizers(do_lower_case=UpperCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
# a special token for Canine can be defined as follows:
_a : str = 0xe006
_a : Tuple = chr(UpperCAmelCase__ )
_a : int = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(UpperCAmelCase__ )
tokenizer.from_pretrained(UpperCAmelCase__ )
def _lowercase ( self : List[str] ) -> Dict:
_a : Tuple = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(UpperCAmelCase__ )
with open(os.path.join(UpperCAmelCase__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
_a : Dict = json.load(UpperCAmelCase__ )
with open(os.path.join(UpperCAmelCase__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
_a : Tuple = json.load(UpperCAmelCase__ )
# a special token for Canine can be defined as follows:
_a : str = 0xe006
_a : Union[str, Any] = chr(UpperCAmelCase__ )
_a : Dict = [new_token_a]
_a : Tuple = [new_token_a]
with open(os.path.join(UpperCAmelCase__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
with open(os.path.join(UpperCAmelCase__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_a : Tuple = tokenizer_class.from_pretrained(UpperCAmelCase__ , extra_ids=0 )
self.assertIn(UpperCAmelCase__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
_a : str = 0xe007
_a : Any = chr(UpperCAmelCase__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_a : Union[str, Any] = [AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ )]
_a : str = tokenizer_class.from_pretrained(
UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , extra_ids=0 )
self.assertIn(UpperCAmelCase__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def _lowercase ( self : Optional[Any] ) -> str:
_a : Union[str, Any] = self.get_tokenizers(do_lower_case=UpperCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
_a : List[Any] = """hello world"""
if self.space_between_special_tokens:
_a : Optional[int] = """[CLS] hello world [SEP]"""
else:
_a : int = input
_a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
_a : Optional[int] = tokenizer.decode(UpperCAmelCase__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(UpperCAmelCase__ , [output, output.lower()] )
def _lowercase ( self : str ) -> int:
_a : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
_a : List[Any] = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
_a : Any = """a"""
_a : Optional[int] = ord(UpperCAmelCase__ )
for attr in attributes_list:
setattr(UpperCAmelCase__ , attr + """_id""" , UpperCAmelCase__ )
self.assertEqual(getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ )
self.assertEqual(getattr(UpperCAmelCase__ , attr + """_id""" ) , UpperCAmelCase__ )
setattr(UpperCAmelCase__ , attr + """_id""" , UpperCAmelCase__ )
self.assertEqual(getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ )
self.assertEqual(getattr(UpperCAmelCase__ , attr + """_id""" ) , UpperCAmelCase__ )
setattr(UpperCAmelCase__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(UpperCAmelCase__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(UpperCAmelCase__ , """additional_special_tokens_ids""" ) , [] )
_a : Union[str, Any] = 0xe006
_a : Any = chr(UpperCAmelCase__ )
setattr(UpperCAmelCase__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(UpperCAmelCase__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(UpperCAmelCase__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def _lowercase ( self : Union[str, Any] ) -> Optional[Any]:
pass
def _lowercase ( self : Optional[Any] ) -> Dict:
pass
def _lowercase ( self : Union[str, Any] ) -> List[Any]:
pass
def _lowercase ( self : int ) -> Dict:
pass
def _lowercase ( self : List[Any] ) -> Optional[Any]:
pass
def _lowercase ( self : Union[str, Any] ) -> str:
pass
def _lowercase ( self : Dict ) -> Dict:
pass
def _lowercase ( self : int ) -> int:
pass
| 324
|
"""simple docstring"""
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger()
@dataclass
class UpperCamelCase :
UpperCamelCase : nn.Module
UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ )
UpperCamelCase : list = field(default_factory=snake_case_ )
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any:
_a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad )
if has_not_submodules:
self.traced.append(UpperCAmelCase__ )
def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple:
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(UpperCAmelCase__ )
[x.remove() for x in self.handles]
return self
@property
def _lowercase ( self : Optional[int] ) -> int:
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class UpperCamelCase :
UpperCamelCase : nn.Module
UpperCamelCase : nn.Module
UpperCamelCase : int = 0
UpperCamelCase : List = field(default_factory=snake_case_ )
UpperCamelCase : List = field(default_factory=snake_case_ )
def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple:
_a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized
_a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized
_a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) )
_a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) )
if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ):
raise Exception(
f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while"""
f""" destination module has {len(UpperCAmelCase__ )}.""" )
for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f"""Transfered from={src_m} to={dest_m}""" )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ):
'''simple docstring'''
print(F"""Converting {name}...""" )
with torch.no_grad():
_a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval()
_a : str = ResNetForImageClassification(UpperCamelCase__ ).eval()
_a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ )
_a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) )
module_transfer(UpperCamelCase__ )
assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one."
_a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}"""
print(UpperCamelCase__ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , )
# we can use the convnext one
_a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , )
print(F"""Pushed {checkpoint_name}""" )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ):
'''simple docstring'''
_a : Any = """imagenet-1k-id2label.json"""
_a : Optional[int] = 1_0_0_0
_a : Any = (1, num_labels)
_a : Union[str, Any] = """huggingface/label-files"""
_a : Tuple = num_labels
_a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) )
_a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
_a : Any = idalabel
_a : Tuple = {v: k for k, v in idalabel.items()}
_a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ )
_a : Union[str, Any] = {
"""resnet18""": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ),
"""resnet26""": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ),
"""resnet34""": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ),
"""resnet50""": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ),
"""resnet101""": ImageNetPreTrainedConfig(
depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ),
"""resnet152""": ImageNetPreTrainedConfig(
depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ),
}
if model_name:
convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
return config, expected_shape
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help=(
'The name of the model you wish to convert, it must be one of the supported resnet* architecture,'
' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=Path,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
default=True,
type=bool,
required=False,
help='If True, push model and image processor to the hub.',
)
_snake_case = parser.parse_args()
_snake_case = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 324
| 1
|
"""simple docstring"""
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
_snake_case = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_a : str = k.replace(UpperCamelCase__ , UpperCamelCase__ )
if k.startswith("""encoder""" ):
_a : List[Any] = k.replace(""".attn""" , """.self_attn""" )
_a : int = k.replace("""norm1""" , """self_attn_layer_norm""" )
_a : List[str] = k.replace("""norm2""" , """final_layer_norm""" )
elif k.startswith("""decoder""" ):
_a : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" )
_a : Dict = k.replace("""norm2""" , """encoder_attn_layer_norm""" )
_a : Optional[Any] = k.replace("""norm3""" , """final_layer_norm""" )
return k
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : str = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
_a : Dict = sd.pop(UpperCamelCase__ )
_a : str = k.replace("""layernorm_embedding""" , """layer_norm""" )
assert new_k not in sd
_a : List[str] = v
_snake_case = ['START']
@torch.no_grad()
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Union[str, Any] = torch.load(UpperCamelCase__ , map_location="""cpu""" )
_a : str = model["""model"""]
_a : Tuple = BlenderbotConfig.from_json_file(UpperCamelCase__ )
_a : Any = BlenderbotForConditionalGeneration(UpperCamelCase__ )
_a : List[Any] = m.model.state_dict().keys()
_a : Dict = []
_a : Optional[int] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_a : Optional[Any] = rename_state_dict_key(UpperCamelCase__ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_a : List[str] = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(UpperCamelCase__ )
m.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
m.half()
m.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
_snake_case = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 324
|
"""simple docstring"""
from . import __version__
# Backward compatibility imports, to make sure all those objects can be found in file_utils
from .utils import (
CLOUDFRONT_DISTRIB_PREFIX,
CONFIG_NAME,
DISABLE_TELEMETRY,
DUMMY_INPUTS,
DUMMY_MASK,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
FEATURE_EXTRACTOR_NAME,
FLAX_WEIGHTS_NAME,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MODEL_CARD_NAME,
MULTIPLE_CHOICE_DUMMY_INPUTS,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
SENTENCEPIECE_UNDERLINE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TORCH_FX_REQUIRED_VERSION,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
USE_JAX,
USE_TF,
USE_TORCH,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
DummyObject,
EntryNotFoundError,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
TensorType,
_LazyModule,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_property,
copy_func,
default_cache_path,
define_sagemaker_information,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
get_torch_version,
has_file,
http_user_agent,
is_apex_available,
is_bsa_available,
is_coloredlogs_available,
is_datasets_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_librosa_available,
is_offline_mode,
is_onnx_available,
is_pandas_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_tensor,
is_tensorflow_probability_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_training_run_on_sagemaker,
is_vision_available,
replace_return_docstrings,
requires_backends,
to_numpy,
to_py_obj,
torch_only_method,
)
| 324
| 1
|
"""simple docstring"""
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
_snake_case = (
'4S 3H 2C 7S 5H',
'9D 8H 2C 6S 7H',
'2D 6D 9D TH 7D',
'TC 8C 2S JH 6C',
'JH 8S TH AH QH',
'TS KS 5S 9S AC',
'KD 6S 9D TH AD',
'KS 8D 4D 9S 4S', # pair
'8C 4S KH JS 4D', # pair
'QH 8H KD JH 8S', # pair
'KC 4H KS 2H 8D', # pair
'KD 4S KC 3H 8S', # pair
'AH 8S AS KC JH', # pair
'3H 4C 4H 3S 2H', # 2 pairs
'5S 5D 2C KH KH', # 2 pairs
'3C KH 5D 5S KH', # 2 pairs
'AS 3C KH AD KH', # 2 pairs
'7C 7S 3S 7H 5S', # 3 of a kind
'7C 7S KH 2H 7H', # 3 of a kind
'AC KH QH AH AS', # 3 of a kind
'2H 4D 3C AS 5S', # straight (low ace)
'3C 5C 4C 2C 6H', # straight
'6S 8S 7S 5H 9H', # straight
'JS QS 9H TS KH', # straight
'QC KH TS JS AH', # straight (high ace)
'8C 9C 5C 3C TC', # flush
'3S 8S 9S 5S KS', # flush
'4C 5C 9C 8C KC', # flush
'JH 8H AH KH QH', # flush
'3D 2H 3H 2C 2D', # full house
'2H 2C 3S 3H 3D', # full house
'KH KC 3S 3H 3D', # full house
'JC 6H JS JD JH', # 4 of a kind
'JC 7H JS JD JH', # 4 of a kind
'JC KH JS JD JH', # 4 of a kind
'2S AS 4S 5S 3S', # straight flush (low ace)
'2D 6D 3D 4D 5D', # straight flush
'5C 6C 3C 7C 4C', # straight flush
'JH 9H TH KH QH', # straight flush
'JH AH TH KH QH', # royal flush (high ace straight flush)
)
_snake_case = (
('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'),
('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'),
('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'),
('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'),
('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'),
('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'),
('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'),
('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'),
('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'),
('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'),
('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'),
('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'),
('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'),
('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'),
('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'),
('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'),
('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'),
('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'),
('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'),
('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'),
('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'),
('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'),
('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'),
('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'),
('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'),
('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'),
('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'),
('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'),
('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'),
('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'),
('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'),
)
_snake_case = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', True),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', False),
('AS 3S 4S 8S 2S', True),
)
_snake_case = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', False),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', True),
)
_snake_case = (
('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]),
('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]),
('JH QD KC AS TS', False, [14, 13, 12, 11, 10]),
('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]),
)
_snake_case = (
('JH AH TH KH QH', 0),
('JH 9H TH KH QH', 0),
('JC KH JS JD JH', 7),
('KH KC 3S 3H 3D', 6),
('8C 9C 5C 3C TC', 0),
('JS QS 9H TS KH', 0),
('7C 7S KH 2H 7H', 3),
('3C KH 5D 5S KH', 2),
('QH 8H KD JH 8S', 1),
('2D 6D 9D TH 7D', 0),
)
_snake_case = (
('JH AH TH KH QH', 23),
('JH 9H TH KH QH', 22),
('JC KH JS JD JH', 21),
('KH KC 3S 3H 3D', 20),
('8C 9C 5C 3C TC', 19),
('JS QS 9H TS KH', 18),
('7C 7S KH 2H 7H', 17),
('3C KH 5D 5S KH', 16),
('QH 8H KD JH 8S', 15),
('2D 6D 9D TH 7D', 14),
)
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a , _a : Union[str, Any] = randrange(len(UpperCamelCase__ ) ), randrange(len(UpperCamelCase__ ) )
_a : str = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)]
_a , _a : Union[str, Any] = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def lowerCAmelCase__ ( UpperCamelCase__ = 1_0_0 ):
'''simple docstring'''
return (generate_random_hand() for _ in range(UpperCamelCase__ ))
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
assert PokerHand(UpperCamelCase__ )._is_flush() == expected
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
assert PokerHand(UpperCamelCase__ )._is_straight() == expected
@pytest.mark.parametrize("""hand, expected, card_values""" , UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : int = PokerHand(UpperCamelCase__ )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
assert PokerHand(UpperCamelCase__ )._is_same_kind() == expected
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
assert PokerHand(UpperCamelCase__ )._hand_type == expected
@pytest.mark.parametrize("""hand, other, expected""" , UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
assert PokerHand(UpperCamelCase__ ).compare_with(PokerHand(UpperCamelCase__ ) ) == expected
@pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
assert PokerHand(UpperCamelCase__ ).compare_with(PokerHand(UpperCamelCase__ ) ) == expected
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Dict = [PokerHand(UpperCamelCase__ ) for hand in SORTED_HANDS]
_a : Union[str, Any] = poker_hands.copy()
shuffle(UpperCamelCase__ )
_a : Optional[Any] = chain(sorted(UpperCamelCase__ ) )
for index, hand in enumerate(UpperCamelCase__ ):
assert hand == poker_hands[index]
def lowerCAmelCase__ ( ):
'''simple docstring'''
# Test that five high straights are compared correctly.
_a : int = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )]
pokerhands.sort(reverse=UpperCamelCase__ )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def lowerCAmelCase__ ( ):
'''simple docstring'''
# Multiple calls to five_high_straight function should still return True
# and shouldn't mutate the list in every call other than the first.
_a : Optional[int] = PokerHand("""2C 4S AS 3D 5C""" )
_a : List[Any] = True
_a : Dict = [5, 4, 3, 2, 1_4]
for _ in range(1_0 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def lowerCAmelCase__ ( ):
'''simple docstring'''
# Problem number 54 from Project Euler
# Testing from poker_hands.txt file
_a : int = 0
_a : Optional[int] = os.path.abspath(os.path.dirname(UpperCamelCase__ ) )
_a : Dict = os.path.join(UpperCamelCase__ , """poker_hands.txt""" )
with open(UpperCamelCase__ ) as file_hand:
for line in file_hand:
_a : str = line[:1_4].strip()
_a : List[Any] = line[1_5:].strip()
_a , _a : Dict = PokerHand(UpperCamelCase__ ), PokerHand(UpperCamelCase__ )
_a : Union[str, Any] = player.compare_with(UpperCamelCase__ )
if output == "Win":
answer += 1
assert answer == 3_7_6
| 324
|
"""simple docstring"""
_snake_case = 8.31_44_62 # Unit - J mol-1 K-1
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if moles < 0 or kelvin < 0 or volume < 0:
raise ValueError("""Invalid inputs. Enter positive value.""" )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if moles < 0 or kelvin < 0 or pressure < 0:
raise ValueError("""Invalid inputs. Enter positive value.""" )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
if __name__ == "__main__":
from doctest import testmod
testmod()
| 324
| 1
|
"""simple docstring"""
import logging
from transformers.configuration_utils import PretrainedConfig
_snake_case = logging.getLogger(__name__)
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : str = '''masked_bert'''
def __init__( self : Dict , UpperCAmelCase__ : Optional[Any]=30522 , UpperCAmelCase__ : Dict=768 , UpperCAmelCase__ : Any=12 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : int=3072 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=512 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Union[str, Any]=0.0_2 , UpperCAmelCase__ : int=1E-12 , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : str="topK" , UpperCAmelCase__ : Dict="constant" , UpperCAmelCase__ : str=0.0 , **UpperCAmelCase__ : Union[str, Any] , ) -> int:
super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
_a : Optional[Any] = vocab_size
_a : List[Any] = hidden_size
_a : Optional[Any] = num_hidden_layers
_a : Tuple = num_attention_heads
_a : Optional[int] = hidden_act
_a : Tuple = intermediate_size
_a : Optional[Any] = hidden_dropout_prob
_a : int = attention_probs_dropout_prob
_a : Dict = max_position_embeddings
_a : Tuple = type_vocab_size
_a : Optional[Any] = initializer_range
_a : str = layer_norm_eps
_a : Optional[int] = pruning_method
_a : Optional[Any] = mask_init
_a : Union[str, Any] = mask_scale
| 324
|
"""simple docstring"""
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
_snake_case = logging.getLogger(__name__)
_snake_case = 'pytorch_model.bin'
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , )
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} )
UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , )
UpperCamelCase : Optional[List[str]] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} )
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(
metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default='''no''' , metadata={
'''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]'''
} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , )
UpperCamelCase : Optional[float] = dataclasses.field(
default=0.0 , metadata={
'''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.'''
} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , )
UpperCamelCase : Optional[float] = dataclasses.field(
default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
_a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
_a : Any = int(eval_result * len(UpperCamelCase__ ) )
print(UpperCamelCase__ )
_a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ )
_a : Any = dataset.select(range(UpperCamelCase__ ) )
_a : Tuple = dataset.remove_columns(["""label""", """probability"""] )
_a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" )
_a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} )
_a : Union[str, Any] = dataset.shuffle(seed=args.seed )
_a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" )
if args.data_file_extension == "csv":
dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ )
else:
dataset.to_json(UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
_a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ )
_a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ )
_a : Any = STTrainingArguments(output_dir=UpperCamelCase__ )
_a : Any = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(UpperCamelCase__ ).items():
setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for key, value in kwargs.items():
if hasattr(UpperCamelCase__ , UpperCamelCase__ ):
setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Sanity checks
_a : Union[str, Any] = {}
_a : Tuple = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
_a : int = args.train_file
_a : List[Any] = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
_a : Union[str, Any] = args.eval_file
for key in data_files:
_a : Optional[Any] = data_files[key].split(""".""" )[-1]
assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file."""
if args.data_file_extension is None:
_a : str = extension
else:
assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`."""
assert (
args.eval_metric in datasets.list_metrics()
), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}."""
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info("""Creating the initial data directory for self-training...""" )
_a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format
_a : Dict = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ )
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
accelerator.wait_for_everyone()
_a : str = None
_a : int = None
_a : str = 0
_a : List[Any] = False
# Show the progress bar
_a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
_a : Union[str, Any] = data_dir_format(UpperCamelCase__ )
assert os.path.exists(UpperCamelCase__ )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
_a : str = os.path.join(UpperCamelCase__ , """stage-1""" )
_a : Tuple = {
"""accelerator""": accelerator,
"""model_name_or_path""": args.model_name_or_path,
"""cache_dir""": args.cache_dir,
"""do_train""": True,
"""train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""],
"""do_eval""": True if args.eval_file is not None else False,
"""eval_file""": data_files["""eval"""],
"""do_predict""": True,
"""infer_file""": data_files["""infer"""],
"""task_name""": args.task_name,
"""label_list""": args.label_list,
"""output_dir""": current_output_dir,
"""eval_metric""": args.eval_metric,
"""evaluation_strategy""": args.evaluation_strategy,
"""early_stopping_patience""": args.early_stopping_patience,
"""early_stopping_threshold""": args.early_stopping_threshold,
"""seed""": args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
arguments_dict.update({key: value} )
_a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ )
if os.path.exists(UpperCamelCase__ ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ )
finetune(**UpperCamelCase__ )
accelerator.wait_for_everyone()
assert os.path.exists(UpperCamelCase__ )
logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
_a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" )
_a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" )
# Update arguments_dict
_a : int = model_path
_a : Dict = data_files["""train"""]
_a : int = current_output_dir
_a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ )
if os.path.exists(UpperCamelCase__ ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ )
finetune(**UpperCamelCase__ )
accelerator.wait_for_everyone()
assert os.path.exists(UpperCamelCase__ )
logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ )
_a : List[Any] = iteration
_a : int = data_dir_format(iteration + 1 )
_a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) )
_a : Union[str, Any] = config.idalabel
_a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" )
_a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" )
assert os.path.exists(UpperCamelCase__ )
with open(UpperCamelCase__ , """r""" ) as f:
_a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] )
_a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" )
assert os.path.exists(UpperCamelCase__ )
# Loading the dataset from local csv or json files.
_a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""]
_a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""]
if accelerator.is_main_process:
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) )
if os.path.exists(UpperCamelCase__ ):
shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) )
create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
accelerator.wait_for_everyone()
_a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" )
if args.evaluation_strategy != IntervalStrategy.NO.value:
_a : Any = eval_result
if best_iteration is None:
_a : Union[str, Any] = new_iteration
_a : str = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
_a : Union[str, Any] = new_iteration
_a : List[str] = new_eval_result
_a : Optional[Any] = 0
else:
if new_eval_result == best_eval_result:
_a : Tuple = new_iteration
_a : List[Any] = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
_a : Union[str, Any] = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info("""Best iteration: %d""" , UpperCamelCase__ )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
else:
# Assume that the last iteration is the best
logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
| 324
| 1
|
"""simple docstring"""
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
_snake_case = logging.get_logger(__name__)
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : Any = '''vision-encoder-decoder'''
UpperCamelCase : List[Any] = True
def __init__( self : List[Any] , **UpperCAmelCase__ : Optional[int] ) -> Any:
super().__init__(**UpperCAmelCase__ )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
f"""A configuraton of type {self.model_type} cannot be instantiated because """
f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" )
_a : List[str] = kwargs.pop("""encoder""" )
_a : Optional[int] = encoder_config.pop("""model_type""" )
_a : Optional[Any] = kwargs.pop("""decoder""" )
_a : List[Any] = decoder_config.pop("""model_type""" )
_a : int = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ )
_a : Optional[Any] = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ )
_a : Optional[Any] = True
@classmethod
def _lowercase ( cls : str , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Optional[Any] ) -> PretrainedConfig:
logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
_a : Optional[int] = True
_a : List[str] = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__ )
def _lowercase ( self : Optional[Any] ) -> str:
_a : List[str] = copy.deepcopy(self.__dict__ )
_a : Any = self.encoder.to_dict()
_a : Union[str, Any] = self.decoder.to_dict()
_a : Tuple = self.__class__.model_type
return output
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : Optional[int] = version.parse('''1.11''' )
@property
def _lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _lowercase ( self : Dict ) -> float:
return 1E-4
@property
def _lowercase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} )
class UpperCamelCase ( snake_case_ ):
@property
def _lowercase ( self : Any ) -> Mapping[str, Mapping[int, str]]:
_a : Optional[int] = OrderedDict()
_a : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
_a : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
_a : Union[str, Any] = {0: """batch""", 1: """encoder_sequence"""}
return common_inputs
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : "PreTrainedTokenizerBase" , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]:
import torch
_a : int = OrderedDict()
_a : Any = super().generate_dummy_inputs(
UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__ )
_a , _a : List[Any] = dummy_input["""input_ids"""].shape
_a : Tuple = (batch, encoder_sequence, self._config.encoder_hidden_size)
_a : Optional[int] = dummy_input.pop("""input_ids""" )
_a : List[Any] = dummy_input.pop("""attention_mask""" )
_a : Tuple = torch.zeros(UpperCAmelCase__ )
return common_inputs
class UpperCamelCase ( snake_case_ ):
@property
def _lowercase ( self : Optional[int] ) -> None:
pass
def _lowercase ( self : Any , UpperCAmelCase__ : PretrainedConfig ) -> OnnxConfig:
return VisionEncoderDecoderEncoderOnnxConfig(UpperCAmelCase__ )
def _lowercase ( self : int , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : str = "default" ) -> OnnxConfig:
_a : str = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(UpperCAmelCase__ , UpperCAmelCase__ )
| 324
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
_snake_case = None
_snake_case = logging.get_logger(__name__)
_snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
_snake_case = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
},
'tokenizer_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json',
},
}
_snake_case = {
'camembert-base': 512,
}
_snake_case = '▁'
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : Any = VOCAB_FILES_NAMES
UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase : Dict = ['''input_ids''', '''attention_mask''']
UpperCamelCase : Optional[Any] = CamembertTokenizer
def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token
super().__init__(
UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , )
_a : int = vocab_file
_a : int = False if not self.vocab_file else True
def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a : List[Any] = [self.cls_token_id]
_a : Dict = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
_a : Union[str, Any] = [self.sep_token_id]
_a : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(UpperCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_a : List[str] = os.path.join(
UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ):
copyfile(self.vocab_file , UpperCAmelCase__ )
return (out_vocab_file,)
| 324
| 1
|
"""simple docstring"""
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
_snake_case = logging.get_logger(__name__)
class UpperCamelCase :
UpperCamelCase : Any = None
@experimental
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
return _map_with_joblib(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Any = num_proc if num_proc <= len(UpperCamelCase__ ) else len(UpperCamelCase__ )
_a : Optional[Any] = [] # We organize the splits ourselve (contiguous splits)
for index in range(UpperCamelCase__ ):
_a : Optional[int] = len(UpperCamelCase__ ) // num_proc
_a : Any = len(UpperCamelCase__ ) % num_proc
_a : Tuple = div * index + min(UpperCamelCase__ , UpperCamelCase__ )
_a : Optional[int] = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(UpperCamelCase__ ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
F"""Error dividing inputs iterable among processes. """
F"""Total number of objects {len(UpperCamelCase__ )}, """
F"""length: {sum(len(i[1] ) for i in split_kwds )}""" )
logger.info(
F"""Spawning {num_proc} processes for {len(UpperCamelCase__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" )
_a , _a : Any = None, None
if not disable_tqdm:
_a , _a : Any = (RLock(),), tqdm.set_lock
with Pool(UpperCamelCase__ , initargs=UpperCamelCase__ , initializer=UpperCamelCase__ ) as pool:
_a : Optional[Any] = pool.map(UpperCamelCase__ , UpperCamelCase__ )
logger.info(F"""Finished {num_proc} processes""" )
_a : Optional[int] = [obj for proc_res in mapped for obj in proc_res]
logger.info(F"""Unpacked {len(UpperCamelCase__ )} objects""" )
return mapped
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
# progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib,
# and it requires monkey-patching joblib internal classes which is subject to change
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=UpperCamelCase__ ):
return joblib.Parallel()(
joblib.delayed(UpperCamelCase__ )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : int = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
_a : Optional[Any] = None
| 324
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_snake_case = logging.get_logger(__name__)
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : Dict = ['''pixel_values''']
def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None:
_a : int = do_resize
_a : Union[str, Any] = do_rescale
_a : Any = size_divisor
_a : Any = resample
super().__init__(**UpperCAmelCase__ )
def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray:
_a , _a : Tuple = get_image_size(UpperCAmelCase__ )
# Rounds the height and width down to the closest multiple of size_divisor
_a : Optional[Any] = height // size_divisor * size_divisor
_a : Union[str, Any] = width // size_divisor * size_divisor
_a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ )
return image
def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray:
return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ )
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature:
_a : Dict = do_resize if do_resize is not None else self.do_resize
_a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale
_a : str = size_divisor if size_divisor is not None else self.size_divisor
_a : Any = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError("""size_divisor is required for resizing""" )
_a : List[str] = make_list_of_images(UpperCAmelCase__ )
if not valid_images(UpperCAmelCase__ ):
raise ValueError("""Invalid image(s)""" )
# All transformations expect numpy arrays.
_a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images]
if do_resize:
_a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images]
if do_rescale:
_a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images]
_a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images]
_a : Optional[int] = {"""pixel_values""": images}
return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
| 324
| 1
|
"""simple docstring"""
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = 0
while len(UpperCamelCase__ ) > 1:
_a : Optional[int] = 0
# Consider two files with minimum cost to be merged
for _ in range(2 ):
_a : Optional[int] = files.index(min(UpperCamelCase__ ) )
temp += files[min_index]
files.pop(UpperCamelCase__ )
files.append(UpperCamelCase__ )
optimal_merge_cost += temp
return optimal_merge_cost
if __name__ == "__main__":
import doctest
doctest.testmod()
| 324
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class UpperCamelCase ( unittest.TestCase ):
@property
def _lowercase ( self : Optional[int] ) -> Union[str, Any]:
torch.manual_seed(0 )
_a : List[str] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
def _lowercase ( self : Dict ) -> Dict:
_a : str = self.dummy_uncond_unet
_a : Optional[int] = KarrasVeScheduler()
_a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : int = torch.manual_seed(0 )
_a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images
_a : Tuple = torch.manual_seed(0 )
_a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0]
_a : int = image[0, -3:, -3:, -1]
_a : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class UpperCamelCase ( unittest.TestCase ):
def _lowercase ( self : Tuple ) -> List[str]:
_a : Optional[Any] = """google/ncsnpp-celebahq-256"""
_a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ )
_a : Dict = KarrasVeScheduler()
_a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : Optional[int] = torch.manual_seed(0 )
_a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images
_a : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
_a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 324
| 1
|
"""simple docstring"""
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
_snake_case = logging.get_logger(__name__)
logging.set_verbosity_info()
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if "xprophetnet" in prophetnet_checkpoint_path:
_a : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ )
_a , _a : int = XLMProphetNetForConditionalGeneration.from_pretrained(
UpperCamelCase__ , output_loading_info=UpperCamelCase__ )
else:
_a : Tuple = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ )
_a , _a : Any = ProphetNetForConditionalGeneration.from_pretrained(
UpperCamelCase__ , output_loading_info=UpperCamelCase__ )
_a : List[Any] = ["""key_proj""", """value_proj""", """query_proj"""]
_a : Tuple = {
"""self_attn""": """ngram_self_attn""",
"""cross_attn""": """encoder_attn""",
"""cross_attn_layer_norm""": """encoder_attn_layer_norm""",
"""feed_forward_layer_norm""": """final_layer_norm""",
"""feed_forward""": """""",
"""intermediate""": """fc1""",
"""output""": """fc2""",
"""key_proj""": """k_proj""",
"""query_proj""": """q_proj""",
"""value_proj""": """v_proj""",
"""word_embeddings""": """embed_tokens""",
"""embeddings_layer_norm""": """emb_layer_norm""",
"""relative_pos_embeddings""": """relative_linear""",
"""ngram_embeddings""": """ngram_input_embed""",
"""position_embeddings""": """embed_positions""",
}
for key in loading_info["missing_keys"]:
_a : Dict = key.split(""".""" )
if attributes[0] == "lm_head":
_a : Any = prophet
_a : Tuple = prophet_old
else:
_a : Any = prophet.prophetnet
_a : int = prophet_old.model
_a : List[Any] = False
for attribute in attributes:
if attribute in mapping:
_a : Any = mapping[attribute]
if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0:
_a : str = attribute
elif hasattr(UpperCamelCase__ , UpperCamelCase__ ):
_a : str = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
_a : Tuple = old_model.weight
logger.info(F"""{attribute} is initialized.""" )
_a : Tuple = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
_a : Union[str, Any] = old_model.bias
logger.info(F"""{attribute} is initialized""" )
_a : Optional[int] = True
break
elif attribute in special_keys and hasattr(UpperCamelCase__ , """in_proj_weight""" ):
_a : Optional[int] = old_model.in_proj_weight.shape[0] // 3
_a : List[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
_a : Optional[int] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
_a : List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
_a : Dict = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
_a : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
_a : Dict = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
_a : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
_a : List[str] = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 5_1_2, "We want 512 position_embeddings."
_a : List[Any] = nn.Parameter(old_model.embed_positions.weight[:5_1_2, :] )
_a : Dict = True
break
if attribute.isdigit():
_a : Optional[Any] = model[int(UpperCamelCase__ )]
_a : Dict = old_model[int(UpperCamelCase__ )]
else:
_a : List[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ )
if old_attribute == "":
_a : List[Any] = old_model
else:
if not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError(F"""{old_model} does not have {old_attribute}""" )
_a : List[str] = getattr(UpperCamelCase__ , UpperCamelCase__ )
if not is_key_init:
raise ValueError(F"""{key} was not correctly initialized!""" )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
prophet.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_snake_case = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
| 324
|
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_snake_case = 16
_snake_case = 32
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ):
'''simple docstring'''
_a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" )
_a : Dict = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(UpperCamelCase__ ):
# max_length=None => use the model max length (it's actually the default)
_a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_a : Tuple = datasets.map(
UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(UpperCamelCase__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_a : int = 1_6
elif accelerator.mixed_precision != "no":
_a : int = 8
else:
_a : str = None
return tokenizer.pad(
UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , )
# Instantiate dataloaders.
_a : int = DataLoader(
tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ )
_a : List[str] = DataLoader(
tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_snake_case = mocked_dataloaders # noqa: F811
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1":
_a : str = 2
# Initialize accelerator
_a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_a : Any = config["""lr"""]
_a : Union[str, Any] = int(config["""num_epochs"""] )
_a : str = int(config["""seed"""] )
_a : List[Any] = int(config["""batch_size"""] )
_a : Tuple = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
_a : Optional[Any] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
_a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE
_a : str = MAX_GPU_BATCH_SIZE
set_seed(UpperCamelCase__ )
_a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_a : List[str] = model.to(accelerator.device )
# Instantiate optimizer
_a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ )
# Instantiate scheduler
_a : List[str] = get_linear_schedule_with_warmup(
optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Now we train the model
for epoch in range(UpperCamelCase__ ):
model.train()
for step, batch in enumerate(UpperCamelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
_a : Optional[Any] = model(**UpperCamelCase__ )
_a : str = outputs.loss
_a : Optional[int] = loss / gradient_accumulation_steps
accelerator.backward(UpperCamelCase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
_a : Union[str, Any] = 0
for step, batch in enumerate(UpperCamelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_a : Dict = model(**UpperCamelCase__ )
_a : Optional[Any] = outputs.logits.argmax(dim=-1 )
_a , _a : int = accelerator.gather((predictions, batch["""labels"""]) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(UpperCamelCase__ ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
_a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen]
_a : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=UpperCamelCase__ , references=UpperCamelCase__ , )
_a : int = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ )
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
_a : Optional[Any] = parser.parse_args()
_a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6}
training_function(UpperCamelCase__ , UpperCamelCase__ )
if __name__ == "__main__":
main()
| 324
| 1
|
"""simple docstring"""
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[Any] = checkpoint
_a : List[Any] = {}
_a : Tuple = vae_state_dict["""encoder.conv_in.weight"""]
_a : str = vae_state_dict["""encoder.conv_in.bias"""]
_a : Tuple = vae_state_dict["""encoder.conv_out.weight"""]
_a : Dict = vae_state_dict["""encoder.conv_out.bias"""]
_a : List[Any] = vae_state_dict["""encoder.norm_out.weight"""]
_a : Dict = vae_state_dict["""encoder.norm_out.bias"""]
_a : Tuple = vae_state_dict["""decoder.conv_in.weight"""]
_a : Union[str, Any] = vae_state_dict["""decoder.conv_in.bias"""]
_a : Any = vae_state_dict["""decoder.conv_out.weight"""]
_a : Optional[Any] = vae_state_dict["""decoder.conv_out.bias"""]
_a : Any = vae_state_dict["""decoder.norm_out.weight"""]
_a : str = vae_state_dict["""decoder.norm_out.bias"""]
_a : Any = vae_state_dict["""quant_conv.weight"""]
_a : Optional[Any] = vae_state_dict["""quant_conv.bias"""]
_a : Union[str, Any] = vae_state_dict["""post_quant_conv.weight"""]
_a : Dict = vae_state_dict["""post_quant_conv.bias"""]
# Retrieves the keys for the encoder down blocks only
_a : int = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} )
_a : Tuple = {
layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(UpperCamelCase__ )
}
# Retrieves the keys for the decoder up blocks only
_a : Any = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} )
_a : Optional[Any] = {
layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(UpperCamelCase__ )
}
for i in range(UpperCamelCase__ ):
_a : str = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key]
if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict:
_a : Any = vae_state_dict.pop(
F"""encoder.down.{i}.downsample.conv.weight""" )
_a : Union[str, Any] = vae_state_dict.pop(
F"""encoder.down.{i}.downsample.conv.bias""" )
_a : Any = renew_vae_resnet_paths(UpperCamelCase__ )
_a : Any = {"""old""": F"""down.{i}.block""", """new""": F"""down_blocks.{i}.resnets"""}
assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ )
_a : Dict = [key for key in vae_state_dict if """encoder.mid.block""" in key]
_a : Optional[int] = 2
for i in range(1 , num_mid_res_blocks + 1 ):
_a : str = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key]
_a : Tuple = renew_vae_resnet_paths(UpperCamelCase__ )
_a : Any = {"""old""": F"""mid.block_{i}""", """new""": F"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ )
_a : Optional[int] = [key for key in vae_state_dict if """encoder.mid.attn""" in key]
_a : str = renew_vae_attention_paths(UpperCamelCase__ )
_a : List[Any] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ )
conv_attn_to_linear(UpperCamelCase__ )
for i in range(UpperCamelCase__ ):
_a : Union[str, Any] = num_up_blocks - 1 - i
_a : Union[str, Any] = [
key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key
]
if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict:
_a : Union[str, Any] = vae_state_dict[
F"""decoder.up.{block_id}.upsample.conv.weight"""
]
_a : Optional[int] = vae_state_dict[
F"""decoder.up.{block_id}.upsample.conv.bias"""
]
_a : int = renew_vae_resnet_paths(UpperCamelCase__ )
_a : int = {"""old""": F"""up.{block_id}.block""", """new""": F"""up_blocks.{i}.resnets"""}
assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ )
_a : int = [key for key in vae_state_dict if """decoder.mid.block""" in key]
_a : List[Any] = 2
for i in range(1 , num_mid_res_blocks + 1 ):
_a : int = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key]
_a : Dict = renew_vae_resnet_paths(UpperCamelCase__ )
_a : List[str] = {"""old""": F"""mid.block_{i}""", """new""": F"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ )
_a : Any = [key for key in vae_state_dict if """decoder.mid.attn""" in key]
_a : str = renew_vae_attention_paths(UpperCamelCase__ )
_a : str = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ )
conv_attn_to_linear(UpperCamelCase__ )
return new_checkpoint
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , ):
'''simple docstring'''
# Only support V1
_a : List[Any] = requests.get(
""" https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" )
_a : Dict = io.BytesIO(r.content )
_a : Dict = OmegaConf.load(UpperCamelCase__ )
_a : Union[str, Any] = 5_1_2
_a : Tuple = """cuda""" if torch.cuda.is_available() else """cpu"""
if checkpoint_path.endswith("""safetensors""" ):
from safetensors import safe_open
_a : str = {}
with safe_open(UpperCamelCase__ , framework="""pt""" , device="""cpu""" ) as f:
for key in f.keys():
_a : List[Any] = f.get_tensor(UpperCamelCase__ )
else:
_a : str = torch.load(UpperCamelCase__ , map_location=UpperCamelCase__ )["""state_dict"""]
# Convert the VAE model.
_a : List[Any] = create_vae_diffusers_config(UpperCamelCase__ , image_size=UpperCamelCase__ )
_a : Tuple = custom_convert_ldm_vae_checkpoint(UpperCamelCase__ , UpperCamelCase__ )
_a : Optional[Any] = AutoencoderKL(**UpperCamelCase__ )
vae.load_state_dict(UpperCamelCase__ )
vae.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.')
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.')
_snake_case = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 324
|
"""simple docstring"""
import numpy as np
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
return vector * sigmoid(1.702 * vector )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 324
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_snake_case = {
'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['VisionEncoderDecoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['TFVisionEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['FlaxVisionEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
_snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324
|
"""simple docstring"""
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
_snake_case = get_tests_dir('fixtures/test_sentencepiece.model')
_snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model')
_snake_case = 'pt' if is_torch_available() else 'tf'
@require_sentencepiece
@require_tokenizers
class UpperCamelCase ( snake_case_ , unittest.TestCase ):
UpperCamelCase : str = CamembertTokenizer
UpperCamelCase : List[Any] = CamembertTokenizerFast
UpperCamelCase : Optional[int] = True
UpperCamelCase : Union[str, Any] = True
def _lowercase ( self : List[Any] ) -> Union[str, Any]:
super().setUp()
# We have a SentencePiece fixture for testing
_a : List[Any] = CamembertTokenizer(UpperCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self : List[str] ) -> Tuple:
_a : Optional[Any] = """<pad>"""
_a : Tuple = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ) -> str:
_a : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(UpperCAmelCase__ ) , 1004 )
def _lowercase ( self : List[str] ) -> List[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 1005 )
def _lowercase ( self : Union[str, Any] ) -> str:
_a : Tuple = CamembertTokenizer(UpperCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
_a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
_a : Any = """I was born in 92000, and this is falsé."""
_a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ )
_a : Dict = rust_tokenizer.encode(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
_a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
_a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
_a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ )
_a : int = rust_tokenizer.tokenize(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def _lowercase ( self : Dict ) -> List[str]:
if not self.test_rust_tokenizer:
return
_a : Optional[int] = self.get_tokenizer()
_a : Tuple = self.get_rust_tokenizer()
_a : List[Any] = """I was born in 92000, and this is falsé."""
_a : List[str] = tokenizer.tokenize(UpperCAmelCase__ )
_a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
_a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
_a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
_a : int = self.get_rust_tokenizer()
_a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ )
_a : Dict = rust_tokenizer.encode(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
@slow
def _lowercase ( self : Tuple ) -> List[Any]:
# fmt: off
_a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
_a : Union[str, Any] = [
"""Le transformeur est un modèle d'apprentissage profond introduit en 2017, """
"""utilisé principalement dans le domaine du traitement automatique des langues (TAL).""",
"""À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """
"""pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """
"""telles que la traduction et la synthèse de texte.""",
]
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
| 324
| 1
|
"""simple docstring"""
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] )
if (
min(UpperCamelCase__ , UpperCamelCase__ ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
_a : Any = 0
count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ )
count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ )
count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ )
count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 324
|
"""simple docstring"""
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
_snake_case = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
_snake_case = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
_snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
_snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
_snake_case = [
('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'),
('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'),
('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'),
('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'),
('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'),
('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'),
('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'),
('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'),
('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'),
(
'zero-shot-object-detection',
'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES',
'AutoModelForZeroShotObjectDetection',
),
('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'),
('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'),
('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'),
('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'),
(
'table-question-answering',
'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForTableQuestionAnswering',
),
('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'),
('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'),
(
'next-sentence-prediction',
'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES',
'AutoModelForNextSentencePrediction',
),
(
'audio-frame-classification',
'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForAudioFrameClassification',
),
('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'),
(
'document-question-answering',
'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForDocumentQuestionAnswering',
),
(
'visual-question-answering',
'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForVisualQuestionAnswering',
),
('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'),
(
'zero-shot-image-classification',
'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForZeroShotImageClassification',
),
('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'),
('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'),
('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'),
]
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ )
return [m.group(0 ) for m in matches]
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
_a : Optional[int] = {
config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
_a : List[Any] = collections.defaultdict(UpperCamelCase__ )
_a : List[str] = collections.defaultdict(UpperCamelCase__ )
_a : Tuple = collections.defaultdict(UpperCamelCase__ )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(UpperCamelCase__ ):
_a : str = None
if _re_tf_models.match(UpperCamelCase__ ) is not None:
_a : List[Any] = tf_models
_a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0]
elif _re_flax_models.match(UpperCamelCase__ ) is not None:
_a : Any = flax_models
_a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0]
elif _re_pt_models.match(UpperCamelCase__ ) is not None:
_a : int = pt_models
_a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0]
if lookup_dict is not None:
while len(UpperCamelCase__ ) > 0:
if attr_name in model_prefix_to_model_type:
_a : Optional[int] = True
break
# Try again after removing the last word in the name
_a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] )
_a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
_a : Dict = list(UpperCamelCase__ )
all_models.sort()
_a : str = {"""model_type""": all_models}
_a : List[Any] = [pt_models[t] for t in all_models]
_a : str = [tf_models[t] for t in all_models]
_a : Optional[int] = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
_a : str = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
_a : List[str] = """AutoProcessor"""
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
_a : str = """AutoTokenizer"""
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
_a : int = """AutoFeatureExtractor"""
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
_a : int = """AutoTokenizer"""
_a : Any = [processors[t] for t in all_models]
return pd.DataFrame(UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : List[Any] = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
_a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""]
_a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""]
# Loop through all three frameworks
for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
# The type of pipeline may not exist in this framework
if not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
continue
# First extract all model_names
_a : str = []
for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values():
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
model_names.append(UpperCamelCase__ )
else:
model_names.extend(list(UpperCamelCase__ ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Dict = get_frameworks_table()
_a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ )
_a : Any = hf_hub_download(
"""huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ )
_a : List[Any] = Dataset.from_json(UpperCamelCase__ )
_a : List[str] = {
tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""])
for i in range(len(UpperCamelCase__ ) )
}
_a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
_a : int = sorted(table.keys() )
_a : Union[str, Any] = pd.DataFrame(
{
"""model_class""": model_classes,
"""pipeline_tag""": [table[m][0] for m in model_classes],
"""auto_class""": [table[m][1] for m in model_classes],
} )
_a : Dict = Dataset.from_pandas(UpperCamelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) )
tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) )
if commit_sha is not None:
_a : List[str] = (
F"""Update with commit {commit_sha}\n\nSee: """
F"""https://github.com/huggingface/transformers/commit/{commit_sha}"""
)
else:
_a : Optional[Any] = """Update"""
upload_folder(
repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , )
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
_a : Any = transformers_module.pipelines.SUPPORTED_TASKS
_a : List[str] = []
for key in pipeline_tasks:
if key not in in_table:
_a : Tuple = pipeline_tasks[key]["""pt"""]
if isinstance(UpperCamelCase__ , (list, tuple) ):
_a : Dict = model[0]
_a : List[str] = model.__name__
if model not in in_table.values():
missing.append(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
_a : Union[str, Any] = """, """.join(UpperCamelCase__ )
raise ValueError(
"""The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """
F"""`utils/update_metadata.py`: {msg}. Please add them!""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.')
parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.')
parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.')
_snake_case = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 324
| 1
|
"""simple docstring"""
import math
class UpperCamelCase :
def _lowercase ( self : Tuple , UpperCAmelCase__ : list[list[float]] , UpperCAmelCase__ : list[int] ) -> int:
_a : str = 0.0
_a : Optional[int] = 0.0
for i in range(len(UpperCAmelCase__ ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : list[list[int | float]] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : float ) -> list[list[int | float]]:
for i in range(len(UpperCAmelCase__ ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def lowerCAmelCase__ ( ):
'''simple docstring'''
# Training Examples ( m, n )
_a : Tuple = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
_a : Tuple = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
_a : Union[str, Any] = SelfOrganizingMap()
_a : Optional[Any] = 3
_a : List[Any] = 0.5
for _ in range(UpperCamelCase__ ):
for j in range(len(UpperCamelCase__ ) ):
# training sample
_a : List[str] = training_samples[j]
# Compute the winning vector
_a : Tuple = self_organizing_map.get_winner(UpperCamelCase__ , UpperCamelCase__ )
# Update the winning vector
_a : Any = self_organizing_map.update(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# classify test sample
_a : str = [0, 0, 0, 1]
_a : str = self_organizing_map.get_winner(UpperCamelCase__ , UpperCamelCase__ )
# results
print(F"""Clusters that the test sample belongs to : {winner}""" )
print(F"""Weights that have been trained : {weights}""" )
# running the main() function
if __name__ == "__main__":
main()
| 324
|
"""simple docstring"""
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"""files""" , [
["""full:README.md""", """dataset_infos.json"""],
["""empty:README.md""", """dataset_infos.json"""],
["""dataset_infos.json"""],
["""full:README.md"""],
] , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" )
if "full:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""---\ndataset_info:\n dataset_size: 42\n---""" )
if "empty:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""""" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f:
f.write("""{\"default\": {\"dataset_size\": 42}}""" )
_a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 4_2
@pytest.mark.parametrize(
"""dataset_info""" , [
DatasetInfo(),
DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ),
] , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = str(UpperCamelCase__ )
dataset_info.write_to_directory(UpperCamelCase__ )
_a : Any = DatasetInfo.from_directory(UpperCamelCase__ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) )
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Dict = DatasetInfo(
description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , )
_a : int = dataset_info._to_yaml_dict()
assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) )
_a : List[str] = yaml.safe_dump(UpperCamelCase__ )
_a : Optional[int] = yaml.safe_load(UpperCamelCase__ )
assert dataset_info_yaml_dict == reloaded
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : List[Any] = DatasetInfo()
_a : Any = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"""dataset_infos_dict""" , [
DatasetInfosDict(),
DatasetInfosDict({"""default""": DatasetInfo()} ),
DatasetInfosDict({"""my_config_name""": DatasetInfo()} ),
DatasetInfosDict(
{
"""default""": DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , )
} ),
DatasetInfosDict(
{
"""v1""": DatasetInfo(dataset_size=4_2 ),
"""v2""": DatasetInfo(dataset_size=1_3_3_7 ),
} ),
] , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : List[Any] = str(UpperCamelCase__ )
dataset_infos_dict.write_to_directory(UpperCamelCase__ )
_a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_a : str = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
| 324
| 1
|
"""simple docstring"""
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
_snake_case = logging.getLogger(__name__)
_snake_case = 'pytorch_model.bin'
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , )
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} )
UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , )
UpperCamelCase : Optional[List[str]] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} )
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(
metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default='''no''' , metadata={
'''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]'''
} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , )
UpperCamelCase : Optional[float] = dataclasses.field(
default=0.0 , metadata={
'''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.'''
} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , )
UpperCamelCase : Optional[float] = dataclasses.field(
default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
_a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
_a : Any = int(eval_result * len(UpperCamelCase__ ) )
print(UpperCamelCase__ )
_a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ )
_a : Any = dataset.select(range(UpperCamelCase__ ) )
_a : Tuple = dataset.remove_columns(["""label""", """probability"""] )
_a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" )
_a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} )
_a : Union[str, Any] = dataset.shuffle(seed=args.seed )
_a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" )
if args.data_file_extension == "csv":
dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ )
else:
dataset.to_json(UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
_a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ )
_a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ )
_a : Any = STTrainingArguments(output_dir=UpperCamelCase__ )
_a : Any = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(UpperCamelCase__ ).items():
setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for key, value in kwargs.items():
if hasattr(UpperCamelCase__ , UpperCamelCase__ ):
setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Sanity checks
_a : Union[str, Any] = {}
_a : Tuple = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
_a : int = args.train_file
_a : List[Any] = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
_a : Union[str, Any] = args.eval_file
for key in data_files:
_a : Optional[Any] = data_files[key].split(""".""" )[-1]
assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file."""
if args.data_file_extension is None:
_a : str = extension
else:
assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`."""
assert (
args.eval_metric in datasets.list_metrics()
), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}."""
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info("""Creating the initial data directory for self-training...""" )
_a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format
_a : Dict = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ )
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
accelerator.wait_for_everyone()
_a : str = None
_a : int = None
_a : str = 0
_a : List[Any] = False
# Show the progress bar
_a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
_a : Union[str, Any] = data_dir_format(UpperCamelCase__ )
assert os.path.exists(UpperCamelCase__ )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
_a : str = os.path.join(UpperCamelCase__ , """stage-1""" )
_a : Tuple = {
"""accelerator""": accelerator,
"""model_name_or_path""": args.model_name_or_path,
"""cache_dir""": args.cache_dir,
"""do_train""": True,
"""train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""],
"""do_eval""": True if args.eval_file is not None else False,
"""eval_file""": data_files["""eval"""],
"""do_predict""": True,
"""infer_file""": data_files["""infer"""],
"""task_name""": args.task_name,
"""label_list""": args.label_list,
"""output_dir""": current_output_dir,
"""eval_metric""": args.eval_metric,
"""evaluation_strategy""": args.evaluation_strategy,
"""early_stopping_patience""": args.early_stopping_patience,
"""early_stopping_threshold""": args.early_stopping_threshold,
"""seed""": args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
arguments_dict.update({key: value} )
_a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ )
if os.path.exists(UpperCamelCase__ ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ )
finetune(**UpperCamelCase__ )
accelerator.wait_for_everyone()
assert os.path.exists(UpperCamelCase__ )
logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
_a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" )
_a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" )
# Update arguments_dict
_a : int = model_path
_a : Dict = data_files["""train"""]
_a : int = current_output_dir
_a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ )
if os.path.exists(UpperCamelCase__ ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ )
finetune(**UpperCamelCase__ )
accelerator.wait_for_everyone()
assert os.path.exists(UpperCamelCase__ )
logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ )
_a : List[Any] = iteration
_a : int = data_dir_format(iteration + 1 )
_a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) )
_a : Union[str, Any] = config.idalabel
_a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" )
_a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" )
assert os.path.exists(UpperCamelCase__ )
with open(UpperCamelCase__ , """r""" ) as f:
_a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] )
_a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" )
assert os.path.exists(UpperCamelCase__ )
# Loading the dataset from local csv or json files.
_a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""]
_a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""]
if accelerator.is_main_process:
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) )
if os.path.exists(UpperCamelCase__ ):
shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) )
create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
accelerator.wait_for_everyone()
_a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" )
if args.evaluation_strategy != IntervalStrategy.NO.value:
_a : Any = eval_result
if best_iteration is None:
_a : Union[str, Any] = new_iteration
_a : str = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
_a : Union[str, Any] = new_iteration
_a : List[str] = new_eval_result
_a : Optional[Any] = 0
else:
if new_eval_result == best_eval_result:
_a : Tuple = new_iteration
_a : List[Any] = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
_a : Union[str, Any] = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info("""Best iteration: %d""" , UpperCamelCase__ )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
else:
# Assume that the last iteration is the best
logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
| 324
|
"""simple docstring"""
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class UpperCamelCase ( unittest.TestCase , snake_case_ ):
def _lowercase ( self : int ) -> int:
_a : Optional[Any] = load_tool("""text-to-speech""" )
self.tool.setup()
def _lowercase ( self : List[str] ) -> Union[str, Any]:
# SpeechT5 isn't deterministic
torch.manual_seed(0 )
_a : str = self.tool("""hey""" )
_a : List[str] = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
def _lowercase ( self : Optional[int] ) -> Optional[Any]:
# SpeechT5 isn't deterministic
torch.manual_seed(0 )
_a : int = self.tool("""hey""" )
_a : str = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
| 324
| 1
|
"""simple docstring"""
from __future__ import annotations
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = 0
_a : List[Any] = len(UpperCamelCase__ ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
_a : Any = i + 1
else:
_a : List[str] = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
| 324
|
"""simple docstring"""
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class UpperCamelCase ( snake_case_ ):
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int:
_a : str = parent
_a : Union[str, Any] = config_class
_a : List[Any] = has_text_modality
_a : List[Any] = kwargs
_a : List[Any] = common_properties
def _lowercase ( self : int ) -> Tuple:
_a : List[str] = self.config_class(**self.inputs_dict )
_a : Dict = (
["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""]
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(["""vocab_size"""] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" )
# Test that config has the common properties as setter
for idx, name in enumerate(UpperCAmelCase__ ):
try:
setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
self.parent.assertEqual(
getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(UpperCAmelCase__ ):
try:
_a : Optional[int] = self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def _lowercase ( self : Optional[int] ) -> Optional[Any]:
_a : Optional[Any] = self.config_class(**self.inputs_dict )
_a : List[str] = json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , UpperCAmelCase__ )
def _lowercase ( self : int ) -> List[str]:
_a : Optional[Any] = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" )
config_first.to_json_file(UpperCAmelCase__ )
_a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def _lowercase ( self : Union[str, Any] ) -> Dict:
_a : Dict = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(UpperCAmelCase__ )
_a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def _lowercase ( self : Dict ) -> Tuple:
_a : List[Any] = self.config_class(**self.inputs_dict )
_a : Any = """test"""
with tempfile.TemporaryDirectory() as tmpdirname:
_a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
config_first.save_pretrained(UpperCAmelCase__ )
_a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def _lowercase ( self : List[str] ) -> Union[str, Any]:
_a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
_a : Union[str, Any] = 3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def _lowercase ( self : Tuple ) -> List[str]:
if self.config_class.is_composition:
return
_a : str = self.config_class()
self.parent.assertIsNotNone(UpperCAmelCase__ )
def _lowercase ( self : List[Any] ) -> Optional[Any]:
_a : Dict = copy.deepcopy(UpperCAmelCase__ )
_a : Any = self.config_class(**UpperCAmelCase__ )
_a : str = []
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) )
elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value:
wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) )
if len(UpperCAmelCase__ ) > 0:
_a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] )
raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" )
def _lowercase ( self : int ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 324
| 1
|
"""simple docstring"""
import unittest
from transformers import BigBirdTokenizer, BigBirdTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_snake_case = '▁'
_snake_case = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class UpperCamelCase ( snake_case_ , unittest.TestCase ):
UpperCamelCase : int = BigBirdTokenizer
UpperCamelCase : str = BigBirdTokenizerFast
UpperCamelCase : Tuple = True
UpperCamelCase : Tuple = True
def _lowercase ( self : int ) -> Any:
super().setUp()
_a : Any = self.tokenizer_class(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self : str ) -> str:
_a : Union[str, Any] = """<s>"""
_a : str = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ )
def _lowercase ( self : Tuple ) -> int:
_a : str = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<unk>""" )
self.assertEqual(vocab_keys[1] , """<s>""" )
self.assertEqual(vocab_keys[-1] , """[MASK]""" )
self.assertEqual(len(UpperCAmelCase__ ) , 1004 )
def _lowercase ( self : int ) -> Any:
self.assertEqual(self.get_tokenizer().vocab_size , 1000 )
def _lowercase ( self : Optional[int] ) -> Optional[int]:
if not self.test_rust_tokenizer:
return
_a : Optional[Any] = self.get_tokenizer()
_a : Any = self.get_rust_tokenizer()
_a : int = """I was born in 92000, and this is falsé."""
_a : List[str] = tokenizer.tokenize(UpperCAmelCase__ )
_a : Optional[int] = rust_tokenizer.tokenize(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
_a : Any = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
_a : int = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
_a : int = self.get_rust_tokenizer()
_a : Dict = tokenizer.encode(UpperCAmelCase__ )
_a : List[str] = rust_tokenizer.encode(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def _lowercase ( self : Optional[int] ) -> str:
_a : Union[str, Any] = BigBirdTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ )
_a : Union[str, Any] = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(UpperCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [285, 46, 10, 170, 382] , )
_a : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
UpperCAmelCase__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
_a : Dict = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ )
self.assertListEqual(
UpperCAmelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
_a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ )
self.assertListEqual(
UpperCAmelCase__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
@cached_property
def _lowercase ( self : Optional[int] ) -> List[str]:
return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" )
@slow
def _lowercase ( self : Optional[int] ) -> Optional[Any]:
_a : List[Any] = """Hello World!"""
_a : int = [65, 18536, 2260, 101, 66]
self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) )
@slow
def _lowercase ( self : List[Any] ) -> List[Any]:
_a : List[Any] = (
"""This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"""
""" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"""
)
# fmt: off
_a : Tuple = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231
# fmt: on
self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) )
@require_torch
@slow
def _lowercase ( self : str ) -> Optional[Any]:
import torch
from transformers import BigBirdConfig, BigBirdModel
# Build sequence
_a : str = list(self.big_tokenizer.get_vocab().keys() )[:10]
_a : Any = """ """.join(UpperCAmelCase__ )
_a : Dict = self.big_tokenizer.encode_plus(UpperCAmelCase__ , return_tensors="""pt""" , return_token_type_ids=UpperCAmelCase__ )
_a : Tuple = self.big_tokenizer.batch_encode_plus(
[sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=UpperCAmelCase__ )
_a : List[str] = BigBirdConfig(attention_type="""original_full""" )
_a : int = BigBirdModel(UpperCAmelCase__ )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**UpperCAmelCase__ )
model(**UpperCAmelCase__ )
@slow
def _lowercase ( self : Tuple ) -> Optional[int]:
_a : Any = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" )
_a : Optional[Any] = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids )
self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" )
@slow
def _lowercase ( self : int ) -> Optional[int]:
# fmt: off
_a : List[Any] = {"""input_ids""": [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase__ , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
| 324
|
"""simple docstring"""
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
_snake_case = HUGGINGFACE_HUB_CACHE
_snake_case = 'config.json'
_snake_case = 'diffusion_pytorch_model.bin'
_snake_case = 'diffusion_flax_model.msgpack'
_snake_case = 'model.onnx'
_snake_case = 'diffusion_pytorch_model.safetensors'
_snake_case = 'weights.pb'
_snake_case = 'https://huggingface.co'
_snake_case = default_cache_path
_snake_case = 'diffusers_modules'
_snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
_snake_case = ['fp16', 'non-ema']
_snake_case = '.self_attn'
| 324
| 1
|
"""simple docstring"""
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_snake_case = logging.getLogger(__name__)
_snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
_snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class UpperCamelCase :
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={
'''help''': (
'''The model checkpoint for weights initialization. Leave None if you want to train a model from'''
''' scratch.'''
)
} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class UpperCamelCase :
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={
'''help''': (
'''The input training data files (multiple files in glob format). '''
'''Very often splitting large files to smaller files can prevent tokenizer going out of memory'''
)
} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , )
UpperCamelCase : bool = field(
default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , )
UpperCamelCase : bool = field(
default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} )
UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} )
UpperCamelCase : float = field(
default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} )
UpperCamelCase : float = field(
default=1 / 6 , metadata={
'''help''': (
'''Ratio of length of a span of masked tokens to surrounding context length for permutation language'''
''' modeling.'''
)
} , )
UpperCamelCase : int = field(
default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} )
UpperCamelCase : int = field(
default=-1 , metadata={
'''help''': (
'''Optional input sequence length after tokenization.'''
'''The training dataset will be truncated in block of this size for training.'''
'''Default to the model max input length for single sentence inputs (take into account special tokens).'''
)
} , )
UpperCamelCase : bool = field(
default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ):
'''simple docstring'''
def _dataset(UpperCamelCase__ , UpperCamelCase__=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" )
return LineByLineWithRefDataset(
tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , )
return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size )
else:
return TextDataset(
tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def lowerCAmelCase__ ( ):
'''simple docstring'''
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_a , _a , _a : List[str] = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
"""Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """
"""or remove the --do_eval argument.""" )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
_a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
_a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
_a : str = CONFIG_MAPPING[model_args.model_type]()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.tokenizer_name:
_a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
_a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another"""
""" script, save it,and load it from here, using --tokenizer_name""" )
if model_args.model_name_or_path:
_a : Optional[Any] = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , )
else:
logger.info("""Training new model from scratch""" )
_a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ )
model.resize_token_embeddings(len(UpperCamelCase__ ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
"""BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"""
"""--mlm flag (masked language modeling).""" )
if data_args.block_size <= 0:
_a : int = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
_a : Optional[Any] = min(data_args.block_size , tokenizer.max_len )
# Get datasets
_a : Optional[Any] = (
get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
_a : Optional[int] = (
get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
_a : Any = DataCollatorForPermutationLanguageModeling(
tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
_a : Union[str, Any] = DataCollatorForWholeWordMask(
tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability )
else:
_a : str = DataCollatorForLanguageModeling(
tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
_a : Union[str, Any] = Trainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , )
# Training
if training_args.do_train:
_a : Optional[Any] = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=UpperCamelCase__ )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_a : Union[str, Any] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
_a : int = trainer.evaluate()
_a : Dict = math.exp(eval_output["""eval_loss"""] )
_a : Union[str, Any] = {"""perplexity""": perplexity}
_a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" )
if trainer.is_world_master():
with open(UpperCamelCase__ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key in sorted(result.keys() ):
logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) )
writer.write("""%s = %s\n""" % (key, str(result[key] )) )
results.update(UpperCamelCase__ )
return results
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 324
|
"""simple docstring"""
from math import factorial
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
_a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
_a : Optional[int] = float(factorial(UpperCamelCase__ ) )
coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print('Probability of 2 successes out of 4 trails')
print('with probability of 0.75 is:', end=' ')
print(binomial_distribution(2, 4, 0.75))
| 324
| 1
|
"""simple docstring"""
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
_snake_case = 'hf-internal-testing/tiny-random-bert'
_snake_case = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert')
_snake_case = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6'
class UpperCamelCase ( unittest.TestCase ):
def _lowercase ( self : Optional[Any] ) -> str:
_a : int = cached_file(UpperCAmelCase__ , UpperCAmelCase__ )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(UpperCAmelCase__ ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) )
with open(os.path.join(UpperCAmelCase__ , """refs""" , """main""" ) ) as f:
_a : Optional[Any] = f.read()
self.assertEqual(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , """snapshots""" , UpperCAmelCase__ , UpperCAmelCase__ ) )
self.assertTrue(os.path.isfile(UpperCAmelCase__ ) )
# File is cached at the same place the second time.
_a : List[str] = cached_file(UpperCAmelCase__ , UpperCAmelCase__ )
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
# Using a specific revision to test the full commit hash.
_a : Optional[Any] = cached_file(UpperCAmelCase__ , UpperCAmelCase__ , revision="""9b8c223""" )
self.assertEqual(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , """snapshots""" , UpperCAmelCase__ , UpperCAmelCase__ ) )
def _lowercase ( self : Tuple ) -> Tuple:
with self.assertRaisesRegex(UpperCAmelCase__ , """is not a valid model identifier""" ):
_a : Any = cached_file("""tiny-random-bert""" , UpperCAmelCase__ )
with self.assertRaisesRegex(UpperCAmelCase__ , """is not a valid git identifier""" ):
_a : Union[str, Any] = cached_file(UpperCAmelCase__ , UpperCAmelCase__ , revision="""aaaa""" )
with self.assertRaisesRegex(UpperCAmelCase__ , """does not appear to have a file named""" ):
_a : int = cached_file(UpperCAmelCase__ , """conf""" )
def _lowercase ( self : List[Any] ) -> int:
with self.assertRaisesRegex(UpperCAmelCase__ , """does not appear to have a file named""" ):
_a : str = cached_file(UpperCAmelCase__ , """conf""" )
with open(os.path.join(UpperCAmelCase__ , """refs""" , """main""" ) ) as f:
_a : List[Any] = f.read()
self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase__ , """.no_exist""" , UpperCAmelCase__ , """conf""" ) ) )
_a : Union[str, Any] = cached_file(UpperCAmelCase__ , """conf""" , _raise_exceptions_for_missing_entries=UpperCAmelCase__ )
self.assertIsNone(UpperCAmelCase__ )
_a : Dict = cached_file(UpperCAmelCase__ , """conf""" , local_files_only=UpperCAmelCase__ , _raise_exceptions_for_missing_entries=UpperCAmelCase__ )
self.assertIsNone(UpperCAmelCase__ )
_a : Union[str, Any] = mock.Mock()
_a : Optional[Any] = 500
_a : Any = {}
_a : int = HTTPError
_a : int = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" , return_value=UpperCAmelCase__ ) as mock_head:
_a : Tuple = cached_file(UpperCAmelCase__ , """conf""" , _raise_exceptions_for_connection_errors=UpperCAmelCase__ )
self.assertIsNone(UpperCAmelCase__ )
# This check we did call the fake head request
mock_head.assert_called()
def _lowercase ( self : Any ) -> Optional[int]:
self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCAmelCase__ ) )
self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCAmelCase__ ) )
self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCAmelCase__ ) )
def _lowercase ( self : Tuple ) -> int:
# `get_file_from_repo` returns None if the file does not exist
self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(UpperCAmelCase__ , """is not a valid model identifier""" ):
get_file_from_repo("""bert-base-case""" , UpperCAmelCase__ )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(UpperCAmelCase__ , """is not a valid git identifier""" ):
get_file_from_repo("""bert-base-cased""" , UpperCAmelCase__ , revision="""ahaha""" )
_a : Dict = get_file_from_repo("""bert-base-cased""" , UpperCAmelCase__ )
# The name is the cached name which is not very easy to test, so instead we load the content.
_a : Any = json.loads(open(UpperCAmelCase__ , """r""" ).read() )
self.assertEqual(config["""hidden_size"""] , 768 )
def _lowercase ( self : Union[str, Any] ) -> List[Any]:
with tempfile.TemporaryDirectory() as tmp_dir:
_a : Any = Path(UpperCAmelCase__ ) / """a.txt"""
filename.touch()
self.assertEqual(get_file_from_repo(UpperCAmelCase__ , """a.txt""" ) , str(UpperCAmelCase__ ) )
self.assertIsNone(get_file_from_repo(UpperCAmelCase__ , """b.txt""" ) )
| 324
|
"""simple docstring"""
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] )
if (
min(UpperCamelCase__ , UpperCamelCase__ ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
_a : Any = 0
count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ )
count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ )
count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ )
count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 324
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_snake_case = {
'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'],
'feature_extraction_mctct': ['MCTCTFeatureExtractor'],
'processing_mctct': ['MCTCTProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MCTCTForCTC',
'MCTCTModel',
'MCTCTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_snake_case = {
'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['VisionEncoderDecoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['TFVisionEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['FlaxVisionEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
_snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324
| 1
|
"""simple docstring"""
import csv
import tweepy
# Twitter API credentials
_snake_case = ''
_snake_case = ''
_snake_case = ''
_snake_case = ''
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
# authorize twitter, initialize tweepy
_a : Any = tweepy.OAuthHandler(UpperCamelCase__ , UpperCamelCase__ )
auth.set_access_token(UpperCamelCase__ , UpperCamelCase__ )
_a : Any = tweepy.API(UpperCamelCase__ )
# initialize a list to hold all the tweepy Tweets
_a : str = []
# make initial request for most recent tweets (200 is the maximum allowed count)
_a : Tuple = api.user_timeline(screen_name=UpperCamelCase__ , count=2_0_0 )
# save most recent tweets
alltweets.extend(UpperCamelCase__ )
# save the id of the oldest tweet less one
_a : Dict = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(UpperCamelCase__ ) > 0:
print(F"""getting tweets before {oldest}""" )
# all subsequent requests use the max_id param to prevent duplicates
_a : str = api.user_timeline(
screen_name=UpperCamelCase__ , count=2_0_0 , max_id=UpperCamelCase__ )
# save most recent tweets
alltweets.extend(UpperCamelCase__ )
# update the id of the oldest tweet less one
_a : str = alltweets[-1].id - 1
print(F"""...{len(UpperCamelCase__ )} tweets downloaded so far""" )
# transform the tweepy tweets into a 2D array that will populate the csv
_a : Optional[int] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(F"""new_{screen_name}_tweets.csv""" , """w""" ) as f:
_a : List[str] = csv.writer(UpperCamelCase__ )
writer.writerow(["""id""", """created_at""", """text"""] )
writer.writerows(UpperCamelCase__ )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets('FirePing32')
| 324
|
"""simple docstring"""
from __future__ import annotations
import time
_snake_case = list[tuple[int, int]]
_snake_case = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
_snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class UpperCamelCase :
def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]:
_a : int = pos_x
_a : Union[str, Any] = pos_y
_a : Tuple = (pos_y, pos_x)
_a : Tuple = goal_x
_a : int = goal_y
_a : str = parent
class UpperCamelCase :
def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]:
_a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ )
_a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ )
_a : Optional[int] = [self.start]
_a : Tuple = False
def _lowercase ( self : str ) -> Path | None:
while self.node_queue:
_a : Tuple = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
_a : Dict = True
return self.retrace_path(UpperCAmelCase__ )
_a : Tuple = self.get_successors(UpperCAmelCase__ )
for node in successors:
self.node_queue.append(UpperCAmelCase__ )
if not self.reached:
return [self.start.pos]
return None
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]:
_a : Optional[Any] = []
for action in delta:
_a : str = parent.pos_x + action[1]
_a : List[Any] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) )
return successors
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path:
_a : Dict = node
_a : List[str] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
_a : Any = current_node.parent
path.reverse()
return path
class UpperCamelCase :
def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any:
_a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ )
_a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ )
_a : Dict = False
def _lowercase ( self : Any ) -> Path | None:
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
_a : List[Any] = self.fwd_bfs.node_queue.pop(0 )
_a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
_a : Optional[int] = True
return self.retrace_bidirectional_path(
UpperCAmelCase__ , UpperCAmelCase__ )
_a : List[str] = current_bwd_node
_a : int = current_fwd_node
_a : Optional[Any] = {
self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ),
self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(UpperCAmelCase__ )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path:
_a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ )
_a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ )
bwd_path.pop()
bwd_path.reverse()
_a : Tuple = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
_snake_case = (0, 0)
_snake_case = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
_snake_case = time.time()
_snake_case = BreadthFirstSearch(init, goal)
_snake_case = bfs.search()
_snake_case = time.time() - start_bfs_time
print('Unidirectional BFS computation time : ', bfs_time)
_snake_case = time.time()
_snake_case = BidirectionalBreadthFirstSearch(init, goal)
_snake_case = bd_bfs.search()
_snake_case = time.time() - start_bd_bfs_time
print('Bidirectional BFS computation time : ', bd_bfs_time)
| 324
| 1
|
"""simple docstring"""
from __future__ import annotations
import time
_snake_case = list[tuple[int, int]]
_snake_case = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
_snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class UpperCamelCase :
def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]:
_a : int = pos_x
_a : Union[str, Any] = pos_y
_a : Tuple = (pos_y, pos_x)
_a : Tuple = goal_x
_a : int = goal_y
_a : str = parent
class UpperCamelCase :
def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]:
_a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ )
_a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ )
_a : Optional[int] = [self.start]
_a : Tuple = False
def _lowercase ( self : str ) -> Path | None:
while self.node_queue:
_a : Tuple = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
_a : Dict = True
return self.retrace_path(UpperCAmelCase__ )
_a : Tuple = self.get_successors(UpperCAmelCase__ )
for node in successors:
self.node_queue.append(UpperCAmelCase__ )
if not self.reached:
return [self.start.pos]
return None
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]:
_a : Optional[Any] = []
for action in delta:
_a : str = parent.pos_x + action[1]
_a : List[Any] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) )
return successors
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path:
_a : Dict = node
_a : List[str] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
_a : Any = current_node.parent
path.reverse()
return path
class UpperCamelCase :
def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any:
_a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ )
_a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ )
_a : Dict = False
def _lowercase ( self : Any ) -> Path | None:
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
_a : List[Any] = self.fwd_bfs.node_queue.pop(0 )
_a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
_a : Optional[int] = True
return self.retrace_bidirectional_path(
UpperCAmelCase__ , UpperCAmelCase__ )
_a : List[str] = current_bwd_node
_a : int = current_fwd_node
_a : Optional[Any] = {
self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ),
self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(UpperCAmelCase__ )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path:
_a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ )
_a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ )
bwd_path.pop()
bwd_path.reverse()
_a : Tuple = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
_snake_case = (0, 0)
_snake_case = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
_snake_case = time.time()
_snake_case = BreadthFirstSearch(init, goal)
_snake_case = bfs.search()
_snake_case = time.time() - start_bfs_time
print('Unidirectional BFS computation time : ', bfs_time)
_snake_case = time.time()
_snake_case = BidirectionalBreadthFirstSearch(init, goal)
_snake_case = bd_bfs.search()
_snake_case = time.time() - start_bd_bfs_time
print('Bidirectional BFS computation time : ', bd_bfs_time)
| 324
|
"""simple docstring"""
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_snake_case = logging.getLogger(__name__)
_snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
_snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class UpperCamelCase :
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={
'''help''': (
'''The model checkpoint for weights initialization. Leave None if you want to train a model from'''
''' scratch.'''
)
} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class UpperCamelCase :
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={
'''help''': (
'''The input training data files (multiple files in glob format). '''
'''Very often splitting large files to smaller files can prevent tokenizer going out of memory'''
)
} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , )
UpperCamelCase : Optional[str] = field(
default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , )
UpperCamelCase : bool = field(
default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , )
UpperCamelCase : bool = field(
default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} )
UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} )
UpperCamelCase : float = field(
default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} )
UpperCamelCase : float = field(
default=1 / 6 , metadata={
'''help''': (
'''Ratio of length of a span of masked tokens to surrounding context length for permutation language'''
''' modeling.'''
)
} , )
UpperCamelCase : int = field(
default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} )
UpperCamelCase : int = field(
default=-1 , metadata={
'''help''': (
'''Optional input sequence length after tokenization.'''
'''The training dataset will be truncated in block of this size for training.'''
'''Default to the model max input length for single sentence inputs (take into account special tokens).'''
)
} , )
UpperCamelCase : bool = field(
default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ):
'''simple docstring'''
def _dataset(UpperCamelCase__ , UpperCamelCase__=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" )
return LineByLineWithRefDataset(
tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , )
return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size )
else:
return TextDataset(
tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def lowerCAmelCase__ ( ):
'''simple docstring'''
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_a , _a , _a : List[str] = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
"""Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """
"""or remove the --do_eval argument.""" )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
_a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
_a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
_a : str = CONFIG_MAPPING[model_args.model_type]()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.tokenizer_name:
_a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
_a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another"""
""" script, save it,and load it from here, using --tokenizer_name""" )
if model_args.model_name_or_path:
_a : Optional[Any] = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , )
else:
logger.info("""Training new model from scratch""" )
_a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ )
model.resize_token_embeddings(len(UpperCamelCase__ ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
"""BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"""
"""--mlm flag (masked language modeling).""" )
if data_args.block_size <= 0:
_a : int = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
_a : Optional[Any] = min(data_args.block_size , tokenizer.max_len )
# Get datasets
_a : Optional[Any] = (
get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
_a : Optional[int] = (
get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
_a : Any = DataCollatorForPermutationLanguageModeling(
tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
_a : Union[str, Any] = DataCollatorForWholeWordMask(
tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability )
else:
_a : str = DataCollatorForLanguageModeling(
tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
_a : Union[str, Any] = Trainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , )
# Training
if training_args.do_train:
_a : Optional[Any] = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=UpperCamelCase__ )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_a : Union[str, Any] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
_a : int = trainer.evaluate()
_a : Dict = math.exp(eval_output["""eval_loss"""] )
_a : Union[str, Any] = {"""perplexity""": perplexity}
_a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" )
if trainer.is_world_master():
with open(UpperCamelCase__ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key in sorted(result.keys() ):
logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) )
writer.write("""%s = %s\n""" % (key, str(result[key] )) )
results.update(UpperCamelCase__ )
return results
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 324
| 1
|
"""simple docstring"""
from math import sqrt
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(UpperCamelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCAmelCase__ ( UpperCamelCase__ = 1_0_0_0_1 ):
'''simple docstring'''
_a : str = 0
_a : Dict = 1
while count != nth and number < 3:
number += 1
if is_prime(UpperCamelCase__ ):
count += 1
while count != nth:
number += 2
if is_prime(UpperCamelCase__ ):
count += 1
return number
if __name__ == "__main__":
print(F'''{solution() = }''')
| 324
|
"""simple docstring"""
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_snake_case = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['memory_attention', 'encoder_attn'],
['attention', 'attn'],
['/', '.'],
['.LayerNorm.gamma', '_layer_norm.weight'],
['.LayerNorm.beta', '_layer_norm.bias'],
['r.layer_', 'r.layers.'],
['output_proj', 'out_proj'],
['ffn.dense_1.', 'fc2.'],
['ffn.dense.', 'fc1.'],
['ffn_layer_norm', 'final_layer_norm'],
['kernel', 'weight'],
['encoder_layer_norm.', 'encoder.layer_norm.'],
['decoder_layer_norm.', 'decoder.layer_norm.'],
['embeddings.weights', 'shared.weight'],
]
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
for pegasus_name, hf_name in PATTERNS:
_a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ )
return k
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Union[str, Any] = DEFAULTS.copy()
cfg_kwargs.update(UpperCamelCase__ )
_a : Optional[Any] = PegasusConfig(**UpperCamelCase__ )
_a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ )
_a : str = torch_model.model.state_dict()
_a : Union[str, Any] = {}
for k, v in tf_weights.items():
_a : Any = rename_state_dict_key(UpperCamelCase__ )
if new_k not in sd:
raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" )
if "dense" in k or "proj" in new_k:
_a : str = v.T
_a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}"""
# make sure embedding.padding_idx is respected
_a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] )
_a : str = mapping["""shared.weight"""]
_a : Union[str, Any] = mapping["""shared.weight"""]
_a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping}
mapping.update(**UpperCamelCase__ )
_a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
_a : Optional[Any] = [
k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""]
]
assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], F"""no matches found for the following tf keys {extra}"""
return torch_model
def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ):
'''simple docstring'''
_a : List[Any] = tf.train.list_variables(UpperCamelCase__ )
_a : Optional[int] = {}
_a : Dict = ["""Adafactor""", """global_step"""]
for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ):
_a : Optional[Any] = any(pat in name for pat in ignore_name )
if skip_key:
continue
_a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ )
_a : int = array
return tf_weights
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
# save tokenizer first
_a : Dict = Path(UpperCamelCase__ ).parent.name
_a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""]
_a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(UpperCamelCase__ )
# convert model
_a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ )
_a : Dict = task_specific_params[F"""summarization_{dataset}"""]
if dataset == "large":
_a : Tuple = task_specific_params
_a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ )
torch_model.save_pretrained(UpperCamelCase__ )
_a : Dict = torch_model.state_dict()
sd.pop("""model.decoder.embed_positions.weight""" )
sd.pop("""model.encoder.embed_positions.weight""" )
torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables')
parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.')
_snake_case = parser.parse_args()
if args.save_dir is None:
_snake_case = Path(args.tf_ckpt_path).parent.name
_snake_case = os.path.join('pegasus', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 324
| 1
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCamelCase ( snake_case_ , unittest.TestCase ):
UpperCamelCase : Tuple = BlenderbotSmallTokenizer
UpperCamelCase : List[Any] = False
def _lowercase ( self : Union[str, Any] ) -> Optional[Any]:
super().setUp()
_a : List[Any] = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""]
_a : Dict = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) )
_a : Tuple = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""]
_a : Any = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""}
_a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
_a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(UpperCAmelCase__ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(UpperCAmelCase__ ) )
def _lowercase ( self : int , **UpperCAmelCase__ : Optional[Any] ) -> str:
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
def _lowercase ( self : str , UpperCAmelCase__ : str ) -> Dict:
_a : Tuple = """adapt act apte"""
_a : Union[str, Any] = """adapt act apte"""
return input_text, output_text
def _lowercase ( self : List[Any] ) -> Union[str, Any]:
_a : Union[str, Any] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_a : List[Any] = """adapt act apte"""
_a : List[str] = ["""adapt""", """act""", """ap@@""", """te"""]
_a : Union[str, Any] = tokenizer.tokenize(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
_a : str = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
_a : Optional[Any] = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ )
def _lowercase ( self : Optional[Any] ) -> Optional[Any]:
_a : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
assert tok("""sam""" ).input_ids == [1384]
_a : Dict = """I am a small frog."""
_a : Optional[int] = tok([src_text] , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ )["""input_ids"""]
_a : Optional[int] = tok.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def _lowercase ( self : Dict ) -> str:
_a : int = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
_a : List[Any] = """I am a small frog ."""
_a : Tuple = """."""
_a : Optional[int] = tok(UpperCAmelCase__ )["""input_ids"""]
_a : Dict = tok(UpperCAmelCase__ )["""input_ids"""]
assert encoded[-1] == encoded_dot[0]
| 324
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ):
UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline
UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''}
UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def _lowercase ( self : Any ) -> List[Any]:
torch.manual_seed(0 )
_a : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , )
_a : Union[str, Any] = EulerDiscreteScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , )
torch.manual_seed(0 )
_a : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
_a : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , )
_a : Tuple = CLIPTextModel(UpperCAmelCase__ )
_a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ )
_a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ )
_a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ )
_a : Any = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""text_encoder_2""": text_encoder_a,
"""tokenizer_2""": tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int:
_a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
_a : Any = image / 2 + 0.5
if str(UpperCAmelCase__ ).startswith("""mps""" ):
_a : Any = torch.manual_seed(UpperCAmelCase__ )
else:
_a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
_a : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 5.0,
"""output_type""": """numpy""",
"""strength""": 0.7_5,
}
return inputs
def _lowercase ( self : Any ) -> List[Any]:
_a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
_a : Dict = self.get_dummy_components()
_a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ )
_a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ )
_a : List[str] = sd_pipe(**UpperCAmelCase__ ).images
_a : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _lowercase ( self : Any ) -> Any:
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def _lowercase ( self : List[Any] ) -> Optional[Any]:
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def _lowercase ( self : Any ) -> Any:
pass
def _lowercase ( self : Tuple ) -> Union[str, Any]:
_a : int = self.get_dummy_components()
_a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ )
_a : Dict = sd_pipe.to(UpperCAmelCase__ )
_a : List[str] = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
# forward without prompt embeds
_a : int = self.get_dummy_inputs(UpperCAmelCase__ )
_a : List[str] = 3 * ["""this is a negative prompt"""]
_a : Dict = negative_prompt
_a : Dict = 3 * [inputs["""prompt"""]]
_a : Optional[Any] = sd_pipe(**UpperCAmelCase__ )
_a : Tuple = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
_a : int = self.get_dummy_inputs(UpperCAmelCase__ )
_a : Union[str, Any] = 3 * ["""this is a negative prompt"""]
_a : int = 3 * [inputs.pop("""prompt""" )]
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ )
_a : Tuple = sd_pipe(
**UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , )
_a : Dict = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class UpperCamelCase ( unittest.TestCase ):
def _lowercase ( self : List[str] ) -> Union[str, Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]:
_a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
_a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) )
_a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ )
_a : Any = {
"""prompt""": """a photograph of an astronaut riding a horse""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def _lowercase ( self : int ) -> Union[str, Any]:
_a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : List[str] = self.get_inputs(UpperCAmelCase__ )
_a : Tuple = pipe(**UpperCAmelCase__ ).images
_a : List[str] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
_a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 324
| 1
|
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ):
UpperCamelCase : str = IFInpaintingPipeline
UpperCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
UpperCamelCase : Optional[int] = PipelineTesterMixin.required_optional_params - {'''latents'''}
def _lowercase ( self : Union[str, Any] ) -> Tuple:
return self._get_dummy_components()
def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=0 ) -> Tuple:
if str(UpperCAmelCase__ ).startswith("""mps""" ):
_a : Dict = torch.manual_seed(UpperCAmelCase__ )
else:
_a : Any = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
_a : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
_a : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
_a : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _lowercase ( self : str ) -> str:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def _lowercase ( self : Optional[int] ) -> Optional[int]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def _lowercase ( self : Union[str, Any] ) -> int:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def _lowercase ( self : List[Any] ) -> Tuple:
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def _lowercase ( self : List[Any] ) -> Optional[int]:
self._test_save_load_local()
def _lowercase ( self : int ) -> Optional[Any]:
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 324
|
"""simple docstring"""
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger()
@dataclass
class UpperCamelCase :
UpperCamelCase : nn.Module
UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ )
UpperCamelCase : list = field(default_factory=snake_case_ )
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any:
_a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad )
if has_not_submodules:
self.traced.append(UpperCAmelCase__ )
def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple:
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(UpperCAmelCase__ )
[x.remove() for x in self.handles]
return self
@property
def _lowercase ( self : Optional[int] ) -> int:
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class UpperCamelCase :
UpperCamelCase : nn.Module
UpperCamelCase : nn.Module
UpperCamelCase : int = 0
UpperCamelCase : List = field(default_factory=snake_case_ )
UpperCamelCase : List = field(default_factory=snake_case_ )
def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple:
_a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized
_a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized
_a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) )
_a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) )
if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ):
raise Exception(
f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while"""
f""" destination module has {len(UpperCAmelCase__ )}.""" )
for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f"""Transfered from={src_m} to={dest_m}""" )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ):
'''simple docstring'''
print(F"""Converting {name}...""" )
with torch.no_grad():
_a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval()
_a : str = ResNetForImageClassification(UpperCamelCase__ ).eval()
_a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ )
_a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) )
module_transfer(UpperCamelCase__ )
assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one."
_a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}"""
print(UpperCamelCase__ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , )
# we can use the convnext one
_a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , )
print(F"""Pushed {checkpoint_name}""" )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ):
'''simple docstring'''
_a : Any = """imagenet-1k-id2label.json"""
_a : Optional[int] = 1_0_0_0
_a : Any = (1, num_labels)
_a : Union[str, Any] = """huggingface/label-files"""
_a : Tuple = num_labels
_a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) )
_a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
_a : Any = idalabel
_a : Tuple = {v: k for k, v in idalabel.items()}
_a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ )
_a : Union[str, Any] = {
"""resnet18""": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ),
"""resnet26""": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ),
"""resnet34""": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ),
"""resnet50""": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ),
"""resnet101""": ImageNetPreTrainedConfig(
depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ),
"""resnet152""": ImageNetPreTrainedConfig(
depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ),
}
if model_name:
convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
return config, expected_shape
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help=(
'The name of the model you wish to convert, it must be one of the supported resnet* architecture,'
' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=Path,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
default=True,
type=bool,
required=False,
help='If True, push model and image processor to the hub.',
)
_snake_case = parser.parse_args()
_snake_case = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 324
| 1
|
"""simple docstring"""
import os
# Precomputes a list of the 100 first triangular numbers
_snake_case = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Optional[int] = os.path.dirname(os.path.realpath(UpperCamelCase__ ) )
_a : List[str] = os.path.join(UpperCamelCase__ , """words.txt""" )
_a : str = """"""
with open(UpperCamelCase__ ) as f:
_a : Dict = f.readline()
_a : Union[str, Any] = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )]
_a : Union[str, Any] = [
word
for word in [sum(ord(UpperCamelCase__ ) - 6_4 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(UpperCamelCase__ )
if __name__ == "__main__":
print(solution())
| 324
|
"""simple docstring"""
from . import __version__
# Backward compatibility imports, to make sure all those objects can be found in file_utils
from .utils import (
CLOUDFRONT_DISTRIB_PREFIX,
CONFIG_NAME,
DISABLE_TELEMETRY,
DUMMY_INPUTS,
DUMMY_MASK,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
FEATURE_EXTRACTOR_NAME,
FLAX_WEIGHTS_NAME,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MODEL_CARD_NAME,
MULTIPLE_CHOICE_DUMMY_INPUTS,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
SENTENCEPIECE_UNDERLINE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TORCH_FX_REQUIRED_VERSION,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
USE_JAX,
USE_TF,
USE_TORCH,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
DummyObject,
EntryNotFoundError,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
TensorType,
_LazyModule,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_property,
copy_func,
default_cache_path,
define_sagemaker_information,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
get_torch_version,
has_file,
http_user_agent,
is_apex_available,
is_bsa_available,
is_coloredlogs_available,
is_datasets_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_librosa_available,
is_offline_mode,
is_onnx_available,
is_pandas_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_tensor,
is_tensorflow_probability_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_training_run_on_sagemaker,
is_vision_available,
replace_return_docstrings,
requires_backends,
to_numpy,
to_py_obj,
torch_only_method,
)
| 324
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_snake_case = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['GLPNFeatureExtractor']
_snake_case = ['GLPNImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST',
'GLPNForDepthEstimation',
'GLPNLayer',
'GLPNModel',
'GLPNPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_glpn import GLPNFeatureExtractor
from .image_processing_glpn import GLPNImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_glpn import (
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
GLPNForDepthEstimation,
GLPNLayer,
GLPNModel,
GLPNPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324
|
"""simple docstring"""
_snake_case = 8.31_44_62 # Unit - J mol-1 K-1
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if moles < 0 or kelvin < 0 or volume < 0:
raise ValueError("""Invalid inputs. Enter positive value.""" )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if moles < 0 or kelvin < 0 or pressure < 0:
raise ValueError("""Invalid inputs. Enter positive value.""" )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
if __name__ == "__main__":
from doctest import testmod
testmod()
| 324
| 1
|
"""simple docstring"""
import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from torch import nn
from torch.utils.data import DataLoader
from transformers import MBartTokenizer, TaForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import (
ROUGE_KEYS,
LegacySeqaSeqDataset,
SeqaSeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
check_output_dir,
flatten_list,
freeze_embeds,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
_snake_case = logging.getLogger(__name__)
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : Any = '''summarization'''
UpperCamelCase : str = ['''loss''']
UpperCamelCase : Optional[Any] = ROUGE_KEYS
UpperCamelCase : List[str] = '''rouge2'''
def __init__( self : Tuple , UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int ) -> Optional[int]:
if hparams.sortish_sampler and hparams.gpus > 1:
_a : Optional[Any] = False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" )
if hparams.sortish_sampler:
raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" )
super().__init__(UpperCAmelCase__ , num_labels=UpperCAmelCase__ , mode=self.mode , **UpperCAmelCase__ )
use_task_specific_params(self.model , """summarization""" )
save_git_info(self.hparams.output_dir )
_a : Tuple = Path(self.output_dir ) / """metrics.json"""
_a : Tuple = Path(self.output_dir ) / """hparams.pkl"""
pickle_save(self.hparams , self.hparams_save_path )
_a : List[str] = 0
_a : Any = defaultdict(UpperCAmelCase__ )
_a : Optional[Any] = self.config.model_type
_a : int = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size
_a : dict = {
"data_dir": self.hparams.data_dir,
"max_source_length": self.hparams.max_source_length,
"prefix": self.model.config.prefix or "",
}
_a : List[str] = {
"""train""": self.hparams.n_train,
"""val""": self.hparams.n_val,
"""test""": self.hparams.n_test,
}
_a : int = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
_a : Tuple = {
"""train""": self.hparams.max_target_length,
"""val""": self.hparams.val_max_target_length,
"""test""": self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], f"""target_lens: {self.target_lens}"""
assert self.target_lens["train"] <= self.target_lens["test"], f"""target_lens: {self.target_lens}"""
if self.hparams.freeze_embeds:
freeze_embeds(self.model )
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder() )
assert_all_frozen(self.model.get_encoder() )
_a : str = get_git_info()["""repo_sha"""]
_a : int = hparams.num_workers
_a : int = None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCAmelCase__ ):
_a : Tuple = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
_a : str = self.decoder_start_token_id
_a : int = (
SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset
)
_a : Any = False
_a : Union[str, Any] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
if self.hparams.eval_max_gen_length is not None:
_a : List[Any] = self.hparams.eval_max_gen_length
else:
_a : Union[str, Any] = self.model.config.max_length
_a : Tuple = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def _lowercase ( self : Tuple , UpperCAmelCase__ : Dict[str, torch.Tensor] ) -> Dict[str, List[str]]:
_a : Optional[int] = {
k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items()
}
save_json(UpperCAmelCase__ , Path(self.output_dir ) / """text_batch.json""" )
save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" )
_a : str = True
return readable_batch
def _lowercase ( self : List[str] , UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[int] ) -> str:
return self.model(UpperCAmelCase__ , **UpperCAmelCase__ )
def _lowercase ( self : Tuple , UpperCAmelCase__ : List[int] ) -> Tuple:
_a : Optional[Any] = self.tokenizer.batch_decode(
UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ )
return lmap(str.strip , UpperCAmelCase__ )
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : dict ) -> Tuple:
_a : Dict = self.tokenizer.pad_token_id
_a , _a : List[Any] = batch["""input_ids"""], batch["""attention_mask"""]
_a : List[str] = batch["""labels"""]
if isinstance(self.model , UpperCAmelCase__ ):
_a : Union[str, Any] = self.model._shift_right(UpperCAmelCase__ )
else:
_a : Dict = shift_tokens_right(UpperCAmelCase__ , UpperCAmelCase__ )
if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero
_a : Optional[int] = decoder_input_ids
self.save_readable_batch(UpperCAmelCase__ )
_a : List[Any] = self(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ , use_cache=UpperCAmelCase__ )
_a : Any = outputs["""logits"""]
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
_a : Union[str, Any] = nn.CrossEntropyLoss(ignore_index=UpperCAmelCase__ )
assert lm_logits.shape[-1] == self.vocab_size
_a : str = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) )
else:
_a : int = nn.functional.log_softmax(UpperCAmelCase__ , dim=-1 )
_a , _a : Any = label_smoothed_nll_loss(
UpperCAmelCase__ , UpperCAmelCase__ , self.hparams.label_smoothing , ignore_index=UpperCAmelCase__ )
return (loss,)
@property
def _lowercase ( self : Union[str, Any] ) -> int:
return self.tokenizer.pad_token_id
def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any ) -> Dict:
_a : Optional[Any] = self._step(UpperCAmelCase__ )
_a : Dict = dict(zip(self.loss_names , UpperCAmelCase__ ) )
# tokens per batch
_a : Dict = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum()
_a : List[str] = batch["""input_ids"""].shape[0]
_a : Union[str, Any] = batch["""input_ids"""].eq(self.pad ).sum()
_a : Tuple = batch["""input_ids"""].eq(self.pad ).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def _lowercase ( self : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Dict:
return self._generative_step(UpperCAmelCase__ )
def _lowercase ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any]="val" ) -> Dict:
self.step_count += 1
_a : Optional[int] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names}
_a : Optional[int] = losses["""loss"""]
_a : Union[str, Any] = {
k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""]
}
_a : Union[str, Any] = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
_a : torch.FloatTensor = torch.tensor(UpperCAmelCase__ ).type_as(UpperCAmelCase__ )
generative_metrics.update({k: v.item() for k, v in losses.items()} )
losses.update(UpperCAmelCase__ )
_a : str = {f"""{prefix}_avg_{k}""": x for k, x in losses.items()}
_a : List[str] = self.step_count
self.metrics[prefix].append(UpperCAmelCase__ ) # callback writes this to self.metrics_save_path
_a : Optional[int] = flatten_list([x["""preds"""] for x in outputs] )
return {
"log": all_metrics,
"preds": preds,
f"""{prefix}_loss""": loss,
f"""{prefix}_{self.val_metric}""": metric_tensor,
}
def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple ) -> Dict:
return calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ )
def _lowercase ( self : int , UpperCAmelCase__ : dict ) -> dict:
_a : Union[str, Any] = time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
_a : Optional[Any] = self.model.generate(
batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=UpperCAmelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , )
_a : Any = (time.time() - ta) / batch["""input_ids"""].shape[0]
_a : List[str] = self.ids_to_clean_text(UpperCAmelCase__ )
_a : List[str] = self.ids_to_clean_text(batch["""labels"""] )
_a : List[Any] = self._step(UpperCAmelCase__ )
_a : int = dict(zip(self.loss_names , UpperCAmelCase__ ) )
_a : Dict = self.calc_generative_metrics(UpperCAmelCase__ , UpperCAmelCase__ )
_a : List[Any] = np.mean(lmap(UpperCAmelCase__ , UpperCAmelCase__ ) )
base_metrics.update(gen_time=UpperCAmelCase__ , gen_len=UpperCAmelCase__ , preds=UpperCAmelCase__ , target=UpperCAmelCase__ , **UpperCAmelCase__ )
return base_metrics
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int ) -> Dict:
return self._generative_step(UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Tuple ) -> Optional[Any]:
return self.validation_epoch_end(UpperCAmelCase__ , prefix="""test""" )
def _lowercase ( self : str , UpperCAmelCase__ : Optional[int] ) -> SeqaSeqDataset:
_a : Any = self.n_obs[type_path]
_a : Dict = self.target_lens[type_path]
_a : Union[str, Any] = self.dataset_class(
self.tokenizer , type_path=UpperCAmelCase__ , n_obs=UpperCAmelCase__ , max_target_length=UpperCAmelCase__ , **self.dataset_kwargs , )
return dataset
def _lowercase ( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False ) -> DataLoader:
_a : List[Any] = self.get_dataset(UpperCAmelCase__ )
if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
_a : Optional[Any] = dataset.make_sortish_sampler(UpperCAmelCase__ , distributed=self.hparams.gpus > 1 )
return DataLoader(
UpperCAmelCase__ , batch_size=UpperCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCAmelCase__ , num_workers=self.num_workers , sampler=UpperCAmelCase__ , )
elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
_a : Optional[int] = dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 )
return DataLoader(
UpperCAmelCase__ , batch_sampler=UpperCAmelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , )
else:
return DataLoader(
UpperCAmelCase__ , batch_size=UpperCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCAmelCase__ , num_workers=self.num_workers , sampler=UpperCAmelCase__ , )
def _lowercase ( self : Tuple ) -> DataLoader:
_a : str = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=UpperCAmelCase__ )
return dataloader
def _lowercase ( self : Dict ) -> DataLoader:
return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size )
def _lowercase ( self : Optional[int] ) -> DataLoader:
return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size )
@staticmethod
def _lowercase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Any ) -> Union[str, Any]:
BaseTransformer.add_model_specific_args(UpperCAmelCase__ , UpperCAmelCase__ )
add_generic_args(UpperCAmelCase__ , UpperCAmelCase__ )
parser.add_argument(
"""--max_source_length""" , default=1024 , type=UpperCAmelCase__ , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--max_target_length""" , default=56 , type=UpperCAmelCase__ , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--val_max_target_length""" , default=142 , type=UpperCAmelCase__ , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--test_max_target_length""" , default=142 , type=UpperCAmelCase__ , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument("""--freeze_encoder""" , action="""store_true""" )
parser.add_argument("""--freeze_embeds""" , action="""store_true""" )
parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=UpperCAmelCase__ )
parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=UpperCAmelCase__ )
parser.add_argument("""--max_tokens_per_batch""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ )
parser.add_argument("""--logger_name""" , type=UpperCAmelCase__ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" )
parser.add_argument("""--n_train""" , type=UpperCAmelCase__ , default=-1 , required=UpperCAmelCase__ , help="""# examples. -1 means use all.""" )
parser.add_argument("""--n_val""" , type=UpperCAmelCase__ , default=500 , required=UpperCAmelCase__ , help="""# examples. -1 means use all.""" )
parser.add_argument("""--n_test""" , type=UpperCAmelCase__ , default=-1 , required=UpperCAmelCase__ , help="""# examples. -1 means use all.""" )
parser.add_argument(
"""--task""" , type=UpperCAmelCase__ , default="""summarization""" , required=UpperCAmelCase__ , help="""# examples. -1 means use all.""" )
parser.add_argument("""--label_smoothing""" , type=UpperCAmelCase__ , default=0.0 , required=UpperCAmelCase__ )
parser.add_argument("""--src_lang""" , type=UpperCAmelCase__ , default="""""" , required=UpperCAmelCase__ )
parser.add_argument("""--tgt_lang""" , type=UpperCAmelCase__ , default="""""" , required=UpperCAmelCase__ )
parser.add_argument("""--eval_beams""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ )
parser.add_argument(
"""--val_metric""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ , choices=["""bleu""", """rouge2""", """loss""", None] )
parser.add_argument("""--eval_max_gen_length""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help="""never generate more than n tokens""" )
parser.add_argument("""--save_top_k""" , type=UpperCAmelCase__ , default=1 , required=UpperCAmelCase__ , help="""How many checkpoints to save""" )
parser.add_argument(
"""--early_stopping_patience""" , type=UpperCAmelCase__ , default=-1 , required=UpperCAmelCase__ , help=(
"""-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So"""
""" val_check_interval will effect it."""
) , )
return parser
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : List[str] = '''translation'''
UpperCamelCase : List[str] = ['''loss''']
UpperCamelCase : Dict = ['''bleu''']
UpperCamelCase : Any = '''bleu'''
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Any , **UpperCAmelCase__ : Optional[int] ) -> Any:
super().__init__(UpperCAmelCase__ , **UpperCAmelCase__ )
_a : Tuple = hparams.src_lang
_a : Optional[Any] = hparams.tgt_lang
def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any ) -> dict:
return calculate_bleu(UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=None ):
'''simple docstring'''
Path(args.output_dir ).mkdir(exist_ok=UpperCamelCase__ )
check_output_dir(UpperCamelCase__ , expected_items=3 )
if model is None:
if "summarization" in args.task:
_a : SummarizationModule = SummarizationModule(UpperCamelCase__ )
else:
_a : SummarizationModule = TranslationModule(UpperCamelCase__ )
_a : Optional[int] = Path(args.data_dir ).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir ).startswith("""/tmp""" )
or str(args.output_dir ).startswith("""/var""" )
):
_a : Dict = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
_a : Optional[Any] = os.environ.get("""WANDB_PROJECT""" , UpperCamelCase__ )
_a : str = WandbLogger(name=model.output_dir.name , project=UpperCamelCase__ )
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
_a : int = WandbLogger(name=model.output_dir.name , project=F"""hf_{dataset}""" )
if args.early_stopping_patience >= 0:
_a : List[Any] = get_early_stopping_callback(model.val_metric , args.early_stopping_patience )
else:
_a : List[str] = False
_a : int = args.val_metric == """loss"""
_a : pl.Trainer = generic_train(
UpperCamelCase__ , UpperCamelCase__ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback(
args.output_dir , model.val_metric , args.save_top_k , UpperCamelCase__ ) , early_stopping_callback=UpperCamelCase__ , logger=UpperCamelCase__ , )
pickle_save(model.hparams , model.output_dir / """hparams.pkl""" )
if not args.do_predict:
return model
_a : Dict = """"""
_a : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=UpperCamelCase__ ) )
if checkpoints:
_a : Optional[Any] = checkpoints[-1]
_a : Optional[Any] = checkpoints[-1]
trainer.logger.log_hyperparams(model.hparams )
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
_snake_case = pl.Trainer.add_argparse_args(parser)
_snake_case = SummarizationModule.add_model_specific_args(parser, os.getcwd())
_snake_case = parser.parse_args()
main(args)
| 324
|
"""simple docstring"""
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
_snake_case = logging.getLogger(__name__)
_snake_case = 'pytorch_model.bin'
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , )
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} )
UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , )
UpperCamelCase : Optional[List[str]] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} )
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(
metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default='''no''' , metadata={
'''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]'''
} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , )
UpperCamelCase : Optional[float] = dataclasses.field(
default=0.0 , metadata={
'''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.'''
} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , )
UpperCamelCase : Optional[float] = dataclasses.field(
default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
_a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
_a : Any = int(eval_result * len(UpperCamelCase__ ) )
print(UpperCamelCase__ )
_a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ )
_a : Any = dataset.select(range(UpperCamelCase__ ) )
_a : Tuple = dataset.remove_columns(["""label""", """probability"""] )
_a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" )
_a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} )
_a : Union[str, Any] = dataset.shuffle(seed=args.seed )
_a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" )
if args.data_file_extension == "csv":
dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ )
else:
dataset.to_json(UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
_a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ )
_a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ )
_a : Any = STTrainingArguments(output_dir=UpperCamelCase__ )
_a : Any = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(UpperCamelCase__ ).items():
setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for key, value in kwargs.items():
if hasattr(UpperCamelCase__ , UpperCamelCase__ ):
setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Sanity checks
_a : Union[str, Any] = {}
_a : Tuple = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
_a : int = args.train_file
_a : List[Any] = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
_a : Union[str, Any] = args.eval_file
for key in data_files:
_a : Optional[Any] = data_files[key].split(""".""" )[-1]
assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file."""
if args.data_file_extension is None:
_a : str = extension
else:
assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`."""
assert (
args.eval_metric in datasets.list_metrics()
), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}."""
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info("""Creating the initial data directory for self-training...""" )
_a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format
_a : Dict = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ )
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
accelerator.wait_for_everyone()
_a : str = None
_a : int = None
_a : str = 0
_a : List[Any] = False
# Show the progress bar
_a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
_a : Union[str, Any] = data_dir_format(UpperCamelCase__ )
assert os.path.exists(UpperCamelCase__ )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
_a : str = os.path.join(UpperCamelCase__ , """stage-1""" )
_a : Tuple = {
"""accelerator""": accelerator,
"""model_name_or_path""": args.model_name_or_path,
"""cache_dir""": args.cache_dir,
"""do_train""": True,
"""train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""],
"""do_eval""": True if args.eval_file is not None else False,
"""eval_file""": data_files["""eval"""],
"""do_predict""": True,
"""infer_file""": data_files["""infer"""],
"""task_name""": args.task_name,
"""label_list""": args.label_list,
"""output_dir""": current_output_dir,
"""eval_metric""": args.eval_metric,
"""evaluation_strategy""": args.evaluation_strategy,
"""early_stopping_patience""": args.early_stopping_patience,
"""early_stopping_threshold""": args.early_stopping_threshold,
"""seed""": args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
arguments_dict.update({key: value} )
_a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ )
if os.path.exists(UpperCamelCase__ ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ )
finetune(**UpperCamelCase__ )
accelerator.wait_for_everyone()
assert os.path.exists(UpperCamelCase__ )
logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
_a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" )
_a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" )
# Update arguments_dict
_a : int = model_path
_a : Dict = data_files["""train"""]
_a : int = current_output_dir
_a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ )
if os.path.exists(UpperCamelCase__ ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ )
finetune(**UpperCamelCase__ )
accelerator.wait_for_everyone()
assert os.path.exists(UpperCamelCase__ )
logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ )
_a : List[Any] = iteration
_a : int = data_dir_format(iteration + 1 )
_a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) )
_a : Union[str, Any] = config.idalabel
_a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" )
_a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" )
assert os.path.exists(UpperCamelCase__ )
with open(UpperCamelCase__ , """r""" ) as f:
_a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] )
_a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" )
assert os.path.exists(UpperCamelCase__ )
# Loading the dataset from local csv or json files.
_a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""]
_a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""]
if accelerator.is_main_process:
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) )
if os.path.exists(UpperCamelCase__ ):
shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) )
create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
accelerator.wait_for_everyone()
_a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" )
if args.evaluation_strategy != IntervalStrategy.NO.value:
_a : Any = eval_result
if best_iteration is None:
_a : Union[str, Any] = new_iteration
_a : str = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
_a : Union[str, Any] = new_iteration
_a : List[str] = new_eval_result
_a : Optional[Any] = 0
else:
if new_eval_result == best_eval_result:
_a : Tuple = new_iteration
_a : List[Any] = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
_a : Union[str, Any] = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info("""Best iteration: %d""" , UpperCamelCase__ )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
else:
# Assume that the last iteration is the best
logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
| 324
| 1
|
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase :
def __init__( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=13 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : Optional[Any]=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : Any=[10, 20, 30, 40] , UpperCAmelCase__ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : str=37 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Dict=10 , UpperCAmelCase__ : Dict=0.0_2 , UpperCAmelCase__ : Any=["stage2", "stage3", "stage4"] , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Any=None , ) -> Optional[int]:
_a : Dict = parent
_a : List[str] = batch_size
_a : int = image_size
_a : str = num_channels
_a : Optional[int] = num_stages
_a : Optional[int] = hidden_sizes
_a : int = depths
_a : List[Any] = is_training
_a : str = use_labels
_a : Union[str, Any] = intermediate_size
_a : int = hidden_act
_a : Dict = type_sequence_label_size
_a : str = initializer_range
_a : Dict = out_features
_a : int = num_labels
_a : Dict = scope
_a : Tuple = num_stages
def _lowercase ( self : int ) -> Any:
_a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a : Dict = None
if self.use_labels:
_a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a : Any = self.get_config()
return config, pixel_values, labels
def _lowercase ( self : Dict ) -> Dict:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def _lowercase ( self : Optional[Any] ) -> Union[str, Any]:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase__ , loss_ignore_index=255 , num_labels=self.num_labels , )
def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> Union[str, Any]:
_a : Tuple = UperNetForSemanticSegmentation(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
_a : List[str] = model(UpperCAmelCase__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def _lowercase ( self : List[Any] ) -> str:
_a : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) ,
) : str = config_and_inputs
_a : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ):
UpperCamelCase : Optional[int] = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
UpperCamelCase : Union[str, Any] = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {}
UpperCamelCase : Optional[int] = False
UpperCamelCase : Optional[int] = False
UpperCamelCase : int = False
UpperCamelCase : Optional[int] = False
UpperCamelCase : Optional[Any] = False
UpperCamelCase : Tuple = False
def _lowercase ( self : Union[str, Any] ) -> str:
_a : Tuple = UperNetModelTester(self )
_a : List[Any] = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 )
def _lowercase ( self : Union[str, Any] ) -> Optional[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase ( self : Optional[Any] ) -> Union[str, Any]:
return
def _lowercase ( self : int ) -> Optional[int]:
_a , _a : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : Any = model_class(UpperCAmelCase__ )
_a : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a : Union[str, Any] = [*signature.parameters.keys()]
_a : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase__ )
def _lowercase ( self : Any ) -> Any:
_a : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase__ )
@unittest.skip(reason="""UperNet does not use inputs_embeds""" )
def _lowercase ( self : Tuple ) -> List[Any]:
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""" )
def _lowercase ( self : Optional[Any] ) -> Optional[int]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def _lowercase ( self : str ) -> int:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def _lowercase ( self : int ) -> Union[str, Any]:
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def _lowercase ( self : Optional[int] ) -> Optional[int]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _lowercase ( self : Optional[int] ) -> Optional[Any]:
pass
def _lowercase ( self : Union[str, Any] ) -> Optional[int]:
def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] ):
_a : Tuple = model_class(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
with torch.no_grad():
_a : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) )
_a : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_a : str = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase__ ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_a , _a : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : Any = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_a : int = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
def _lowercase ( self : str ) -> Dict:
_a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_a : Optional[Any] = _config_zero_init(UpperCAmelCase__ )
_a : Tuple = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
_a : Dict = model_class(config=UpperCAmelCase__ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason="""UperNet does not have tied weights""" )
def _lowercase ( self : Tuple ) -> Dict:
pass
@slow
def _lowercase ( self : Tuple ) -> Optional[int]:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Optional[int] = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
_a : List[str] = Image.open(UpperCamelCase__ ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class UpperCamelCase ( unittest.TestCase ):
def _lowercase ( self : List[str] ) -> int:
_a : List[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" )
_a : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase__ )
_a : Tuple = prepare_img()
_a : Tuple = processor(images=UpperCAmelCase__ , return_tensors="""pt""" ).to(UpperCAmelCase__ )
with torch.no_grad():
_a : Tuple = model(**UpperCAmelCase__ )
_a : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase__ )
_a : Optional[Any] = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(UpperCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
def _lowercase ( self : Optional[int] ) -> Union[str, Any]:
_a : Optional[int] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" )
_a : List[Any] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase__ )
_a : Any = prepare_img()
_a : Optional[int] = processor(images=UpperCAmelCase__ , return_tensors="""pt""" ).to(UpperCAmelCase__ )
with torch.no_grad():
_a : str = model(**UpperCAmelCase__ )
_a : int = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase__ )
_a : Tuple = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(UpperCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
| 324
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
_snake_case = None
_snake_case = logging.get_logger(__name__)
_snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
_snake_case = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
},
'tokenizer_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json',
},
}
_snake_case = {
'camembert-base': 512,
}
_snake_case = '▁'
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : Any = VOCAB_FILES_NAMES
UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase : Dict = ['''input_ids''', '''attention_mask''']
UpperCamelCase : Optional[Any] = CamembertTokenizer
def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token
super().__init__(
UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , )
_a : int = vocab_file
_a : int = False if not self.vocab_file else True
def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a : List[Any] = [self.cls_token_id]
_a : Dict = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
_a : Union[str, Any] = [self.sep_token_id]
_a : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(UpperCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_a : List[str] = os.path.join(
UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ):
copyfile(self.vocab_file , UpperCAmelCase__ )
return (out_vocab_file,)
| 324
| 1
|
"""simple docstring"""
import os
import numpy
import onnx
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Any = a.name
_a : str = b.name
_a : Optional[int] = """"""
_a : Any = """"""
_a : List[str] = a == b
_a : str = name_a
_a : str = name_b
return res
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(UpperCamelCase__ , UpperCamelCase__ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ )
_graph_replace_input_with(node_proto.attribute[1].g , UpperCamelCase__ , UpperCamelCase__ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
for n in graph_proto.node:
_node_replace_input_with(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Any = list(model.graph.initializer )
_a : Tuple = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_a : Tuple = inits[i].name
_a : Union[str, Any] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , UpperCamelCase__ , UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
_a : Union[str, Any] = os.path.dirname(UpperCamelCase__ )
_a : Optional[Any] = os.path.basename(UpperCamelCase__ )
_a : Tuple = onnx.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) )
_a : List[Any] = list(model.graph.initializer )
_a : Dict = set()
_a : Optional[int] = {}
_a : str = []
_a : Optional[int] = 0
for i in range(len(UpperCamelCase__ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(UpperCamelCase__ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(UpperCamelCase__ )
dup_set.add(UpperCamelCase__ )
_a : Union[str, Any] = inits[j].data_type
_a : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 1_1:
mem_size *= 8
else:
print("""unexpected data type: """ , UpperCamelCase__ )
total_reduced_size += mem_size
_a : Any = inits[i].name
_a : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(UpperCamelCase__ )
else:
_a : List[Any] = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , """GB""" )
_a : Dict = sorted(UpperCamelCase__ )
_remove_dup_initializers_from_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
_a : Optional[Any] = """optimized_""" + model_file_name
_a : Optional[int] = os.path.join(UpperCamelCase__ , UpperCamelCase__ )
onnx.save(UpperCamelCase__ , UpperCamelCase__ )
return new_model
| 324
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_snake_case = logging.get_logger(__name__)
class UpperCamelCase ( snake_case_ ):
UpperCamelCase : Dict = ['''pixel_values''']
def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None:
_a : int = do_resize
_a : Union[str, Any] = do_rescale
_a : Any = size_divisor
_a : Any = resample
super().__init__(**UpperCAmelCase__ )
def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray:
_a , _a : Tuple = get_image_size(UpperCAmelCase__ )
# Rounds the height and width down to the closest multiple of size_divisor
_a : Optional[Any] = height // size_divisor * size_divisor
_a : Union[str, Any] = width // size_divisor * size_divisor
_a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ )
return image
def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray:
return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ )
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature:
_a : Dict = do_resize if do_resize is not None else self.do_resize
_a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale
_a : str = size_divisor if size_divisor is not None else self.size_divisor
_a : Any = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError("""size_divisor is required for resizing""" )
_a : List[str] = make_list_of_images(UpperCAmelCase__ )
if not valid_images(UpperCAmelCase__ ):
raise ValueError("""Invalid image(s)""" )
# All transformations expect numpy arrays.
_a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images]
if do_resize:
_a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images]
if do_rescale:
_a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images]
_a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images]
_a : Optional[int] = {"""pixel_values""": images}
return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
| 324
| 1
|
"""simple docstring"""
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
return (data["data"], data["target"])
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : str = XGBClassifier()
classifier.fit(UpperCamelCase__ , UpperCamelCase__ )
return classifier
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Optional[Any] = load_iris()
_a , _a : Dict = data_handling(UpperCamelCase__ )
_a , _a , _a , _a : List[Any] = train_test_split(
UpperCamelCase__ , UpperCamelCase__ , test_size=0.25 )
_a : List[Any] = iris["""target_names"""]
# Create an XGBoost Classifier from the training data
_a : List[str] = xgboost(UpperCamelCase__ , UpperCamelCase__ )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , display_labels=UpperCamelCase__ , cmap="""Blues""" , normalize="""true""" , )
plt.title("""Normalized Confusion Matrix - IRIS Dataset""" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 324
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class UpperCamelCase ( unittest.TestCase ):
@property
def _lowercase ( self : Optional[int] ) -> Union[str, Any]:
torch.manual_seed(0 )
_a : List[str] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
def _lowercase ( self : Dict ) -> Dict:
_a : str = self.dummy_uncond_unet
_a : Optional[int] = KarrasVeScheduler()
_a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : int = torch.manual_seed(0 )
_a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images
_a : Tuple = torch.manual_seed(0 )
_a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0]
_a : int = image[0, -3:, -3:, -1]
_a : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class UpperCamelCase ( unittest.TestCase ):
def _lowercase ( self : Tuple ) -> List[str]:
_a : Optional[Any] = """google/ncsnpp-celebahq-256"""
_a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ )
_a : Dict = KarrasVeScheduler()
_a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : Optional[int] = torch.manual_seed(0 )
_a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images
_a : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
_a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 324
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.